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Abstract

Stable autoregressive models of known finite order are considered with martingale differ-

ences errors scaled by an unknown nonparametric time-varying function generating hetero-

geneity. An important special case involves structural change in the error variance, but in

most practical cases the pattern of variance change over time is unknown and may involve

shifts at unknown discrete points in time, continuous evolution or combinations of the two.

This paper develops kernel-based estimators of the residual variances and associated adap-

tive least squares (ALS) estimators of the autoregressive coefficients. These are shown to be

asymptotically efficient, having the same limit distribution as the infeasible generalized least

squares (GLS). Comparisons of the efficient procedure and the ordinary least squares (OLS)

reveal that least squares can be extremely inefficient in some cases while nearly optimal in

others. Simulations show that, when least squares work well, the adaptive estimators perform

comparably well, whereas when least squares work poorly, major efficiency gains are achieved

by the new estimators.
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1 Introduction

Recently robust estimation and inference methods have been developed in autoregressions to

account for for potentially conditional heteroskedasticity in the innovation process. In this spirit,

Kuersteiner (2001, 2002) developed efficient instrumental variables estimators for autoregressive

and moving average (ARMA) models and autoregressive models of finite (p-th) order (AR(p)).

Goncalves and Kilian (2004a, 2004b) used bootstrap methods to robustify inference in AR(p) and

AR(1) models with unknown conditional heteroskedasticity. These methods and results rely on

the assumption that the unconditional variance of errors is constant over time.

Unconditional homoskedasticity seems unrealistic in practice, especially in view of the recent

emphasis in the empirical literature on structural change modeling for economic time series. To

accommodate models with error variance changes, Wichern, Miller and Hsu (1976) investigated

the AR(1) model when there are a finite number of step changes at unknown time points in the

error variance. These authors used iterative maximum likelihood methods to locate the change

points and then estimated the error variances in each block by averaging the squared least squares

residuals. The resulting feasible weighted least squares was shown to be efficient for the specific

model considered. Alternative methods to detect step changes in the variances of time series

models have been studied by Abraham and Wei (1984), Baufays and Rasson (1985), Tsay (1988),

Park, Lee and Jeon (2000), Lee and Park (2001), de Pooter and van Dijk (2004) and Galeano and

Peña (2004).

In practice, the pattern of variance changes over time, which may be discrete or continuous, is

unknown to the econometrician and it seems desirable to use methods which can adapt for a wide

range of possibilities. Accordingly, this paper seeks to develop an efficient estimation procedure

which adapts for the presence of different and unknown forms of variance dynamics. We focus

on the stable AR(p) model whose errors are assumed to be martingale differences multiplied

by a time-varying scale factor which is a continuous or discontinuous function of time, thereby

permitting a spectrum of variance dynamics that include step changes and smooth transition

functions of time.

Efficient estimation of linear models with heteroskedasticity under iid assumptions was earlier

investigated by Carroll (1982) and Robinson (1987), and more recently by Kitamura, Tripathi

and Ahn (2004) using empirical likelihood methods in a general conditional moment setting. In
2



the time series context, Harvey and Robinson (1988) considered a regression model with deter-

ministically trending regressors, whose error is an AR(p) process scaled by a continuous function

of time. Hansen (1995) considered the linear regression model, nesting autoregressive models

as special cases, when the conditional variance of the model error is a function of a covariate

that has the form of a nearly integrated stochastic process with no deterministic drift. In this

case, the nearly integrated process is scaled by the factor T¡1=2; where T is the sample size, to

obtain a nondegenerate limit theory. For nearly integrated covariates with deterministic drift,

the corresponding normalization would be T¡1 and Hansen’s model be analogous to the model

considered here. Regression models in which the conditional variance of the error is an unscaled

function of an integrated time series has recently been investigated by Chung and Park (2004)

using Brownian local time limit methods developed in Park and Phillips (1999, 2001).

Recently, increasing attention has been paid to potential structural error variance changes

in integrated process models. The effects of breaks in the innovation variance on unit root

tests and stationarity tests were studied by Hamori and Tokihisa (1997), Kim, Leybourne and

Newbold (2002), Busetti and Taylor (2003) and Cavaliere (2004a). A general framework to

analyze the effect of time varying variances on unit root tests was given in Cavaliere (2004b) and

Cavaliere and Taylor (2004). By contrast, little work of this general nature has been done on

stable autoregressions, most of the attention in the literature being concerned with the case of

step changes in the error variance, as discussed above. The present paper therefore contributes

by focusing on efficient estimation of the AR(p) model with time varying variances of a general

form that includes step changes as a special case. Robust inference in such models is dealt with

in another paper (Phillips and Xu, 2005).

The remainder of the paper proceeds as follows. Section 2 introduces the model and as-

sumptions and develops a limit theory for a class of weighted least squares estimators, including

efficient (infeasible) generalized least squares (GLS). A range of examples show that OLS can

be extremely inefficient asymptotically in some cases while nearly optimal in others. Section 3

proposes a kernel-based estimator of the residual variance and shows the associated adaptive least

squares estimator to be asymptotically efficient, in the sense of having the same limit distribution

as the infeasible GLS estimator. Simulation experiments are conducted to assess the finite sample

performance of the adaptive estimator in Section 4. Section 5 concludes. Proofs of the main
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results are collected in two appendices.

2 The Model

Let (−;F ; P ) be a probability space and fFtg a sequence of increasing ¾¡fields of F : Suppose

the sample fY¡p+1; ¢ ¢ ¢ ; Y0;Y1; ¢ ¢ ¢ ; YT g from the following data generating process for the time

series Yt is observed

A(L)Yt = ut; (1)

ut = ¾t"t; (2)

where L is the lag operator, A(L) = 1 ¡ ¯1L ¡ ¯2L
2 ¡ ¢ ¢ ¢ ¡ ¯pL

p; ¯p 6= 0; is assumed to

have all roots outside the unit circle and the lag order p is finite and known. We assume f¾tg

is a deterministic sequence and f"tg is a martingale difference sequence with respect to fFtg;

where Ft = ¾("s; s · t) is the ¾¡field generated by f"s; s · tg, with unit conditional variance,

i.e. E("2t jFt¡1) = 1; a:s:; for all t: The conditional variance of futg is characterized fully by the

multiplicative factor ¾t; i.e. E(u2
t jFt¡1) = ¾2

t ; a:s:: This paper focuses on unconditional het-

eroskedasticity and ¾2
t is assumed to be modeled as a general deterministic function, which rules

out conditional dependence of ¾t on the past events of Yt. The autoregressive coefficient vector

¯ = (¯1; ¯2; ¢ ¢ ¢ ; ¯p)
0 is taken as the parameter of interest. Ordinary least squares (OLS) esti-

mation gives b̄ =
³PT

t=1 Xt¡1X
0
t¡1

´¡1 ³PT
t=1 Xt¡1Yt

´
; where Xt¡1 = (Yt¡1; Yt¡2; ¢ ¢ ¢ ; Yt¡p)

0:

Throughout the rest of the paper we impose the following conditions.

Assumption

(i). The variance term ¾t = g
¡

t
T

¢
; where g(¢) is a measurable and strictly positive function

on the interval [0; 1] such that 0 < C1 < inf
r2[0;1]

g(r) · sup
r2[0;1]

g(r) < C2 < 1 for some positive

numbers C1 and C2; and g(r) satisfies a Lipschitz condition except at a finite number of points

of discontinuity;
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(ii). f"tg is strong mixing (®-mixing) and E("tjFt¡1) = 0; E("2t jFt¡1) = 1; a:s:; for all t:

(iii). There exist ¹ > 1 and C > 0; such that supt E"t4¹ < C < 1:

Remarks. (1) In contrast to modeling ¾t in a setting with finitely many parameters, Assump-

tion (i) is nonparametric and ¾t depends only on the relative position of the error in the sample.

Similar formulations have been widely used in the econometric literature, for example by Robin-

son (1989,1991) in the estimation of time-varying parameter of linear and nonlinear regression,

and by Harvey and Robinson (1988) in the efficient estimation of regressions with deterministic

trending regressors. In recent work, Cavaliere (2004b) analyzes the effects of heteroskedasticity

on unit root tests using this specification of the error variance.

(2) Under Assumption (i) the function g is integrable on the interval [0; 1] to any finite order.

For brevity, we write
R 1

0
gm(r)dr as

R
gm for any finite positive integer m: Formally, of course,

the assumption induces a triangular array structure to the processes ut and Yt, but we dispense

with the additional affix T in the arguments that follow.

Under the stated assumptions, the process Yt has Wold representation

Yt =
1X
i=0

®iut¡i; (3)

where the coefficients f®ig satisfy

1X
i=0

j®ij < 1: (4)

Under Assumptions (i)-(iii), b̄ is asymptotically normal with limit distribution (Phillips and Xu,
2005):

p
T (b̄ ¡ ¯)

d! N
µ
0;¤

¶
; (5)

where

¤ =

R
g4

(
R
g2)2

¡¡1
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and ¡ is the p£ p positive definite matrix with the (i; j)-th element °ji¡jj; and °k =
1P
i=0

®i®i+k <

1, for 0 · k · p¡ 1: The matrix ¡¡1 can be consistently estimated by

b¡¡1 =

µb°ji¡jj

¶¡1

i;j

; (6)

where b°0; b°1; ¢ ¢ ¢ ; b°p¡1 are the first p elements in the first column of the (p
2 £ p2) matrix [Ip2 ¡

F − F ]¡1; where − indicates the Kronecker product and

F =

0BBBBBBB@

b̄
1

b̄
2 ¢ ¢ ¢ b̄

p

0

Ip¡1

...

0

1CCCCCCCA
:

Result (5) is a consequence of the following more general theorem.

Theorem 1 Suppose w2
t is nonstochastic and satisfies (i) 0 < w2

t < C < 1 for all t and

some finite positive number C > 0; (ii) there exists a function w(¢) on [0; 1]; continuous except

for a finite number of discontinuities, such that w2
[Tr] ! w2(r) for any r 2 [0; 1] at which w(¢) is

continuous ; (iii)
R
w2 > 0: Then, under Assumption (i)-(iii), the weighted least squares (WLS)

estimator

b̄
WLS =

µ
TP

t=1
w2

tXt¡1X
0
t¡1

¶¡1 µ TP
t=1

w2
tXt¡1Yt

¶
(7)

satisfies

p
T (b̄WLS ¡ ¯)

d! N
µ
0;

w4g4

( w2g2)2
¡¡1

¶
; (8)

as T ! 1:

Naturally, the estimator with the smallest asymptotic variance matrix in the class (7) is
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achieved by generalized least squares (GLS)

¯¤ =

µ
TP

t=1
Xt¡1X

0
t¡1¾

¡2
t

¶¡1 µ TP
t=1

Xt¡1Yt¾
¡2
t

¶
; (9)

with weights w2
t = ¾¡2

t (The optimality of ¯¤ can also be justified by the theory of unbiased linear

estimating equations, as in Godambe (1960) and Durbin (1960).) in which case

p
T (¯¤ ¡ ¯)

d! N (0;¡¡1); (10)

as T ! 1:

Remarks. Clearly, the asymptotic variance matrix of b̄ differs from that of ¯¤ by the factorR
g4=(

R
g2)2; and since ¡¡1 is invariant to the function g(¢) the inefficiency of the OLS estimatorb̄ depends crucially on this factor. The following examples1 show that the factor can be large and

OLS can be very inefficient in some cases, whereas in others, the factor is close to unity and OLS

is close to optimal.

Example 1 (A single abrupt shift in the innovation variance) Let ¿ 2 [0; 1] and g(r) be the

step function

g(r)2 = ¾2
0 + (¾2

1 ¡ ¾2
0)1fr¸¿g; r 2 [0; 1];

giving error variance ¾2
0 before the break point [T¿ ]; and ¾2

1 afterwards. The steepness of the

variance shift is measured by the ratio ± := ¾1=¾0 of the post-break and pre-break standard

deviation. By (5) the asymptotic variance matrix of OLS is

¤ =
¿ + (1¡ ¿)±4

(¿ + (1¡ ¿)±2)2
¡¡1 := f2

1 (¿ ; ±)¡
¡1;

where f2
1 (¿ ; ±) =

µ
¿ + (1¡ ¿)±2

¶¡2 µ
¿ + (1¡ ¿)±4

¶
; which is a function of the break date ¿

1We follow the formulation of the variance function in Cavaliere (2004) (Section 5, page 271-283), who investi-
gates heteroskedastic unit root testing.
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and the shift magnitude ±.

Figure 1 plots the value of f1(¿ ; ±) across ± 2 [0:01; 100] for different values of ¿ : The variance

of the OLS estimator largely depends on where the break in the innovation variance occurs. For

the negative (± < 1) shift, f1(¿ ; ±) increases steeply as ± decreases when ¿ = 0:1; and is relatively

steady and nearly unity when ¿ = 0:9: The graph shows that OLS has large variance when the

break occurs at the beginning (¿ = 0:1) but much smaller variance, and in fact close to that of

infeasible GLS, when the break is at the end (¿ = 0:9) of the sample. This difference is explained by

the fact that when the break in variance occurs early in the sample, the large innovation variance

in the early part of the sample affects all later observations via the autoregressive mechanism. By

contrast, when the break occurs near the end of the sample, only later observations are directly

affected, so the impact of a negative shift is small. This argument applies when there is a negative

shift - a shift to a smaller variance at the end of the sample - and a reverse argument applies in

the case of a positive shift.

In fact, under a positive (± > 1) shift, OLS has large variance when the shift occurs late

(¿ = 0:9) but small variance and more closely approximates infeasible GLS when it is early

(¿ = 0:1) in the sample. These phenomena are confirmed in the simulation experiment of Gaussian

AR(1) case, reported in Section 4.

Example 2 (Trending variances in the innovations) Let m be a positive integer and g(r) be

g(r)2 = ¾2
0 + (¾2

1 ¡ ¾2
0)r

m; r 2 [0; 1];

giving error variance changing from ¾2
0 to ¾2

1 continuously according to an m-th order power

function: Then

¤ =
1 + 2(±2 ¡ 1)=(m+ 1) + (±2 ¡ 1)2=(2m+ 1)

[1 + (±2 ¡ 1)=(m+ 1)]2
¡¡1 := f2

2 (m; ±)¡¡1;

where f2
2 (m; ±) =

µ
1 + ±2¡1

m+1

¶¡2 µ
1 + 2(±2¡1)

m+1 + (±2¡1)2

2m+1

¶
and ± = ¾1=¾0:

Figure 2 plots the value of f2(m; ±) across ± 2 [0:01; 100] for different values of m; so that

both positive (± > 1) and negative (± < 1) trending heteroskedasticity is allowed: Compared with

the case of a single abrupt shift in the innovation variance (Example 1), the multiplicative factor
8



f2(m; ±) changes more steadily for a given value of m, especially when m is small (say, m = 1).

In the case of large m (say, m = 6), much inefficiency in OLS is sustained when there is positive

trending heteroskedasticity (± > 1).

3 Adaptive Estimation

The GLS estimator ¯¤ in (9) is infeasible, since the true values of ¾t are unknown. To produce a

feasible procedure, we propose a kernel-based estimator ē employing nonparametric estimates of
the residual variances and having the same asymptotic distribution as ¯¤: Let K(z) be a kernel

function defined on the real line such that K(z) is continuous at all but a finite number of points,

0 · sup
¡1<z<1

K(z) < C for some finite real number C and
R1
¡1 K(z)dz = 1: Let but = Yt ¡X 0

t¡1
b̄

be the OLS residuals and define the weighted squared residuals

b¾2
t =

TX
i=1

wtibu2
i ;

where

wti =

K

µ
t¡i
Tb

¶
TP

i=1

K

µ
t¡i
Tb

¶ :=
Kti

TP
i=1

Kti

with Kti := K

µ
t¡i
Tb

¶
and b is the bandwidth parameter, dependent on T: The implementation

of the estimator b¾2
t depends on the choice of kernel function K and the bandwidth b: Consider

the uniform kernel K(z) = 0:5 for jzj · 1; and K(z) = 0 otherwise. Then

b¾2
t =

1

Tb

X
ji¡tj·Tb

bu2
i

is the average of bu2
i for i falling into the bin with the center t and length 2Tb: Kernel functions

with infinite support are also possible, such as the Gaussian kernel, K(z) = (2¼)¡1=2 exp(¡t2=2)

for ¡1 < z < 1: In this case, wti assigns smaller weights to those bu2
i ’s whose i is far from t:
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Define the adaptive least squares (ALS) estimator of ¯

ē =

µ
TP

t=1
Xt¡1X

0
t¡1b¾¡2

t

¶¡1 µ TP
t=1

Xt¡1Ytb¾¡2
t

¶
(11)

We use the following assumptions that modify and extend the earlier assumptions to facilitate

the development of an asymptotic theory for ē:
Assumption

(iii’). There exists some finite positive number C such that sup
t
E("8t ) < C < 1;

(iv). E("3t jFt¡1) = 0; a:s:;

(v). As T ! 1; b+ 1
Tb2 ! 0:

Remarks. We replace Assumption (iii) by the stronger assumption (iii’), which requires the

existence of eighth moments of "t for all t: This moment condition simplifies the proof of the main

theorem and is, no doubt, stronger than necessary: Assumption (v) is a rate condition that requires

b ! 0 at a slower rate than T¡1=2. Assumption (iv) is satisfied if "t has a symmetric distribution

conditional on the lagged observations, which is somewhat restrictive. This assumption could be

avoided and the main theorem below (Theorem 2) would still hold, if we replaced the estimator

b¾2
t by

bb¾2

t =
TX

i=1;i6=t

wtibu2
i : (12)

We note in the simulations that the performance of the ALS estimator based on (12) is dominated

by that based on (11), so that we do not pursue this estimator further here.

The main result is as follows.

Theorem 2 Under Assumptions (i)-(v) with (iii’) instead of (iii), as T ! 1;

10



p
T (ē ¡ ¯) =

p
T (¯¤ ¡ ¯) + op(1)

d! N (0;¡¡1);

where ¡¡1 is estimated by (6).

Remarks.

(1) In practice, the bandwidth parameter b, when estimating the function g; can be chosen

using cross-validation on the average squared error — see Wong (1983). Let bb¾2

t be defined in (12).

The cross-validatory choice of b is the value b¤ which minimizes

dCV (b) =
1

T

TX
t=1

µbu2
t ¡ bb¾2

t

¶2

:

(2) Alternative estimators include the one employed by Harvey and Robinson (1988), who

deal with the time series regression with trending regressors. Rather than estimating each ¾2
t

separately, they split the data into K blocks and estimate ¾2
t in one block by the average of bu2

t

in this block. So only K distinct estimators are used. It can be shown2 under the regularity

assumptions, the resulting weighted least squares estimator of ¯ also has the same asymptotic

distribution as ē if 1
T1

+ T
T2
1
+ T2

T ! 0; as T ! 1; where T1 and T2 is the minimum and maximum

length of the K blocks. Compared to our estimator, this estimator is cheaper to compute but it

does not integrate in an efficient way the information of bu2
s where s is close to t when estimating

¾2
t , especially when t is close to the boundary to the block. Furthermore, unreported simulation

results show that its performance is dominated by our kernel-based estimator in most cases.

2The proof is available from the authors upon request.
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4 Simulations

This section examines the finite sample performance of the ALS efficient procedure proposed in

Section 3 using simulations of the heteroskedastic AR(1) model

Yt = ¯Yt¡1 + ut; ut = ¾t"t;

where ¾t = g
¡

t
T

¢
: The following values of ¯ are used f¡0:5; 0:1; 0:9g; and "t » iidN (0; 1):

Our simulation design basically follows Cavaliere (2004) and Cavaliere and Taylor (2004). The

g functions generating heteroskedasticity are taken as the step function and polynomial function

used in Examples 1 and 2, viz.,

Model 1: g(r)2 = ¾2
0 + (¾2

1 ¡ ¾2
0)1fr¸¿g; r 2 [0; 1]:

Model 2: g(r)2 = ¾2
0 + (¾2

1 ¡ ¾2
0)r

m; r 2 [0; 1]:

In Model 1, the break date is chosen from f0:1; 0:5; 0:9g and the ratio of post-break and pre-break

standard deviations ± = ¾1=¾0 is set to the values f0:2; 5g: In Model 2, the order of polynomial

function is taken from f1; 2; 6g, and ± 2 f0:2; 5g: Without loss of generality, we let ¾0 = 1: The

estimates of ¯ are obtained with sample size T = 60 and T = 200; and the number of replications

is set to 10,000.

We report estimates for ¯ obtained by OLS, infeasible GLS and ALS. The label "ALS1"

denotes the kernel-based ALS estimator (11) using the fixed bandwidth parameter b; b = 0:1333

when T = 60, and b = 0:040 when T = 200: The label "ALS2" refers to the ALS estimator with

the bandwidth parameter chosen by the cross-validation procedure suggested in Section 3.

Table 1 reports the ratio of the root mean squared errors (RMSE) of estimators considered

relative to the RMSE of GLS in Model 1. OLS is clearly inefficient and the ALS estimator works

reasonably well in all cases considered. The largest inefficiency of OLS is observed when an early

shift in the innovation variance is negative, for instance, (¿ ; ±) = (0:1; 0:2); and when a late shift is

positive, for instance, (¿ ; ±) = (0:9; 5): The former is explained by the fact that the large variance

early in the sample affects all later observations and the latter is explained by the fact that
12



the large variance in the last part of the sample means that the OLS estimator is more closely

approximated by the terms involving the last few observations, thereby effectively reducing the

sample size. In both these cases, substantial efficiency gains are achieved by the ALS estimator.

In contrast, when there is a positive early shift or a negative late shift in the innovation variance,

for instance, (¿ ; ±) = (0:1; 5) or (0:9; 0:2); OLS works nearly as well as GLS, especially when the

sample size is large. The ALS estimator performs comparably well with OLS in those cases. The

densities of the OLS and ALS estimators (after cross validation) in the cases mentioned above

are plotted in Figure 3. In Panel (a) and (b), the significant improvement of ALS estimator upon

OLS can be seen, while in Panel (c) and (d), we observe little difference between two estimators.

We also note that the cross-validation procedure to choose the bandwidth of the ALS estimator

works satisfactorily, but seems to be dominated by the one using the specified fixed bandwidth.

When the sample size is increased from T = 60 to T = 200; the ALS estimators have the smaller

ratio of RSME, while no improvement is observed for OLS.

Table 2 reports the ratio of the RMSE’s of estimators considered relative to the RMSE of

GLS in Model 2. The RMSE of the OLS estimator is more steady across the parameters in the

heteroskedasticity function than in Model 1. The ALS estimator works remarkably well. Its ratio

of RMSE, relative to GLS is below 10% in all cases considered, especially when the sample size

is large. The densities of the OLS and ALS estimators (after cross validation) when m 2 f2; 6g;

and ± 2 f0:2; 5g; are plotted in Figure 4.

Simulations results, along with those not reported here, also show that, in both models the

improvement of the ALS procedure relative to OLS is insensitive to the location of the true value

of the autoregressive parameter ¯; as long as j¯j < 1:

We also checked the homoskedastic case when ± = 1 and show results in Table 1. OLS is

equivalent to GLS when the errors are homoskedastic, so the ratio of RMSE of OLS relative to

GLS is unity. We observe that in this case the the ALS estimator is also close to one, so that

ALS may be used satisfactorily even when the errors are homoskedastic.

In summary, the kernel-based ALS estimator and cross-validation procedure appear to perform

very well, at least within the simulation design considered. Its advantages are clear, is convenient

for practical use and has uniformly good performance over the parameter space.
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5 Further Remarks

This paper considers efficient estimation of finite order autoregressive models under unconditional

heteroskedasticity. Several extensions of the approach taken in the paper are possible. One of them

is to consider the efficient estimation of unconditionally heteroskedastic stable autoregressions of

possible infinite order. The issue is whether our nonparametric feasible GLS estimator is still

asymptotically efficient when the order of autoregression, p; increases with the sample size, T:We

leave these topics for future research.

6 Appendix A: Proofs of the Theorems.

This section gives the proofs of Theorem 1 and Theorem 2.

The Proof of the Theorem 1. The WLS estimator b̄WLS satisfies

p
T (b̄WLS ¡ ¯) =

µ
1
T

TP
t=1

w2
tXt¡1X

0
t¡1

¶¡1 µ
1p
T

TP
t=1

w2
tXt¡1ut

¶
: (13)

It is easy to show that under Assumption (i)-(iii), fw2
tYt¡hYt¡h¡k ¡w2

tE(Yt¡hYt¡h¡k)g is mean-

zero L1-NED (near-epoch dependent) on f"tg for 1 · h · p; 0 · k · p ¡ h; and therefore a

L1-mixingale with respect to Ft. It is uniform integrable by applying Lemma 1 (a) with ¹ = 2:

By the law of large numbers for L1-mixingales (Andrews, 1988) we have

1

T

X
t

µ
w2

tYt¡hYt¡h¡k ¡ w2
tE(Yt¡hYt¡h¡k)

¶
p! 0: (14)

Lemma A(ii) of Phillips and Xu (2005) shows that for every continuous point r of g(¢)

lim
T!1

EY[Tr]¡hY[Tr]¡h¡k = g2(r)°k; (15)

where [¢] refers to the integer part. So by (14)

1

T

X
t

w2
tYt¡hYt¡h¡k =

1

T

X
t

w2
tE(Yt¡hYt¡h¡k) + op(1)

14



=
TX

t=1

Z t+1
T

t
T

w2
[Tr]EY[Tr]¡hY[Tr]¡h¡kdr + op(1)

=

Z T+1
T

1
T

w2
[Tr]EY[Tr]¡hY[Tr]¡h¡kdr + op(1)

p!
µR

w2g2
¶
°k: (16)

So we have 1
T

TP
t=1

Xt¡1X
0
t¡1¾

¡2
t

p!
µR

w2g2
¶
¡: Next we show that

1p
T

TX
t=1

w4
tXt¡1X

0
t¡1u

2
t

p!
µR

w4g4
¶
¡; (17)

which holds if 1
T

TP
t=1

w4
tYt¡hYt¡h¡ku

2
t

p! °k for 1 · h · p; 0 · k · p ¡ h: Indeed, since

fw4
tYt¡hYt¡h¡ku

2
t¡w4

t¾
2
tEYt¡hYt¡h¡k;Ftg are martingale differences, so 1

T

TP
t=1

w4
tYt¡hYt¡h¡ku

2
t =

1
T

TP
t=1

w4
t¾

2
tEYt¡hYt¡h¡k + op(1)

p!
µR

w4g4
¶
°k by similar arguments to (16): Furthermore,

Ekw2
tXt¡1utk4 < 1 by Lemma 1 (b) with ¹ = 2: By the central limit theorem for vector

martingale differences, 1p
T

TP
t=1

w2
tXt¡1ut

d! N

µ
0;

µR
w4g4

¶
¡

¶
: Then Theorem 1 follows from

(13).

The Proof of the Theorem 2. We follow closely the proof of the theorem in Robinson

(1987) using some of his notation. First, note that ē satisfies

p
T (ē ¡ ¯) =

µ
1
T

TP
t=1

Xt¡1X
0
t¡1b¾¡2

t

¶¡1 µ
1p
T

TP
t=1

Xt¡1utb¾¡2
t

¶
:

Define a(f) = 1p
T

TP
t=1

Xt¡1utf
¡2
t and A(f) = 1

T

TP
t=1

Xt¡1X
0
t¡1f

¡2
t ; then we have

p
T (¯¤ ¡ ¯) =

A(¾)¡1a(¾) and

p
T (ē ¡ ¯) = A(b¾)¡1a(b¾)

= A(¾)¡1a(¾) +A(b¾)¡1(a(b¾)¡ a(¾))¡A(¾)¡1(A(b¾)¡A(¾))A(b¾)¡1a(¾):

15



We have A(¾)
p! ¡ which is positive definite, and a(¾) = Op(1); which follows from Markov’s

inequality and

E
µ

1p
T

TP
t=1

Yt¡hut¾
¡2
t

¶2

=
1

T

TX
t=1

¾¡4
t EY 2

t¡hu
2
t · C

1

T

TX
t=1

EY 2
t¡hu

2
t < 1;

by Lemma 1 (b) and Assumption (i). Hence Theorem 2 follows if we prove

A(b¾)¡A(¾)
p! 0; a(b¾)¡ a(¾)

p! 0: (18)

Define e¾2
t =

TP
i=1

wtiu
2
i and ¾2

t =
TP

i=1

wti¾
2
i ; and (18) follows from the following six results as

in Robinson (1987): (a) a(b¾) ¡ a(e¾) p! 0; (b) a(e¾) ¡ a(¾)
p! 0; (c) a(¾) ¡ a(¾) !p 0; (d)

A(b¾)¡A(e¾) p! 0; (e) A(e¾)¡A(¾)
p! 0; (f) A(¾)¡A(¾)

p! 0: These will be shown as follows:

(a) Since a(b¾)¡ a(e¾) = 1p
T

P
tXt¡1ut

¾2
t¡¾2

t

¾2
t¾

2
t
; we have

°°°°a(b¾)¡ a(e¾)°°°° TI
·

µ
min

1·t·T
e¾2
t

¶¡1 µ
min

1·t·T
b¾2
t

¶¡1 TX
t=1

°°°°Xt¡1ut

°°°°
p
T

¯̄̄̄e¾2
t ¡ b¾2

t

¯̄̄̄

CS
·

µ
min

1·t·T
e¾2
t

¶¡1 µ
min

1·t·T
b¾2
t

¶¡1 µ
1
T

TP
t=1

°°°°Xt¡1ut

°°°°2¶1=2 µ
TP

t=1

¯̄̄̄e¾2
t ¡ b¾2

t

¯̄̄̄2¶1=2

= Op(
1

Tb
)

p! 0;

by Lemma 1, 7, 9, 10.

(b) We write

a(e¾)¡ a(¾) =
1p
T

TX
t=1

Xt¡1ut

µe¾¡2
t ¡ ¾¡2

t

¶

=
1p
T

TX
t=1

Xt¡1ut(¾
2
t ¡ e¾2

t )¾
¡4
t +

1p
T

TX
t=1

Xt¡1ut(¾
2
t ¡ e¾2

t )
2e¾¡2

t ¾¡4
t ; (19)

16



which holds since for two any nonzero real numbers p and q we have the following equality

p¡1 ¡ q¡1 = (q ¡ p)q¡2 + (q ¡ p)2p¡1q¡2: We will show the two terms of (19) vanishes in

probability. For the first term, we note that fXt¡1ut(¾
2
t ¡ e¾2

t )¾
¡4
t ;Ftg is an m. d. sequence.

Indeed, we have

E(Xt¡1ut(¾
2
t ¡ e¾2

t )¾
¡4
t jFt¡1)

= ¾¡2
t E(Xt¡1utjFt¡1)¡ ¾¡4

t

Ã
E

Ã
Xt¡1ut

Ã
TP

i=1;i6=t

wtiu
2
i

!
jFt¡1

!
+ wttE(Xt¡1u

3
t jFt¡1)

!
: (20)

By Assumption (iv), E(Xt¡1u
3
t jFt¡1) = Xt¡1E(u3

t jFt¡1) = 0: Further, we have

E

Ã
Xt¡1ut

Ã
TP

i=1;i6=t

wtiu
2
i

!
jFt¡1

!
= 0;

which holds since for the term i > t;

E
µ
Xt¡1utu

2
i jFt¡1

¶
= Xt¡1E

µ
utu

2
i jFt¡1

¶
= Xt¡1E

µ
utE

µ
u2
i jFi¡1

¶
jFt¡1

¶
= Xt¡1E

µ
utjFt¡1

¶
= 0;

and for the term i < t;

E
µ
Xt¡1utu

2
i jFt¡1

¶
= Xt¡1u

2
iE

µ
utjFt¡1

¶
= 0:

Thus, by (20) E(Xt¡1ut(¾
2
t ¡ e¾2

t )¾
¡4
t jFt¡1) = 0. So the first term of (19) converges to zero in

probability by the Markov inequality and

17



E
°°°° 1p

T

TP
t=1

Xt¡1ut(¾
2
t ¡ e¾2

t )¾
¡4
t

°°°°2 · C

T

TX
t=1

E
°°°°Xt¡1ut

°°°°2 (¾2
t ¡ e¾2

t )
2

· C

T

TX
t=1

µ
E
°°°°Xt¡1ut

°°°°4¶1=2

¢
µ
E(¾2

t ¡ e¾2
t )

4

¶1=2

·
µ
max

t
E(¾2

t ¡ e¾2
t )

4

¶1=2

¢ C
T

TX
t=1

µ
E
°°°°Xt¡1ut

°°°°4¶1=2

= Op(
1

Tb
)

p! 0;

by Lemma 1 and 5. For the second term of (19),

°°°° TP
t=1

Xt¡1utp
T

(¾2
t ¡ e¾2

t )
2e¾¡2

t ¾¡4
t

°°°° · C

µ
1
T

TP
t=1

°°°°Xt¡1ut

°°°°2¶1=2 µ
TP

t=1
(¾2

t ¡ e¾2
t )

4

¶1=2

= Op(
1

T 1=2b
)

p! 0;

by Lemma 1 and 5. This completes the proof of (b).

(c) First we note

¾2
t

µ
¾¡2
t ¡ ¾¡2

t

¶2

· ¾¡4
t ¾¡2

t

¯̄̄̄
¾2
t + ¾2

t

¯̄̄̄
¢
¯̄̄̄
¾2
t ¡ ¾2

t

¯̄̄̄
· C

¯̄̄̄
¾2
t ¡ ¾2

t

¯̄̄̄
: (21)

Since fXt¡1utg is an m.d. sequence, we get

18



E
°°°°a(¾)¡ a(¾)

°°°°2 =
1

T

TX
t=1

E
µ°°°°Xt¡1

°°°°2 u2
t

¶µ
¾¡2
t ¡ ¾¡2

t

¶2

=
1

T

TX
t=1

E
µ°°°°Xt¡1

°°°°2 E(u2
t jFt¡1)

¶µ
¾¡2
t ¡ ¾¡2

t

¶2

=
1

T

TX
t=1

E
°°°°Xt¡1

°°°°2 ¾2
t

¯̄̄̄
¾¡2
t ¡ ¾¡2

t

¯̄̄̄2
· C

T

TX
t=1

E
°°°°Xt¡1

°°°°2 ¯̄̄̄¾2
t ¡ ¾2

t

¯̄̄̄

· Cmax
t
E
°°°°Xt¡1

°°°°2 ¢ 1T
TX

t=1

¯̄̄̄
¾2
t ¡ ¾2

t

¯̄̄̄
= op(1);

by Lemma 1 and 11.

(d) It follows from

°°°°A(b¾)¡A(e¾)°°°° ·
µ

min
1·t·T

e¾2
t

¶¡1 µ
min

1·t·T
b¾2
t

¶¡1
1

T

TX
t=1

°°°°Xt¡1

°°°°2 ¯̄̄̄e¾2
t ¡ b¾2

t

¯̄̄̄

· Cmax
t

¯̄̄̄e¾2
t ¡ b¾2

t

¯̄̄̄
¢ 1
T

TX
t=1

°°°°Xt¡1

°°°°2 = Op(
1p
Tb

);

by Lemma 1, 7, 8, 9.

(e) This can be proved in the same way as (d) by employing Lemma 6.

(f) It follows from

°°°°A(¾)¡A(¾)

°°°° ·
µ

min
1·t·T

¾2
t

¶¡1 µ
min

1·t·T
¾2
t

¶¡1
1

T

TX
t=1

°°°°Xt¡1

°°°°2 ¯̄̄̄¾2
t ¡ ¾2

t

¯̄̄̄

·
µ

min
1·t·T

¾2
t

¶¡1 µ
min

1·t·T
¾2
t

¶¡1

max
t

°°°°Xt¡1

°°°°2 1

T

TX
t=1

¯̄̄̄
¾2
t ¡ ¾2

t

¯̄̄̄
= op(1);

by Lemma 1, 4, 11.
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7 Appendix B: Supplementary Lemmas and Proofs.

This section states and proves some results (Lemma 1-Lemma 11) used in the proofs of the

theorems.

Lemma 1 (a) For 1 · ¹ < 1 and 1 · h · p;

sup
1·t·T

EY 2¹
t¡h < 1

holds if sup
1·t·T

E"2¹t < 1;and

sup
1·t·T

E
µ
Yt¡hut

¶2¹

< 1

holds if sup
1·t·T

E"4¹t < 1.

Proof. (a) Note that Y 2
t¡h =

1P
k=0

1P
l=0

®k®lut¡h¡kut¡h¡l and

E
¯̄̄̄
ut¡h¡kut¡h¡l

¯̄̄̄¹
·

µ
Eu2¹

t¡h¡kEu
2¹
t¡h¡l

¶1=2

< 1:

So we have

E
µ
Yt¡h

¶2¹

=

°°°°Y 2
t¡h

°°°°¹
¹

·
µ 1P

k=0

1P
l=0

®k®l

°°°°ut¡h¡kut¡h¡l

°°°°
¹

¶¹

· C

µ 1P
k=0

1P
l=0

®k®l

¶¹

= C

µ 1P
k=0

®k

¶2¹

< 1:

(b) Since Y 2
t¡hu

2
t =

1P
k=0

1P
l=0

®k®lut¡h¡kut¡h¡lu
2
t and

E
¯̄̄̄
ut¡h¡kut¡h¡lu

2
t

¯̄̄̄¹
·

µ
Eu4¹

t¡h¡kEu
4¹
t¡h¡l

¶1=4 µ
Eu4¹

t

¶1=2

< 1;

so
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E
µ
Yt¡hut

¶2¹

=

°°°°Y 2
t¡hu

2
t

°°°°¹
¹

·
µ 1P

k=0

1P
l=0

®k®l

°°°°ut¡h¡kut¡h¡lu
2
t

°°°°
¹

¶¹

· C

µ 1P
k=0

1P
l=0

®k®l

¶¹

< 1:

Lemma 2. For any 1 · t · T; 1
Tb

TP
i=1

Kti !
R1
¡1 K(z)dz = 1; where Kti = K( t¡i

Tb ).

Proof. Let t¡ i = [Tx]; where x is a real number, jxj < 1: Then

1

Tb

TX
i=1

Kti =
TX

i=1

Z (t¡i+1)=T

(t¡i)=T

K(
[Tx]

Tb
)d

µ
x
b

¶
z=x=b
=

TX
i=1

Z (t¡i+1)=Tb

(t¡i)=Tb

K(
[Tbz]

Tb
)dz

=

Z t=Tb

(t¡T )=Tb

K(
[Tbz]

Tb
)dz !

Z 1

¡1
K(z)dz = 1:

Lemma 3. max
t;i

wti = O( 1
Tb ):

Proof. It follows from wti =

µ
1
Tb

TP
i=1

Kti

¶¡1
Kti

Tb and Lemma 2.

Lemma 4. min
1·t·T

¾2
t ¸ c > 0:

Proof. It follows from min
1·t·T

¾2
t ¸ min

1·i·T
¾2
i ¢

µ
TP

i=1

wti

¶
¸ inf

s2[0;1]
g2(s) ¸ c > 0:

Lemma 5. max
1·t·T

E
¯̄̄̄e¾2

t ¡ ¾2
t

¯̄̄̄4
= O

µ
1

(Tb)2

¶
:

Proof. We make use of the Burkholder’s inequality (BI) (c.f. Shiryaev (1995), p499): for the

m.d. sequence »1; ¢ ¢ ¢ ; »T and p > 1; there exists constant Ap and Bp; such that

Ap

°°°°°
µ

TP
t=1

»2t

¶1=2
°°°°°
p

·
°°°° TP
t=1

»t

°°°°
p

· Bp

°°°°°
µ

TP
t=1

»2t

¶1=2
°°°°°
p

:

Let ai = u2
i ¡ ¾2

i ; then ai is a m.d. sequence and Ea4i < 1:
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Then

E
µe¾2

t ¡ ¾2
t

¶4

= E
µ

TP
i=1

wtiai

¶4 BI(p=4)

· E
µ

TP
i=1

w2
tia

2
i

¶2

· 1

(Tb)2
E
µ

TP
i=1

wtia
2
i

¶2

· 1

(Tb)2

TX
i=1

wtiEa4i = O

µ
1

(Tb)2

¶
;

where the second-to-last line is by Jensen inequality f(
TP

i=1

wtia
2
i ) ·

TP
i=1

wtif(a
2
i ) with convex

function f(x) = x2:

Lemma 6. max
t

¯̄̄̄e¾2
t ¡ ¾2

t

¯̄̄̄±
= Op(T

¡±=4b¡±=2); for ± = 1; 2:

Proof. It holds since

P

µ
max

t

¯̄̄̄e¾2
t ¡ ¾2

t

¯̄̄̄±
> CT¡±=4b¡±=2

¶
·

TX
t=1

P

µ¯̄̄̄e¾2
t ¡ ¾2

t

¯̄̄̄±
> CT¡±=4b¡±=2

¶

· C¡4Tb2
TX

t=1

E
¯̄̄̄e¾2

t ¡ ¾2
t

¯̄̄̄4
· C¡4Tb2 ¢ T ¢O

µ
1

(Tb)2

¶
· O(1):

Lemma 7.
µ

min
1·t·T

e¾2
t

¶¡1

= Op(1); as T ! 1:

Proof. It follows from Lemma 4 and

min
1·t·T

¾2
t · min

1·t·T
e¾2
t +max

t

¯̄̄̄e¾2
t ¡ ¾2

t

¯̄̄̄
= min

1·t·T
e¾2
t + op(1):

Lemma 8. max
1·t·T

¯̄̄̄b¾2
t ¡ e¾2

t

¯̄̄̄
= Op(

1p
Tb

):
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Proof. Note that

b¾2
t ¡ e¾2

t =
TX

i=1

wti

µbu2
i ¡ u2

i

¶

=
TX

i=1

wti

µ
(b̄ ¡ ¯)0Xi¡1X

0
i¡1(

b̄ ¡ ¯)¡ 2uiX
0
i¡1(

b̄ ¡ ¯)

¶
;

and max
t;i

TP
i=1

w2
ti · max

t;i
wti ¢

TP
i=1

wti = O( 1
Tb): Thus

max
1·t·T

¯̄̄̄b¾2
t ¡ e¾2

t

¯̄̄̄
· max

1·t·T

TX
i=1

wti

¯̄̄̄
(b̄ ¡ ¯)0Xi¡1X

0
i¡1(

b̄ ¡ ¯)¡ 2uiX
0
i¡1(

b̄ ¡ ¯)

¯̄̄̄

· max
1·t·T

TX
i=1

wti

°°°°b̄ ¡ ¯

°°°°2 °°°°Xi¡1

°°°°2 + 2 max
1·t·T

TX
i=1

wti

°°°°uiX
0
i¡1

°°°°°°°°b̄ ¡ ¯

°°°°
· max

t;i
wti ¢

°°°°b̄ ¡ ¯

°°°°2 TX
i=1

°°°°Xi¡1

°°°°2 + 2

°°°°b̄ ¡ ¯

°°°° ¢
µ
max
t;i

TP
i=1

w2
ti

¶1=2

¢
µ

TP
i=1

°°°°uiX
0
i¡1

°°°°¶1=2

= Op(
1

Tb
) +Op(

1p
Tb

) = Op(
1p
Tb

):

Lemma 9.
µ

min
1·t·T

b¾2
t

¶¡1

= Op(1); as T ! 1:

Proof. It follows from Lemma 7 and

min
1·t·T

e¾2
t · min

1·t·T
b¾2
t +max

t

¯̄̄̄b¾2
t ¡ e¾2

t

¯̄̄̄
= min

1·t·T
b¾2
t + op(1):

Lemma 10.
TP

t=1

µb¾2
t ¡ e¾2

t

¶2

= Op(
1

(Tb)2 ):

Proof. Since

b¾2
t ¡ e¾2

t =
TX

i=1

wti

µbu2
i ¡ u2

i

¶
= (b̄ ¡ ¯)0

µ
TP

i=1

w2
tiXi¡1X

0
i¡1

¶
(b̄ ¡ ¯)¡ 2

µ
TP

i=1

w2
tiuiX

0
i¡1

¶
(b̄ ¡ ¯);
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we have

TX
t=1

µb¾2
t ¡ e¾2

t

¶2

T
·

TX
t=1

C

Ã°°°°b̄ ¡ ¯

°°°°4 °°°° TP
i=1

w2
tiXi¡1X

0
i¡1

°°°°2 + °°°° TP
i=1

w2
tiuiX

0
i¡1

°°°°2 °°°°b̄ ¡ ¯

°°°°2
!

·
°°°°b̄ ¡ ¯

°°°°4 TX
t=1

C

µ
TP

i=1

w2
ti

°°°°Xi¡1

°°°°2¶2

+

°°°°b̄ ¡ ¯

°°°°2 TX
t=1

C

µ
TP

i=1

w2
ti

°°°°uiX
0
i¡1

°°°°¶2

(22)

The first term of (22) is bounded by

°°°°b̄ ¡ ¯

°°°°4 TX
t=1

C

µ
sup
i

°°°°Xi¡1

°°°°2 ¢max
t;i

wti ¢
TP

i=1

wti

¶2

= Op(
1

T 3b2
);

and similarly the second term of (22) is Op(
1

T2b2 ): So Lemma 10 follows.

Lemma 11. 1
T

TP
t=1

j¾2
t ¡ ¾2

t j = o(1):

Proof. Without loss of generality and given the sample size T; suppose t1
T ; ¢ ¢ ¢ ; tD

T happen to

be the discontinuous points of g, then D is a finite number (independent of T ). For M > 0 defineP
i

0
=

P
ji¡tj·MTb

and
P
i

00
=

P
ji¡tj>MTb

:Then for t 6= t1; ¢ ¢ ¢ ; tD

1

Tb

TX
i=1

Kti

¯̄̄̄
¾2
t ¡ ¾2

t

¯̄̄̄
=

1

Tb

TX
i=1

Kti

¯̄̄̄
¾2
i ¡ ¾2

t

¯̄̄̄
· 1

Tb

X
i

0
Kti

¯̄̄̄
g2( i

T )¡ g2( t
T )

¯̄̄̄
+

C

Tb

X
i

00
Kti (23)

The first term of (23) is bounded by
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C max
ji¡tj·MTb

¯̄̄̄
i¡t
T

¯̄̄̄
1

Tb
¢
X
i

0
Kti · C

MTb

T

1

Tb
¢ 2MTb:

For the second term, similarly to the proof of Lemma 2 we can get

C

Tb

X
i

00
Kti ! C

Z
jzj¸M

K(z)dz:

Thus (23) converges to zero by letting T ! 1 then M ! 1: In view of Lemma 2, we establish

max
t6=t1;¢¢¢ ;tD

j¾2
t ¡ ¾2

t j = o(1): Thus

1

T

TX
t=1

j¾2
t ¡ ¾2

t j =
1

T

X
t=t1;¢¢¢ ;tD

j¾2
t ¡ ¾2

t j+
1

T

TX
t6=t1;¢¢¢ ;tD;t=1

j¾2
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t j

· D

T
C +

1

T
(T ¡D) max

t6=t1;¢¢¢ ;tD
j¾2

t ¡ ¾2
t j = o(1):
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Table 1: The ratio of the RMSE relative to that of GLS in Model 1 (The levels of RMSE are reported
for GLS)

T = 60 T = 200
¯ ¿ ± OLS ALS1 ALS2 GLS OLS ALS1 ALS2 GLS

-0.5 0.1 0.2 2.1204 1.3246 1.3405 [.0967] 2.3136 1.1564 1.2091 [.0583]
1 1.0000 1.0101 1.0130 [.1190] 1.0000 1.0030 1.0058 [.0569]
5 1.0329 1.0595 1.0570 [.1156] 1.0446 1.0471 1.0450 [.0613]

0.5 0.2 1.5621 1.2714 1.3052 [.0987] 1.4704 1.1026 1.1364 [.0562]
5 1.3140 1.1129 1.1521 [.1147] 1.3639 1.0698 1.1177 [.0608]

0.9 0.2 1.1820 1.1767 1.1811 [.1023] 1.0915 1.1185 1.1217 [.0564]
5 2.0619 1.2267 1.2602 [.1198] 2.4099 1.1157 1.1857 [.0601]

0.1 0.1 0.2 2.1256 1.3755 1.4076 [.1113] 2.3017 1.1224 1.1831 [.0648]
1 1.0000 1.0197 1.0095 [.1296] 1.0000 1.0094 1.0051 [.0659]
5 1.0324 1.0516 1.0424 [.1259] 1.0430 1.0415 1.0467 [.0732]

0.5 0.2 1.4741 1.2324 1.2612 [.1150] 1.4650 1.1155 1.1547 [.0643]
5 1.2784 1.1029 1.1326 [.1310] 1.3786 1.0504 1.0693 [.0698]

0.9 0.2 1.1527 1.1665 1.1575 [.1161] 1.0970 1.1070 1.1183 [.0655]
5 2.0710 1.2388 1.2740 [.1252] 2.2879 1.0839 1.1138 [.0690]

0.9 0.1 0.2 1.9045 1.2771 1.3360 [.0624] 2.3275 1.1754 1.2246 [.0295]
1 1.0000 1.0044 1.0081 [.0776] 1.0000 1.0041 1.0055 [.0365]
5 1.0352 1.0441 1.0388 [.0797] 1.0516 1.0526 1.0540 [.0337]

0.5 0.2 1.7187 1.2607 1.3005 [.0607] 1.6318 1.1637 1.2052 [.0279]
5 1.5026 1.1886 1.2416 [.0794] 1.3985 1.0535 1.0773 [.0358]

0.9 0.2 1.2994 1.2706 1.2591 [.0617] 1.1829 1.1299 1.1558 [.0289]
5 2.2604 1.2429 1.3065 [.0695] 2.3215 1.0857 1.1646 [.0346]
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Figure 1: The values of f1(¿ ; ±) ( y-axis) in Example 1 across ± (x-axis) for different values of
¿ : (a) ¿ = 0:1; (b) ¿ = 0:5; (c) ¿ = 0:9:
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Table 2: The ratio of the RMSE relative to that of GLS in Model 2 (The levels of RMSE are reported
for GLS)

T = 60 T = 200
¯ m ± OLS ALS1 ALS2 GLS OLS ALS1 ALS2 GLS

-0.5 1 0.2 1.1329 1.0269 1.0500 [.1151] 1.1344 1.0371 1.0370 [.0613]
5 1.0869 1.0214 1.0471 [.1223] 1.1005 1.0245 1.0226 [.0610]

2 0.2 1.1408 1.0739 1.0823 [.1105] 1.0781 1.0173 1.0243 [.0624]
5 1.2286 1.0447 1.0696 [.1193] 1.2579 1.0336 1.0226 [.0587]

6 0.2 1.0926 1.0861 1.0856 [.1095] 1.0474 1.0550 1.0400 [.0610]
5 1.5504 1.0607 1.0994 [.1192] 1.5361 1.0251 1.0412 [.0639]

0.1 1 0.2 1.1297 1.0406 1.0608 [.1260] 1.1149 1.0343 1.0362 [.0672]
5 1.1428 1.0364 1.0573 [.1305] 1.1251 1.0295 1.0269 [.0743]

2 0.2 1.0887 1.0465 1.0619 [.1257] 1.0875 1.0383 1.0389 [.0678]
5 1.1949 1.0324 1.0597 [.1332] 1.2854 1.0294 1.0287 [.0695]

6 0.2 1.0607 1.0573 1.0573 [.1248] 1.0376 1.0258 1.0223 [.0713]
5 1.5141 1.0553 1.0930 [.1317] 1.6076 1.0442 1.0438 [.0689]

0.9 1 0.2 1.1460 1.0378 1.0634 [.0708] 1.1552 1.0179 1.0278 [.0317]
5 1.0962 1.0204 1.0398 [.0800] 1.1121 1.0247 1.0268 [.0352]

2 0.2 1.1312 1.0501 1.0615 [.0702] 1.0603 1.0303 1.0249 [.0344]
5 1.2342 1.0468 1.0820 [.0843] 1.2578 1.0194 1.0172 [.0340]

6 0.2 1.1097 1.0933 1.0987 [.0716] 1.0302 1.0365 1.0301 [.0345]
5 1.5187 1.0642 1.1141 [.0820] 1.6012 1.0278 1.0291 [.0339]
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Figure 2: The values of f2(m; ±) ( y-axis) in Example 2 across ± (x-axis) for different values of
m: (a) m = 1; (b) m = 2; (c) m = 6:
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Figure 3: Densities of the OLS (solid lines) and ALS2 (after cross-validation) estimators (dashed
lines) in Model 1.
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Figure 4: Densities of the OLS (solid lines) and ALS2 (after cross-validation) estimators (dashed
lines) in Model 2.
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