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Abstract

An infinite-order asymptotic expansion is given for the autocovariance function of

a general stationary long-memory process with memory parameter d ∈ (−1/2, 1/2).

The class of spectral densities considered includes as a special case the stationary

and invertible ARFIMA(p, d, q) model. The leading term of the expansion is of the

order O
¡
1/k1−2d

¢
, where k is the autocovariance order, consistent with the well

known power law decay for such processes, and is shown to be accurate to an error

of O
¡
1/k3−2d

¢
. The derivation uses Erdélyi’s (1956) expansion for Fourier-type inte-

grals when there are critical points at the boundaries of the range of integration - here

the frequencies {0, 2π}. Numerical evaluations show that the expansion is accurate

even for small k in cases where the autocovariance sequence decays monotonically,

and in other cases for moderate to large k. The approximations are easy to compute

across a variety of parameter values and models.



1 Introduction

Let {Xt, t ∈ Z} be a real-valued stationary process with spectral density

fX (w) = fu (w)
¯̄
1− e−iw

¯̄−2d
, w ∈ R, (1)

where fu (w) is a short-memory spectrum and d ∈ (−1/2, 1/2). A process satis-

fying (1) is long-memory persistent if d ∈ (0, 1/2), short-memory if d = 0 and

anti-persistent if d ∈ (−1/2, 0). In the special case where fu (w) is the spectral den-

sity of a stationary and invertible ARMA(p, q) process, Xt is an ARFIMA(p, d, q)

process. The present set-up allows for more general models in which fu (w) is re-

quired to satisfy some regularity conditions which are stated below in Assumption

1. The strongest of these is a smoothness requirement that enables an infinite order

asymptotic expansion of the autocorrelation function.

Since Hurst’s (1951) original article, which was written in a hydrological context,

processes satisfying (1) have been studied extensively in a number of disciplines.

Early overviews were given in Beran (1994), Robinson (1993) and Baillie (1996),

the latter two papers discussing the relevance of these processes in economics and

finance. Sowell (1992) derived an expression for the autocovariance function of a

stationary and invertible ARFIMA(p, d, q) process which involves hypergeometric

functions. One of the applications of this formula is in Gaussian maximum likeli-

hood estimation. Since this early work, many new aspects of the model have been

considered and the range of applications have widened considerably in recent years.
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Of particular interest in finance, is the applied work with financial datasets involving

the memory characteristics of interest rates and the nature of the Fisher equation

(Phillips, 2005; Sun and Phillips, 2005), studies of volatility and squared returns (Gi-

raitis et al. 2003, 2007; Robinson and Henry, 1999), and long-range dependence in

realized volatility measurements with high frequency data (Lieberman and Phillips,

2006)

The present paper derives a complete (infinite-order) asymptotic expansion of

the autocovariance function, γX (k), corresponding to the long memory spectrum

(1). The expansion formula is valid for all d ∈ (−1/2, 1/2). The leading term of the

expansion is of order O
¡
k−(1−2d)

¢
, as k →∞, consistent with the well known power

law decay of the autocorrelogram for such processes. The leading term is shown to

have an error order of O
¡
k−(3−2d)

¢
, indicating that it should deliver good accuracy

for moderate values of k. Subsequent terms in the expansion decay according to

additional powers of k−1.

The derivation of the main formula uses an asymptotic expansion of the Fourier

inversion formula for γX (k) , which can be written as

γX (k) =

Z π

−π
eiwkfu (w)

¯̄
1− e−iw

¯̄−2d
dw =

Z 2π

0

eiwkfu (w) (2 sin (w/2)))
−2d dw,

(2)

since |1− eiw|−2d = (2 sin (w/2)))−2d . When d > 0, the latter integral has critical

points (singularities in the integrand) at both boundaries 0 and 2π. For Fourier

integrals of this type asymptotic expansions for large k were originally developed by
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Erdélyi (1956) and are described in detail by, among others, Bleistein and Handels-

man (1986). Numerical evaluations across different models and parameter values

reveal that asymptotic expansions developed in this way provide approximations

which are straightforward to compute in the present case and have good accuracy

for large values of k and in some cases even for small k, particularly when the

autocovariogram is positive and monotonically decreasing.

There are a number of possible applications of the general approximation for-

mula, including standard time series diagnostic plots of theoretical autocovariance

functions of long memory processes other than ARFIMA(p, d, q), against sample

correlograms, as well as in Gaussian maximum likelihood estimation. The expan-

sion also provides an alternative to Sowell’s (1992) formula, in the ARFIMA(p, d, q)

framework. One immediate implication of the result is that to O
¡
k2d−2

¢
the autoco-

variance function of Xt is equivalent to that of the simple ARFIMA(0, d, 0) model,

as noted in Lieberman and Phillips (2006).

The plan for the remainder of the paper is as follows. Section 2 sets up assump-

tions and presents the main result. Analysis follows in Section 3 and numerical

accuracy is considered in Section 4. Section 5 concludes and proofs are in the Ap-

pendix.

2 Assumptions and Main Results

We impose the following conditions on the function fX (w) given in (1).
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Assumption A1 The periodic function fu (w), defined on (−∞,∞), satisfies the

following:

(i) fu (w) = fu (−w)

(ii) fu (w) ≥ 0

(iii)
R π
−π fu (w) dw <∞

(iv) fu (w) = fu (w + 2π)

(v) 0 < fu (0) <∞

(vi) fu (w) ∈ C∞ [0, 2π] .

Assumption A2 d ∈ (−1/2, 1/2).

Parts (i)-(iii) of Assumption A1 are necessary and sufficient for fu (w) to be the

spectral density of a real-valued stationary process (e.g., see Brockwell and Davis,

1991, p 122). A1(iv) is a standard 2π periodic condition on fu (w) . A1(v) and (vi)

ensure that fu (w) is infinitely smooth, bounded, and bounded above the origin at

the zero frequency, thereby eliminating the possibility of any antipersistent or long

memory components or spectral poles away from the zero frequency (as might be

caused by integrated seasonal effects, for instance). The smoothness requirement is

essential for the development of a complete asymptotic series for γX (k). Under A2,

of course, Xt is stationary. The expansion for γX (k) requires A1(iv)—A1(vi) and

A2. Both A1 and A2 hold for stationary and invertible ARFIMA(p, d, q) processes.

Define
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F (w) = fu (w)

µ
2 sin (w/2))

w (2π − w)

¶−2d
, (3)

and denote by F (n) (w) the n’th order derivative of F (w). Note that under Assump-

tion A1(vi), F (w) is infinitely differentiable at the two critical points {0, 2π}. The

main result of the paper follows.

Theorem 1 Under Assumptions A1 and A2,

γX (k) ∼
∞X
n=0

Γ (n+ 1− 2d)
n!kn+1−2d

½
dn

dan

h
(2π − a)−2d F (a)

i
a=0
(e

πi
2
(n+1−2d)

+(−1)n eπi2 (n−1+2d))
o
. (4)

The expansion gives the following explicit two term approximation for the autoco-

variance function

γX (k) ∼ 2fu (0)
Γ (1− 2d)
k1−2d

sin {πd}

−Γ (3− 2d)
k3−2d

"
2d (1− 2d)
(2π)2d+2

F (0) +
1

(2π)2d
F 00 (0)

#
sin (πd) . (5)

The proof, given in the Appendix, uses a standard integration by parts technique

for Fourier-type integrals, allowing for the presence of singularities at the limits of

integration - here the frequencies {0, 2π}. The technique is originally due to Erdélyi

(1956) and is commonly used in applied mathematics. Bleistein and Handelsman

(1987, Ch 3) provide a thorough treatment.
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3 Features of the Expansion

This section provides some analysis of the expansion and some discussion of its

implications.

1. As apparent from (5), the leading term of (4) has the very simple form

γX (k) ∼
2fu (0)Γ (1− 2d) sin (πd)

k1−2d
+O

¡
k2d−3

¢
, (6)

which was given earlier in Lieberman and Phillips (2006) with an error of O
¡
k2d−2

¢
.

The implications of (6) are: (i) The autocovariance of Xt decays according to the

power law O
¡
k2d−1

¢
, which is well known, but the explicit result (6) in the case of a

general short memory component fu (ω) seems not to have appeared before; (ii) To

order O
¡
k2d−3

¢
, the autocovariance of order-k of an ARFIMA(0, d, 0) model with

an error variance equal to 2πfu (0) is equivalent to the order—k autocovariance of

a the more general process Xt; (iii) The second term (n = 1) in the expansion (4)

is shown to be zero (see remark 2 below) in the Appendix and so the leading term

has accuracy to order O
¡
k2d−3

¢
. The latter properties justify the use of the simpler

ARFIMA(0, d, 0) framework for approximate analysis in some more general cases,

as discussed in Lieberman and Phillips (2006).

2. The two term expansion (5) involves the first and third terms of the series

(4). The term of order O
¡
k−(2−2d)

¢
is

−2 (2π)−2d Γ (2− 2d)
k2−2d

∙
F 0 (0) +

d

π
F (0)

¸
cos (πd) = 0,

6



since F 0 (0) = − d
π
F (0) , as shown in the Appendix. Thus the leading term (6) has

accuracy to an error of O
¡
k−(3−2d)

¢
.

3. The behavior of the series expansion (4) for a given value of k clearly depends

on the properties of the sequence of derivatives dn

dan

h
(2π − a)−2d F (a)

i
a=0
. The

series is majorized by

2
∞X
n=0

Γ (n+ 1− 2d)
n!kn+1−2d

∙¯̄̄̄
dn

dan

h
(2π − a)−2d F (a)

i
a=0

¯̄̄̄¸
,

which converges by the ratio test if

lim sup
n→∞

(n+ 1− 2d)
(n+ 1)k

¯̄̄
dn+1

dan+1

h
(2π − a)−2d F (a)

i
a=0

¯̄̄
¯̄̄
dn

dan

h
(2π − a)−2d F (a)

i
a=0

¯̄̄ < 1.

4. The expansion is valid for all d ∈ (−1/2, 1/2). However, for d = 0, it collapses

to

γX (k) ∼
∞X
n=0

F (n) (0)

kn+1

n
e
πi
2
(n+1) + (−1)n eπi2 (n−1)

o
=

∞X
n=0,n odd

F (n) (0)

kn+1

n
e
πi
2
(n+1) + (−1)n eπi2 (n−1)

o
= 0,

because F (n) (0) = f
(n)
u (0) = 0 for odd n for ARMA(p, q) processes, as fu (w) is

even. This corresponds to the property that γX (k) decays faster than any power

law when fu (w) is a short memory spectrum.

5. For the stationary and invertible ARFIMA(p, d, q) case, the expansion (4)

provides an alternative to the formula given in Sowell (1992, pp 173—174). Sowell’s

formula involves hypergeometric functions, whereas the above expression is in terms

of derivatives of F (w). Both formulae are easy to calculate on modern computers.
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For processes other than ARFIMA(p, d, q), we are not aware of any alternatives to

(4) other than direct numerical evaluation of the Fourier integral.

6. The expansion (4) can be applied as a diagnostic tool, in plotting theoretical

autocovariance functions against sample correlograms, as well as in Gaussian maxi-

mum likelihood estimation when the approximations are good. The formula may also

be useful for processes involving spectra besides those for rational ARFIMA(p, d, q)

models.

4 Numerical Evaluation

In Tables 1 and 2 we report numerical values of truncated versions of (4) - one

consisting of the leading term (6) only, designated app0, and the other consisting of

the two-term expansion (5), designated app2. Higher order expansions can easily be

computed but are unnecessary in the parameter configurations shown in Tables 1

and 2. The approximations were evaluated for the ARFIMA(1, d, 1) and ARFIMA

(1, d, 2) models. The order of the autocovariance, as well as the values of the ARMA

and d parameters were chosen at random, with d taking both positive and negative

values in (−1/2, 1/2). The benchmark for comparison was taken to be Sowell’s

(1992) formula, which we verified by numerical integration. All computations were

carried out with MATHEMATICA.

Tables 1 and 2 reveal that, across the parameter values considered, the leading

term of the approximation is extremely accurate when k is large. The two-term
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expansion is practically exact for k exceeding 45. In particular, for k > 60, app2 is

accurate to 9 decimal places. Whether d is positive or negative does not appear to

affect the accuracy of the expansions. The same holds for the range of ARMA para-

meters. In terms of computation time, both Sowell’s and our formula are extremely

quick to evaluate.

Further evidence on the adequacy of the approximations is given in Figures 1-3,

where plots of app0, app2 and Sowell’s (1992) formula are shown against k, in two

ARFIMA (1, d, 1) models. The case on which Figures 1 and 2 are based reveals

that the approximations become indistinguishable from Sowell’s (1992) formula for

k ≥ 20, but for k < 15 the leading term approximation completely fails to reflect the

oscillatory behavior of the covariogram and the next correction term only provides

a minor adjustment. The failure arises because the leading term is always non-

negative and dominates the approximations. In the second case, shown in figure 3,

the correlogram is non-negative and monotonic in k and the approximations seem

reliable for all k ≥ 3.

5 Conclusions

This note provides an explicit expression of the autocovariance function of a gen-

eral long-memory process in terms of a complete asymptotic series. Outside the

ARFIMA(p, d, q) framework, there appears to be no such known formula for the

autocovariance sequence, and it seems that there is scope for the use of this for-
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mula in autocovariance—based time series applications. Calculations performed in a

number of special cases indicate that the first two terms of the expansion provide

reliable accuracy for large k in all cases and for small to moderate k when the true

autocovariogram is positive and monotonically decreasing.
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APPENDIX

We start by giving the following theorem based on Bleistein and Handelsman

(1986, p. 90-91), which is due to Erdélyi (1956, pp. 49-50).

Theorem 2 If F (w) ∈ C∞ [a, b] , and α and β are not integers, then

I (k) =

Z b

a

eikw (w − a)α−1 (b− w)β−1 F (w) dw (7)

has the following complete asymptotic series representation as k →∞

I (k) = Ia (k) + Ib (k) ,

where

Ia (k) ∼
∞X
n=0

dn

dan

n
(b− a)β−1 F (a)

o Γ (n+ α)

n!kn+α
e
πi
2
(n+α)+ika,

and

Ib (k) ∼
∞X
n=0

dn

dbn
©
(b− a)α−1 F (b)

ª Γ (n+ β)

n!kn+β
e
πi
2
(n−β)+ikb.

Proof of Theorem 1: In view of (2)

γX (k) =

Z 2π

0

eiwkfu (w) (2 sin (w/2)))
−2d dw

=

Z 2π

0

eiwkw−2d (2π − w)−2d F (w) dw,
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where

F (w) = fu (w)

µ
2 sin (w/2))

w (2π − w)

¶−2d
.

Under Assumption A1(vi), F (w) ∈ C∞ [0, 2π]. Setting a = 0, b = 2π, and α = β =

1− 2d, it now follows from theorem 2 that

γX (k) = I0 (k) + I2π (k) ,

where

I0 (k) =
∞X
n=0

dn

dan

h
(2π − a)−2d F (a)

i
a=0

Γ (n+ 1− 2d)
n!kn+1−2d

e
πi
2
(n+1−2d),

I2π (k) =
∞X
n=0

dn

dbn
£
b−2dF (b)

¤
b=2π

Γ (n+ 1− 2d)
n!kn+1−2d

e
πi
2
(n−1+2d)+ik2π.

We obtain

γX (k) =
∞X
n=0

Γ (n+ 1− 2d)
n!kn+1−2d

½
dn

dan

h
(2π − a)−2d F (a)

i
a=0

e
πi
2
(n+1−2d)

+
dn

dbn
£
b−2dF (b)

¤
b=2π

e
πi
2
(n−1+2d)

¾
. (8)

Now,

dj

dbj
£
b−2d

¤
b=2π

= (−1)j dj

daj

h
(2π − a)−2d

i
a=0

, (j = 0, 1, 2, ...)

and noting that

F (2π − w) = fu (w)

µ
2 sin (w/2))

w (2π − w)

¶−2d
= F (w) ,

we deduce that

F (m) (2π) = (−1)m F (m) (0) , (m = 0, 1, 2, ...) .
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Thus,

dn

dbn
£
b−2dF (b)

¤
b=2π

=
h©
b−2d + F (b)

ª(n)i
b=2π

=
nX

j=0

µ
n

j

¶µ
dj

dbj
£
b−2d

¤
b=2π

¶¡
F (n−j) (2π)

¢
=

nX
j=0

µ
n

j

¶
(−1)j dj

daj

h
(2π − a)−2d

i
a=0
(−1)n−j F (n−j) (0)

= (−1)n dn

dan

h
(2π − a)−2d F (a)

i
a=0

.

Equation (8) then becomes

γX (k) ∼
∞X
n=0

Γ (n+ 1− 2d)
n!kn+1−2d

½
dn

dan

h
(2π − a)−2d F (a)

i
a=0
(e

πi
2
(n+1−2d)

+(−1)n eπi2 (n−1+2d))
o
,

giving the stated result.

We next proceed to calculate the explicit form of the expansion to the first three

terms of (8). The first term is:

Γ (1− 2d)
k1−2d

n
(2π)−2d F (0)

³
e
πi
2
(1−2d) + e−

πi
2
(1−2d)

´o
= (2π)−2d F (0)

Γ (1− 2d)
k1−2d

2 cos
nπ
2
(1− 2d)

o
= 2fu (0)

Γ (1− 2d)
k1−2d

sin {πd} , (9)

using the fact that cos
©
π
2
(1− 2d)

ª
= sin (πd) and since

(2π)−2d F (0) = fu (0) .
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Some further calculations reveal that the second term (n = 1) in the expansion is

zero, as shown below:

Γ (2− 2d)
k2−2d

½
d

da

h
(2π − a)−2d F (a)

i
a=0

³
e
πi
2
(2−2d) − e

πi
2
(2d)
´¾

= (2π)−2d
Γ (2− 2d)
k2−2d

∙
F 0 (0) +

2d

2π
F (0)

¸ £
eπi(1−d) − eπid

¤
= − (2π)−2d Γ (2− 2d)

k2−2d

∙
F 0 (0) +

d

π
F (0)

¸ £
e−πid + eπid

¤
= −2 (2π)−2d Γ (2− 2d)

k2−2d

∙
F 0 (0) +

d

π
F (0)

¸
cos (πd) = 0, (10)

the final line following from the fact that

F 0 (0) = −2d (2π)2d−1 fu (0) = −
2d

2π
F (0) .

The third term in the expansion is

Γ (3− 2d)
2!k3−2d

½
d2

da2

h
(2π − a)−2d F (a)

i
a=0

³
e
πi
2
(3−2d) + e

πi
2
(1+2d)

´¾
=

Γ (3− 2d)
2!k3−2d

"
2d (2d+ 1)

(2π)2d+2
F (0) +

4d

(2π)2d+1
F 0 (0) +

1

(2π)2d
F 00 (0)

#©
(−i) e−πid + ieπid

ª
= −Γ (3− 2d)

k3−2d

"
2d (2d+ 1)

(2π)2d+2
F (0) +

4d

(2π)2d+1
F 0 (0) +

1

(2π)2d
F 00 (0)

#
sin (πd)

= −Γ (3− 2d)
k3−2d

"
2d (1− 2d)
(2π)2d+2

F (0) +
1

(2π)2d
F 00 (0)

#
sin (πd) . (11)

Combining (9) - (11) gives the following two term approximation to orderO
¡
k−(3−2d)

¢
γX (k) ∼ 2fu (0)

Γ (1− 2d)
k1−2d

sin {πd}

−Γ (3− 2d)
k3−2d

"
2d (1− 2d)
(2π)2d+2

F (0) +
1

(2π)2d
F 00 (0)

#
sin (πd) , (12)

giving the stated result.
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Table 1: Autocovariances of the model (1 + φB) (1−B)dXt = (1 + θB) εt

k φ θ d Sowell App0 App2

100 0.48 −0.71 0.146 0.000266641 0.000266921 0.000266641

20 0.48 −0.71 0.146 0.000813834 0.000834168 0.000812295

47 0.364 0.126 0.373 0.268009 0.268014 0.268009

39 0.619 0.296 0.417 0.599673 0.59968 0.599673

52 0.06 0.718 0.184 0.0534111 0.0534076 0.0534111

28 −0.364 0.188 0.339 0.923406 0.922897 0.923401

41 −0.645 0.285 0.219 0.521648 0.520171 0.521604

61 0.453 0.258 −0.289 −0.000255303 −0.000255311 −0.000255303

83 −0.127 0.721 −0.394 −0.000402104 −0.000401975 −0.000402104

34 0.256 −0.815 −0.483 −5.83159× 10−6 −6.63174× 10−6 −5.83106× 10−6

Sowell: Sowell’s (1992) formula, verified with a numerical integration of the

spectral density

App0: The one—term approximation

App2: The two—terms expansion
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Table 2: Autocovariances of the model

(1 + φB) (1−B)dXt = (1 + θ1B + θ2B
2) εt

k φ θ1 θ2 d Sowell App0 App2

24 0.424 0.175 0.392 0.171 0.0334144 0.0333818 0.0334143

45 −0.363 0.275 0.202 −0.247 −0.0036091 −0.00359951 −0.00360902

49 −0.193 0.200 0.400 −0.277 −0.00287325 −0.00286532 −0.0028732

42 0.193 0.200 0.400 −0.450 −0.000448941 −0.000448048 −0.000448939

65 0.373 −0.109 0.608 0.372 0.42406 0.424035 0.42406

89 0.736 0.490 0.287 0.413 0.782226 0.78222 0.782226

76 0.520 0.666 −0.543 −0.476 −0.0000361517 −0.0000362119 −0.0000361517

38 0.412 −0.866 −0.431 0.389 0.0241483 0.024264 0.0241484

27 0.100 0.900 0.050 −0.216 −0.00496688 −0.00496127 −0.00496687

55 0.489 0.327 0.626 0.327 0.723552 0.723512 0.723552

Sowell: Sowell’s (1992) formula, verified with a numerical integration of the

spectral density

App0: The one—term approximation

App2: The two—terms expansion
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Figure 1: Autocovariogram for (1 + 0.48B) (1−B)0.146Xt = (1− 0.71B) εt
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Figure 2: Autocovariogram for (1 + 0.48B) (1−B)0.146Xt = (1− 0.71B) εt
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Figure 3: Autocovariogram for (1 + 0.24B) (1−B)0.25Xt = (1 + 0.49B) εt
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