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Abstract

In a financial market where traders are risk averse and short lived, and
prices are noisy, asset prices today depend on the average expectation today
of tomorrow’s price. Thus (iterating this relationship) the date 1 price
equals the date 1 average expectation of the date 2 average expectation
of the date 3 price. This will not in general equal the date 1 average
expectation of the date 3 price. We show how this failure of the law of
iterated expectations for average belief can help understand the role of
higher order beliefs in a fully rational asset pricing model and explain over-
reaction to (noisy) public information.

∗We are grateful for comments of seminar participants at the LSE, the Bank of England, the
IMF, Stanford and the accounting theory mini-conference at Chicago GSB.



“...professional investment may be likened to those newspaper compe-
titions in which the competitors have to pick out the six prettiest faces
from a hundred photographs, the prize being awarded to the competi-
tor whose choice most nearly corresponds to the average preferences
of the competitors as a whole; so that each competitor whose choice
most nearly corresponds to the average preferences of the competitors
as a whole: so that each competitor has to pick, not those faces which
he himself finds prettiest, but those which he thinks likeliest to catch
the fancy of the other competitors, all of whom are looking at the
problem from the same point of view. It is not a case of choosing
those which, to the best of one’s judgement, are really the prettiest,
nor even those which average opinion genuinely thinks the prettiest.
We have reached the third degree where we devote our intelligences
to anticipating what average opinion expects the average opinion to
be. And there are some, I believe, who practise the fourth, fifth and
higher degrees.” Keynes (1936), page 156.
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1. Introduction

Keynes (1936) introduced the influential metaphor of financial markets as a beauty
contest. An implication of the metaphor is that an understanding of financial
markets requires an understanding not just of market participants’ beliefs about
assets’ future payoffs, but also an understanding of market participants’ beliefs
about other market participants’ beliefs, and higher order beliefs. Judging by how
often the above passage from Keynes is quoted in academic and non-academic
circles, many people find the metaphor highly suggestive. Yet the theoretical
literature on asset pricing has, on the whole, failed to develop models that validate
the role of higher order beliefs in asset pricing.1 One purpose of our paper is to
illuminate the role of higher order expectations in an asset pricing context, and
thereby to explore the extent to which Keynes’s beauty contest metaphor is valid
as a guide for thinking about asset prices.
The second purpose of this paper is to explore the idea of asset market bubbles

as an excessive reaction to (noisy) public information, in a rational model. Chap-
ter 4 of Shiller (2000) is devoted to the idea that the news media, by propagating
information in a public way, may create or exacerbate asset market bubbles by
coordinating market participants’ expectations. News stories without much infor-
mation content may play a role akin to “sunspots” - i.e., payoff irrelevant signals
that coordinate players’ expectations. If public information suggests that payoffs
will be high then this can lead to high asset prices even if all traders have private
information or judgement that the true value is low.
Neither phenomenon makes an appearance in standard competitive asset pric-

ing models with a representative investor. Asset prices in such settings reflect
the discounted expected value of payoffs from the asset, suitably adjusted for
risk. Since we believe that both phenomena alluded to above are consistent with
competitive asset pricing models, our explanation must include an account of
why asset prices in a competitive market may fail to reflect solely the discounted
expected payoffs.
A key feature of the representative investor model of asset prices that makes

higher order expectations redundant is the martingale property of asset prices.
The price of an asset today is the discounted expected value of the asset’s payoff
stream with respect to an equivalent martingale measure, conditional on the infor-
mation available to the representative individual today. This allows the folding
back of future outcomes to the present in coming up with today’s price. An

1Some exceptions are discussed in section 5.
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implication of the martingale property in a representative individual economy is
the law of iterated expectations in which the representative investor’s expectation
today of his expectation tomorrow of future payoffs is equal to his expectation
today of future payoffs.
But if there is differential information between investors so that there is some

role for the average expectations about payoffs, the folding back of future outcomes
to the present cannot easily be achieved. In general, average expectations fail
to satisfy the law of iterated expectations. It is not the case that the average
expectation today of the average expectation tomorrow of future payoffs is equal to
the average expectation of future payoffs. The key observation in this paper is not
only that the law of iterated expectations fails to hold for average opinion when
there is differential information, but that its failure follows a systematic pattern
that ties in with the disproportionate impact of the media and other sources of
public information.
Suppose that an individual has access to both private and public information

about an asset’s payoffs, and they are of equal value in predicting the asset’s
payoffs. Thus in predicting the asset’s payoffs, the individual would put equal
weight on private and public signals. Now suppose that the individual is asked
to guess what the average expectation of the asset’s payoffs is. Since he knows
that others have also observed the same public signal, the public signal is a better
predictor of average opinion, he will put more weight on the public signal than on
the private signal. Thus if individuals’ willingness to pay for an asset is related
to their expectations of average opinion, then we will tend to have asset prices
overweighting public information relative to the private information. Thus any
model where higher order beliefs play a role in pricing assets will deliver the
conclusion that there is an excess reliance on public information.
Even in a single-period rational expectations asset pricing model, the price is a

biased signal of the true liquidation value of the asset when the model is modified
by the inclusion of a public signal. The price puts excessive weight on the public
signal relative to the true liquidation value. This bias towards the public signal is
reminiscent of the result in Morris and Shin (2002) where the coordination motive
of the agents induces a disproportionate role for the public signal. Although
there is no explicit coordination motive in the rational expectations equilibrium,
the fact that the public signal enters into everyone’s demand function means that
it still retains some value for forecasting the aggregate demand above and beyond
its role in estimating the liquidation value. Another way of expressing this is to
say that, whereas the noise in the individual traders’ private signals get “washed
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out” when demand is aggregated across traders, the noise term in the public signal
is not similarly washed out. Thus, the noise in the public signal is still useful in
forecasting aggregate demand, and hence the price.
Our main focus, however, is on the multi-period asset pricing context. Do

asset prices reflect average opinion, and average opinion about average opinion,
in the manner that Keynes suggests? We will describe one simple standard asset
pricing model where this is the case. We look at a dynamic, noisy rational ex-
pectations asset pricing model, of the type developed by Singleton (1987), Brown
and Jennings (1989), Grundy and McNichols (1989) and He and Wang (1995). An
asset will pay a one off dividend in period 3. In periods 1 and 2, the asset is traded
by short lived traders, who live for only one period, and observe both public and
private signals. A noisy supply function ensures that asset prices are not fully
revealing. We show that as the noise in asset prices becomes large, the average
asset price in period 2 converges to the average expectation of the dividend; and
the average asset price in period 1 converges to the average expectation of the
average expectation of the dividend. This result readily extends to an arbitrary
number k of trading periods / generations of short-lived traders. The average
asset price will equal the kth order average expectation of the dividend. For large
k, private information will not initially be reflected in asset prices.
Noisy rational expectations equilibria in the standard constant absolute risk

aversion/normally distributed payoffs (CARA-normal) model have a number of
well-known conceptual problems; and the limit we focus on - where the noise in
the supply function becomes large - is an extreme case. We believe this case is
nonetheless interesting to study because there is a very simple and transparent
account about how higher order beliefs come to be reflected in asset prices. We
want a minimal model that is fully rational and highlights the role of the key
assumption, short-lived traders. Similar conclusions do and would result in models
with more detailed analysis of market microstructure. For example, one reason
for short horizons is that individuals’ funds are managed by professionals and
inefficiencies resulting from the agency problem give rise to short horizons (Allen
and Gorton (1993)). In the concluding section 5, we discuss some of the existing
literature with similar conclusions. While the model in this paper is too stylized to
directly apply to time series data on asset prices, we believe that the insights may
help interpret what is going on in empirical work using computational dynamic
noisy rational expectations models, such as the pioneering work of Singleton (1987)
and the recent work (in a currency market context) of Bacchetta and vanWincoop
(2002).
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The insights of this paper are relevant beyond the asset pricing application. An
old literature, dating back to Townsend (1978, 1983) and Phelps (1983), looked at
dynamic models where agents follow linear decision rules but their choices depend
on others’ choices and their heterogeneous expectations about future realizations
of economic variables. As a consequence, forward looking iterated average ex-
pectations matter. The CARA-normal noisy rational expectations asset prices of
this paper inherit both the linear decision rules and the forward looking iterated
average expectations. In section 4, we explore the connection in more detail. One
insight highlighted in this paper is that forward looking iterated average expec-
tations have a rich structure even when there is no learning. Thus while learning
is an interesting (and unavoidable) phenomenon in its own right, it may be inter-
esting to understanding the role of dynamic higher order beliefs independently of
learning. Recently, there has been a renewed interest in heterogeneous expecta-
tions in macroeconomics where this insight might be relevant2. Explicit solutions
for such macroeconomic models are rarely possible due to their complexity. In
contrast, the questions addressed in our paper are sufficiently simple for us to
derive a number of explicit results. These results may have some bearing on
the general problem of the role of iterated expectations in differential information
economies.

2. Asymmetric Information and Iterated Expectations

For any random variable θ, let Eit (θ) be player i’s expectation of θ at date t;
write Et (θ) for the average expectation of θ at time t; and write E∗t (θ) for the
public expectation of θ at time t (i.e., the expectation of θ conditional on public
information only; in a partition model, this would be conditional on the meet of
players’ information).
We know that individual and public expectations satisfy the law of iterated

expectations:

Eit (Ei,t+1 (θ)) = Eit (θ)

and E∗t
¡
E∗t+1 (θ)

¢
= E∗t (θ) .

But the analogous property for average expectations will typically fail under asym-

2For example, Amato and Shin (2002), Hellwig (2002), Pearlman and Sargent (2002), Stasav-
age (2002) and Woodford (2001).
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metric information. In other words, we will typically have

Et

¡
Et+1 (θ)

¢ 6= Et (θ) .

This is most easily seen by considering the case where there is no learning. Suppose
θ is distributed normally with mean y and variance 1

α
. Each player i in a continuum

observes a signal xi = θ+ εi, where εi is distributed in the population with mean
0 and variance 1

β
. Suppose that this is all the information available at all dates.

Then we may drop the date subscripts. Now observe that

Ei (θ) =
αy + βxi
α+ β

E (θ) =
αy + βθ

α+ β

Ei

¡
E (θ)

¢
=

αy + βEi (θ)

α+ β

=
αy + β

³
αy+βxi
α+β

´
α+ β

=

Ã
1−

µ
β

α+ β

¶2!
y +

µ
β

α+ β

¶2
xi

E
¡
E (θ)

¢
=

Ã
1−

µ
β

α+ β

¶2!
y +

µ
β

α+ β

¶2
θ

Iterating this operation, one can show that

E
k
(θ) =

Ã
1−

µ
β

α+ β

¶k
!
y +

µ
β

α+ β

¶k

θ.

Note that (1) the expectation of the expectation is biased towards the public
signal y: that is,

sign
¡
E
¡
E (θ)

¢−E (θ)
¢
= sign

¡
y −E (θ)

¢
;
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and (2) as k →∞, Ek
(θ)→ y.3 Putting back the time subscripts, we have

Et

¡
Et+1 (θ)

¢
=

Ã
1−

µ
β

α+ β

¶2!
y +

µ
β

α+ β

¶2
θ 6= αy + βθ

α+ β
= Et (θ) .

and

Et

¡
Et+1

¡
......ET−2

¡
ET−1 (θ)

¢¢¢
=

Ã
1−

µ
β

α+ β

¶T−t!
y +

µ
β

α+ β

¶T−t
θ.

Now suppose that there is an asset that has liquidation value θ at date T . Suppose
- in the spirit of the Keynes beauty contest - that the asset is priced according to
the asset pricing formula

pt = Et (pt+1) . (2.1)

Then we would have

pt =

Ã
1−

µ
β

α+ β

¶T−t!
y +

µ
β

α+ β

¶T−t
θ.

This implies that, given the realization of the public signal, the period t price is
biased toward the public signal relative to fundamentals. It also implies that, un-
conditional on the realized public signal, the period t price is normally distributed

with mean θ and variance 1
α

µ
1−

³
β

α+β

´T−t¶
. Thus the more trading periods

there are, the higher the variance of the price. This is despite the fact that (by
assumption) no new information is being revealed.
So far, we have given no justification for asset pricing formula (2.1), other

than an appeal to the authority of Keynes. Furthermore, our assumption in this
section that there is no learning will not be consistent in a rational model with
traders observing prices. We would like to describe an asset pricing model that
generates asset pricing formula (2.1), or something like it, and deals with the issue
of learning from prices. We will turn to this problem now.

3Property (1) does not hold for all distributions: one can construct examples where it fails
to hold. However, property (2) holds independently of the normality assumption: this is, for
any random variable and information system with a common prior, the average expectation of
the average expectations.... of the random variable converges to the expectation of the random
variable conditional on public information (see Samet (1998)).
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3. Rational Expectations with Short Lived Traders

The role of iterated expectations can be illustrated in an otherwise standard noisy
rational expectations model. Grossman (1976), Hellwig (1980) and Diamond and
Verrecchia (1981) showed how prices played an informational role in competitive
equilibrium asset markets with differential information, and the analysis was ex-
tended to a multi-period setting by Singleton (1987), Brown and Jennings (1989),
Grundy and McNichols (1989) and He and Wang (1995). In particular, the main
model of this section is a special case of the “myopic trader” model of Brown and
Jennings (1989).
There is a unit mass of traders, indexed by the unit interval [0, 1]. There

are three periods, 1, 2 and 3. In period 3, an asset will be liquidated, where
the liquidation value is θ. The initial information of traders is exactly as in the
previous section: θ is distributed normally with mean y and variance 1

α
; each

trader i in the continuum observes a signal xi = θ + εi, where εi is distributed in
the population with mean 0 and variance 1

β
.

The asset is traded twice, in periods 1 and 2. We denote by p1 and p2 the price
of the asset in periods 1 and 2 respectively. In each trading period, we assume that
there is an exogenous noisy supply of the asset, st, distributed normally with mean
0 and precision γt. The traders have identical preferences, with constant absolute
risk aversion utility function u (w) = −e−w

τ . Parameter τ is the reciprocal of the
absolute risk aversion, and we shall refer to it as the traders’ risk tolerance. It
is initially assumed each trader lives for only one period. New traders born in
period 2 inherit the private signals of the traders that they are replacing.
This economy will have at least one linear rational expectations equilibrium,

as shown by Brown and Jennings (1989, theorem 1), and prices at each of the two
trading periods are intimately tied to the iterated expectations of the payoff of
the asset. To see this, consider the second trading period. Trader i’s demand for
the asset is linear (due to CARA preferences and normally distributed payoffs),
and given by

τ

Vari2 (θ)
(Ei2 (θ)− p2) (3.1)

where Ei2 (θ) is the expectation of θ conditional on trader i’s information set at
date 2, which includes the current price p2, as well as the price history and signals
observed by trader i. Vari2 (θ) is the conditional variance of θ with respect to the
same information set. Because the traders have private signals that are i.i.d. con-
ditional on θ, the conditional variances {Vari2 (θ)} are identical across traders, and
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we denote by Var2 (θ) this common conditional variance across traders4. Sum-
ming (3.1) across traders, the aggregate demand at date 2 is given by

τ

Var2 (θ)

¡
Ē2 (θ)− p2

¢
(3.2)

where Ē2 (θ) is the average expectation of θ at date 2. Market clearing then
implies that

p2 = Ē2 (θ)− Var2(θ)
τ

s2 (3.3)

The price at date 1 can be derived from an analogous argument, bearing in mind
that (short-lived) traders at date 1 care about the price at date 2, rather than the
final liquidation value of the asset. The price at date 1 is given by

p1 = Ē1 (p2)− Var1(p2)
τ

s1 (3.4)

where Var1 (p2) is the common conditional variance of p2 across all traders. Sub-
stituting (3.3) into (3.4), and noting that Ē1 (s2) = 0, we have the following
expression for first period price.

p1 = Ē1Ē2 (θ)− Var1(p2)
τ

s1 (3.5)

Apart from the effect of the noisy supply, the first period price is the average
expectation at date 1 of the average expectation at date 2 of the final liquidation
value of the asset. Clearly, this is a recursive relationship that can be iterated
further into the future if the asset is liquidated at a later date. If the asset is
liquidated at date T ,

p1 = Ē1Ē2 · · · ĒT (θ)− Var1(p2)
τ

s1 (3.6)

Expressions such as (3.5) and (3.6) demonstrate that Keynes’s beauty contest
metaphor can be given a formal counterpart in asset pricing models with short
decision horizons. However, they are not fully satisfactory unless we can sup-
plement them with further insights into their relationship with the underlying
fundamentals of the economy. The full solution for prices can be expected to be
cumbersome expressions involving θ and the signals received by all the traders.
One possible direction to take the analysis would be to apply numerical meth-
ods to calculate prices. Bacchetta and van Wincoop (2002) follow this procedure
drawing on the Kalman filter methods of Townsend (1983) and Woodford (2001).

4If the traders’ private signals have differing precisions, Var2 (θ) can be defined as the har-
monic mean of the individual conditional variances.
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We will take a different route. Confining ourselves to the two trading period
model, we will solve explicitly for the equilibrium prices in the short-lived trader
model in terms of the underlying fundamentals of the economy. Our motivation
is to understand more fully the forces at work in determining asset prices, and to
identify specific forces that can be attributed to public information. Needless to
say, our theoretical approach is complementary to the numerical methods.
We can summarize our findings as follows. We denote byEs (·) the expectation

with respect to the supply shocks (s1, s2), so that Es (s1) = Es (s2) = 0. We then
have:

Proposition 3.1. In the short-lived trader model with two trading periods, there
exist constants w and z with 0 < w < 1, 0 < z < 1 such that

Es (p1) = (1− wz) y + wzθ

Es (p2) = (1− z) y + zθ

In particular, as (γ1, γ2)→ (0, 0), we have

Es (p1) →
µ

β

α+ β

¶2
θ +

Ã
1−

µ
β

α+ β

¶2!
y

Es (p2) →
µ

β

α+ β

¶
θ +

µ
α

α+ β

¶
y

There are several noteworthy features of this result. Mean prices taken over
realizations of the supply shocks (s1, s2) are given by convex combinations of
the true liquidation value θ and the ex ante mean y. In this sense, both prices
are biased signals of the true liquidation value θ. The distribution of prices
is biased towards the public signal y relative to the true liquidation value θ.
Moreover, the extent of the bias is worse for the first period price. The first
period price puts more weight on the public signal y than does the second period
price. In particular, when the noise in the supply of the asset becomes large (so
that the informational role of price is diminished), the expressions for mean price
converge to the expressions E (θ) and EE (θ), explored in the previous section,
where the average expectation does not condition on the price. The argument for
proposition 3.1 is given in appendix A, but we will present an informal argument
later in this section for the limiting case where the supply noise becomes large.
The fact that price is biased towards the public signal also appears in a single

period version of our model. In the single period model, the mean of the linear
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rational expectations price p over the realizations of the supply shock s is given
by

Es (p) =
αy +

¡
β + τ 2β2γ

¢
θ

α+ β + τ 2β2γ
(3.7)

so that Es (p) is a convex combination of y and θ. Thus, Es (p) 6= θ, so that
price is a biased signal of true liquidation value. However, this bias disappears
when either β →∞, so that the private information of traders swamps the public
signal y, or when τ →∞, when traders become risk neutral in the limit, or when
γ → ∞ when the supply noise disappears. However, as long as traders are risk
averse and the public signal has some information value relative to the private
signals, price is a biased signal of θ.
This bias towards the public signal has some similarities with the result in

Morris and Shin (2002) where the coordination motive of the agents induces a
disproportionate role for the public signal. Although there is no explicit coordi-
nation motive in the rational expectations equilibrium, the fact that the public
signal enters into everyone’s demand function means that y still retains some value
for forecasting the aggregate demand, above and beyond its role in estimating the
liquidation value θ. Another way of expressing this is to say that, whereas the
noise in the individual traders’ private signals xi gets “washed out” when demand
is aggregated across traders, the noise term in the public signal (the difference
between y and θ) is not similarly washed out. Thus, the noise in the public signal
is still useful in forecasting aggregate demand, and hence the price.
The detailed argument for proposition 3.1 follows the familiar linear solution

method that relies on (i) the linearity of conditional expectations for jointly nor-
mal random variables, and (ii) the linearity of the demand functions arising from
CARA utility functions. We thus relegate the argument to the appendix. How-
ever, it is worthwhile sketching an informal argument for the limiting case in
proposition 3.1.
As the noise in the supply becomes larger, the informational content of prices

become more and more diluted, so that in period 2, each trader i will not have
learned much from either first or second period prices. Thus in period 2, trader
i’s belief concerning θ is close to someone who has not observed either price. So,
as an approximation, trader i believes that θ is distributed normally with meanµ

β

α+ β

¶
xi +

µ
α

α+ β

¶
y
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and precision α+ β. Trader i’s demand will be

τ (α+ β)

µµ
β

α+ β

¶
xi +

µ
α

α+ β

¶
y − p2

¶
.

Integrating over all traders i ∈ [0, 1], the total demand will be

τ (α+ β)

µµ
β

α+ β

¶
θ +

µ
α

α+ β

¶
y − p2

¶
.

Market clearing requires

τ (α+ β)

µµ
β

α+ β

¶
θ +

µ
α

α+ β

¶
y − p2

¶
= s2.

This implies the pricing equation

p2 =

µ
β

α+ β

¶
θ +

µ
α

α+ β

¶
y − s2

τ (α+ β)
. (3.8)

Taking expectations with respect to s2 gives us our result.
In period 1, each trader i will know that p2 is determined approximately by

equation (3.8). His expectation of p2 based on the public signal y and his own
private signal xi will then beµ

β

α+ β

¶µµ
β

α+ β

¶
xi +

µ
α

α+ β

¶
y

¶
+

µ
α

α+ β

¶
y

=

µ
β

α+ β

¶2
xi +

Ã
1−

µ
β

α+ β

¶2!
y.

Trader i’s demand at date 1 is

τ

Var1i (p2)

Ãµ
β

α+ β

¶2
xi +

Ã
1−

µ
β

α+ β

¶2!
y − p1

!
.

and aggregate demand will be

τ

Var1 (p2)

Ãµ
β

α+ β

¶2
θ +

Ã
1−

µ
β

α+ β

¶2!
y − p1

!
.
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where Var1 (p2) is the common conditional variance of p2 across all traders. Mar-
ket clearing requires

τ

Var1 (p2)

Ãµ
β

α+ β

¶2
θ +

Ã
1−

µ
β

α+ β

¶2!
y − p1

!
= s1.

Giving us the pricing equation

p1 =

µ
β

α+ β

¶2
θ +

Ã
1−

µ
β

α+ β

¶2!
y − s1

Var1 (p2)
τ

.

Integrating out s1 gives us our limiting result.
To be sure, the limiting results in proposition 3.1 should be interpreted with

caution. As the supply noise in the two periods become very large, the distri-
butions of p1 and p2 themselves will become very dispersed. In the limit, both
prices have degenerate distributions in which variances become infinite. However,
proposition 3.1 also shows that even away from the limit, when prices are infor-
mative about θ, the first period price shows a greater bias towards the ex ante
mean than does the second period price. The constants w and z are unwieldy
expressions in general, but they are analogous to the ratio β/ (α+ β) that figure
in the iterated average expectations operator.
For simplicity, we proved a result for a model with two periods of asset trading.

However, the result will extend straightforwardly to a world with T rounds of
asset trading (just open the market for T periods, with a new supply shock in
each period). Again, we obtain pricing formula (2.1).5

It is important to compare this model with what would happen if traders were
long-lived, i.e., the same traders were in the market at dates 1 and 2 and maximize
the utility of final period consumption. This more complex case is again analyzed
formally in the appendix. We present here the limiting results as the supply noise
becomes large.

Proposition 3.2. In the long-lived trader model, as (γ1, γ2)→ (0, 0),

Es (p1) = Es (p2) =

µ
β

α+ β

¶
θ +

µ
α

α+ β

¶
y

5He and Wang (1995) have studied a quite general dynamic noisy rational expecations model
with many periods of trading. There does not exist an existence result for this setting (even
with short-lived traders), but it would be straightforward to establish existence for sufficiently
small γ.
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Again, we provide a formal limiting argument in appendix A and here present
the simple heuristic argument “in the limit”. Period 2 will look identical to the
short-lived trader model. So consider the problem of a trader in the first period.
He can anticipate what his second period demand for the asset will be. His first
period demand is not the same as in the short-lived trader model, because of
his hedging demand. Even if he thought that holding the asset from period 1 to
period 2 had a zero or negative expected return, he might want to buy a positive
amount of the asset because it hedges the risk that he will be taking on in period
2. It turns out that in this case, this hedging demand implies that the period
1 trader will purchase his expected demand for the asset in the next period, as
a hedge. The net effect of this is that he will behave as if the period 2 trading
opportunity does not exist. Of course, this makes sense, since p2 is very noisy in
the limit, and much noisier than θ.
The comparison of the short-run and long-run trader models is instructive.

The expected price is biased towards the public signal in the first trading round
of the short-run trader model relative to the long-run trader model. Short horizons
are generating an over-reliance on public information. To be sure, our comparison
between short-run and long-run models is somewhat stark. However, it is worth
noting that even in a long lived asset market, all that is required to get the
qualitative features of the short-run model is that some traders consume before all
the expected future dividends reflected in the assets they are trading are realized.
This is surely a realistic assumption. We could easily introduce hybrid traders
who, with probability λ, will face liquidity needs and be forced to consume at
date 2, and, with probability 1− λ, will not consume until period 3. The model
would move smoothly between the two limits discussed here as we let λ vary
between 0 and 1.
An unsatisfactory (but standard) feature of the noisy REE model considered

here is the assumption that there is an exogenous noisy supply. This feature is
particularly unsatisfactory because we are interested in cases where prices are not
very revealing, and we achieved this here by letting the noisy supply become large.
There are various (more complicated) devices in the literature for allowing prices
to not be fully revealing, and this is the only function the noisy supply is playing
in this model.6 We could have fixed the variance of the noisy supply and let the
traders become very risk averse (i.e., let τ → 0). In this case, traders’ demand
would be very price insensitive and again prices would be non-revealing. Identical
results would follow.

6See, for example, Ausubel (1990) and Wang (1994).
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4. Forecasting the Forecasts of Others

The multi-period rational expectations equilibrium is a sophisticated example of a
setting in which agents attempt to forecast others’ forecasts. In period 1, traders
are attempting to forecast price at period 2, which in turn depends on the forecasts
of traders in period 2 concerning the liquidation value θ. What makes the problem
rather complicated is the fact that the information sets of the traders consist not
only of the exogenous signals y and {xi}, but also the endogenous signals - i.e.
the prices - generated by the actions of the traders themselves. However, we have
seen that essential features of the Keynes beauty contest survive in modified form.
This suggests that it would be instructive to study the effect of iterative fore-

casts in isolation from the endogenous generation of information via prices. This
will allow us to gauge the importance of iterated expectations by itself, and to
see how much of the total effect can be attributed to the problem of forecasting
the forecasts of others. This is the task that we will take on in this section. By
restricting the information of the agents to exogenous signals only, we will analyze
the specific features of iterative forecasts.
It should be noted at the outset that the problem of forecasting the forecasts

of others has a long history in economics. It has been an important theme in
macroeconomic models with asymmetric information, for instance. The Lucas-
Phelps island economy model (Phelps (1970), Lucas (1972, 1973)) is perhaps the
first formalization of such a problem, and Townsend (1978, 1983), Phelps (1983)
and others have commented on the importance of this issue in solving for the
aggregate laws of motion for the economy as a whole. Our analysis below has
some bearing on this, and related areas of the literature.
Let us consider a model where time is indexed by {0, 1, 2, · · · , T + 1}. Agents

live for two periods and agents of the same generation are indexed by the unit
interval [0, 1], so that at any date other than the first or last, there is a unit mass
of young agents and a unit mass of old agents.
At date zero, the random variable θ is chosen by nature, where θ is drawn

from a normal distribution with mean y0 and precision α0. No one observes this
realization, but all agents receive a private signal xi = θ + εi where εi is normal
with mean zero and precision β. In addition, there is a public signal yt at date t
which has mean θ and precision αt which is observable to agents at date t and to
all agents that come later. Thus, for agent i alive at date t, his information set
consists of

{xi, y0, y1, y2, · · · , yt}

16



The agents have no other information.
At the final date T +1, the realization of θ is revealed. At date T , the young

agents try to forecast this realization. When agent i announces the forecast piT ,
his payoff at date T + 1 is then

− (piT − θ)2

At earlier dates t < T , the young agents try to forecast the average forecast of the
next generation of agents. Thus, at date t, agent j announces the forecast pjt in
order to maximize his payoff at t+ 1 which is given by

− (pjt − p̄t+1)
2

where p̄t+1 =
R
k∈[0,1] pk,t+1dk, the average forecast of the young generation in the

next period.
The assumption that the information available to agents consist only of the

exogenous signals {xi, y0, y1, · · · , yt−1} leads directly to the result that the average
p̄t of decisions at date t is given by

p̄t = EtEt+1 · · ·ET−1ET (θ)

where Et (.) is the average expectation based on the signals {xi, y0, y1, · · · , yt}.
The argument is by induction. At the penultimate date T , the optimal choice is
the conditional expectation of θ based on signals {xi, y0, y1, · · · , yT}, so that

piT = EiT (θ)

Hence
p̄T = ET (θ)

Thus, suppose at date t+ 1 that

p̄t+1 = Et+1 · · ·ET−1ET (θ)

then the optimal decision of i is the conditional expectation of p̄t+1 based on the
signals {xi, y0, y1, · · · , yt}. So,

pi,t = EitEt+1 · · ·ET−1ET (θ)

Thus, averaging over all i,

p̄t = EtEt+1 · · ·ET−1ET (θ)
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as claimed.
We can solve explicitly for the iterated average expectations of θ, and investi-

gate how the relative weights on the private and public signals vary over time. Let
us first state the general result, and then examine a special case that is somewhat
easier to interpret. The proof of the following proposition is presented separately
in appendix B.

Proposition 4.1.

EtEt+1 · · ·ET−1ET (θ) = λt,T · θ + (1− λt,T )

Pt
τ=0 ατyτPt
τ=0 ατ

(4.1)

where

λt,T =
T−1X
i=t

"Pt
τ=0 ατPi
τ=0 ατ

· αi+1Pi+1
τ=0 ατ

·
iY

j=t

βPj
τ=0 ατ + β

#
+

Pt
τ=0 ατPT
τ=0 ατ

TY
j=t

βPj
τ=0 ατ + β

This is a somewhat unwieldy expression, but we can get a better feel for the
magnitudes by considering a special case. Thus, consider the case where

β = α0 = α1 = · · · = αT

so that all the public signals are of equal precision, and the private signal has the
same precision as a typical public signal. Then, we have

λt,T = (t+ 1)
T−1X
i=t

(t+ i)! (t+ i− 2)!
((t+ i+ 2)!)2

+ (T − t+ 1)
t+ 1

T + 1

(t+ 1)!

(T + 2)!
(4.2)

We plot two instances of this weight, the first for T = 6, and the second for
T = 16.

The weight on the private signal is non-monotonic. At first, the weight on
the private signal is decreasing, as the newly arriving public signals swamp the
informational value of the private signal. For dates in the middle of the span of
time, the weight on the private signal is virtually zero. However, as the terminal
date looms closer, the weight on the private signal increases. The intuition for the
increasing weight on the private signal lies in the fact that, as t becomes larger,
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Figure 4.2: Weight on xi for T = 16
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the number of layers of the average expectations operator E starts to diminish,
so that an agent’s action bears a closer resemblance to his best forecast of θ itself,
rather than the iterated average expectations of θ. This “tug of war” between
the agent’s best estimate of θ versus his motive to second guess the forecasts of
others gives rise to the U-shaped weight on the private signal xi.

5. Discussion

Our paper has a number of antecedents that touch upon the main themes that
we have introduced here. A number of papers have examined the role of higher
order beliefs in asset pricing. However, fully rational models are typically some-
what special and hard to link to standard asset pricing models (see, e.g., Allen,
Morris and Postlewaite (1993), Morris, Postlewaite and Shin (1995) and Biais and
Boessarts (1998)).
A number of authors have noted that agents will not act on private information

if they do not expect that private information to be reflected in asset prices at
the time that they sell the asset (e.g., Froot, Scharfstein and Stein (1992)). This
phenomenon is clearly related to the horizons of traders in the market (see, e.g.,
Dow and Gorton (1994)). Tirole (1982) emphasized the importance of myopic
traders in breaking down the backward induction argument against asset market
bubbles. The behavioral approach exploits this feature to the full by assuming
that rational (but impatient) traders forecast the beliefs of irrational traders (e.g.,
De Long, Shleifer, Summers and Waldmann (1990)). But since irrationality is by
no means a necessary ingredient for higher order beliefs to matter it seems useful
to have a model where rational agents are worried about the forecasts of other
rational agents.
Asset market bubbles are often explained in models where there is some in-

determinacy, and then public but payoff irrelevant events (“sunspots”) determine
the outcome. But these models are often used to proxy situations when there is
apparent over-reaction to public and slightly payoff relevant events. There is some
evidence of over-reaction to public announcements in the finance literature (see,
e.g., Kim and Verrecchia (1991)).
The existence of an equivalent martingale measure in the standard representa-

tive investor asset pricing model has become a cornerstone of modern finance since
the early contributions, such as Harrison and Kreps (1979). In some case, it is
possible to extend the martingale property to differential information economies.
For instance, Duffie and Huang (1986) showed that as long as there is one agent
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who is more informed than any other, we can find an equivalent martingale mea-
sure. In general, however, the existence of an equivalent martingale measure
cannot be guaranteed. Duffie and Kan (2002) give an example of an economy
with true asymmetric information - i.e., no agent who is more informed than any
other - where there is no equivalent martingale measure.7 In our case, the aver-
age expectations operator fails to satisfy the law of iterated expectations. So, if
the average expectations operator is also the pricing operator, then we know that
there cannot be an equivalent martingale measure. This failure of the martingale
property is, of course, hardly surprising. What we want to emphasize is that the
martingale property fails for average expectations in a systematic way (e.g., there
is a bias towards public information).8

The arguments that we have presented in this paper combine all the above in-
gredients. The noisy rational expectations model with short-lived traders exhibits
the following features: prices reflect average expectations of average expectations
of asset returns; prices are overly sensitive to public information; and traders un-
derweight their private information. The admittedly extreme but rather standard
model we used highlights the fact that these three phenomena are closely linked.
We believe they should be linked in a wide array of asset pricing models, including
rational competitive models.
We finally turn to the relationship of our paper to the literature on “bubbles”.

The precise definition of what constitutes a bubble is a controversial issue (see,
e.g., Allen, Morris and Postlewaite (1993)). The notion of a bubble carries with it a
large associated baggage of ideas, partly reflecting the large and diverse literature
that has been devoted to various aspects of bubbles. However, to the extent that
market prices are biased signals of the underlying fundamental liquidation value
of the asset, our paper sheds light on one important aspect of bubbles in terms
of the systematic departure of prices from the common knowledge value of the
asset. In our model, the public information exercises a disproportionate influence
on the price of the asset - pushing it away from the fundamentals. The price
asset can deviate a significant amount from the private information or judgement
of all traders about the value of the asset. This can occur without short sales

7More precisely, there is no “universal equivalent martingale measure” - i.e., no one proba-
bility distribution that could be used to price assets conditional on each trader’s information.

8In Harrison and Kreps (1978), the martingale asset pricing formula fails because there
are short sales constraints and the asset price depends in each period on the most optimistic
expectation in the economy. Most optimistic expectations also fail to satisfy a martingale
property in a systematic way (they are a submartingale).
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constraints and with everybody being fully rational. Having said all this, it is
also clear that the current version of our model fails to capture many aspects of
bubbles as they are conventionally understood, such as the rapid run-up in prices
followed by a precipitous crash. Abreu and Brunnermeier (2003) has recently
modelled such features using the failure of common knowledge of fundamentals.
To the extent that failure of common knowledge of fundamentals is the flip side
of higher order uncertainty, Abreu and Brunnermeier’s work rests on ideas that
are closely related to those explored in our paper.

Appendix A

In this appendix, we will provide a detailed argument for propositions 3.1 and
3.2. In order to help the reader to get a firmer interpretation, we will first provide
a solution to the single period model, in which there is only one trading stage.

Single period trading model.
The notation is identical to the model of the text, except that we may remove

the time subscripts due to the one-shot nature of the trading. Thus, suppose
that price is a linear function of y, θ and s given by

p = κ (λy + µθ − s) (5.1)

Then
1

κµ
(p− κλy) = θ − s

µ

is normal with mean θ and precision µ2γ. We may regard this as the public signal
given by the price p. A trader i has access to two additional signals - the public
signal y and his private signal xi. The joint normality of the random variables
implies that his posterior expectation of θ is the convex combination of the three
signals weighted by the respective precisions. Thus, denoting by Ei (θ) trader i’s
posterior expectation of θ, we have

Ei (θ) =
αy + βxi + µ2γ · 1

κµ
(p− κλy)

α+ β + µ2γ

=
(α− µλγ) y + βxi +

µγ
κ
p

α+ β + µ2γ
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The conditional variance of θ is given by

1

α+ β + µ2γ

Thus, trader i’s demand for the asset is

τ
¡
α+ β + µ2γ

¢µ(α− µλγ) y + βxi +
µγ
κ
p

α+ β + µ2γ
− p

¶
= τ

µ
(α− µλγ) y + βxi −

µ
α+ β + µγ

µ
µ− 1

κ

¶¶
p

¶
Aggregate demand is then

τ

µ
(α− µλγ) y + βθ −

µ
α+ β + µγ

µ
µ− 1

κ

¶¶
p

¶
Market clearing implies that this is equal to supply s. Solving for p, we have

p =
(α− µλγ) y + βθ − 1

τ
s

α+ β + µγ
¡
µ− 1

κ

¢
Thus, comparing coefficients with (5.1), we can solve for the parameters µ, λ and
κ. They are

µ = τβ

λ =
τα

1 + βγτ 2

κ =
1 + τ 2βγ

τ
¡
α+ β + τ 2β2γ

¢
Substituting into (5.1) gives us the equation cited in the text.
We now provide an argument for propositions 3.1 and 3.2 by solving the two

period trading case. The model solved here is a small variation on the models of
Brown and Jennings (1989) and Grundy and McNichols (1989). For completeness,
we report a self-contained argument, but those papers and Brunnermeier (2001)
can be consulted for more detail.

The short lived trader model
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We first solve the short lived trader model in four steps. We assume that
prices follow linear rules and deduce the resulting public and private information
in periods one and two (in steps 1 and 2). Second, by backward induction for
what the linear rules must be in the two periods (in steps 3 and 4).

step 1: Learning from first period prices
Assume that period 1 prices follow a linear rule

p1 = κ1 (λ1y + µ1θ − s1) (5.2)

Observe that
1

κ1µ1
(p1 − κ1λ1y) = θ − 1

µ1
s1, (5.3)

so
1

κ1µ1
(p1 − κ1λ1y)

is distributed normally with mean θ and precision µ21γ1. Thus at period 1, based
on prior information alone, we will have that θ is distributed normally with mean

y2 =
αy + µ1γ1

κ1
(p1 − κ1λ1y)

α+ µ21γ1

=
(α− µ1γ1λ1) y +

µ1γ1
κ1

p1

α+ µ21γ1

and precision
α2 = α+ µ21γ1.

An individual i who in addition observes private signal xi will believe that θ is
normally distributed with mean

E1
i (θ) =

(α− µ1γ1λ1) y + βxi +
µ1γ1
κ1

p1

α+ β + µ21γ1

and precision
α+ β + µ21γ1

step 2: learning from second period prices
Now assume that second period prices follow a linear rule:

p2 = κ2 (λ2y2 + µ2θ − s2)
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Again, we have that
1

κ2µ2
(p2 − κ2λ2y2)

is distributed normally with mean θ and precision µ22γ2.
An individual i who in addition observes private signal xi will believe that θ

is normally distributed with mean

E2
i (θ) = (5.4)µ

α2 − λ2µ2γ2
α2 + β + µ22γ2

¶
y2 +

µ
β

α2 + β + µ22γ2

¶
xi +

Ã
µ2γ2
κ2

α2 + β + µ22γ2

!
p2

=



³
α+µ21γ1−λ2µ2γ2
α+µ21γ1+β+µ

2
2γ2

´µ
(α−µ1γ1λ1)y+µ1γ1

κ1
p1

α+µ21γ1

¶
+
³

β
α+µ21γ1+β+µ

2
2γ2

´
xi

+

µ
µ2γ2
κ2

α+µ21γ1+β+µ
2
2γ2

¶
p2



=



³
α+µ21γ1−λ2µ2γ2
α+µ21γ1+β+µ

2
2γ2

´³
α−µ1γ1λ1
α+µ21γ1

´
y³

α+µ21γ1−λ2µ2γ2
α+µ21γ1+β+µ

2
2γ2

´
µ1γ1

κ1(α+µ21γ1)
p1

+
³

β
α+µ21γ1+β+µ

2
2γ2

´
xi

+

µ
µ2γ2
κ2

α+µ21γ1+β+µ
2
2γ2

¶
p2


and precision

α2 + β + µ22γ2
= α+ µ21γ1 + β + µ22γ2.

step 3: solving for second period prices
Individual i’s demand for the asset will be

τ
¡
α2 + β + µ22γ2

¢ "µ α2 − λ2µ2γ2
α2 + β + µ22γ2

¶
y2 +

µ
β

α2 + β + µ22γ2

¶
xi +

Ã
µ2γ2
κ2

α2 + β + µ22γ2

!
p2 − p2

#
Collecting terms and simplifying, we have

τ

·
(α2 − λ2µ2γ2) y2 + βxi −

µ
α2 + β + µ2γ2

µ
µ2 −

1

κ2

¶¶
p2

¸
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Total demand for the asset will be

τ

·
(α2 − λ2µ2γ2) y2 + βθ −

µ
α2 + β + µ2γ2

µ
µ2 −

1

κ2

¶¶
p2

¸
Market clearing implies that this equals s2, i.e., rearranging,

p2 =
(α2 − λ2µ2γ2) y2 + βθ − 1

τ
s2

α2 + β + µ2γ2

³
µ2 − 1

κ2

´
So

µ2 = τβ (5.5)

λ2 =
α2τ

1 + βγ2τ
2
=
(α+ µ21γ1) τ

1 + βγ2τ
2

(5.6)

κ2 =
1
τ
+ τβγ2

α2 + β + τ 2β2γ2
=

1
τ
+ τβγ2

α+ µ21γ1 + β + τ2β2γ2
(5.7)

This implies that the second period price is normally distributed with mean

α+ µ21γ1
α+ µ21γ1 + β + τ 2β2γ2

y +
β (1 + τ 2βγ2)

α+ µ21γ1 + β + τ 2β2γ2
θ

and variance µ 1
τ
+ τβγ2

α+ µ21γ1 + β + τ 2β2γ2

¶2
1

γ2
.

Define z as

z ≡ β (1 + τ 2βγ2)

α+ µ21γ1 + β + τ 2β2γ2

Then, p2 can be written as a linear combination of y, θ and s2 where

p2 = (1− z) y + zθ − s2

τ
³
α2 + β + µ2γ2

³
µ2 − 1

κ2

´´ (5.8)

Integrating out the supply shock s2, we have that the mean of p2 is

(1− z) y + zθ

as claimed in proposition 3.1.
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step 4: solving for first period prices
For the short-lived trader, the demand for the asset in period 1 is

τ (E1i (p2)− p1)

Var1i (p2)

where E1i (p2) is the i’s conditional expectation of p2 at date 1 and Var1i (p2) is
i’s conditional variance of p2 at date 1. From (5.8), trader i’s demand is given by

τ (zE1i (θ) + (1− z) y − p1)

Var1i (p2)

=
τ

Var1i (p2)

Ã
z

Ã
(α− µ1λ1γ1) y + βxi +

µ1γ1
κ1

p1

1/Vari1 (θ)

!
+ (1− z) y − p1

!
where

Var1i (θ) =
1

α+ β + µ21γ1
is i’s conditional variance of θ based on information at date 1. The conditional
variances Var1i (p2) and Var1i (θ) are identical across traders, and so we can write
them simply as Var1 (p2) and Var1 (θ). Integrating over all traders, the aggregate
demand is given by

τVar1 (θ)
Var1 (p2)


y [z (α− µ1λ1γ1) + (1− z) (α+ β + µ21γ1)]
+zβθ

−p1
h
(α+ β + µ21γ1)− z µ1γ1

κ1

i


Market clearing implies that this is equal to s1. Rearranging in terms of p1 and
comparing coefficients with (5.2) we have

κ1µ1 = z

µ
β + µ21γ1

α+ β + µ21γ1

¶
κ1λ1 = 1− z

µ
β + µ21γ1

α+ β + µ21γ1

¶
κ1 =

Var1 (p2)

τVar1 (θ)
h
(α+ β + µ21γ1)− z µ1γ1

κ1

i
Thus, defining

w ≡ β + µ21γ1
α+ β + µ21γ1

27



we can express first period price as a linear combination of y, θ and s1 where

p1 = (1− wz) y + wzθ − s1
Var1 (p2)

τVar1 (θ)
h
(α+ β + µ21γ1)− z µ1γ1

κ1

i
Integrating out the supply noise s1, we have

Es (p1) = (1− wz) y + wzθ

as claimed in proposition 3.1.
To complete the proof of proposition 3.1, note that as the supply noise becomes

large we have γ1 → 0 and γ2 → 0, while the informativeness of first period prices
given by µ1 also falls. Hence

w → β

α+ β

z → β

α+ β

so that we obtain the limiting results in proposition 3.1.

The long lived trader model
Now consider the long-lived trader model. The analysis is unchanged until we

derive the first period prices (step 4). Now trader’s anticipations of their asset
purchases in period two create “hedging demand”. To deduce first period demand,
we need to know trader i’s beliefs about the joint distribution of p2 and E2i (θ) at
date 1. Letting

ηi = θ − E1i (θ)
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we have

p2 = κ2 (λ2y2 + µ2θ − s2) (5.9)

= κ2


λ2

µ
(α−µ1γ1λ1)y+µ1γ1

κ1
p1

α+µ21γ1

¶
+µ2

µ
α−µ1γ1λ1
α+β+µ21γ1

y + β
α+β+µ21γ1

xi +
µ1γ1
κ1

α+β+µ21γ1
p1 + ηi

¶
−s2



=



κ2
³
λ2
³
α−µ1γ1λ1
α+µ21γ1

´
+ µ2

³
α−µ1γ1λ1
α+β+µ21γ1

´´
y

+κ2µ2

³
β

α+β+µ21γ1

´
xi+

κ2

µ
λ2

µ
µ1γ1
κ1

α+µ21γ1

¶
+ µ2

µ
µ1γ1
κ1

α+β+µ21γ1

¶¶
p1

+κ2µ2ηi − κ2s2


So trader i’s expected value of p2 at date 1 is

E1i (p2) =


κ2
³
λ2
³
α−µ1γ1λ1
α+µ21γ1

´
+ µ2

³
α−µ1γ1λ1
α+β+µ21γ1

´´
y

+κ2µ2

³
β

α+β+µ21γ1

´
xi+

κ2

µ
λ2

µ
µ1γ1
κ1

α+µ21γ1

¶
+ µ2

µ
µ1γ1
κ1

α+β+µ21γ1

¶¶
p1

 .
Recall from (5.4) that trader i’s expected value of θ at period two will be

E2i (θ) =



³
α+µ21γ1−λ2µ2γ2
α+µ21γ1+β+µ

2
2γ2

´³
α−µ1γ1λ1
α+µ21γ1

´
y³

α+µ21γ1−λ2µ2γ2
α+µ21γ1+β+µ

2
2γ2

´
µ1γ1

κ1(α+µ21γ1)
p1

+
³

β
α+µ21γ1+β+µ

2
2γ2

´
xi

+

µ
µ2γ2
κ2

α+µ21γ1+β+µ
2
2γ2

¶
p2


.
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The expected value of the expected value of θ at period 2 is

E1i (E2i (θ)) =



³
α+µ21γ1−λ2µ2γ2
α+µ21γ1+β+µ

2
2γ2

´³
α−µ1γ1λ1
α+µ21γ1

´
y³

α+µ21γ1−λ2µ2γ2
α+µ21γ1+β+µ

2
2γ2

´
µ1γ1

κ1(α+µ21γ1)
p1

+
³

β
α+µ21γ1+β+µ

2
2γ2

´
xi

+

µ
µ2γ2
κ2

α+µ21γ1+β+µ
2
2γ2

¶
κ2
³
λ2
³
α−µ1γ1λ1
α+µ21γ1

´
+ µ2

³
α−µ1γ1λ1
α+β+µ21γ1

´´
y

+κ2µ2

³
β

α+β+µ21γ1

´
xi+

κ2

µ
λ2

µ
µ1γ1
κ1

α+µ21γ1

¶
+ µ2

µ
µ1γ1
κ1

α+β+µ21γ1

¶¶
p1




.

This equals:

·
α+µ21γ1−λ2µ2γ2
α+µ21γ1+β+µ

2
2γ2

α−µ1γ1λ1
α+µ21γ1

+

µ
µ2γ2
κ2

α+µ21γ1+β+µ
2
2γ2

¶
κ2
³
λ2

α−µ1γ1λ1
α+µ21γ1

+ µ2
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α+β+µ21γ1

´¸
y

+

·
α+µ21γ1−λ2µ2γ2
α+µ21γ1+β+µ

2
2γ2

µ1γ1
κ1(α+µ21γ1)
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µ
µ2γ2
κ2

α+µ21γ1+β+µ
2
2γ2

¶
κ2

µ
λ2

µ1γ1
κ1

α+µ21γ1
+ µ2

µ1γ1
κ1

α+β+µ21γ1

¶¸
p1

+

·
β

α+µ21γ1+β+µ
2
2γ2
+

µ
µ2γ2
κ2

α+µ21γ1+β+µ
2
2γ2

¶
κ2µ2

³
β

α+β+µ21γ1

´¸
xi


Now E1i (p2)− p1 equals

κ2
³
λ2
³
α−µ1γ1λ1
α+µ21γ1

´
+ µ2

³
α−µ1γ1λ1
α+β+µ21γ1

´´
y

+κ2µ2

³
β

α+β+µ21γ1

´
xi+

κ2

µ
λ2

µ
µ1γ1
κ1

α+µ21γ1

¶
+ µ2

µ
µ1γ1
κ1

α+β+µ21γ1

¶¶
p1

− p1 (5.10)

=


κ2
³
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³
α−µ1γ1λ1
α+µ21γ1

´
+ µ2

³
α−µ1γ1λ1
α+β+µ21γ1

´´
y

+κ2µ2

³
β

α+β+µ21γ1

´
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−
·
1− κ2

µ
λ2

µ
µ1γ1
κ1

α+µ21γ1

¶
+ µ2

µ
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κ1

α+β+µ21γ1

¶¶¸
p1
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and E1i (E2i (θ))− E1i (p2) equals
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2
2γ2
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µ
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³
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µ
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2
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¶
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µ
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¶¸
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·³
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´
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µ
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2
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¶
κ2µ2

³
β
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´¸
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−


κ2
³
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³
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´
+ µ2

³
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´´
y

+κ2µ2

³
β
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´
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µ
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µ
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¶
+ µ2

µ
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(5.11)

=




³
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α+µ21γ1+β+µ

2
2γ2

´³
α−µ1γ1λ1
α+µ21γ1

´
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µµ
µ2γ2
κ2

α+µ21γ1+β+µ
2
2γ2

¶
− 1
¶
κ2
³
λ2
³
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α+µ21γ1

´
+ µ2

³
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+


³
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2
2γ2

´
µ1γ1

κ1(α+µ21γ1)
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µµ
µ2γ2
κ2
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2
2γ2

¶
− 1
¶
κ2

µ
λ2

µ
µ1γ1
κ1

α+µ21γ1

¶
+ µ2

µ
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κ1

α+β+µ21γ1

¶¶  p1
+


³

β
α+µ21γ1+β+µ

2
2γ2

´
+

µµ
µ2γ2
κ2

α+µ21γ1+β+µ
2
2γ2

¶
− 1
¶
κ2µ2

³
β

α+β+µ21γ1

´
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Now the variance of θ at period 2 will be

ξ =
1

α+ µ21γ1 + β + µ22γ2

The variance of p2 for a trader in period 1 is

ζ =
κ22µ

2
2

α+ β + µ21γ1
+

κ22
γ2
.

At period 1, E2i (θ) is perfectly correlated with p2. The variance of E2i (θ) is equal
to ψ2 times the variance of p2, where

ψ =

µ2γ2
κ2

α+ µ21γ1 + β + µ22γ2
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Using the formula in Brown and Jennings (1989) (see also Brunnermeier (2001),
page 110), trader i’s demand for the asset will be

τ

"Ã
1

ζ
+
(1− ψ)2

ξ

!
(E1i (p2)− p1) +

µ
1− ψ

ξ

¶
(E1i (E2i (θ))− E1i (p2))

#

Now observe that as γ1 → 0 and γ2 → 0, we have ξ → 1
α+β

, ζ → κ22
γ2
and ψ →

µ2γ2
κ2

α+β
.

So 1
ζ
+ (1−ψ)2

ξ
→ α + β and 1−ψ

ξ
→ α + β. Also observe from (5.10) and (5.11),

that as γ1 → 0 and γ2 → 0,

E1i (p2)− p1 →
ÃÃ

1−
µ

β

α+ β

¶2!
y +

µ
β

α+ β

¶2
xi

!
− p1

E1i (E2i (θ))−E1i (p2) →
³³

α
α+β

´
y +

³
β

α+β

´
xi
´
−
µµ
1−

³
β

α+β

´2¶
y +

³
β

α+β

´2
xi

¶
Thus total demand for the asset is

τ (α+ β)

µµ
α

α+ β

¶
y +

µ
β

α+ β

¶
θ − p1

¶
.

This is the same as in period two, so we get the same distribution of p1.

Appendix B

In this appendix, we provide a proof of proposition 4.1. The proof is by
induction. First observe that

EiT (θ) =

βxi +
TP

τ=0

ατyτ

β +
TP

τ=0

ατ

so

IT,T (θ) = ET (θ) =

βθ +
TP

τ=0

ατyτ

β +
TP

τ=0

ατ
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This shows that (4.1) holds for t = T . Now we argue by backward induction that
(4.1) holds for t = 0, ..., T − 1. Suppose that (4.1) holds for t ≥ 1.

Ei,t−1 (It,T (θ)) = Ei,t−1

(λt,T ) θ + (1− λt,T )

 αtyt
tP

τ=0

ατ

+ (1− λt,T )


t−1P
τ=0

ατyτ

tP
τ=0

ατ




=

(λt,T ) + (1− λt,T )

 αt

tP
τ=0

ατ


Ei,t−1 (θ) + (1− λt,T )


t−1P
τ=0

ατyτ

tP
τ=0

ατ



=
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 αt
tP
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ατ
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τ=0

ατyτ

tP
τ=0

ατ
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 αt
tP

τ=0
ατ

 β

β+
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τ=0

ατ

xi

+

1−
(λt,T ) + (1− λt,T )

 αt
tP

τ=0
ατ

 β

β+
t−1P
τ=0

ατ

 t−1P
τ=0

ατyτ

t−1P
τ=0

ατ


Thus

It−1,T (θ) = Et−1 (It,T (θ))

=



(λt,T ) + (1− λt,T )

 αt
tP

τ=0
ατ

 β

β+
t−1P
τ=0

ατ

 θ

+
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tP
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So

λt−1,T =

 αt

tP
τ=0

ατ


 β

β +
t−1P
τ=0

ατ

+ (λt,T )


t−1P
τ=0

ατ

tP
τ=0

ατ


 β

β +
t−1P
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αt
tP

τ=0
ατ

β
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τ=0
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 t−1P
τ=0

ατ
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β
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=
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t−1P
τ=0

ατ
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This establishes that (4.1) holds for t− 1.
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