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ABSTRACT

Weak convergence of partial sums and multilinear forms in independent random variables and linear processes
to stochastic integrals now plays a major role in nonstationary time series and has been central to the development
of unit root econometrics. The present paper develops a new and conceptually simple method for obtaining such
forms of convergence. The method relies on the fact that the econometric quantities of interest involve discrete
time martingales or semimartingales and shows how in the limit these quantities become continuous martingales
and semimartingales. The limit theory itself uses very general convergence results for semimartingales that were
obtained in work by Jacod and Shiryaev (2003). The theory that is developed here is applicable in a wide range of
econometric models and many examples are given.

One notable outcome of the new approach is that it provides a unified treatment of the asymptotics for stationary
autoregression and autoregression with roots at or near unity, as both these cases are subsumed within the martingale
convergence approach and different rates of convergence are accommodated in a natural way. The approach is also
useful in developing asymptotics for certain nonlinear functions of integrated processes, which are now receiving
attention in econometric applications, and some new results in this area are presented. The paper is partly of
pedagogical interest and the conceptual simplicity of the methods is appealing. Since this is the first time the methods
have been used in econometrics, the exposition is presented in some detail with illustrations of new derivations of
some well-known existing results, as well as some new asymptotic results and the unification of the limit theory for
autoregression.

Key words and phrases: semimartingale, martingale, convergence, stochastic integrals, bilinear forms, multilinear
forms, U−statistics, unit root, stationarity, Brownian motion, invariance principle, unification.

JEL Classification: C13, C14, C32

July, 2004

1Rustam Ibragimov gratefully acknowledges financial support from a Yale University Dissertation Fellowship and a Cowles Foundation
Prize. Peter C. B. Phillips thanks the NSF for research support under grant SES 04-142254. Correspondence to: peter.phillips@yale.edu

1



1. Introduction

Much of the modern literature on asymptotic theory in statistics and econometrics involves the weak convergence
of multilinear forms and U−statistics in independent random variables, martingale-differences and weakly dependent
innovations to stochastic integrals (see, among others, Dynkin and Mandelbaum, 1983, Mandelbaum and Taqqu,
1984, Phillips, 1987a & b, Avram, 1988, and Borodin and I. A. Ibragimov, 1995). In econometrics, the interest
in this limit theory is frequently motivated by its many applications in regression asymptotics for processes with
autoregressive roots at or near unity (inter alia, see Phillips, 1987a & b, Phillips and Perron, 1988, Park and Phillips,
1988, 1989, Phillips and Magdalinos, 2004, and the references therein). Recent attention (Park and Phillips, 1999,
2001, De Jong, 2002, Jeganathan, 2003a, b, Pöetscher 2004, Saikkonen and Choi, 2004) has also been given to the
limit behavior of certain types of nonlinear functions of integrated processes. Results of this type have interesting
econometric applications that include transition behavior between regimes and market intervention policy (Hu and
Phillips, 2004), where nonlinearities of nonstationary economic time series arise in a natural way.

Traditionally, functional limit theorems for multilinear forms have been derived by using their representation
as polynomials in sample moments (via summation by parts arguments or, more generally, Newton polynomials
relating sums of powers to the sums of products) and then applying standard weak convergence results for sums of
independent or weakly dependent random variables or martingales. Avram (1988), for example, makes extensive
use of this approach. Thus, in the case of a martingale-difference sequence ( t), weak convergence of the partial sum
process n−1/2

P[nr]
i=1 t to a Brownian motion limit process W = (W (r), r ≥ 0) by Donsker’s theorem implies that

the bilinear form

(1.1)
1

n

[nr]X
t=1

¡ t−1X
i=1

i

¢
t

converges to the stochastic integral
R r
0
W (v)dW (v). This approach has a number of advantages and has been exten-

sively used in econometric work since Phillips (1987a).

The approach also has drawbacks. One is that the approach is problem specific in certain ways. For instance, it
cannot be directly used in the case of statistics like

Pn
t=1 yt−1ut, where yt = αnyt−1 + ut, t = 1, ..., n, and αn → 1

as n → ∞, that are central to the study of local deviations from a unit root in time series regression. Of course,
there are ways of making the usual functional limit theory work (Phillips, 1987b; Chan and Wei, 1987 & 1988) and
even extending it to situations where the deviations are moderately distant from unity (Phillips and Magdalinos,
2004). In addition, the method cannot be directly applied in the case of sample covariance functions of random
walks and innovations, like Vn = n−1/2

Pn
t=1 f

¡
1√
n

Pt−1
i=1 i

¢
t, where f is a certain nonlinear function. Such sample

covariances commonly arise in econometric models where nonlinear functions are introduced to smooth transitions
from one regime to another (e.g., Saikkonen and Choi, 2004). To deal with such complications, one currently has to
appeal to stochastic Taylor expansions and polynomial approximations to Vn.

At a more fundamental level, the standard approach sheds little insight into the underlying nature of limit results
such as n−1

P[nr]
t=1

¡Pt−1
i=1 i

¢
t →

R r
0
W (s)dW (s) or

R r
0
W (s)dW (s) + rλ for some constant λ in the case of weakly

dependent t. Such results are, in fact, the natural outcome of convergence of a sequence of (semi)martingales to a
continuous (semi)martingale. As such, they may be treated directly in this way using powerful methods of reducing
the study of semimartingale convergence to the study of convergence of its predictable characteristics. Jacod and
Shiryaev (2003, hereafter JS) pioneered developments in stochastic process limit theory along these lines (see also He,
Wang and Yan, 1992, hereafter HWY), but the method has so far not been used in the theory of weak convergence
to stochastic integrals, nor has it yet been used in econometrics.

The asymptotic results for semimartingales obtained by JS have great generality. However, these results appear
to have had little impact so far in statistics and none that we are aware of in econometrics. In part, this may be due
to the fact that the book is difficult to read, contains many complex conceptualizations, and has a highly original
and demanding notational system. The methods were recently applied by Coffman, Puhalskii and Reiman (1998)
to study asymptotic properties of classical polling models that arise in performance studies of computer services.
In this interesting paper, Coffman, Puhalskii and Reiman showed, using the JS semimartingale convergence results,
that unfinished work in a queuing system under heavy traffic tends to a Bessel type diffusion.
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One goal of the present paper is pedagogical - to show how the JS approach may be used to develop quite
general asymptotic distribution results in time series econometrics and to provide a unifying principle for studying
convergence to limit processes and stochastic integrals by means of semimartingale methods. The main advantage
of this treatment is its generality and range of applicability. In particular, the approach unifies the proof of weak
convergence of partial sums to Brownian motion with that of the weak convergence of sample covariances to stochastic
integrals of Wiener processes. Beyond this, the methods can be used to develop asymptotics for time series regression
with roots near unity and to study weak convergence of nonlinear functionals of integrated processes. In all these
cases, the limit theory is reduced to a special case of the weak convergence of semimartingales.

For the case of a first order autoregression with martingale-difference errors, we show that an identical con-
struction delivers a central limit theorem in the stationary case and weak convergence to a stochastic integral in
the unit root case, thereby effectively unifying the limit theory for autoregressive estimation. In fact, the approach
enables a unified treatment of the stationary, explosive, unit root and local to unity cases. In all these cases,
normalized versions of the estimation error are represented in martingale form as a ratio Xn (r) /[Xn]

1/2
r , where

Xn (r) is a martingale with quadratic variation [Xn]r, and the limit theory is delivered by martingale convergence
in the form Xn (r) /[Xn]

1/2
r →d X (r) /[X]

1/2
r , where X (r) is the limiting martingale process. To our knowledge,

no other approach to the limit theory is able to accomplish this. As we will show, the martingale approach allows
in a natural way for the differences in the rates of convergence that arise in the limit theory for autoregression. In
contrast, conventional approaches require separate treatments for the stationary and nonstationary cases, as is very
well-known.

In addition, the present paper contributes to the asymptotic theory of stochastic processes and time series in
several other ways. First, applications of the general martingale convergence results to statistics considered in this
work overcome some technical problems that have existed heretofore in the literature. For instance, the global
strong majoration condition in JS that naturally appears in the study of weak convergence to a Brownian motion
is not satisfied in the case of weak convergence to stochastic integrals. This failure may explain why the martingale
convergence methods of JS have not so far been applied to such problems. The present paper demonstrates how this
difficulty can be overcome by means of localized versions of general semimartingale results in JS that involve only a
local majoration argument. These new arguments appear in the proofs of Theorems 5.1, 5.2 and 6.1.

Second, we provide general sufficient conditions for the assumptions of JS semimartingale convergence theorems
to be satisfied for multivariate diffusion processes, including the case of stochastic integrals considered in this paper
(see Section 11 and, in particular, Corollary 11.1). These results provide the key to the analysis of convergence to
stochastics integrals and, especially, to the study of the asymptotics of functionals of martingales and linear processes
in Theorem 6.1. Third, the general approach developed in this paper can be applied in a number of other fields
of statistics and econometrics, where convergence to Gaussian processes and stochastic integrals arise. These areas
include, for instance, the study of convergence of general multilinear forms and U−statistics to multiple stochastic
integrals as well as the analysis of asymptotics for empirical copula processes, both of which are experiencing growing
interest in econometric research.

The paper is organized as follows. Section 2 introduces the main definitions and notations used throughout the
paper. Section 3 discusses the general JS results for convergence of semimartingales in terms of their predictable
characteristics. Section 4 contains applications of the approach to partial sums and sample covariances of independent
random variables and linear processes. Sections 5 and 6 present the paper’s first group of main results, giving
applications of semimartingale limit theorems to weak convergence to stochastic integrals, including some general
classes of nonlinear functions of integrated processes. Section 7 applies the results to stationary autoregression and
unit root regression. Section 8 provides extensions to multivariate cases, including new proofs of weak convergence
to multivariate stochastic integrals. This section gives results on weak convergence of discontinuous martingales
(arising from discrete time martingales) to continuous martingales and completes the unification of the limit theory
for autoregression. Section 9 provides an explicit unified formulation of the limit theory for first order autoregression
including the case of explosive autoregression which can also be handled by martingale methods. Section 10 concludes
and mentions some further applications of the new techniques.

Sections 11-13 are appendices that contain definitions and technical results needed for the arguments in the body
of the paper. These appendices are intended to provide enough background material to make the body of the paper
accessible to econometric readers and to make the paper a self-contained resource for econometricians. In particular,
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Section 11 presents sufficient conditions for semimartingale convergence theorems to hold in the case where the
limit semimartingale is a diffusion or a stochastic integral. Section 12 provides results on Skorohod embedding of
martingales into a Brownian motion and rates of convergence that are needed in the asymptotic arguments. Section
13 contains some auxiliary lemmas needed for the proof of the main results.

2. Definitions

Throughout the paper we use standard concepts and definitions from stochastic process theory. To aid the
presentation of the results of the paper, we state here some fundamental notions of semimartingale theory. In what
follows, the processes are defined on a probability space (Ω,=, P ) that is equipped with a filtration F = (=s, s ≥ 0)
of sub-σ−fields of =. The definitions formulated below are based on the treatment in JS and HWY to make reference
to those works more convenient, but they are adapted to the continuous process case that is studied in this paper.

Denote R+ = [0,∞), N = {1, 2, ..., } and Z = {...,−2,−1, 0, 1, 2, ...}. Throughout the paper, I(·) stands for the
indicator function.

Definition 2.1 (Increasing processes, Definition I.3.1 of JS; Definition III.3.41 of HWY). A real-valued process
X = (X(s), s ≥ 0) with X(0) = 0 called an increasing process if all its trajectories are non-negative right-continuous
increasing functions.

Definition 2.2 (Processes with finite variation, Definition I.3.1 and Proposition I.3.3 in JS; Definition III.3.41
in HWY). A real-valued process X = (X(s), s ≥ 0) is said to be of finite variation if it is the difference of two
increasing processes Y = (Y (s), s ≥ 0) and Z = (Z(s), s ≥ 0), viz., X(s) = Y (s) − Z(s), s ≥ 0. The process
V ar(X) = (V ar(X)(s), s ≥ 0), where V ar(X)(s) = Y (s) + Z(s), s ≥ 0, is called the variation process of X.

Definition 2.3 (Strong majoration, Definition VI.3.34 in JS). Let X = (X(s), s ≥ 0) and Y = (Y (s), s ≥ 0) be
two real-valued increasing processes. It is said that X strongly majorizes Y if the process X−Y = (X(s)−Y (s), s ≥ 0)
is itself increasing.

Definition 2.4 (Semimartingales, Definition I.4.21 in JS; Definition VIII.8.1 in HWY). An Rd−valued process
X = (X(s), s ≥ 0), X(s) = (X1(s), ...,Xd(s)) ∈ Rd

+, is called a d−dimensional semimartingale with respect to F (or
a d−dimensional F−semimartingale for short) if, for all s ≥ 0 and all j = 1, ..., d,

(2.2) Xj(s) = Xj(0) +M j(s) +Bj(s),

where Xj(0), j = 1, ..., d, are finite-valued and =0−measurable random variables, M j = (M j(s), s ≥ 0), j = 1, ..., d,
are (real-valued) local F−martingales with M j(0) = 0, j = 1, ..., d, and Bj = (Bj(s), s ≥ 0), j = 1, ..., d, are
(real-valued) F−adapted processes with finite variation.

Definition 2.5 (Quadratic variation, Section I.4e in JS; Section VI.4 in HWY). Let M = (M(s), s ≥ 0) be a
continuous square integrable martingale. The quadratic variation of M, denoted [M,M ], is the unique continuous
process [M,M ] = ([M,M ](s), s ≥ 0), for which M2 − [M,M ] is a uniformly integrable martingale which is null at
s = 0 (existence and uniqueness of [M,M ] holds by Doob-Meyer decomposition theorem, see Theorem V.5.48 and
Section VI.4 in HWY).

3. Predictable characteristics and convergence of continuous semimartingales

LetX = (X(s), s ≥ 0), whereX(s) = (X1(s), ..., Xd(s)) ∈ Rd, be a continuous d−dimensional F−semimartingale
on (Ω,=, P ). Then X admits a unique decomposition (2.2); furthermore, the processes Bj = (Bj(s), s ≥ 0), j =
1, ..., d, and M j = (M j(s), s ≥ 0), j = 1, ..., d, appearing in (2.2) are continuous (see Lemma I.4.24 in JS).
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Definition 3.1 (Predictable characteristics of continuous semimartingales, Definition II.2.6 in JS). The
Rd−valued process B = (B(s), s ≥ 0), where B(s) = (B1(s), ..., Bd(s)), s ≥ 0, is called the first predictable
characteristic of X. The Rd×d−valued process C = (C(s), s ≥ 0), where C(s) = (Cij(s))1≤i,j≤d ∈ Rd×d, Cij(s) =
[Xi, Xj ](s), s ≥ 0, i, j = 1, ..., d, is called the second predictable characteristic of X.

In the terminology of JS (see Section II.2a in JS), X = (X(s), s ≥ 0) is a semimartingale with the triplet of
predictable characteristics (B,C, ν), where the third predictable characteristic of X (the predictable measure of
jumps) is zero in the present case, i.e., ν = 0. Furthermore, since X is continuous, the triplet does not depend on a
truncation function.

Definition 3.2 (Martingale problem, Section III.2 in JS). Let X = (X(s), s ≥ 0), X(s) = (X1(s), ..., Xd(s)) ∈
Rd be a d−dimensional continuous process and let H denote the σ−field generated by X(0) and L0 denote the
distribution of X(0). A solution to the martingale problem associated with (H, X) and (L0, B,C, ν), where ν = 0,
is a probability measure P on (Ω,=) such that X is a d−dimensional F−semimartingale on (Ω,=, P ) with the first
and second predictable characteristics B and C.

Throughout the rest of the paper, we assume that (Ω,=) is the Skorohod space (D(Rd
+),D(Rd

+)), where R+ =
[0,∞). A limit process X = (X(s), s ≥ 0) appearing in the asymptotic results is the canonical process X(s, α) = α(s)
for the element α = (α(s), s ≥ 0) of D(Rd

+) (see Section VI.1 and Hypothesis IX.2.6 in JS) and F is the filtration
generated by X. In what follows, →d denotes convergence in distribution in an appropriate metric space and →P

stands for convergence in probability. The symbol =d means distributional equivalence. For a sequence of random
variables ξn and constants an, we write ξn = OP (1) if the sequence ξn is bounded in probability and write ξn =
oa.s.(an) if ξn/an →a.s. 0. Further, W = (W (s), s ≥ 0) denotes standard (one-dimensional) Brownian motion on
D(R+). All processes considered in the paper are assumed to be continuous and locally square integrable, if not
stated otherwise. Throughout the paper, K and L denote generic constants, not necessarily taking the same values
from one place to another.

Let Xn = (Xn(s), s ≥ 0), Xn(s) = (X
1
n(s), ..., X

d
n(s)) ∈ Rd, n ≥ 1, be a sequence of d−dimensional continuous

semimartingales on (Ω,=, P ). For a ≥ 0 and an element α = (α(s), s ≥ 0) of the Skorohod space D(Rd
+), define, as

in IX.3.38 of JS,

(3.1)
Sa(α) = inf(s : |α(s)| ≥ a or |α(s−)| ≥ a),

San = inf(s : |Xn(s)| ≥ a),

where α(s−) denotes the left-hand limit of α at s. For r ≥ 0 and α ∈ D(Rd
+), denote

(3.2) α(r)(x) = α(x− r),

x ∈ Rd. For r ≥ 0, introduce the processes B(r) = (B(r)(s), s ≥ 0) and C(r) = (C(r)(s), s ≥ 0), where

(3.3) B(r)(s, α) = B(s+ r, α(r))−B(r, α(r)),

(3.4) C(r)(s, α) = C(s+ r, α(r))− C(r, α(r)),

α ∈ D(Rd
+), s ≥ 0.

The following theorem gives sufficient conditions for the weak convergence of a sequence of continuous locally
square integrable semimartingales. This theorem, together with Theorem 3.2 below, provides the basis for the study
of asymptotic properties of functionals of partial sums in subsequent sections.

Throughout the rest of the section, Bn = (Bn(s), s ≥ 0) and Cn = (Cn(s), s ≥ 0), where Bn(s) = (B1
n(s), ...,

Bd
n(s)) and Cn(s) = (Cij

n (s))1≤i,j≤d, s ≥ 0, denote the first and the second predictable characteristics of Xn,
respectively.
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In what follows in our initial applications of the martingale convergence argument, bothXn andX are continuous.
Then, in the corresponding results in JS, the third predictable characteristics of Xn and X are zero (i.e., νn = ν = 0),
the first characteristics without truncation of Xn and X are the same as Bn and B (i.e., B0

n = Bn, B
0 = B), and the

modified characteristics without truncation of Xn and X are the same as Cn and C (i.e., C̃ :0n= Cn, C̃
0 = C). The

final section of the paper will consider the case where Xn has discontinuities and X is continuous. This extension
is particularly valuable in providing a martingale convergence proof of weak convergence of sample covariances to a
multivariate stochastic integral.

Theorem 3.1 (see Theorem IX.3.48, Remark IX.3.40, Theorem III.2.40 and Lemma IX.4.4 in JS and also the
proof of Theorem 2.1 in Coffman, Puhalskii and Reiman, 1998). Suppose that the following conditions hold:

(A1) The local strong majoration hypothesis: For all a ≥ 0, there is an increasing, deterministic func-
tion F (a) = (F (s, a), s ≥ 0) such that the stopped real-valued processes (

Pd
j=1 V ar(B

j)(s ∧ Sa, α), s ≥ 0) and
(Cjj(s ∧ Sa, α), s ≥ 0), j = 1, ..., d, are strongly majorized by F (a) for all α ∈ D(Rd

+) (see Definitions 2.2 and 2.3).

(A2) Uniqueness hypothesis: Let H denote the σ−field generated by X(0) and let L0 denote the distribution
of X(0). For each z ∈ Rd and r ≥ 0, the martingale problem associated with (H, X) and (L0, B(r), C(r), ν), where
X(0) = z a.s. and ν = 0, has a unique solution Pz,r (see Definition 3.2).

(A3) Measurability hypothesis: The mapping (z, r) ∈ Rd ×R+ → Pz,r(A) is Borel for all A ∈ =.

(A4) The continuity condition: The mappings α→ B(s, α) and α→ C(s, α) are continuous for the Skorohod
topology on D(Rd

+) for all s > 0.

(A5) Xn(0)→d X(0).

(A6) [sup− βloc] sup0<s≤N |Bn(s ∧ San)−B(s ∧ Sa, Xn)|→P 0 for all N ∈ N and all a > 0.

[γloc −R+] Cn(s ∧ San)− C(s ∧ Sa, Xn)→P 0 for all s > 0 and a > 0.

Then Xn →d X.

A sufficient condition for (A6) is the following:

(A6’) [sup− β] sup0<s≤N |Bn(s)−B(s,Xn)|→P 0 for all N ∈ N;

[sup− γ] sup0<s≤N |Cn(s)− C(s,Xn)|→P 0 for all N ∈ N.

In the case when the limit semimartingale X satisfies the condition of global strong majoration (see condition
(B1) below), conditions (A2)-(A4) and (A6’) of Theorem 3.1 simplify and the following result applies.

Theorem 3.2 (Theorem IX.3.21 in JS). Suppose that the following conditions hold:

(B1) The global strong majoration hypothesis: There is an increasing, deterministic function F = (F (s),

s ≥ 0) such that the real-valued processes (
Pd

j=1 V ar(B
j)(s, α), s ≥ 0) and (

Pd
j=1C

jj(s, α), s ≥ 0), j = 1, ..., d, are
strongly majorized by F for all α ∈ D(Rd

+) (see Definitions 2.2 and 2.3).

(B2) Uniqueness hypothesis: Let H denote the σ−field generated by X(0) and let L0 denote the distribution
of X(0). The martingale problem associated with (H, X) and (L0, B,C, ν), where ν = 0, has a unique solution P.

(B3) The continuity condition: The mappings α→ B(s, α) and α→ C(s, α) are continuous for the Skorohod
topology on D(Rd

+) for all s > 0.

(B4) Xn(0)→d X(0).

(B5) [sup− β] sup0<s≤N |Bn(s)−B(s,Xn)|→P 0 for all N ∈ N;

[γ −R+] Cn(s)− C(s,Xn)→P 0 for all s > 0.
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Then Xn →d X.

The essence of Theorems 3.1 and 3.2 is that convergence of a sequence of semimartingales holds if their predictable
characteristics and the initial distributions tend to those of the limit semimartingale (conditions (A5), (A6), (A6’),
(B4) and (B5)), the predictable characteristics of the limit process grow in a regular way (conditions (A1) and (B1))
and the process is the only continuous semimartingale with characteristics B and C and the given initial distribution
(conditions (A2), (A3), (B2)). Technically, conditions (A1), (A5), (A6), (A6’) and (B1), (B4) and (B5) guarantee
that the sequence (Xn) is tight and, under conditions (A2)-(A4), (A6), (B2), (B3) and (B5), the limit is identified
(see Ch. IX in JS).

4. Invariance principles (IP) for partial sums, sample variances and sample covariances

Let ( t)t∈Z be a sequence of random variables and let (=t)t∈Z be a natural filtration for ( t) (that is, =t is the
σ−field generated by { k, k ≤ t}). The following conditions will be convenient at various points in the remainder of
the paper.

Assumption D1: ( t,=t) is a martingale-difference sequence with E( 2t |=t−1) = σ2 ∈ R+ for all t and
supt∈ZE(| t|p|=t−1) <∞ a.s. for some p > 2.

Assumption D2: ( t) are mean-zero i.i.d. random variables with E 2
0 = σ2 ∈ R+ and E| 0|p < ∞ for some

p > 2.

The following theorem illustrates the simplest possible use of martingale convergence machinery in conjunction
with the Skorohod embedding (see Appendix A2) in proving martingale limit results. Here, a sequence of discrete
time martingales is embedded in a sequence of continuous martingales to which we may apply martingale conver-
gence results for continuous martingales, giving an invariance principle for martingales with non-random conditional
variances. As is conventional, the proof requires that the probability space on which the random sequences are
defined has been appropriately enlarged so that Lemma 12.1 in Appendix A2 holds. In the proof of the main results
of the paper, (Tk)k≥0 denote the stopping times defined in Lemma 12.1.

Later in the paper in section 8, we show how to use martingale convergence results of discontinuous martingales
(semimartingales) to continuous martingales (semimartingales) which avoid the use of the Skorohod embedding. In
doing so, these results are particularly useful in multivariate extensions.

Theorem 4.1 (IP for martingales). Under assumption (D1),

(4.1)
1√
n

[nr]X
t=1

t →d σ W (r).

Proof. From Lemma 12.1 it follows that

(4.2)
1√
n

[nr]X
t=1

t =d W
³T[nr]

n

´
.

By (12.3) and Lemma 13.3 in the Appendix,

(4.3) T[nr]/n→P σ2r.

Therefore, from Lemma 13.2 it follows that W (T[nr]/n)→d W (σ2r). This and (4.2) imply (4.1). ¥

The following theorem is the analogue of Theorem 4.1 for linear processes.
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Theorem 4.2 (IP for linear processes). Suppose that (ut)t∈N is the linear process ut = C(L) t =
P∞

j=0 cj t−j ,

C(L) =
P∞

j=0 cjL
j , where

P∞
j=1 j|cj | <∞, C(1) 6= 0, and ( t)t∈Z satisfy assumption (D1) with p ≥ 4. Then

(4.4)
1√
n

[nr]X
t=1

ut →d ωW (r),

where ω2 = σ2C2(1).

Proof. Using the Phillips-Solo (1992) device and Lemma D in Phillips (1999) we get

(4.5) ut = C(1) t + t̃−1 − t̃,

where t̃ = C̃(L) t =
P∞

j=0 c̃j t−j , c̃j =
P∞

i=j+1 ci and
P∞

j=0 |c̃j | <∞. Consequently,

(4.6)
kX
t=1

ut = C(1)
kX
t=1

t +˜0 − ˜k,

and, for all N ∈ N,

(4.7) sup
0≤r≤N

¯̄̄ 1√
n

[nr]X
t=1

ut − C(1)
1√
n

[nr]X
t=1

t

¯̄̄
≤ ˜0√

n
+ sup
0≤r≤N

¯̄̄
[̃nr]√
n

¯̄̄
≤ 2 max

0≤k≤nN

¯̄̄ ˜k√
n

¯̄̄
.

By Lemmas 13.4 and 13.6,

(4.8) max
0≤k≤nN

¯̄̄ ˜k√
n

¯̄̄
→P 0.

By Lemma 13.3, from relations (4.7) and (4.8) it follows that, for the Skorohod metric ρ on D(R+),

ρ
³ 1√

n

[nr]X
t=1

ut, C(1)
1√
n

[nr]X
t=1

t

´
→P 0.

By Lemma 13.1, this and Theorem 4.1 imply the desired result. ¥

The following theorem gives a corresponding IP for sample covariances of martingale-difference sequences.

Theorem 4.3 (IP for sample covariances of martingale-difference sequences). Let ( t)t∈Z satisfy as-
sumption (D1) with p > 4. Then, for all m ≥ 1,

(4.9)
1√
n

[nr]X
t=1

t t+m →d σ
2W (r).

Throughout the rest of the paper, we will use the symbol I to denote different quantities in the proofs and ηt
will denote auxiliary sequences of random variables arising in the arguments; these quantities and sequences are not
necessarily the same from one place to another.

Proof. Construct the sequence of processes

Mn(s) =
k−1X
i=1

i

³
W
³Ti+m

n

´
−W

³Ti+m−1
n

´´
+ k

³
W (s)−W

³Tk+m−1
n

´´
for Tk+m−1

n < s ≤ Tk+m
n , k = 1, 2, ... Note that Mn is a continuous martingale with

(4.10)
1√
n

[nr]X
t=1

t t+m =d Mn

³T[nr]+m−1
n

´

8



by Lemma 12.1. Using Theorem 3.2, we show that Mn →d σ W.

The first characteristics of Mn and σ W are identically zero: Bn(s) = B(s) = 0, s ≥ 0. The second charac-
teristic of σ W is C(σ W ), where, for an element α = (α(s), s ≥ 0), of the Skorohod space D(R+), C(s, α) =
[σ W,σ W ](s, α) = σ2s. The second characteristic of Mn is the process Cn = (Cn(s), s ≥ 0), where

Cn(s) = [Mn,Mn](s) =
k−1X
i=1

2
i

³Ti+m
n
− Ti+m−1

n

´
+ 2

k

³
s− Tk+m−1

n

´
for Tk+m−1

n < s ≤ Tk+m
n , k = 1, 2, ... .

Condition (B1) of Theorem 3.2 is obviously satisfied with F (s) = σ2s. Condition (B2) of Theorem 3.2 is evidently
satisfied by Theorem 11.2 (or by Remark 11.3). Conditions (B3) and (B4) of Theorem 3.2 and [sup− β] in (B5) are
trivially met.

Next, we have, for Tk+m−1
n < s ≤ Tk+m

n , k = 1, 2, ... ,

(4.11)
¯̄
Cn(s)− C(s,Mn)

¯̄
=
¯̄
Cn(s)− σ2s

¯̄
=
¯̄̄ k−1X
i=1

( 2i − σ2)
³Ti+m

n
− Ti+m−1

n

´
+ ( 2k − σ2)

³
s− Tk+m−1

n

´¯̄̄
.

Since, by (12.2), for N ∈ N,

(4.12) max
k≥1

{k : Tk−1/n < N} ≤ KNn a.s.

for some constant K ∈ N, condition [γ −R+] in (B5) holds if

(4.13) I1n = max
1≤k≤KNn

¯̄̄ k−1X
i=1

( 2i − σ2)
³Ti+m

n
− Ti+m−1

n

´¯̄̄
→P 0

and

(4.14) I2n = max
1≤k≤KNn

¯̄̄
( 2k − σ2)

³Tk+m
n
− Tk+m−1

n

´¯̄̄
→P 0.

Evidently,

I1n ≤ max
1≤k≤KNn

σ2

n

¯̄̄ k−1X
i=1

( 2i − σ2)
¯̄̄
+ max
1≤k≤KNn

¯̄̄ k−1X
i=1

( 2i − σ2)
³Ti+m

n
− Ti+m−1

n
− σ2

n

´¯̄̄
= I(1)1n + I

(2)
1n .

By the assumptions of the theorem and Lemma 12.1, η(1)t = 2
t − σ2 and η

(2)
t = ( 2t − σ2)(Tt+m − Tt+m−1 −

σ2), t ≥ 0, are martingale-difference sequences with E
¡
η
(1)
0

¢2
= E( 20 − σ2)2 < ∞ and suptE

¡
η
(2)
t

¢2 ≤ LE( 20 −
σ2)2 suptE(

4
t |=t−1) < ∞ for some constant L and all t. Therefore, from Lemma 13.5, we have |I(1)1n | →P 0 and

|I(2)1n |→P 0 and thus (4.13) holds.

By (12.2),

(4.15) max
1≤k≤KNn

¯̄̄Tk+m
n
− Tk+m−1

n

¯̄̄
= o(nq−1),

for any q ∈ max(1/2, 2/p) = 1/2. Since, under the assumptions of the theorem, max1≤k≤KNn n
−2/p| 2k − σ2| →P 0

by Lemma 13.4, using (4.15) with q ∈ (1/2, 1− 2/q) (such a choice is possible since p > 4), we get (4.14) and thus
[γ −R+].

Consequently, all the conditions of Theorem 3.2 are satisfied and we have that Mn →d σ W. This, together with
(4.3) and (4.10) implies, by Lemma 13.2, that 1√

n

P[nr]
t=1 t t+m →d σ W (σ2r), that is, (4.9) holds. ¥
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Remark 4.1 Similar to the proof of Theorem 4.3, it is not difficult to obtain the following generalization of (4.9)
to the case of martingale transforms. Let ( t)t∈Z satisfy assumption (D1) with p > 4 and let (Yt)t∈N0 be identically
distributed mean-zero =t-measurable random variables with EY 2

t = σ2y for all t and suptE|Yt|p <∞ for some p > 4.

If max1≤k≤n 1
n

Pn
t=1(Y

2
t −σ2y)→P 0, then, for all m ≥ 1, 1√

n

P[nr]
t=1 Yt t+m →d σ̃W (r), where σ̃ = σyσ . To establish

the latter relation, the argument in the proof of Theorem 4.3 is repeated verbatim for the sequence of martingales

(4.16) Mn(s) =
k−1X
i=1

Yi

³
W
³Ti+m

n

´
−W

³Ti+m−1
n

´´
+ Yk

³
W (s)−W

³Tk+m−1
n

´´
,

Tk+m−1
n < s ≤ Tk+m

n , k = 1, 2, ..., and the limit martingale σyW (s).

Theorem 4.4 (IP for sample covariances of linear processes). Suppose that ut is the linear process ut =
C(L) t =

P∞
j=0 cj t−j , C(L) =

P∞
j=0 cjL

j , where
P∞

j=1 jc
2
j < ∞, C(1) 6= 0, and ( t)t∈Z satisfy assumption (D2)

with p ≥ 4. Then, for all m ≥ 1,

(4.17)
1√
n

[nr]X
t=1

(utut+m − γm)→d v(m)W (r),

where2 γm = gm(1)σ
2, v(m) =

³
g2m(1)E(

2
0−σ2)2+

P∞
r=1(gm+r(1)+gm−r(1))

2σ4
´1/2

, gj(1) =
P∞

k=0 ckck+j , j ∈ Z,
and it is assumed that cj = 0 for j < 0.

Proof. Treating cj as zero for j < 0, define the lag polynomials gj(L), j ∈ Z, by gj(L) =
P∞

k=0 ckck+jL
k =P∞

k=0 gjkL
k. Further, let g̃j(L) =

P∞
k=0 g̃jkL

k, where g̃jk =
P∞

s=k+1 gjs =
P∞

s=k+1 cscs+j . As in Remark 3.9 of
Phillips and Solo (1992), we have

utut+m = gm(L)
2
t +

∞X
r=1

gm+r(L) t−r t +
mX
r=1

gm−r(L) t t+r +

∞X
r=m+1

gr−m(L) t+m−r t+m = gm(1)
2
t +

∞X
r=1

gm+r(1) t−r t +
mX
r=1

gm−r(1) t t+r +

∞X
r=m+1

gr−m(1) t+m−r t+m − (1− L)ũat − (1− L)ũbt,(4.18)

where ũat = g̃m(L)
2
t and ũbt = +

P∞
r=1 g̃m+r(L) t−r t +

Pm
r=1 g̃m−r(L) t t+r +

P∞
r=m+1 g̃r−m(L) t+m−r t+m (the

validity of decomposition (4.18) follows from Lemma 3.6 in Phillips and Solo, 1992). Thus,

1√
n

[nr]X
t=1

(utut+m − γm) =
1√
n
gm(1)

[nr]X
t=1

( 2t − σ2) +
1√
n

[nr]X
t=1

³ ∞X
r=1

gm+r(1) t−r
´

t +

mX
r=1

1√
n

³ [nr]X
t=1

gm−r(1) t t+r

´
+

1√
n

[nr]X
t=1

³ ∞X
r=m+1

gr−m(1) t+m−r
´

t+m −

1√
n
(ũa0 − ũa,[nr])−

1√
n
(ũb0 − ũb,[nr]).(4.19)

Using Theorem 4.1 (applied to 2
t − σ2) and Remark 4.1, it is not difficult to show that

1√
n
gm(1)

[nr]X
t=1

( 2t − σ2) +
1√
n

[nr]X
t=1

³ ∞X
r=1

gm+r(1) t−r
´

t +

mX
r=1

1√
n

³ [nr]X
t=1

gm−r(1) t t+r

´
+

1√
n

[nr]X
t=1

³ ∞X
r=m+1

gr−m(1) t+m−r
´

t+m →d v(m)W (r).

2gj(1) are the values of the lag polynomials defined in the proof.
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By (4.19) and Lemmas 13.1 and 13.3, it remains to prove that, for all N > 0,

(4.20) sup
0≤r≤N

¯̄̄ 1√
n
(ũa0 − ũa,[nr]) +

1√
n
(ũb0 − ũb,[nr])

¯̄
→P 0.

But this holds since, by Lemma 13.8, Eu2a0 <∞ and Eu2b0 <∞, and, thus, according to Lemma 13.4,

max
0≤k≤nN

n−1/2|ũa,k|→P 0

and max0≤k≤nN n−1/2|ũb,k|→P 0. ¥

5. Convergence to stochastic integrals

The following result provides the conventional weak convergence limit theory for the sample covariance of t and
its partial sums to a stochastic integral that arises in a unit root autoregression. While other proofs of this result
are available (using partial summation, for example), the following derivation shows that the result may be obtained
directly by a martingale convergence argument.

Theorem 5.1 Under assumption (D1) with p > 4,

(5.1)
1

n

[nr]X
t=2

Ã
t−1X
i=1

i

!
t →d σ

2

Z r

0

W (v)dW (v).

Proof. Consider the process Mn = (Mn(s), s ≥ 0), where

(5.2) Mn(s) =
k−1X
i=1

W

µ
Ti−1
n

¶µ
W

µ
Ti
n

¶
−W

µ
Ti−1
n

¶¶
+W

µ
Tk−1
n

¶µ
W (s)−W

µ
Tk−1
n

¶¶

for Tk−1
n < s ≤ Tk

n , k = 1, 2, ... By Lemma 12.1, we have the following martingale representation for the left-hand
side of (5.1):

(5.3)
1

n

[nr]X
t=2

Ã
t−1X
i=1

i

!
t =d Mn

³T[nr]
n

´
.

Further, for n ≥ 1, let Xn = (Xn(s), s ≥ 0) and X = (X(s), s ≥ 0) be the continuous vector martingales with
Xn(s) = (Mn(s),W (s)) and X(s) = (

R s
0
W (v)dW (v),W (s)).

The first characteristic of Xn is identically zero: Bn(s) = (0, 0) ∈ R2, s ≥ 0. The second characteristic of Xn is
the process Cn = (Cn(s), s ≥ 0) with

(5.4) Cn(s) = [Xn, Xn](s) =

µ
C11n (s) C12n (s)
C21n (s) C22n (s)

¶
,

where

(5.5) C11n (s) =
k−1X
i=1

W 2

µ
Ti−1
n

¶µ
Ti
n
− Ti−1

n

¶
+W 2

µ
Tk−1
n

¶µ
s− Tk−1

n

¶
,

(5.6) C12n (s) = C21n (s) =
k−1X
i=1

W

µ
Ti−1
n

¶µ
Ti
n
− Ti−1

n

¶
+W

µ
Tk−1
n

¶µ
s− Tk−1

n

¶

11



for Tk−1
n < s ≤ Tk

n , k = 1, 2, ..., and

(5.7) C22n (s) = s.

The process X is a solution to the stochastic differential equation (11.6) with g1(x) = x, x ∈ R, and g2(x) = 0,
x ∈ R. Its first and second predictable characteristics are, respectively, B(X) and C(X), where B and C are defined
in (11.7) with the above functions gi(x), i = 1, 2 (so that the first predictable characteristic of X is identically zero,
as that of Xn: B(s) = (0, 0) ∈ R2).

Obviously, the strong majoration condition (B1) of Theorem 3.2 is not satisfied for the limit semimartingale X.
Therefore, in contrast to the proof of Theorem 4.3, we apply Theorem 3.1 instead of Theorem 3.2 to show that
Xn →d X.

Let a ≥ 0 and let 0 ≤ r < s. If α = (α(s), s ≥ 0), α(s) = (α1(s), α2(s)), is an element of the Skorohod space
D(R2

+), then for the stopping time Sa(α) defined in (3.1) and all v ∈ (r ∧ Sa(α), s ∧ Sa(α)), we have α22(v) ≤
|α(v)|2 < a2. Consequently, for Cij(s, α), i, j = 1, 2, defined in (11.7) with g1(x) = x, one has

(5.8) C11(s ∧ Sa(α), α)− C11(r ∧ Sa(α), α) =
Z s∧Sa(α)

r∧Sa(α)
α22(v)dv ≤ a2(s− r),

(5.9) C22(s ∧ Sa(α), α)− C22(r ∧ Sa(α), α) = s ∧ Sa(α)− r ∧ Sa(α) ≤ (s− r).

Thus, condition (A1) of Theorem 3.1 is satisfied with F (s, a) = max(1, a2)s.

Since the functions g1(x) = x and g2(x) = 0 are obviously Lipschitz continuous and satisfy growth condition
(11.8), Corollaries 11.1 and 11.2 ensure that the uniqueness and measurability hypotheses (A2) and (A3) and the
continuity condition (A4) of Theorem 3.1 are satisfied. Condition (A5) of Theorem 3.1 is trivially satisfied since
Xn(0) = X(0) = 0. Condition [sup− β] (and thus [sup− βloc]) is satisfied since Bn(s) = 0, s ≥ 0.

From the definition of C(s, α) in (11.7) with g1(x) = x, we have

(5.10) C(s,Xn) =

µ R s
0
W 2(v)dv

R s
0
W (v)dvR s

0
W (v)dv s

¶
=

µ
C̃11(s) C̃12(s)

C̃21(s) C̃22(s)

¶
,

where C̃11(s) =
R s
0
W 2(v)dv, C̃12(s) = C̃21(s) =

R s
0
W (v)dv and C̃22(s) = s. Then, by (5.5) and (5.6), for Tk−1

n <

s ≤ Tk
n , k = 1, 2, ..., we have

|C11n (s)− C̃11(s)| =
¯̄̄ k−1X
i=1

Z Ti
n

Ti−1
n

³
W 2

³Ti−1
n

´
−W 2(v)

´
dv +

Z s

Tk−1
n

³
W 2

³Tk−1
n

´
−W 2(v)

´
dv
¯̄̄
≤

s max
1≤i≤k

sup
v1,v2∈[

Ti−1
n ,

Ti
n ]

|W 2(v1)−W 2(v2)|,(5.11)

|C12n (s)− C̃12(s)| =
¯̄̄ k−1X
i=1

Z Ti
n

Ti−1
n

³
W
³Ti−1

n

´
−W (v)

´
dv +

Z s

Tk−1
n

³
W
³Tk−1

n

´
−W (v)

´
dv
¯̄̄
≤

s max
1≤i≤k

sup
v1,v2∈[

Ti−1
n ,

Ti
n ]

|W (v1)−W (v2)|.

Thus, for Tk−1
n < N ≤ Tk

n , k = 1, 2, ...,

(5.12) sup
0≤s≤N

¯̄
C11n (s)− C̃11(s)

¯̄
≤ N max

1≤i≤k
sup

v1,v2∈[
Ti−1
n ,

Ti
n ]

|W 2(v1)−W 2(v2)|,

(5.13) sup
0≤s≤N

¯̄
C12n (s)− C̃12(s)

¯̄
≤ N max

1≤i≤k
sup

v1,v2∈[
Ti−1
n ,

Ti
n ]

|W (v1)−W (v2)|.
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From (4.12), (4.15), (5.12) and (5.13) and the uniform continuity of Brownian sample paths it follows that

(5.14) sup
0≤s≤N

¯̄
C11n (s)− C̃11(s)

¯̄
→P 0,

and

(5.15) sup
0≤s≤N

¯̄
C12n (s)− C̃12(s)

¯̄
= sup

0≤s≤N

¯̄
C21n (s)− C̃21(s)

¯̄
→P 0

for all N ∈ N. Relations (5.14) and (5.15), together with C22n (s) = C̃22(s) = s evidently imply that

sup
0≤s≤N

|Cn(s)− C(s,Xn)|→P 0,

for all N ∈ N. Consequently, condition [sup − γ] (and thus [γloc −R2
+]) of Theorem 3.1 is satisfied. We therefore

have Xn →d X. This result, together with (4.3) and (5.3), implies relation (5.1) by virtue of Lemma 13.2. ¥

We now formulate and prove the corresponding law for the linear process case. The outcome is a semimartingale
convergence result.

Theorem 5.2 Suppose that ut is the linear process ut = C(L) t =
P∞

j=0 cj t−j , C(L) =
P∞

j=0 cjL
j , whereP∞

j=1 j|cj | <∞, C(1) 6= 0, and ( t)t∈Z satisfy assumption (D2) with p > 4. Then

(5.16)
1

n

[nr]X
t=2

Ã
t−1X
i=1

ui

!
ut →d rλ+ ω2

Z r

0

W (v)dW (v),

where λ =
P∞

j=1Eu0uj and ω2 = σ 2C2(1).

Remark 5.1 Suppose that ut and vt are two linear processes: ut = Γ(L) t =
P∞

j=0 γj t−j , vt = ∆(L) t =P∞
j=0 δj t−j , Γ(L) =

P∞
j=0 γjL

j , ∆(L) =
P∞

j=0 δjL
j , where

P∞
j=1 j|γj | <∞,

P∞
j=1 j|δj | <∞, Γ(1) 6= 0, ∆(1) 6= 0,

and ( t)t∈Z satisfy assumption (D2) with p > 4. Then, analogous to the proof of Theorem 5.2, one can show, using

Theorem 3.1, that 1
n

P[nr]
t=2

³Pt−1
i=1 ui

´
vt →d rλuv + ωuωv

R r
0
W (v)dW (v), where ω2u = σ2Γ2(1), ω2v = σ2∆2(1) and

λuv =
P∞

j=1Eu0vj .

Proof. As in the proof of Theorem 5.1, one can show that, for all µ ∈ R,

(5.17) rµ+
1

n

[nr]X
t=2

Ã
t−1X
i=1

i

!
t →d rµ+ σ2

Z r

0

W (v)dW (v).

Indeed, for Mn defined in (5.2), we have the following semimartingale representation for the left-hand side of
(5.17):

(5.18) rµ+
1

n

[nr]X
t=2

Ã
t−1X
i=1

i

!
t =d rµ+Mn

³T[nr]
n

´
.

Similar to the proof of Theorem 5.1, for n ≥ 1, let Xn = (Xn(s), s ≥ 0) and X = (X(s), s ≥ 0) be the continuous
vector semimartingales with Xn(s) = (sµ + Mn(s),W (s)) and X(s) = (sµ +

R s
0
W (v)dW (v),W (s)). The first

characteristic of Xn is the process Bn = (Bn(s), s ≥ 0) with

(5.19) Bn(s) = (sµ, 0) = (B
1
n(s), B

2
n(s)).

The second characteristic of Xn is the same as that of (Mn,W ) and is given by the process Cn = (Cn(s), s ≥ 0)
defined in (5.4).
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The process X is a solution to stochastic differential equation (11.6) with g1(x) = x, x ∈ R, and g2(x) = µ,
x ∈ R. The first and second characteristic of X are the processes B(X) and C(X), where B and C are defined in
(11.7) with the above functions gi(x), i = 1, 2 (so that the first predictable characteristic of X is the same as that
of Xn : B(s) = (sµ, 0)).

As in the proof of Theorem 5.1, we show that (5.17) holds by verifying the conditions of Theorem 3.1. For
α = (α(s), s ≥ 0), α(s) = (α1(s), α2(s)), an element of the Skorohod space D(R2

+), and B1(s, α) and B2(s, α) as in
(11.7) with g1(x) = x, g2(x) = µ, x ∈ R, denote H(s, α) = V ar(B1)(s, α) + V ar(B2)(s, α) = s|µ| (see Definition
2.2). For the stopping time Sa(α) defined in (3.1) and for all r < s we have

(5.20) H(s ∧ Sa(α), α)−H(r ∧ Sa(α), α) = |µ|(s ∧ Sa(α)− r ∧ Sa(α)) ≤ |µ|(s− r).

This result and (5.8) and (5.9) imply that condition (A1) of Theorem 3.1 is satisfied with
F (s, a) = max(1, |µ|, a2)s.

Since the functions g1(x) = x and g2(x) = µ are obviously locally Lipschitz continuous and satisfy growth
condition (11.8), we conclude, by Corollaries 11.1 and 11.2, that conditions (A2)-(A4) of Theorem 3.1 are satisfied.
Condition (A5) of Theorem 3.1 is again trivially satisfied since Xn(0) = X(0) = 0. Condition [sup − β] (and
[sup − βloc]) holds since B(s,Xn) = Bn(s) = sµ for all n ≥ 1. Since, as shown in the proof of Theorem 5.1,
sup0≤s≤N |Cn(s) − C(s,Xn)| →P 0 for all N ∈ N and thus conditions [sup − γ] (and [γloc − R2+]) of Theorem 3.1
holds, we get (5.17).

To complete the proof, let us now show that, for all N ∈ N,

(5.21) sup
0≤r≤N

¯̄̄ 1
n

[nr]X
t=2

Ã
t−1X
i=1

ui

!
ut − rλ− 1

n
C2(1)

[nr]X
t=1

Ã
t−1X
i=1

i

!
t

¯̄̄
→P 0.

Using the Phillips-Solo device as in the proof of Theorem 4.2, from (4.5) and (4.6) we find that, for all N ∈ N and
all r ∈ [0, N ], ¯̄̄ 1

n

[nr]X
t=1

Ã
t−1X
i=1

ui

!
ut − rλ− 1

n
C2(1)

[nr]X
t=1

Ã
t−1X
i=1

i

!
t

¯̄̄

=
¯̄̄ 1
n
C(1)

[nr]X
t=1

Ã
t−1X
i=1

ui

!
t +

1

n

[nr]X
t=1

Ã
t−1X
i=1

ui

!
( t̃−1 − t̃)− rλ− 1

n
C2(1)

[nr]X
t=1

Ã
t−1X
i=1

i

!
t

¯̄̄

=
¯̄̄ 1
n
C2(1)

[nr]X
t=1

Ã
t−1X
i=1

i

!
t +

1

n
C(1)

[nr]X
t=1

(˜0 − t̃−1) t

+
1

n

[nr]X
t=1

Ã
t−1X
i=1

ui

!
( t̃−1 − t̃)− rλ− 1

n
C2(1)

[nr]X
t=1

Ã
t−1X
i=1

i

!
t

¯̄̄

=
¯̄̄ 1
n
C(1)

[nr]X
t=1

(˜0 − t̃−1) t +
1

n

[nr]X
t=1

Ã
t−1X
i=1

ui

!
( t̃−1 − ˜t)− rλ|.

Therefore, the expression on the left-hand side of (5.21) is dominated by

sup
0≤r≤N

¯̄̄ 1
n
C(1)

[nr]X
t=1

˜0 t

¯̄̄
+ sup
0≤r≤N

¯̄̄ 1
n
C(1)

[nr]X
t=1

t̃−1 t

¯̄̄

+ sup
0≤r≤N

¯̄̄ 1
n

[nr]X
t=1

Ã
t−1X
i=1

ui

!
( t̃−1 − t̃)− rλ

¯̄̄
= I1n + I2n + I3n.(5.22)

By Lemma 13.6, E˜20 <∞, under the assumptions of the theorem. Therefore, η(1)t = ˜0 t, t ≥ 1, and η
(2)
t = ˜t−1 t,

t ≥ 1, are martingale-difference sequences with E
¡
η
(1)
t

¢2
= E

¡
η
(2)
t

¢2
= E˜20E

2
0 < ∞. Consequently, from Lemma

13.5 we get that I1n = max1≤k≤nN
¯̄
1
n

Pk
t=1 η

(1)
t

¯̄
→P 0 and I2n = max1≤k≤nN

¯̄
1
n

Pk
t=1 η

(2)
t

¯̄
→P 0 in (5.22).
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Using summation by parts, we get that

I3n = sup
0≤r≤N

¯̄̄
− 1

n

³ [nr]X
t=1

ut

´
[̃nr] +

1

n

[nr]X
t=1

ut t̃ − rλ
¯̄

≤ sup
0≤r≤N

¯̄̄ 1
n

³ [nr]X
t=1

ut

´
[̃nr]

¯̄̄
+ sup
0≤r≤N

¯̄̄ 1
n

[nr]X
t=1

ut t̃ − rλ
¯̄̄
= I03n + I003n.(5.23)

Evidently, I03n →P 0 holds if max
1≤k≤nN

n−1
¯̄̄ kX
t=1

ut

¯̄̄
|̃ k| →P 0. This, on the other hand, follows from (4.8) and the

property that, by Theorem 4.2,

(5.24) max
1≤k≤nN

n−1/2
¯̄̄ kX
t=1

ut

¯̄̄
= OP (1).

Let us show that I003n →P 0. For c̃j as in the proof of Theorem 4.2, let hr(L), r ≥ 0, be the lag polynomials defined
by h0(L) =

P∞
k=0 ck c̃kL

k =
P∞

k=0 hkkL
k, hr(L) =

P∞
k=0(ck c̃k+r + c̃kck+r)L

k =
P∞

k=0 hkrL
k, r ≥ 1. Further, let, for

r ≥ 0, h̃r(L) =
P∞

k=0 h̃krL
k, where h̃kr =

P∞
j=k+1 hjr. Similar to the derivations of second order BN decompositions

in Phillips and Solo (1992) and the proof of Theorem 4.4, it is not difficult it is not difficult to see that

(5.25) ut t̃ = h0(L)
2
t +

∞X
r=1

hr(L) t t−r = h0(1)
2
t − (1− L)w̃at + t

h
t−1 − (1− L)w̃bt,

where w̃at = h̃0(L)
2
t ,

h
t−1 =

P∞
r=1 hr(1) t−r and w̃bt =

P∞
r=1 h̃r(L) t t−r (the validity of decomposition (5.25) is

justified by Lemma 13.9).

By (5.25), we have that, for all k ≥ 1,

1

n

kX
t=1

ut t̃ =
1

n
h0(1)

kX
t=1

2
t +

1

n
w̃a0 −

1

n
w̃ak +

1

n

kX
t=1

t
h
t−1 +

1

n
w̃b0 −

1

n
ũbk

and, thus, for all N ∈ N,

max
1≤k≤Nn

¯̄̄ 1
n

kX
t=1

ut t̃ − kλ
¯̄̄
≤ max

1≤k≤Nn

¯̄̄ 1
n

kX
t=1

(h0(1)
2
t − λ)

¯̄̄
+ 2 max

0≤k≤Nn

¯̄̄ 1
n
w̃ak

¯̄̄
+ max
1≤k≤Nn

¯̄̄ 1
n

kX
t=1

t
h
t−1

¯̄̄
+ 2 max

0≤k≤Nn

¯̄̄ 1
n
w̃bk

¯̄̄
.

It is not difficult to see that

(5.26) λ = h0(1)σ
2.

Therefore, η(3)t = h0(1)
2
t − λ, t ≥ 1, is a martingale-difference sequence with E

¡
η
(3)
t

¢2
= E(h0(1)

2
t − h0(1)σ

2)2 ≤
LE| 0|4 for some constant L > 0 and all t. Similarly, by Lemma 13.11, η(4)t = t

h
t−1, t ≥ 1, is a martingale-difference

sequence with E
¡
η
(4)
t

¢2
= E 2

0E
¡
h
−1
¢2

<∞ for all t.

Thus, using Lemma 13.5, we get that max1≤k≤Nn

¯̄
1
n

Pk
t=1(h0(1)

2
t − λ)

¯̄
= max1≤k≤Nn

¯̄
η
(1)
t

¯̄
→P 0 and

max1≤k≤Nn

¯̄
1
n

Pk
t=1 t

h
t−1
¯̄
= max1≤k≤Nn

¯̄
η
(2)
t

¯̄
→P 0.

Since, by Lemma 13.10, E|w̃a0|p/2 <∞ and E|w̃b0|p/2 <∞ under the assumptions of the theorem, from Lemma
13.4 we get that max0≤k≤nN n−1|w̃a,k| →P 0 and max0≤k≤nN n−1|w̃b,k| →P 0. Consequently, I 003n →P 0 and, thus,
by (5.22), convergence (5.21) indeed holds. By Lemmas 13.1 and 13.3, relations (5.17) and (5.21) imply (5.16). ¥
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6. Asymptotics for general functionals of partial sums

The martingale convergence approach developed here can also be used to derive asymptotic results for functionals
of partial sums of linear processes. These results are particularly useful in practice for models where nonlinear
functions of integrated processes arise. In this context, the following generalization of Theorems 5.1 and 5.2 holds.

Theorem 6.1 Let f : R → R be a twice continuously differentiable function such that f 0 satisfies the growth
condition3 |f 0(x)| ≤ K(1 + |x|α) for some constants K > 0 and α > 0 and all x ∈ R. Suppose that ut is the linear
process ut = C(L) t =

P∞
j=0 cj t−j , C(L) =

P∞
j=0 cjL

j , where
P∞

j=1 j|cj | < ∞, C(1) 6= 0, and ( t)t∈Z satisfy
assumption (D2) with p ≥ max(6, 4α). Then

(6.1)
1√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

ui

!
ut →d λ

Z r

0

f 0(ωW (v))dv + ω

Z r

0

f(ωW (v))dW (v),

where λ =
P∞

j=1Eu0uj and ω2 = σ 2C2(1).

Remark 6.1 The processes on the right-hand side of (6.1) belong to an important class of limit semimartingales
for functionals of partial sums of linear processes whose first predictable characteristics (the drift terms) are non-
deterministic. The latter is a qualitative difference between the semimartingales in (6.1) and the processes on the
right-hand side of (5.16), where the first characteristics are deterministic (rλ, r ≥ 0).

Remark 6.2 From the proof of Theorem 6.1 it follows that the assumption that f is twice continuously differentiable
can be replaced by the condition that f has a locally Lipschitz continuous first derivative, that is, for every N ∈ N
there exists a constant KN such that |f 0(x)− f 0(y)| ≤ KN |x− y| for all x, y ∈ R with |x| ≤ N and |y| ≤ N.

Remark 6.3 Similar to Remark 5.1, from the proof of Theorem 6.1 we find that the following extension holds. Let
f : R → R be a twice continuously differentiable function such that f 0 satisfies the growth condition |f 0(x)| ≤
K(1 + |x|α) for some constants K > 0 and α > 0 and all x ∈ R. Suppose that ut and vt are two linear
processes: ut = Γ(L) t =

P∞
j=0 γj t−j , vt = ∆(L) t =

P∞
j=0 δj t−j , Γ(L) =

P∞
j=0 γjL

j , ∆(L) =
P∞

j=0 δjL
j , whereP∞

j=1 j|γj | < ∞,
P∞

j=1 j|δj | < ∞, Γ(1) 6= 0, ∆(1) 6= 0, and ( t)t∈Z satisfy assumption (D2) with p ≥ max(6, 4α).
Then, 1√

n

P[nr]
t=2 f

³
1√
n

Pt−1
i=1 ui

´
ut →d λuv

R r
0
f 0(ωuW (v))dv + ωv

R r
0
f(ωuW (v))dW (v), where ω2u = σ2Γ2(1), ω2v =

σ2∆2(1) and λuv =
P∞

j=1Eu0vj .

One should also note that, as follows from the proof of the Theorem, if t satisfies assumption (D1) with p > 6

(so that λ = 0) then the relation 1√
n

P[nr]
t=2 f

³
1√
n

Pt−1
i=1 i

´
t →d σ

R r
0
f(σ W (v))dW (v) holds if f satisfies the

exponential growth condition |f(x)| ≤ 1 + exp(K|x|) for some constant K > 0 and all x ∈ R.

Remark 6.4 The assumption |f 0(x)| ≤ K(1 + |x|α), together with the moment condition E| 0|p < ∞ for p >
max(6, 4α), guarantees, by Lemma 13.12, that bound (13.12) for moments of partial sums in the Appendix holds.
As follows from the proof, Theorem 6.1 in fact holds for p ≥ 6 and all twice continuously differentiable functions
f for which the estimate (13.12) is true and f 0 (and, thus, f itself) satisfies the exponential growth condition
|f 0(x)| ≤ 1 + exp(K|x|) for some constant K > 0 and all x ∈ R.

Proof. We first show that

In =
λ

n

[nr]X
t=2

f 0

Ã
1√
n

t−1X
i=1

ui

!
+

1√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

ui

!
t →d

λ

Z r

0

f 0(ωW (v))dv + ω

Z r

0

f(ωW (v))dW (v).(6.2)

3This assumption evidently implies that f satisfies a similar growth condition with the power 1 + α, i.e., |f(x)| ≤ K(1 + |x|1+α) for
some constant K and all x ∈ R.
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Consider the continuous semimartingale Mn = (Mn(s), s ≥ 0), where

Mn(s) =
λ

n

k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´
+ λf 0

³ 1√
n

k−1X
j=1

uj

´³
s− k − 1

n

´

+
k−1X
i=1

f
³ 1√

n

i−1X
j=1

uj

´µ
W

µ
Ti
n

¶
−W

µ
Ti−1
n

¶¶

+f
³ 1√

n

k−1X
j=1

uj

´µ
W (s)−W

µ
Tk−1
n

¶¶
,(6.3)

for Tk−1
n < s ≤ Tk

n , k = 1, 2, ... By Lemma 12.1, we have the following semimartingale representation for the left-hand
side of (6.2) :

(6.4) In =d Mn

³T[nr]
n

´
.

Further, let Xn = (Xn(s), s ≥ 0) for n ≥ 1 and X = (X(s), s ≥ 0) be the continuous vector martingales with
Xn(s) = (Mn(s),W (s)) and X(s) = (h0(1)

R s
0
f 0(C(1)W (v))dv+

R s
0
f(C(1)W (v))dW (v),W (s)), where, as in (5.26),

h0(1) = λ/σ2.

The first characteristic of Xn is the process (Bn(s), s ≥ 0), where

(6.5) Bn(s) =
³λ
n

k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´
+ λf 0

³ 1√
n

k−1X
j=1

uj

´³
s− k − 1

n

´
, 0
´
= (B1

n(s), B
2
n(s))

for Tk−1
n < s ≤ Tk

n , k = 1, 2, ... The second characteristic of Xn is the process Cn = (Cn(s), s ≥ 0) with

(6.6) Cn(s) =

µ
C11n (s) C12n (s)
C21n (s) C22n (s)

¶
,

where

(6.7) C11n (s) =
k−1X
i=2

f2
³ 1√

n

i−1X
j=1

uj

´µTi
n
− Ti−1

n

¶
+ f2

³ 1√
n

k−1X
j=1

uj

´µ
s− Tk−1

n

¶
,

(6.8) C12n (s) = C21n (s) =
k−1X
i=2

f
³ 1√

n

i−1X
j=1

uj

´µTi
n
− Ti−1

n

¶
+ f

³ 1√
n

k−1X
j=1

uj

´µ
s− Tk−1

n

¶
,

for Tk−1
n < s ≤ Tk

n , k = 1, 2, ..., and

(6.9) C22n (s) = s.

The process X is a solution to stochastic differential equation (11.6) with g1(x) = f(C(1)x), x ∈ R, and
g2(x) = h0(1)f

0(C(1)x), x ∈ R. The first and second predictable characteristics of X are, respectively, B(X) and
C(X), where B and C are defined in (11.7) with the above gi(x), i = 1, 2.

As in the proof of Theorems 5.1 and 5.2, we proceed to show that Xn →d X by verifying the conditions of
Theorem 3.1 in order.

For x ∈ R, let x+ = max(x, 0) and x− = max(−x, 0) and let Bi(s, α), i = 1, 2, and Cij(s, α), 1 ≤ i, j ≤ 2, be as in
(11.7) with g1(x) = f(C(1)x) and g2(x) = h0(1)f

0(C(1)x). Since, obviously, B1(s, α) =
R s
0
[h0(1)f

0(C(1)α2(v))]+dv−R s
0
[h0(1)f

0(C(1)α2(v))]−dv for α = ((α1(s), α2(s)), s ≥ 0) ∈ D(R2
+), one has (see Definition 2.2)

V ar(B1)(s, α) + V ar(B2)(s, α) =

Z s

0

[h0(1)f
0(C(1)α2(v))]+dv +

Z s

0

[h0(1)f
0(C(1)α2(v))]−dv =
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Z s

0

|h0(1)f 0(C(1)α2(v))|dv = H(s, α).

Let 0 ≤ r < s. For the stopping time Sa(α) defined in (3.1) and for all v ∈ (r∧Sa(α), s∧Sa(α)) we have |α2(v)| ≤
|α(v)| < a and thus |f(C(1)α2(v))| ≤ max|x|<a |f(C(1)x)| = G1(a) and |f 0(C(1)α2(v))| ≤ max|x|<a |f 0(C(1)x)| =
G2(a). Consequently,

(6.10) H(s ∧ Sa(α), α)−H(r ∧ Sa(α), α) =
Z s∧Sa(α)

r∧Sa(α)
|h0(1)f 0(C(1)W (v))|dv ≤ |h0(1)|G2(a)(s− r),

(6.11) C11(s ∧ Sa(α), α)− C11(r ∧ Sa(α), α) =
Z s∧Sa(α)

r∧Sa(α)
f2(C(1)α2(v))dv ≤ G21(a)(s− r),

(6.12) C22(s ∧ Sa(α), α)− C22(r ∧ Sa(α), α) = s ∧ Sa(α)− r ∧ Sa(α) ≤ (s− r).

By (6.10)-(6.12), condition (A1) of Theorem 3.1 is satisfied with F (s, a) = max(G21(a), |h0(1)|G2(a), 1)s.

Since, under assumptions of the theorem, the functions g1(x) = f(C(1)x) and g2(x) = h0(1)f
0(C(1)x) are locally

Lipschitz continuous and satisfy growth condition (11.8), from Corollaries 11.1 and 11.2 it follows that conditions
(A2)-(A4) of Theorem 3.1 hold. Condition (A5) of Theorem 3.1 is trivially satisfied since Xn(0) = X(0) = 0.

Let

(6.13) B̃1
n(s) = h0(1)

k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´³Ti
n
− Ti−1

n

´
+ h0(1)f

0
³ 1√

n

k−1X
j=1

uj

´³
s− Tk−1

n

´
for Tk−1

n < s ≤ Tk
n , k = 1, 2, ... . It is not difficult to see that

(6.14) sup
0<s≤N

|B1
n(s)− B̃1

n(s)|→P 0.

Indeed, by (5.26), we have that, for Tk−1
n < s ≤ Tk

n , k = 1, 2, ...,

|B1
n(s)− B̃1

n(s)| =
¯̄̄
h0(1)

k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´³Ti
n
− Ti−1

n
− σ2

n

´

+h0(1)f
0
³ 1√

n

k−1X
j=1

uj

´³k − 1
n

σ2 − Tk−1
n

´¯̄̄

≤ |h0(1)|
¯̄̄ k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´³Ti
n
− Ti−1

n
− σ2

n

´¯̄̄

+|h0(1)|
¯̄̄
f 0
³ 1√

n

k−1X
j=1

uj

´¯̄̄¯̄̄Tk−1
n
− k − 1

n
σ2
¯̄̄
.(6.15)

By (4.12), from (6.15) we conclude that relation (6.14) follows if

(6.16) max
1≤k≤KNn

¯̄̄ k−1X
i=2

f 0
³ 1√

n

i−1X
j=1

uj

´³Ti
n
− Ti−1

n
− σ2

n

´¯̄̄
→P 0

and

(6.17) max
1≤k≤KNn

¯̄̄
f 0
³ 1√

n

k−1X
j=1

uj

´¯̄̄¯̄̄Tk−1
n
− k − 1

n
σ2
¯̄̄
→P 0.
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By Lemma 12.1 and estimate (13.12), under the assumptions of the theorem, ηtn = f 0
³

1√
n

Pt−1
j=1 uj

´
(Tt−Tt−1−σ2),

t ≥ 2, is a martingale-difference sequence with

max
1≤t≤n

Eη2tn ≤ L1E
4
0 max
1≤t≤n

E
³
f 0
³ 1√

n

t−1X
j=1

uj

´´2
≤ L2

for some constants L1 > 0 and L2 > 0. Therefore, from Lemma 13.5 we conclude that (6.16) holds. In addition,
from Theorem 4.2 it follows that

(6.18) max
1≤k≤KNn

¯̄̄
f 0
³ 1√

n

k−1X
j=1

uj

´¯̄̄
= OP (1).

This, together with (12.3), implies (6.17). Consequently, (6.14) indeed holds.

By definition of B(s, α) and C(s, α) in (11.7) with g1(x) = f(C(1)x) and g2(x) = h0(1)f
0(C(1)x), we have that

(6.19) B(s,Xn) =
³Z s

0

h0(1)f
0(C(1)W (v))dv, 0

´
= (B̃1(s), B̃2(s)),

where B̃1(s) =
R s
0
h0(1)f

0(C(1)W (v))dv and B̃2(s) = 0, and

(6.20) C(s,Xn) =

⎛⎝ R s
0
f2(C(1)W (v))dv

R s
0
f(C(1)W (v))dvR s

0
f(C(1)W (v))dv s

⎞⎠ =

µ
C̃11(s, α) C̃12(s, α)

C̃21(s, α) C̃22(s, α)

¶
,

where C̃11(s) =
R s
0
f2(C(1)W (v))dv, C̃12(s) = C̃21(s) =

R s
0
f(C(1)W (v))dv and C̃22(s) = s.

By (6.13) and (6.19), for Tk−1
n < s ≤ Tk

n , k = 1, 2, ...,

|B̃1
n(s)− B̃1(s)| = |h0(1)|

¯̄̄ k−1X
i=1

Z Ti
n

Ti−1
n

h
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0(C(1)W (v))

i
dv

+

Z s

Tk−1
n

h
f 0
³ 1√

n

k−1X
j=1

uj

´
− f 0(C(1)W (v))

i
dv
¯̄̄

≤ s|h0(1)| max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0(C(1)W (v))

¯̄̄
.(6.21)

Thus, for Tk−1
n < N ≤ Tk

n , k = 1, 2, ...,

(6.22) sup
0≤s≤N

¯̄
B̃1
n(s)− B̃1(s)

¯̄
≤ N |h0(1)| max

1≤i≤k
sup

v∈[Ti−1n ,
Ti
n ]

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0(C(1)W (v))

¯̄̄
.

By (12.1) we have

max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0(C(1)W (v))

¯̄̄
≤ max

1≤i≤k

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0

³
C(1)W

³Ti−1
n

´´¯̄̄
+

max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f 0
³
C(1)W

³Ti−1
n

´´
− f 0(C(1)W (v))

¯̄̄
≤ max

1≤i≤k

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
+

max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f 0
³
C(1)W

³Ti−1
n

´´
− f 0(C(1)W (v))

¯̄̄
≤ max

1≤i≤k

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
+

max
1≤i≤k

sup
v1,v2∈[

Ti−1
n ,

Ti
n ]

¯̄̄
f 0(C(1)W (v1))− f 0(C(1)W (v2))

¯̄̄
.(6.23)
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Using (4.6) we get

max
1≤i≤KNn

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0

³C(1)√
n

i−1X
j=1

j

´¯̄̄

= max
1≤i≤KNn

¯̄̄
f 0
³C(1)√

n

i−1X
j=1

j +˜0 − ĩ−1
´
− f 0

³C(1)√
n

i−1X
j=1

j

´¯̄̄
.(6.24)

By (4.8), from (6.24) and uniform continuity of f 0 we obtain that

(6.25) max
1≤i≤KNn

¯̄̄
f 0
³ 1√

n

i−1X
j=1

uj

´
− f 0

³C(1)√
n

i−1X
j=1

j

´¯̄̄
→P 0.

In addition, relation (4.15), together with uniform continuity of f 0 and that of the Brownian sample paths, implies

(6.26) max
1≤i≤KNn

sup
v1,v2∈[

Ti−1
n ,

Ti
n ]

¯̄̄
f 0(C(1)W (v1))− f 0(C(1)W (v2))

¯̄̄
→P 0,

By (4.12), from (6.22), (6.23), (6.25) and (6.26) we get

(6.27) sup
0≤s≤N

¯̄
B̃1
n(s)− B̃1(s)

¯̄
→P 0

for all N ∈ N. From (6.14) and (6.27) we conclude that

(6.28) sup
0≤s≤N

¯̄
B1
n(s)− B̃1(s)

¯̄
→P 0.

Consequently, condition [sup− β] (and thus [sup− βloc]) of Theorem 3.1 is satisfied.

By (6.7), (6.8) and (6.20), for Tk−1
n < s ≤ Tk

n , k = 1, 2, ...,

¯̄
C11n (s)− C̃11(s)

¯̄
=

¯̄̄ k−1X
i=1

Z Ti
n

Ti−1
n

h
f2
³ 1√

n

i−1X
j=1

uj

´
− f2(C(1)W (v))

i
dv

+

Z s

Tk−1
n

h
f2
³ 1√

n

k−1X
j=1

uj

´
− f2(C(1)W (v))

i
dv
¯̄̄

≤ s max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2(C(1)W (v))

¯̄̄
,(6.29)

¯̄
C12n (s)− C̃12(s)

¯̄
=
¯̄
C21n (s)− C̃21(s)

¯̄
=¯̄̄ k−1X

i=1

Z Ti
n

Ti−1
n

h
f
³ 1√

n

i−1X
j=1

uj

´
− f(C(1)W (v))

i
dv

+

Z s

Tk−1
n

h
f
³ 1√

n

k−1X
j=1

uj

´
− f(C(1)W (v))

i
dv
¯̄̄

≤ s max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f(C(1)W (v))

¯̄̄
.(6.30)

Thus, for Tk−1
n < N ≤ Tk

n , k = 1, 2, ...,

(6.31) sup
0≤s≤N

¯̄
C11n (s)− C̃11(s)

¯̄
≤ N max

1≤i≤k
sup

v∈[Ti−1n ,
Ti
n ]

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2(C(1)W (v))

¯̄̄
,
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(6.32) sup
0≤s≤N

¯̄
C12n (s)− C̃12(s)

¯̄
≤ N max

1≤i≤k
sup

v∈[Ti−1n ,
Ti
n ]

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f(C(1)W (v))

¯̄̄
.

By (12.1) we have

max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2(C(1)W (v))

¯̄̄
≤ max

1≤i≤k

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2

³
C(1)W

³Ti−1
n

´´¯̄̄
+

max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f2
³
C(1)W

³Ti−1
n

´´
− f2(C(1)W (v))

¯̄̄
≤ max

1≤i≤k

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
+

max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f2
³
C(1)W

³Ti−1
n

´´
− f2(C(1)W (v))

¯̄̄
≤ max

1≤i≤k

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
+

max
1≤i≤k

sup
v1,v2∈[

Ti−1
n ,

Ti
n ]

¯̄̄
f2(C(1)W (v1))− f2(C(1)W (v2))

¯̄̄
.(6.33)

Similarly,

max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f(C(1)W (v))

¯̄̄
≤ max

1≤i≤k

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f

³
C(1)W

³Ti−1
n

´´¯̄̄
+

max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f
³
C(1)W

³Ti−1
n

´´
− f(C(1)W (v))

¯̄̄
≤ max

1≤i≤k

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
+

max
1≤i≤k

sup
v∈[Ti−1n ,

Ti
n ]

¯̄̄
f
³
C(1)W

³Ti−1
n

´´
− f(C(1)W (v))

¯̄̄
≤ max

1≤i≤k

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
+

max
1≤i≤k

sup
v1,v2∈[

Ti−1
n ,

Ti
n ]

¯̄̄
f(C(1)W (v1))− f(C(1)W (v2))

¯̄̄
.(6.34)

By (4.6) we have

max
1≤i≤KNn

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2

³C(1)√
n

i−1X
j=1

j

´´¯̄̄

= max
1≤i≤KNn

¯̄̄
f2
³C(1)√

n

i−1X
j=1

j +˜0 − ĩ−1
´
− f2

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
,(6.35)

max
1≤i≤KNn

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f

³C(1)√
n

i−1X
j=1

j

´´¯̄̄

= max
1≤i≤KNn

¯̄̄
f
³C(1)√

n

i−1X
j=1

j +˜0 − ĩ−1
´
− f

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
.(6.36)

By (4.8), from (6.35) and (6.36) and uniform continuity of f and f2 we obtain

(6.37) max
1≤i≤KNn

¯̄̄
f2
³ 1√

n

i−1X
j=1

uj

´
− f2

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
→P 0,

(6.38) max
1≤i≤KNn

¯̄̄
f
³ 1√

n

i−1X
j=1

uj

´
− f

³C(1)√
n

i−1X
j=1

j

´´¯̄̄
→P 0.
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In addition, relation (4.15), together with uniform continuity of f and f2 and of the Brownian sample paths implies
that

(6.39) max
1≤i≤KNn

sup
v1,v2∈[

Ti−1
n ,

Ti
n ]

¯̄̄
f2(C(1)W (v1))− f2(C(1)W (v2))

¯̄̄
→P 0,

(6.40) max
1≤i≤KNn

sup
v1,v2∈[

Ti−1
n ,

Ti
n ]

¯̄̄
f(C(1)W (v1))− f(C(1)W (v2))

¯̄̄
→P 0,

By (4.12), from (6.31)-(6.34) and (6.37)-(6.40) we get

(6.41) sup
0≤s≤N

¯̄
C11n (s)− C̃11(s)

¯̄
→P 0,

(6.42) sup
0≤s≤N

¯̄
C12n (s)− C̃12(s)

¯̄
= sup
0≤s≤N

¯̄
C21n (s)− C̃21(s)

¯̄
→P 0,

for all N ∈ N. Relations (6.41) and (6.42), together with C22n (s) = C̃22(s) = s evidently imply that

sup
0≤s≤N

|Cn(s)− C(s,Xn)|→P 0,

for all N ∈ N. Consequently, condition [sup − γ] (and thus [γloc − R2+]) of Theorem 3.1 is satisfied. We therefore
have Xn →d X. This, together with (4.3) and (6.4) implies, by Lemma 13.2, relation (6.2).

For k ≥ 2, denote

Ik =
¯̄̄ 1√

n

kX
t=2

f
³ 1√

n

t−1X
i=1

ui

´
ut −

λ

n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
− C(1)√

n

kX
t=2

f
³ 1√

n

t−1X
i=1

ui

´
t

¯̄̄
.

To complete the proof, we show that, for all N ∈ N,

(6.43) sup
0≤r≤N

I[nr] →P 0.

Using (4.5) and summation by parts gives

Ik =
¯̄̄ 1√

n

kX
t=2

f
³ 1√

n

t−1X
i=1

ui

´
( t̃−1 − t̃)−

λ

n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´¯̄̄
=

¯̄̄
− 1√

n
f
³ 1√

n

kX
i=1

ui

´
˜k +

1√
n

kX
t=2

³
f
³ 1√

n

tX
i=1

ui

´
− f

³ 1√
n

t−1X
i=1

ui

´´
˜t −

λ

n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´¯̄̄
.

Consequently, for all N ∈N,

max
1≤k≤nN

Ik ≤ max
1≤k≤nN

¯̄̄ 1√
n
f
³ 1√

n

kX
i=1

ui

´
˜k

¯̄̄
+ max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
(ut t̃ − λ)

¯̄̄
+

max
1≤k≤nN

¯̄̄ 1√
n

kX
t=2

³
f
³ 1√

n

tX
i=1

ui

´
− f

³ 1√
n

t−1X
i=1

ui

´
− f 0

³ 1√
n

t−1X
i=1

ui

´ ut√
n

´
t̃

¯̄̄
= I1n + I2n + I3n.(6.44)

From (4.8) and property (6.18) it follows that I1n →P 0.
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Similar to the proof of Theorem 5.2, using (5.25) and (5.26), we get that

I2n ≤ max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
(h0(1)

2
t − h0(1)σ

2)
¯̄̄
+ max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
t
h
t−1

¯̄̄
+

max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
(w̃at − w̃a,t−1)

¯̄̄
+ max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

f 0
³ 1√

n

t−1X
i=1

ui

´
(w̃bt − w̃b,t−1)

¯̄̄
= I(1)2n + I

(2)
2n + I

(3)
2n + I

(4)
2n .

As in the proof of Theorem 5.2 and relation (6.14) above, we conclude, by Lemma 13.12, that

η
(1)
tn = f 0

³
1√
n

Pt−1
i=1 ui

´
( 2t − σ2), t ≥ 2, is a martingale-difference with

max
1≤t≤n

E
³
η
(1)
tn

´
≤ L1E

4
0 max
1≤t≤n

E
³
f 0
³ 1√

n

t−1X
i=1

ui

´´2
≤ L2

for some constants L1 > 0 and L2 > 0.

Similarly, from Lemmas 13.12 and 13.11 it follows, by Hölder’s inequality, that the martingale-difference sequence
η
(2)
tn = f 0

³
1√
n

Pt−1
i=1 ui

´
ηtη

h
t−1, t ≥ 2, satisfies

max
1≤t≤n

E
³
η
(2)
tn

´
= E 2

0 max
1≤t≤n

E
³
f 0
³ 1√

n

t−1X
i=1

ui

´´2¡
ηht−1

¢2 ≤ E 2
0

h
E
¡
ηht−1

¢4i1/2
max
1≤t≤n

h
E
³
f 0
³ 1√

n

t−1X
i=1

ui

´´4i1/2
≤ L

for some constant L ≥ 0. Using Theorem 13.5, we, therefore, have

I(1)2n = max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

η
(1)
tn

¯̄̄
→P 0

and

I(2)2n max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

η
(2)
tn

¯̄̄
→P 0.

In addition, using summation by parts and the smoothness assumptions on f, we find that (below, Sk =
Pk

i=1 ui)

I(3)2n ≤ max
1≤k≤nN

¯̄̄ 1
n
f 0
³ 1√

n

kX
i=1

ui

´
w̃ak

¯̄̄
+ max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

³
f 0
³ 1√

n

tX
i=1

ui

´
− f 0

³ 1√
n

t−1X
i=1

ui

´´
w̃at

¯̄̄
≤

max
1≤k≤nN

¯̄̄ 1
n
f 0
³ 1√

n

kX
i=1

ui

´¯̄̄
max

1≤k≤nN

1

n
|w̃ak|+N max

1≤k≤nN

1√
n
|ukw̃ak| sup

|t|≤max0≤k≤nN |Sk|/
√
n

|f 00(t)|,(6.45)

I(4)2n ≤ max
1≤k≤nN

¯̄̄ 1
n
f 0
³ 1√

n

kX
i=1

ui

´
w̃bk

¯̄̄
+ max
1≤k≤nN

¯̄̄ 1
n

kX
t=2

³
f 0
³ 1√

n

tX
i=1

ui

´
− f 0

³ 1√
n

t−1X
i=1

ui

´´
w̃bt

¯̄̄
≤

max
1≤k≤nN

¯̄̄ 1
n
f 0
³ 1√

n

kX
i=1

ui

´¯̄̄
max

1≤k≤nN

1

n
|w̃bk|+N max

1≤k≤nN

1√
n
|ukw̃bk| sup

|t|≤max0≤k≤nN |Sk|/
√
n

|f 00(t)|.(6.46)

By Lemma 13.10, supt |w̃at|3 →P 0 and supt |w̃bt|3 →P 0 under the assumptions of the theorem. Therefore, using
Lemma 13.4 with p = 6 we have

(6.47) max
1≤k≤nN

n−1/6|uk|→P 0, max
1≤k≤nN

n−1/3|w̃ak|→P 0, max
1≤k≤nN

n−1/3|w̃bk|→P 0.
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These relations also imply that max1≤k≤nN n−1/2|ukw̃ak| →P 0 and max1≤k≤nN n−1/2|ukw̃bk| →P 0. From the
above, together with (5.24), (6.18), (6.45) and (6.46), we conclude that I(3)2n →P 0 and I(4)2n →P 0.

We have, by Taylor expansion, that

max
0≤k≤nN

¯̄̄ 1√
n

kX
t=2

³
f
³ 1√

n

tX
i=1

ui

´
− f

³ 1√
n

t−1X
i=1

ui

´
− f 0

³ 1√
n

t−1X
i=1

ui

´ ut√
n

´
t̃

¯̄̄
≤ (N/2) max

1≤k≤nN

1√
n
u2k |̃ k| sup

|t|≤max0≤k≤nN |Sk|/
√
n

|f 00(t)|.(6.48)

By Lemmas 13.4 and 13.10, max1≤k≤nN n−1/6 |̃ k| →P 0. This, together with (5.24) and the first relation in (6.47)
leads to max0≤k≤nN n−1/2u2k |̃ k|→P 0. Consequently, by (6.48) we have I3n →P 0.

From (6.44) we deduce that (6.43) indeed holds. By Lemmas 13.1 and 13.3, relations (6.2) and (6.43) imply
(6.1). ¥

7. Asymptotics in stationary and unit root autoregression

This section shows how the martingale convergence approach provides a unified treatment of the limit theory for
autoregression as in (7.1) below that includes both stationary (α = 0) and unit root (α = 1) cases. Let (yt)t∈N be
a stochastic process generated in discrete time according to

(7.1) yt = αyt−1 + ut,

where ut is the linear process ut = C(L) t =
P∞

j=0 cj t−j , C(L) =
P∞

j=0 cjL
j ,
P∞

j=1 jc
2
j < ∞, C(1) 6= 0, and

( t)t∈Z satisfy assumption (D2) with p > 4. The initial condition in (7.1) is set at t = 0 and y0 may be a constant
or a random variable. In (7.1) we can use α = 0 to represent the stationary case without loss of generality because
ut is defined as an arbitrary linear process.

Let α̂ =
Pn

t=1 yt−1yt
.Pn

t=1 y
2
t−1 denote the ordinary least squares (OLS) estimator of α and let tα̂ be the

conventional regression t−statistic in model (7.1) with α = 1: tα̂ =
³Pn

t=1 y
2
t−1

´1/2
(α̂ − 1)/s, where s2 =

n−1
Pn

t=1(yt− α̂yt−1)2. Further, let σ̂
2
u be a consistent estimator of σ

2
u = Eu20 and let ω̂

2, λ̂, γ̂ and η̂ be, respectively,
consistent nonparametric kernel estimates of the nuisance parameters λ =

P∞
j=1Eu0uj , ω

2 = σ2C2(1), γ = σ2f0(1)

and η =
³
f20 (1) +

P∞
r=1 f

2
r (1)

´1/2
, where f0(1) =

P∞
k=0 ckck+1 and fr(1) =

P∞
k=0 ckck+r−1 r ≥ 1. Denote by Zα

and Zt the statistics Zα = n(α̂− 1)− λ̂
³
n−2

Pn
t=1 y

2
t−1

´−1
and Zt = σ̂uω̂

−1tα̂ − λ̂
n
ω̂
³
n−2

Pn
t=1 y

2
t−1

´1/2o−1
.

We prove the following result.

Theorem 7.1 If, in model (7.1), α = 1 and
P∞

j=1 j|cj | <∞, then, as n→∞,

(7.2) n(α̂− 1)→d

³
ω2
Z 1

0

W (v)dW (v) + λ
´³

ω2
Z 1

0

W 2(v)dv
´−1

,

(7.3) tα̂ →d σ
−1
u ω−1

³
ω2
Z 1

0

W (v)dW (v) + λ
´³Z 1

0

W 2(v)dv
´−1/2

,

where σ2u = Eu20, λ =
P∞

j=1Eu0uj and ω
2 = σ2C2(1). One also has the following nuisance-parameter-free limits for

the test statistics Zα and Zt in model (7.1) with α = 1 and
P∞

j=1 j|cj | <∞ :

(7.4) Zα →d

³Z 1

0

W (v)dW (v)
´³Z 1

0

W 2(v)dv
´−1

,
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(7.5) Zt →d

³Z 1

0

W (v)dW (v)
´³Z 1

0

W 2(v)dv
´−1/2

.

If, in model (7.1), α = 0 and
P∞

j=1 jc
2
j <∞, then, as n→∞,

(7.6)
√
n(α̂− γ)→d N(0, η

2/σ2u),

(7.7)
σ̂u
√
n

η̂
(α̂− γ)→d N(0, 1).

Proof. Using the continuous mapping theorem (e.g., JS, VI.3.8) and Theorem 4.2 we get n−2
Pn

t=1 y
2
t−1 →d

ω2
R 1
0
W 2(v)dv, when α = 1, as in Phillips (1987a). Also, by Theorem 5.2, 1n

Pn
t=1 yt−1ut →d λ+ω2

R 1
0
W (v)dW (v).

These relations then imply by continuous mapping that (7.2) and (7.3) hold. Relations (7.4) and (7.5) are conse-
quences of (7.2) and (7.3). Relations (7.6) and (7.7) follow from Theorem 4.4, the consistency of η̂, and the fact that
n−1

Pn
t=1 u

2
t−1 →p σ

2
u by the law of large numbers. ¥

Remark 7.1 The martingale convergence approach provides a unifying principle for proving the limit theory in
the stationary and unit root cases in the above result. In particular, in the martingale-difference error case (i.e.
when Assumption D1 holds and ut = εt, allowing for α = 1 or |α| < 1) the construction by which the martingale
convergence approach is applied is the same in both cases. Thus, in the stationary case we use the construction
(4.16) above and in the unit root case we have essentially the same construction in (5.2). In the former case,
the numerator satisfies a central limit theorem, while in the latter case we have weak convergence to a stochastic
integral. This difference makes a unification of the limit theory impossible in terms of existing approaches which
rely on central limit arguments in the stationary case and special weak convergence arguments in the unit root case.
However, the martingale convergence approach readily accommodates both results and, at the same time, also allows
for the difference in the rates of convergence. In effect, in both the stationary and unit root cases, we have convergence
of a discrete time martingale to a continuous martingale, thereby unifying the limit theory for autoregression. Section
9 makes this formulation explicit.

8. Useful multivariate extensions

The present section shows how to skip the Skorohod embedding at the beginning of the proofs, which is used
above to convert discrete time martingales and semimartingales to continuous versions (e.g. in (4.2), (4.10), (5.3) and
(6.4)) and simplify some of the arguments. In fact, we may work directly by treating the discrete time processes as
discontinuous processes and seek to verify conditions for martingale and semimartingale convergence that involve the
predictable measures of jumps for the discontinuous processes. This may be accomplished by using suitable additional
conditions beyond those we have already employed in Theorems 3.1 and 3.2. Dealing with these additional conditions
is not problematic, and the increase in the technical difficulty is justified in view of the wide range of applications
covered by these more general results. The extensions include results on convergence to multivariate stochastic
integrals and a precise formulation of the unification theorem for stationary and nonstationary autoregression. To
simplify presentation of the results, we treat the bivariate case here and extensions to general multivariate cases
follow in the same fashion.

We start with the following martingale convergence result, which provides a limit theory for multivariate sto-
chastic integrals and enables later extension to the case of general linear processes.

Theorem 8.1 Let {( t, ηt)}∞t=0 be a sequence of i.i.d. mean-zero random vectors such that E 2
0 = σ2, Eη20 = σ2η,

E 0η0 = σ η, E| 0|p <∞ and E|η0|p <∞ for some p > 4. Let (W,V ) =
¡
(W (s), V (s)), s ≥ 0

¢
be bivariate Brownian

motion with covariance matrix ⎛⎝ σ2 σ η

σ η σ2η

⎞⎠ .
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Then

(8.1)
1

n

[nr]X
t=2

Ã
t−1X
i=1

i

!
ηt →d

Z r

0

W (v)dV (v).

Proof. For n ≥ 1, let Xn = (Xn(s), s ≥ 0) and X = (X(s), s ≥ 0) be the vector martingales

Xn(s) =

⎛⎝ 1
n

[ns]X
t=2

³ t−1X
i=1

i

´
ηt,

1√
n

[ns]X
t=1

t,
1√
n

[ns]X
t=1

ηt

⎞⎠
and

X(s) =
³Z s

0

W (v)dV (v),W (s), V (s)
´
= (X1(s), X2(s),X3(s)).

Let B0
n = (B0

n(s), s ≥ 0) denote the first characteristic without truncation of Xn, let C̃ 0
n = (C̃ 0

n(s), s ≥ 0) stand
for its modified second characteristic without truncation and let νn = (νn(ds, dx)) denote its predictable measure
of jumps (see JS, Ch. II, §2 and IX.3.25). The process B0

n is identically zero so B
0
n(s) = (0, 0, 0) ∈ R3, s ≥ 0. For

the modified second characteristic without truncation of Xn we have C̃ 0
n(s) = (C̃

ij
n (s))1≤i,j≤3, where

C̃11n (s) =
σ2η
n2

[ns]X
t=2

³ t−1X
i=1

i

´2
,

C̃12n (s) = C̃21n (s) =
σ η

n3/2

[ns]X
t=2

³ t−1X
i=1

i

´
,

C̃13n (s) = C̃31n (s) =
σ2η
n3/2

[ns]X
t=2

³ t−1X
i=1

i

´
,

C̃22n (s) =
σ2[ns]

n
,

C̃23n (s) = C̃32n (s) =
σ η[ns]

n
,

C̃33n (s) =
σ2η[ns]

n
.

For an element α = (α(s), s ≥ 0), α(s) = (α1(s), α2(s), α3(s)) of the Skorohod space D(R3) and for a Borel
subset Γ of R3, let B(s, α) = (0, 0, 0),

(8.2) C(s, α) =

⎛⎜⎜⎜⎜⎝
ση
R s
0
α22(v)dv σ η

R s
0
α2(v)dv σ2η

R s
0
α2(v)dv

σ η

R s
0
α2(v)dv σ2s σ ηs

σ2η
R s
0
α2(v)dv σ ηs σ2ηs

⎞⎟⎟⎟⎟⎠ ,

and ν([0, s],Γ)(α) = 0. Further, let B(α) = (B(s, α), s ≥ 0), C(α) = (C(s, α), s ≥ 0) and ν(α) = (ν(ds, dx)(α)). The
process X is a solution to the stochastic differential equation

(8.3)

dX1(s) = X2(s)dV (s);

dX2(s) = dW (s);

dX3(s) = dV (s),
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or, equivalently, to stochastic differential equation (11.1) with d = 3 and m = 2 and functions b : R3 → R3 and
σ : R3 → R3×2 given by b(x1, x2, x3) = (0, 0, 0) and

(8.4) σ(x1, x2, x3) =

⎛⎜⎜⎜⎜⎜⎝
σηx2 0

σ η/ση
q
σ2σ2η − σ2η

.
ση

ση 0

⎞⎟⎟⎟⎟⎟⎠ .

According to (11.2), the predictable characteristics of X are B(X), C(X) and ν(X), with B, C and ν defined as
above (so that the first and the third predictable characteristics of X are identically zero, i.e., B = (0, 0, 0) ∈ R3

and ν = 0). Since X is continuous, its predictable triplet without truncation is the same.

For a ≥ 0 and an element α = (α(s), s ≥ 0) of the Skorohod space D(R3
+), define, similar to (3.1) and as in

IX.3.38 of JS,

(8.5)
Sa(α) = inf(s : |α(s)| ≥ a or |α(s−)| ≥ a),

San = inf(s : |Xn(s)| ≥ a or |Xn(s−)| ≥ a),

where α(s−) and Xn(s−) denote, respectively, the left-hand limits of α and Xn at s. Let C1(R3) denote the set of
continuous bounded functions g : R3 → R which are equal to zero in a neighborhood of zero. By Theorem IX.3.48
of JS (see also Remark IX.3.40, Theorem III.2.40 and Lemma IX.4.4 in JS and also the proof of Theorem 2.1 in
Coffman, Puhalskii and Reiman, 1998), in order to prove that Xn →d X, it suffices to check that the following
conditions hold in addition to conditions (A1)-(A5) of Theorem 3.1 :

(A6a) [δloc −R+]
R s∧Sa(α)
0

R
R3 g(x)νn(dw, dx)→P 0 for all s > 0, a > 0 and g ∈ C1(R3).

[sup− β0loc] sup0<s≤N |B0
n(s ∧ San)−B(s ∧ Sa, Xn)|→P 0 for all N ∈ N and all a > 0.

[γ0loc −R+] C̃ 0
n(s ∧ San)− C(s ∧ Sa,Xn)→P 0 for all s > 0 and a > 0.

(A7) limb→∞ limn→∞P
³ R s∧San

0

R
R3 |x|2I(|x| > b)νn(dw, dx) >

´
= 0 for all s > 0, a > 0 and > 0.

The following is a sufficient condition for [γ0loc −R+] in (A6a):

[sup− γ0] sup0<s≤N |C̃ 0
n(s)− C(s,Xn)|→P 0 for all N ∈ N.

In addition, from the definition of the class C1(R3) and Lemma 5.5.1 in Liptser and Shiryaev (1989) it follows
in a similar way to the proof of Theorem 2.1 in Coffman et. al. that the following is a sufficient condition for
[δloc −R+] :

[sup−∆] sup0<s≤N |∆Xn(s)|→P 0 for all N ∈ N, where ∆Xn(s) = Xn(s)−Xn(s−).

Note that since X is continuous, in the corresponding results in JS, ν = 0, B0 = B and C̃ 0 = C.

Conditions (A1)-(A5) of Theorem 3.1 in the present context can be verified in complete similarity to the proof
of Theorem 5.1. In particular, conditions (A2) and (A3) follow from the straightforward extension of Corollary 11.1
to the case of a three-dimensional homogenous diffusion driven by two Brownian motions.

Condition [sup−β0] (and thus [sup−β0loc]) is trivially satisfied since B0
n(s) = 0, s ≥ 0, and Bn(s,Xn) = 0, s ≥ 0.

From formula (8.2) we have that Cn(s,Xn) = (
˜̃C
ij

n (s))1≤i,j≤3, where

˜̃C
11

n (s) =
σ2η
n2

[ns]X
t=2

³ t−1X
i=1

i

´2
+

σ2η
n2

³ [ns]X
i=1

i

´2
(ns− [ns]) = C̃11n (s) +

σ2η
n2

³ [ns]X
i=1

i

´2
(ns− [ns]),
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˜̃C
12

n (s) =
˜̃C
21

n (s) =
σ η

n3/2

[ns]X
t=2

³ t−1X
i=1

i

´
+

σ η

n3/2

³ [ns]X
i=1

i

´
(ns− [ns]) = C̃12n +

σ η

n3/2

³ [ns]X
i=1

i

´
(ns− [ns]),

˜̃C
13

n (s) =
˜̃C
31

n (s) =
σ2η
n3/2

[ns]X
t=2

³ t−1X
i=1

i

´
+

σ2η
n3/2

³ [ns]X
i=1

i

´
(ns− [ns]) = C̃13n +

σ2η
n3/2

³ [ns]X
i=1

i

´
(ns− [ns]),

˜̃C
22

n (s) = σ2s = C̃22n + σ2
ns− [ns]

n
,

˜̃C
23

n (s) =
˜̃C
32

n (s) = σ ηs = C̃23n + σ η
ns− [ns]

n
,

˜̃C
33

n (s) = σ2ηs = C̃33n + σ2η
ns− [ns]

n
.

Since, by Lemma 13.5, n−1max1≤k≤Nn

¯̄̄Pk
i=1 i

¯̄̄
→P 0 for all N ∈N, we thus have

sup
0<s≤N

¯̄
C̃11n (s)−

˜̃C
11

n (s)
¯̄
≤ max

0<k≤nN

¯̄̄σ2η
n2

³ kX
i=1

i

´2 ¯̄̄
→P 0,

sup
0<s≤N

¯̄
C̃12n (s)−

˜̃C
12

n (s)
¯̄
= sup
0<s≤N

¯̄
C̃21n (s)−

˜̃C
21

n (s)
¯̄
≤ max
0<k≤nN

¯̄̄ σ η

n3/2

³ kX
i=1

i

´¯̄̄
→P 0,

sup
0<s≤N

¯̄
C̃13n (s)−

˜̃C
13

n (s)
¯̄
= sup
0<s≤N

¯̄
C̃31n (s)−

˜̃C
31

n (s)
¯̄
≤ max
0<k≤nN

¯̄̄ σ2η
n3/2

³ kX
i=1

i

´¯̄̄
→P 0

for all N ∈ N. In addition, evidently, sup0<s≤N
¯̄
C̃22n (s) −

˜̃C
22

n (s)
¯̄
≤ σ2/n →P 0, sup0<s≤N

¯̄
C̃23n (s) −

˜̃C
23

n (s)
¯̄
=

sup0<s≤N
¯̄
C̃32n (s)−

˜̃C
32

n (s)
¯̄
≤ σ η/n→P 0 and sup0<s≤N

¯̄
C̃33n (s)−

˜̃C
33

n (s)
¯̄̄
≤ σ2η/n→P 0 for all N ∈ N. The above

obviously implies that sup0<s≤N |C̃ 0
n(s)−C(s,Xn)|→P 0 for all N ∈N and thus condition [sup−γ0] (and condition

[γ0loc −R+]) is satisfied.

For all N ∈ N, we have

sup
0≤s≤N

|∆Xn(s)| ≤ max
0≤k≤nN

1√
n

¯̄̄ kX
i=1

i

¯̄̄
max

0≤k≤nN

1√
n
| k|+ max

0≤k≤nN

1√
n
| k|+ max

0≤k≤nN

1√
n
|ηk|.

By Theorem 4.1, the sequence max0≤k≤nN 1√
n

¯̄̄Pk
i=1 i

¯̄̄
is bounded in probability and max0≤k≤nN 1√

n

¯̄̄Pk
i=1 i

¯̄̄
=

OP (1). In addition, by Lemma 13.4, max0≤k≤nN 1√
n
| k| →P 0 and max0≤k≤nN 1√

n
|ηk| →P 0. Using the above, we

therefore find that sup0≤s≤N |∆Xn(s)|→P 0 for all N ∈ N. Thus, condition [sup−∆] holds and [δloc −R+] holds
in consequence.

Finally, we demonstrate that (A7) holds. It is not difficult to see that

E

Z s∧San

0

Z
R3

|x|2I(|x| > b)νn(dw, dx) ≤ E

Z s

0

Z
R3

|x|2I(|x| > b)νn(dw, dx) ≤

1

b2
E

Z s

0

Z
R3

|x|4νn(dw, dx) ≤
3

b2
E

Z s

0

Z
x=(x1,x2,x3)∈R3

(x41 + x42 + x43)νn(dw, dx).(8.6)
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Continuing, we have

E

Z s

0

Z
x=(x1,x2,x3)∈R3

(x41 + x42 + x43)νn(dw, dx) =
1

n4

[ns]X
t=2

E
³ t−1X
i=1

i

´4
Eη4t +

1

n2

[ns]X
t=2

E 4
t +

1

n2

[ns]X
t=2

Eη4t =
Eη40
n4

[ns]X
t=2

E
³ t−1X
i=1

i

´4
+ 2

E 4
0[ns]

n2
,(8.7)

and, using inequality (13.13) in Appendix 11, we find that

Eη40
n4

[ns]X
t=2

E
³ t−1X
i=1

i

´4
≤ K(E 4

0)
2

n2

[ns]X
t=2

t2 ≤ K(E 4
0)
2/n→ 0

for all s > 0. Evidently, [ns]/n2 → 0 for all s > 0, and from (8.6) and (8.7) we deduce that

E

Z s∧San

0

Z
R3

|x|2I(|x| > b)νn(dw, dx)→ 0

for all a, b, s > 0. By Chebyshev’s inequality, this evidently implies that condition (A7) holds.

Consequently, conditions (A1)-(A5) of Theorem 3.1, together with conditions (A6a) and (A7) above are satisfied
for Xn and X. The convergence (8.1) therefore holds as required. ¥

In complete similarity to the proof of relation (8.1) and to Theorem 6.1, we may deduce, with the help of
straightforward extensions of Corollary 11.1, that the following analogues of (8.1) and Theorem 6.1 hold in the
present context.

Theorem 8.2 Let f : R → R be a twice continuously differentiable function such that f 0 satisfies the growth
condition |f 0(x)| ≤ K(1 + |x|α) for some constants K > 0 and α > 0 and all x ∈ R. Suppose that {( t, ηt)}∞t=0
is a sequence of i.i.d. mean-zero random vectors such that E 2

0 = σ2, Eη20 = σ2η, E 0η0 = σ η, E| 0|p < ∞ and
E|η0|p <∞ for some with p ≥ max(6, 4α). Then

(8.8)
1√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

i

!
ηt →d

Z r

0

f(W (v))dV (v).

Further, using the Phillips-Solo device as in the proof of Theorems 5.2 and 6.1, we obtain the following general-
izations of relations (8.1) and (8.8) to the case of linear processes.

Theorem 8.3 Suppose that wt = (ut, vt)
0 is the linear process wt = G(L) t =

P∞
j=0Gj t−j , with G(L) =P∞

j=0GjL
j ,
P∞

j=1 j| |Gj | | < ∞, G(1) of full rank, and { t}∞t=0 a sequence of i.i.d. mean-zero random vectors such
that E 0

0
0 = Σ > 0 and maxiE| i0|p <∞ for some p > 4. Then

(8.9)
1

n

[nr]X
t=2

Ã
t−1X
i=1

ui

!
vt →d rλuv +

Z r

0

W (v)dV (v),

where (W,V ) =
¡
(W (s), V (s)), s ≥ 0

¢
is bivariate Brownian motion with covariance matrix Ω = G (1)ΣG (1) and

λuv =
P∞

j=1Eu0vj .

Further, if f : R → R is a twice continuously differentiable function such that f 0 satisfies the growth condition
|f 0(x)| ≤ K(1 + |x|α) for some constants K > 0 and α > 0 and all x ∈ R, and if p ≥ max(6, 4α), then

(8.10)
1√
n

[nr]X
t=2

f

Ã
1√
n

t−1X
i=1

ui

!
vt →d λuv

Z r

0

f 0(W (v))dv +

Z r

0

f(W (v))dV (v).
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Remark 8.1 Using the approach developed in the present section together with the Phillips-Solo device as in the
proof of Theorems 5.2 and 6.1, one can also obtain limit results for sample covariances of nonlinear functions of
unstandardized integrated processes and martingale differences. In particular, our approach provides an alternative
way of proving the following analogue of Theorems 8.1-8.3 for the case of integrable functions, which was first given
by Park and Phillips (1999). Suppose that ( t) satisfy assumption (D1) with p > 4 and (ut) is a linear process
ut = C(L)ηt =

P∞
j=0 cjηt−j with C(1) 6= 0 and

P∞
j=0 j|cj | <∞ generated by a sequence of i.i.d. mean-zero random

variables (ηt) independent of ( t). Assume that E|η0|q < ∞ for some q > 4 and the distribution of η0 is absolutely
continuous with respect to Lebesgue measure and has characteristic function φ(t) satisfying limt→∞ trφ(t) = 0 for
some r > 0. Let a function f : R → R be such that f2 is integrable and satisfies the Lipschitz condition |f2(x) −
f2(y)| ≤ C|x− y|k over its support for some constants C > 0 and k > 6/(q − 2). Then

(8.11)
1

n1/4

[nr]X
t=1

f
³ tX
i=1

ui

´
t →d

³
L(r, 0)

Z ∞
−∞

f2(s)ds
´1/2

W (r),

where L(r, 0) = lima→0+
1
2a

R r
0
I(|V (s)| ≤ a)ds is the local time at the origin over the interval [0, r] of a Brownian

motion V which is independent of the Brownian motion W . For a fixed r, the limit in (8.11) is mixed normal with
a mixing variate given by L.

Furthermore, using the martingale convergence approach as in this paper, one can easily obtain analogues of
relation (8.11) for the case of functions f : R × Π → R indexed by some parameter π from a compact set Π, as in
Park and Phillips (2001).

9. Unification of the limit theory of autoregression

The present section demonstrates how the martingale convergence approach developed in this paper provides a
unified formulation of the limit theory for first order autoregression, including stationary, unit root, local to unity
and (together with the conventional martingale convergence theorem) explosive settings.

Specializing (7.1), we consider here the autoregression

(9.1) yt = αyt−1 + t, t = 1, ..., n

with martingale-difference errors t that satisfy assumption (D1) with p > 4. As in (7.1), the initial condition in (9.1)
is set at t = 0 and y0 may be any Op(1) random variable, including a constant. We treat the stationary |α| < 1,
unit root α = 1, local to unity and explosive cases together in what follows and show how the limit theory for all
these cases may be formulated in a unified manner within the martingale convergence framework.

We start with the stationary and unit root cases. For r ∈ (0, 1], define the recursive least squares estimator
α̂r =

P[nr]
t=1 yt−1yt

.P[nr]
t=1 y

2
t−1, and write

(9.2)

ÃP[nr]
t=1 y

2
t−1

σ2

!1/2
(α̂r − α) =

P[nr]
t=1 yt−1 t³P[nr]

t=1 y
2
t−1σ

2
´1/2 = Xn (r)³

C̃ :0n (r)
´1/2 ,

where Xn(r) is the martingale given by

(9.3) Xn (r) =

(
1√
n

P[nr]
t=1 yt−1 t |α| < 1

1
n

P[nr]
t=1 yt−1 t α = 1

,

and C̃ 0n = (C̃0n(s), s ≥ 0) is the modified second characteristic without truncation of Xn (see JS, Ch. II, §2 and
IX.3.25):

(9.4) C̃ 0n(r) =

(
1
n

P[nr]
t=1 y

2
t−1σ

2 |α| < 1
1
n2

P[nr]
t=1 y

2
t−1σ

2 α = 1
.
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By virtue of Remark 4.1 and Theorem 8.1 we have

(9.5) Xn (r)→d X (r) =

½
σασ W (r) |α| < 1

σ2
R r
0
W (v)dW (v) α = 1

,

and

(9.6) C̃ 0n(r)→d C(r) =

½
σ2ασ

2r |α| < 1
σ4
R r
0
W (v)2dv α = 1

,

where C = (C(s), s ≥ 0) is the second predictable characteristic of the continuous martingale X and σ2α = 1/(1−α2).
Thus, ÃP[nr]

t=1 y
2
t−1

σ2

!1/2
(α̂r − α) =

Xn (r)³
C̃ :0n (r)

´1/2 →d
X (r)

(C(r))
1/2

(9.7)

=

( 1
r1/2

W (r) |α| < 1
r
0
W (v)dW (v)

( r
0
W (v)2dv)1/2

α = 1

= d

⎧⎨⎩ N (0, 1) |α| < 1
1
0
W (v)dW (v)

( 1
0
W (v)2dv)1/2

α = 1 ,

which unifies the limit theory for the stationary and unit root autoregression.

Defining the error variance estimator s2r = [nr]
−1P[nr]

t=1(yt − α̂ryt−1)
2 and noting that s2r →p σ2 for r > 0, we

have the corresponding limit theory for the recursive t− statistic

tα̂ (r) =

ÃP[nr]
t=1 y

2
t−1

s2r

!1/2
(α̂r − α) =

P[nr]
t=1 yt−1 t³P[nr]

t=1 y
2
t−1σ

2
´1/2 σsr = Xn (r)³

C̃ 0n(r)
´1/2 σsr

→ d

⎧⎨⎩ N (0, 1) |α| < 1
1
0
W (v)dW (v)

( 1
0
W (v)2dv)

1/2 α = 1 .

The theory also extends to cases where α lies in the neighborhood of unity. In complete similarity to the proof
of Theorem 8.1 and to derivations above in this section, one can show that, for α = 1 + c

n , (9.2) - ( 9.4) hold with
the same normalization as in the unit root case, but in place of (9.5) and (9.6) one now has

Xn (r) → d X (r) = σ2
R r
0
Jc(v)dW (v), α = 1 + c

n ,(9.8)

C̃0n(r) → d C(r) = σ4
R r
0
Jc(v)

2dv, α = 1 + c
n ,(9.9)

where Jc(v) =
R v
0
ec(v−s)dW (s) is a linear diffusion (Phillips, 1987b). We then haveÃP[nr]

t=1 y
2
t−1

σ2

!1/2
(α̂r − α) =

Xn (r)³
C̃ 0n(r)

´1/2 →d
X (r)

(C(r))
1/2

= d

R 1
0
Jc(v)dW (v)³R 1

0
Jc(v)2dv

´1/2 .
Further, when there are moderate deviations from unity of the form α = 1+ c

nb
for some b ∈ (0, 1) and c < 0 (as in

Phillips and Magdalinos, 2004, and Giraitis and Phillips, 2004), (9.2) continues to hold but with

Xn (r) =
1

n
(1+b)
2

P[nr]
t=1 yt−1 t, α = 1 + c

nb
, c < 0, b ∈ (0, 1) ,
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and C̃0n(r) =
1

n1+b

P[nr]
t=1 y

2
t−1σ

2. Then, Xn (r) →d X (r) =d N
³
0,

σ2

−2cr
´
and C̃ 0n(r) →p C(r) =

σ2

−2cr. Then, (9.7)

again holds with the limit process being X (r) / (C(r))
1/2

=d N (0, 1) .

Next consider the explosive autoregressive case where α > 1. In this case, (9.2) applies with Xn (r) =
1

α[nr]

P[nr]
t=1 yt−1 t and C̃ 0n(r) = α−2[nr]

P[nr]
t=1 y

2
t−1σ

2. By the martingale convergence theorem, α−tyt →a.s. Yα, where

Yα =
P∞

s=1 α
−s

s+y0, and, correspondingly, C̃ :0n (r)→a.s. C(r) = Y 2
α

σ2

α2−1 . By further application of the martingale
convergence theorem we find that

(9.10) Xn (r) =
1

α[nr]

[nr]X
t=1

yt−1 t =

[nr]X
t=1

yt−1
αt−1

t

α[nr]−(t−1)
→a.s. YαZα,

with Zα =
P∞

s=1 α
−s 0

s where (
0
s) is an i.i.d. sequence that is distributionally equivalent to ( s) . In (9.10), the limit

of Xn (r) is the product YαZα of the two independent random variables Yα and Zα. In place of (9.4) we therefore
have

Xn (r)→a.s. X (r) = YαZα.

In place of (9.5) we now have C̃ 0n(r) →a.s. C(r), where C(r) denotes C(r) = Y 2
α

P∞
s=1 α

−2sσ2 = Y 2
α

σ2

α2−1 . We
therefore find that ÃP[nr]

t=1 y
2
t−1

σ2

!1/2
(α̂r − α) =

Xn (r)³
C̃ 0n(r)

´1/2 →a.s.
X (r)

(C(r))1/2

=
YαZα

|Yα|
³

σ2

α2−1

´1/2 = sign (Yα)µα2 − 1σ2

¶1/2
Zα.

If y0 = 0 and s is i.i.d. N
¡
0, σ2

¢
, then Yα and Zα are independent N

³
0,

σ2

α2−1

´
variates and we have

ÃP[nr]
t=1 y

2
t−1

σ2

!1/2
(α̂r − α)→a.s.

X (r)³
C̃ 0n(r)

´1/2 =d N (0, 1) ,

as shown in early work by White (1958) and Anderson (1959).

In concluding this section we note that, using Remark 8.1, results for regression asymptotics with transformed
integrated regressors, such as those given in Park and Phillips (1999, 2001), may also be derived using martingale
convergence arguments. The present approach therefore provides a unified treatment of asymptotics for station-
ary autoregression, autoregression with roots at or near unity and explosive cases as well that of regression with
nonlinearly transformed integrated processes.

10. Concluding remarks

The last four sections illustrate the power of the martingale convergence approach in dealing with functional limit
theory, weak convergence to stochastic integrals and time series asymptotics for both stationary and nonstationary
processes. These examples reveal that the method encompasses much existing asymptotic theory in econometrics
and is applicable to a wide class of interesting new problems where the limits involve stochastic integrals and mixed
normal distributions. The versatility of the approach is most apparent in the unified treatment that it provides
for the limit theory of autoregression, covering stationary, unit root, local to unity and explosive cases. No other
approach to the limit theory has yet succeeded in accomplishing this unification.

While the technical apparatus of martingale convergence as it has been developed in Jacod and Shiryaev (2003)
is initially somewhat daunting, it should be apparent from these econometric implementations that the machinery
has a very broad reach in tackling asymptotic distribution problems in econometrics. Following the example of
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the applications given here, the methods may be applied directly to deliver asymptotic theory in many interesting
econometric models, including models with some roots near unity and some cointegration as well as models with
certain nonlinear forms of cointegration.

11. Appendix A1. Uniqueness and measurability hypotheses and continuity conditions for
homogenous diffusion processes.

An important class of limit semimartingales X for which the conditions of uniqueness and measurability (A2)
and (A3) of Theorem 3.1 are satisfied is given by homogenous diffusion processes with infinitesimal characteristics
satisfying quite general conditions. These conditions also assure that the uniqueness hypothesis (B2) of Theorem
3.2) holds. We review some key results from that literature here together with some new results on multivariate
diffusion processes that are used in the body of the paper.

For d,m ∈ N, let σij : Rd → R, i = 1, ..., d, j = 1, ...,m, and bi : Rd → R, i = 1, ..., d, be continuous functions
and let W̃ = (W̃ (s), s ≥ 0), W̃ (s) = (W 1(s), ...,Wm(s)), be a standard m−dimensional Brownian motion. Consider
the stochastic differential equation system dXi(s) =

Pm
j=1 σ

ij(X(s))dW j(s) + bi(X(s))ds, i = 1, ..., d, or, in matrix
form,

(11.1) (dX(s))T = σ(X(s))(dW̃ (s))T + bT (X(s))ds,

where σ : Rd → Rd×m and b : Rd → Rd are defined by σ(x) = (σij(x))1≤i≤d,1≤j≤m ∈ Rd×m and b(x) =
(b1(x), ..., bd(x)) ∈ Rd, x ∈ Rd, and yT denotes the transpose of the vector y.

Definition 11.1 (see Definition IV.1.2 in Ikeda and Watanabe, 1989, and Definition III.2.24 in JS). A solution
to (11.1) is a continuous d−dimensional process X = (X(s), s ≥ 0), X(s) = (X1(s), ..., Xd(s)) ∈ Rd, such that, for
all s ≥ 0 and all i = 1, ..., d, Xi(s)−Xi(0) =

Pm
j=1

R s
0
σij(X(v))dW j(v) +

R s
0
bi(X(v))dv. Such a solution is called

a homogenous diffusion process.

Definition 11.2 (Ikeda and Watanabe, 1989, Definition VI.1.4). It is said that uniqueness of solutions (in the
sense of probability laws) holds for (11.1) if, whenever X1 and X2 are two solutions for (11.1) such that X1(0) = z
a.s. and X2(0) = z a.s. for some z ∈ Rd, then the laws on the space D(Rd

+) of the processes X1 and X2 coincide.

For an element α = (α(s), s ≥ 0) of the Skorohod space D(Rd) and i, j = 1, ..., d, define

(11.2)
Bi(s, α) =

R s
0
bi(α(v))dv,

Cij(s, α) =
Pm

k=1

R s
0
σik(α(v))σjk(α(v))dv =

R s
0
aij(α(v))dv,

where, for x ∈ Rd and 1 ≤ i, j ≤ d,

(11.3) aij(x) =
mX
k=1

σik(x)σjk(x).

Further, let B(α) = (B(s, α), s ≥ 0) and C(α) = (C(s, α), s ≥ 0), where B(s, α) = (B1(s, α), ..., Bd(s, α)), and
C(s, α) = (Cij(s, α))1≤i,j≤d. A solutionX = (X(s), s ≥ 0) to equation (11.1) is a semimartingale with the predictable
characteristics B(X) and C(X).

The following lemma gives simple sufficient conditions for a homogenous diffusion (a solution to (11.1)) to satisfy
continuity conditions (A4) and (B3).

Lemma 11.1 If σ(x) and b(x) are continuous in x ∈ Rd, then continuity conditions (A4) and (B3) of Theorems
3.1 and 3.2 are satisfied for the mappings α→ B(s, α) and α→ C(s, α) defined in (11.2).
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Proof. The lemma immediately follows from the definition of B(s, α) and C(s, α) and continuity of the matrix-
valued function a(x) = σ(x)σT (x) = (aij(x))1≤i,j≤d, where aij(x), 1 ≤ i, j ≤ d, are defined in (11.3). ¥

For B(s, α) and C(s, α) defined above, one has, in notations (3.3) and (3.4), B(r)(s, α) = (B
1

(r)(s, α), ..., B
d

(r)(s, α))

and C(r)(s, α) = (C
1

(r)(s, α), ..., C
d

(r)(s, α)), where

B
i

(r)(s, α) = Bi(s+ r, α(r))−Bi(r, α(r)) =

Z s+r

r

bi(α(v − r))dv =

Z s

0

bi(α(v))dv = Bi(s, α),

C
ij

(r)(s, α) = Cij(s+ r, α(r))− Cij(r, α(r))

=
mX
k=1

Z s+r

r

σik(α(v − r))σjk(α(v − r))dv

=

Z s

0

σik(α(u))σjk(α(v))dv = Cij(s, α),(11.4)

i, j = 1, ..., d, that is, B(r) = B and C(r) = C for all r ≥ 0 in the uniqueness hypothesis (A2) in Theorem 3.1. Thus,
in the case where, in Theorem 3.1, the predictable characteristics of the limit semimartingale X are B(X) and C(X)
with B and C defined in (11.2) (the limit semimartingale X is a solution to differential equation (11.1)), conditions
(A2) and (A3) simplify to the following:

(A2’) Uniqueness hypothesis: Let H denote the σ−field generated by X(0) and let L0 denote the distribution
of X(0). For each z ∈ Rd, the martingale problem associated with (H,X) and (L0, B,C, ν), where X(0) = z a.s.
and ν = 0, has a unique solution Pz (see Definition 3.2).

(A3’) Measurability hypothesis: The mapping z ∈ Rd → Pz(A) is Borel for all A ∈ =.

The following Theorems 11.1 and 11.2 give sufficient conditions for a homogenous diffusion (a solution to (11.1))
to satisfy conditions (A2) and (A3) (equivalently, (A2’) and (A3’)). They follow from Theorems IV.2.3, IV.2.4 and
IV.3.1 in Ikeda and Watanabe (1989) and Theorem 5.3.1 in Durrett (1996) (see also the discussion following Theorem
IV.6.1 on p. 215 in Ikeda and Watanabe, 1989, and Theorem III.2.32 in JS).

Theorem 11.1 Conditions (A2) and (A3) of Theorem 3.1 are satisfied for a semimartingale X = (X(s), s ≥ 0)
with the predictable characteristics B(X) and C(X) and B and C defined in (11.2) if and only if uniqueness of
solutions (in the sense of probability laws) holds for (11.1).

Theorem 11.2 For any z ∈ Rd, equation (11.1) has a unique (in the sense of probability laws) solution X(z) =
(X(z)(s), s ≥ 0) with X(z)(0) = z if

(C1) σ(x) and b(x) are locally Lipschitz continuous, that is, for every N ∈ N there exists a constant KN such
that |σ(x)− σ(y)|2 + |b(x)− b(y)|2 ≤ KN |x− y|2 for all x, y ∈ Rd such that |x| ≤ N and |y| ≤ N.

(C2) There is a constant K < ∞ and a function φ(x) ≥ 0, x ∈ Rd, with lim|x|→∞ φ(x) = ∞, so that if
X = (X(s), s ≥ 0) is a solution of (11.1), then (e−Ksφ(X(s)), s ≥ 0) is a local supermartingale.

Let a(x) = σ(x)σT (x) (in the component form, a(x) = (aij(x))1≤i,j≤d, where aij(x) are defined in 11.3). Con-
dition (C2) above holds with K = K̃ if

(C3)
Pd

i=1 2xibi(x) + aii(x) ≤ K̃(1 + |x|2) for some positive constant K̃ and all x ∈ Rd.

Remark 11.1 Analysis of the proof of Theorem 3.1 in Durrett (1996) reveals that condition lim|x|→∞ φ(x) = ∞
does indeed need to be imposed in the theorem, as indicated in (C2).
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Remark 11.2 Conditions (C1) and (C2) (and, thus, (C1) and (C3)) of Theorem 11.2 guarantee existence of a
global solution to (11.1) (that is, a solution defined for all s ∈ R+) and its uniqueness. Formally, for any x ∈ R, a
solution X(x) to (11.1) with the initial condition X(x)(0) = x and the stopping times S̃n defined by S̃n = inf{s ≥ 0 :
|X(x)(s)| ≥ n}, one has that the explosion time S̃ for X(x) given by S̃ = limn→∞ Sn is infinite a.s.: S̃ =∞ a.s.

Remark 11.3 In fact, conditions (C1) and (C2) (and, thus, (C1) and (C3)) of Theorem 11.2 are sufficient not
only for existence and uniqueness of solutions for (11.1) in the sense of probability laws (Definition 11.2), but also
for pathwise uniqueness of solutions (see Ikeda and Watanabe, 1989, Ch. IV). Theorems 11.1 and 11.2 have a
counterpart, due to Stroock and Varadhan, according to which existence and uniqueness of solutions in the sense of
probability laws holds for (11.1) if the following conditions are satisfied:

(C1’) b(x) is bounded;

(C2’) a(x) = σ(x)σT (x) is bounded and continuous and everywhere invertible.

(see Theorem IV.3.3 and the discussion following Theorem IV.6.1 on p. 215 in Ikeda and Watanabe, 1989, Theorem
III.2.34 and Corollary III.2.41 in JS, and Chapters 6 and 7 in Stroock and Varadhan, 1979).

For the proof of the main results in the paper, we will need a corollary of Theorems 11.1 and 11.2 in the case
d = 2 andm = 1 (that is, in the case of a two-dimensional homogenous diffusion driven by a single Brownian motion)
and functions σ : R2 → R2×1 and b : R2 → R2 given by

(11.5)
σ(x1, x2) = (g1(x2), 1)

T ,

b(x1, x2) = (g2(x2), 0),

where gi : R → R, i = 1, 2, are some continuous functions. In other words, we consider the stochastic differential
equation

(11.6)
dX1(s) = g1(X2(s))dW (s) + g2(X2(s))ds;

dX2(s) = dW (s).

A solution X = (X(s), s ≥ 0), X(s) = (X1(s), X2(s)) to (11.6) is a two-dimensional semimartingale with the
predictable characteristics B(X) and C(X), where, for an element α = (α(s), s ≥ 0), α(s) = (α1(s), α2(s)) of the
Skorohod space D(R2

+),

(11.7)

B(s, α) =
³ R s

0
g2(α2(v))dv, 0

´
= (B1(s, α), B2(s, α)),

C(s, α) =

⎛⎝ R s
0
g21(α2(v))dv

R s
0
g1(α2(v))dvR s

0
g1(α2(v))dv s

⎞⎠ =

µ
C11(s, α) C12(s, α)
C21(s, α) C22(s, α)

¶
.

Corollary 11.1 Suppose that the conditions hold:

(C̃1) The functions g1 and g2 are locally Lipschitz continuous, that is, for every N ∈ N there exists a constant
KN such that |gi(x)− gi(y)| ≤ KN |x− y|, i = 1, 2, for all x, y ∈ R such that |x| ≤ N and |y| ≤ N ;

(C̃2) g1 and g2 satisfy the growth condition

|gi(x)| ≤ eK|x|, i = 1, 2,(11.8)

for some positive constant K and all x ∈ R.

Then, for any z ∈ R2, stochastic differential equation (11.6) has a unique solution X(z) = (X(z)(s), s ≥ 0) with
X(z)(0) = z and, thus, by Theorem 11.1, conditions (A2) and (A3) of Theorem 3.1 are satisfied for a semimartingale
X = (X(s), s ≥ 0), X(s) = (X1(s), X2(s)) with the predictable characteristics B(X) and C(X) and B and C defined
in (11.7).
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Proof. Clearly, under the assumptions of the corollary, condition (C1) of Theorem 11.2 is satisfied for the
mappings σ and b defined in (11.5). Let us show that condition (C2) of Theorem 11.2 is satisfied with A = 2+ 2K2

and φ(x1, x2) = x21 + e2Kx2 + e−2Kx2 . Clearly, lim|(x1,x2)|→∞ φ(x1, x2) = ∞. Similar to the proof of Theorem 5.3.1
in Durrett (1996), by Itô’s formula we have that

d
h
e−Asφ(X1(s), X2(s))

i
= e−As

h
−A

³
X2
1 (s) + e2KX2(s) + e−2KX2(s)

´
+2X1(s)g2(X2(s)) + g21(X2(s)) + 2K

2
³
e2KX2(s) + e−2KX2(s)

´i
ds

+e−As
h
2X1(s)g1(X2(s)) + 2K

³
e2KX2(s) − e−2KX2(s)

´i
dW (s).

Since

−A
³
X2
1 (s) + e2KX2(s) + e−2KX2(s)

´
+ 2X1(s)g2(X2(s)) + g21(X2(s)) + 2K

2
³
e2KX2(s) + e−2KX2(s)

´
=

−AX2
1 (s) + 2X1(s)g2(X2(s)) + g21(X2(s))− 2

³
e2KX2(s) + e−2KX2(s)

´
≤

(1−A)X2
1 (s) + g22(X2(s)) + g21(X2(s))− 2

³
e2KX2(s) + e−2KX2(s)

´
≤ 0

by condition (C̃2), we have that the process (e−sφ(X(s)), s ≥ 0) is a local supermartingale. Consequently, (C2)
indeed holds and, by Theorems 11.1 and 11.2, the proof is complete. ¥

Remark 11.4 It is important to note that condition (C2’) of Remark 11.3 is not satisfied for stochastic differential
equation (11.6) since, as it is easy to see, the matrix a(x) = σ(x)σT (x) is degenerate for σ defined in (11.5). The
same applies, in general, to condition (C3) of Theorem 11.2. Therefore, the counterpart to Theorems 11.1 and 11.2
given by Remark 11.3 and, in general, linear growth condition (C3) cannot be employed to justify uniqueness and
measurability hypothesis of Theorem 3.1 for the limit martingale X with the predictable characteristics B(X) and
C(X) and B and C defined in (11.7). This is crucial in the proof of convergence to stochastic integrals in Sections
5 and 6 in the paper, where the limit semimartingales are solutions to (11.6), and we employ the result given by
Corollary 11.1 to justify that conditions (A2) and (A3) of Theorem 3.1 hold for them.

The following is a straightforward corollary of Lemma 11.1 in the case of stochastic equation (11.6).

Corollary 11.2 Continuity conditions (A4) and (B3) of Theorems 3.1 and 3.2 hold for the mappings α→ B(s, α)
and α → C(s, α) defined in (11.7) if the functions g1(x) and g2(x) are continuous (in particular, (A4) and (B3)
hold under assumption of local Lipschitz continuity (C̃1) of Corollary 11.1).

12. Appendix A2. Embedding of a martingale into a Brownian motion

The following lemma gives the Skorohod embedding of martingales and a strong approximation to their quadratic
variation. It was obtained in Park and Phillips (1999) in the case of the space D([0, 1]) (see also Theorem A.1 in
Hall and Heyde, 1980, Phillips and Ploberger, 1999, and Park and Phillips, 2001). The argument in the case of the
space D(R+) is the same as in Park and Phillips (1999).

Lemma 12.1 (Park and Phillips,1999, Lemma 6.2). Let assumption (D1) hold. Then there exists a probability
space supporting a standard Brownian motion W and an increasing sequence of nonnegative stopping times (Tk)k≥0
with T0 = 0 such that

(12.1)
1√
n

tX
k=1

k =d W
³Tt
n

´
,
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t ∈ N, and

(12.2) max
1≤t≤Nn

|Tt − σ2t|
nq

→a.s. 0,

(12.3) sup
0≤r≤N

¯̄̄T[nr]
n
− σ2r

¯̄̄
=a.s. o(n

q−1)

for all N ∈ N and any q > max(1/2, 2/p). In addition to the above, Tt is Et−measurable and, for all β ∈ [1, p/2],

E((Tt − Tt−1)
β|Et−1) ≤ KβE(| t|2β |=t−1) a.s.

for some constant Kβ depending only on β,

E(Tt − Tt−1|Et−1) = σ2 a.s.,

where Et is the σ−field generated by ( k)
t
k=1 and W (s) for 0 ≤ s ≤ Tt.

13. Appendix A3. Auxiliary lemmas

Lemma 13.1 (Billingsley, 1968, Theorem 4.1). Let (Ω,=, P ) be a probability space and let (E, E) be a metric space
with a metric ρ. Let Xn, Yn, n ≥ 1, and X be E−valued random elements on (Ω,=, P ) such that Xn →d X and
ρ(Xn, Yn)→P 0. Then Yn → X.

For α, β ∈ D(R+), let α◦β ∈ D(R+) denote the composition of α and β, that is, the function (α◦β)(s) = α(β(s)),
s ≥ 0.

Lemma 13.2 If Xn →d X and Yn →P Y, where X = (X(s), s ≥ 0) and Y = (Y (s), s ≥ 0) are continuous processes,
then Xn ◦ Yn →d X ◦ Y.

For the proof of Lemma 13.2, we need the following well-known result. Let ρ(x, y) denote the Skorohod metric
on D(R+) and let C(R+) denote the space of continuous functions on R+.

Lemma 13.3 (Proposition VI.1.17 in JS; see also Theorem 15.12 in HWY). Let xn ∈ D(R+), n ≥ 1, and x ∈
D(R+). Then

(13.1) sup
0≤s≤N

|xn(s)− x(s)|→ 0

for all N ∈ N implies that

(13.2) ρ(xn, x)→ 0.

If, in addition, x ∈ C(R+), then relations (13.1) and (13.2) are equivalent.

Proof of Lemma 13.2. Relations Xn →d X and Yn →P Y imply (see Theorem 4.4 in Billingsley, 1968) that

(13.3) (Xn, Yn)→d (X,Y ).

It is not difficult to see that the mapping ψ : D(R2
+) → D(R+) defined by ψ(α, β) = α ◦ β for (α, β) ∈ D(R2

+)
is continuous at (α, β) such that α, β ∈ C(R+). Indeed suppose that, for the Skorohod metric ρ, ρ(αn, α) → 0 and
ρ(βn, β)→ 0, where αn, βn ∈ D(R+), n ≥ 1, and α, β ∈ C(R+). We have that, for any N ∈ N,

(13.4) sup
0≤s≤N

|αn ◦ βn(s)− α ◦ β(s)| ≤ sup
0≤s≤N

|αn ◦ βn(s)− α ◦ βn(s)|+ sup
0≤s≤N

|α ◦ βn(s)− α ◦ β(s)|
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Using Lemma 13.3 with xn = βn and x = β and continuity of β we get that, for all n ≥ 1, sup0≤s≤N |βn(s)| ≤
sup0≤s≤N |βn(s) − β(s)| + sup0≤s≤N |β(s)| ≤ K(N) < ∞. Consequently, from the same lemma with xn = αn and
x = α it follows that, for all N ∈ N,

(13.5) sup
0≤s≤N

|αn ◦ βn(s)− α ◦ βn(s)| ≤ sup
0≤s≤K(N)

|αn(s)− α(s)|→ 0.

Using again Lemma 13.3 with xn = βn and x = β and uniform continuity of α, we also get that, for all N ∈ N,

(13.6) sup
0≤s≤N

|α ◦ βn(s)− α ◦ β(s)|→ 0.

Relations (13.4)-(13.6) imply that (13.1) holds with xn = αn ◦ βn and x = α ◦ β and thus, by Lemma 13.3,
ρ(αn ◦ βn, α ◦ β)→ 0, as required.

Continuity of ψ and property (13.3) imply, by continuous mapping theorem (see JS, VI.3.8, and Billingsley, 1968,
Corollary 1 to Theorem 5.1 and the discussion on pp. 144-145) that Xn ◦ Yn = ψ(Xn, Yn)→d ψ(X,Y ) = X ◦ Y. ¥

Lemma 13.4 Let p > 0. Suppose that a sequence of identically distributed random variables (ξt)t∈N0 is such that
E|ξ0|p <∞. Then

(13.7) n−1/p max
0≤k≤nN

|ξk|→P 0

for all N ∈ N.

Proof. Evidently, (13.7) is equivalent to n−1max0≤k≤nN |ξk|p →P 0. Similar to the discussion preceding Theo-
rem 3.4 in Phillips and Solo (1992) and the discussion in Hall and Heyde (1980, p. 53) we get that this relation, in
turn, is equivalent to

Jn =
1

n

NnX
k=1

|ξk|pI(|ξk|p > nδ)→P 0

for all δ > 0. The latter property holds because EJn ≤ NE|ξ0|pI(|ξ0|p > nδ) → 0 by the dominated convergence
theorem (see Theorem A.7 in Hall and Heyde, 1980) since E|ξ0|p <∞. ¥

As it is well known, the conclusion of Lemma 13.7 can be strengthened in the case of martingales. In particular,
the following lemma holds.

Lemma 13.5 Suppose that (ηtn,=t)t∈N, n ≥ 1, is an array of martingale-difference sequences with max1≤t≤nEη2tn
≤ L for some constant L > 0 and all n ∈ N. Then

n−1 max
1≤k≤Nn

¯̄̄ kX
t=1

ηtn

¯̄̄
→P 0

for all N ∈ N.

Proof. By Kolmogorov’s inequality for martingales (Hall and Heyde, 1980, Corollary 2.1) we get that, for all
δ > 0,

P
³
n−1 max

1≤k≤Nn

¯̄̄ kX
t=1

ηtn

¯̄̄
> δ

´
≤ E

³ NnX
t=1

ηtn

´2
/(δ2n2) ≤ N max

1≤t≤Nn
Eη2tn/n ≤ NL/n→ 0,

as required. ¥

Lemma 13.6 For the random variables ˜t defined in the proof of Theorem 4.2, one has E |̃ 0|p <∞ if ( t)t∈Z satisfy
assumption (D2) with p > 2.
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Proof. Since E| 0|p < ∞, by the triangle inequality for the Lp−norm || · ||p = (E| · |p)1/p and Lemma 2.1 in
Phillips and Solo (1992) we have ||̃ 0||p = ||

P∞
j=0 c̃j −j ||p ≤ || 0||p

P∞
j=0 |c̃j | <∞. ¥

Lemma 13.7 For gjk defined in the proof of Theorem 4.4, one has
P∞

k=0

P∞
j=k+1 |grj| <∞ for all r if

P∞
j=1 jc

2
j <

∞.

Proof. Using change of summation indices and Hölder inequality, we have that

∞X
k=0

∞X
j=k+1

|grj | =
∞X
k=0

∞X
j=k+1

|cj ||cj+r| =
∞X
j=1

j|cj ||cj+r| =

∞X
j=1

j1/2|cj |j1/2|cj+r| ≤
³ ∞X
j=1

j|cj |2
´1/2³ ∞X

j=1

j|cj+r|2
´1/2

<∞,

as required. ¥

Lemma 13.8 For the random variables ũat and ũbt defined in the proof of Theorem 4.4, one has Eu2a0 < ∞ and
Eu2b0 <∞ if ( t)t∈Z satisfy assumption (D2) with p > 2.

Proof. The property Eu2b0 <∞ holds by Lemma 5.9 in Phillips and Solo (1992). By the triangle inequality for

the L2−norm || · ||2 = (E(·)2)1/2 and Lemma 13.7, ||ũa0||2 =
¯̄̄¯̄̄P∞

k=0 g̃mk
2
−k

¯̄̄¯̄̄
2
≤ || 20||2

P∞
k=0

P∞
j=k+1 |gmj | < ∞

Consequently, Eũ2a0 = O
³P∞

k=0

P∞
j=k+1 |gmj |

´2
<∞. ¥

Lemma 13.9 For h̃kr defined in the proof of Theorem 5.2, one has
P∞

r=0

P∞
k=0 |h̃kr| <∞ if

P∞
j=1 j|cj | <∞.

Proof. By definition of h̃kr, it suffices to prove that

(13.8)
∞X
r=0

∞X
k=0

∞X
j=k+1

|cj ||c̃j+r| <∞

and

(13.9)
∞X
r=0

∞X
k=0

∞X
j=k+1

|c̃j ||cj+r| <∞.

Using change of summation indices, we have that

(13.10)
∞X
r=0

∞X
k=0

∞X
j=k+1

|cj ||c̃j+r| ≤
∞X
r=0

∞X
j=1

j|cj ||c̃j+r| =
∞X
j=1

j|cj |
∞X
k=j

|c̃k| ≤
³ ∞X
j=1

j|cj |
´³ ∞X

k=1

|c̃k|
´
<∞,

∞X
r=0

∞X
k=0

∞X
j=k+1

|c̃j ||cj+r| ≤
∞X
r=0

∞X
j=1

j|c̃j ||cj+r| ≤
∞X
r=0

∞X
j=1

j|cj+r|
∞X

k=j+1

|ck| ≤

∞X
r=0

∞X
j=1

|cj+r|
∞X

k=j+1

k|ck| ≤
³ ∞X
j=1

∞X
s=j

|cs|
´³ ∞X

k=1

k|ck|
´
<∞(13.11)

because, as in Lemma 2.1 in Phillips and Solo (1992) and its proof,
P∞

j=1 j|cj | < ∞ implies that
P∞

j=1 |c̃j | < ∞
and, even stronger,

P∞
j=1

P∞
s=j |cs| <∞. ¥
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Lemma 13.10 For the random variables w̃ak and w̃bk defined in the proof of Theorem 5.2, one has E|w̃a0|p/2 <∞
and E|w̃b0|p/2 <∞ if ( t)t∈Z satisfy assumption (D2) with p > 2 and

P∞
j=1 j|cj | <∞.

Proof. Denote q = p/2. Since E| 0|p < ∞, by the triangle inequality for the Lq−norm || · ||q = (E| · |q)1/q and
Lemma 13.9, we get

||w̃a0||q =
¯̄̄¯̄̄ ∞X
k=0

h̃k0
2
−k

¯̄̄¯̄̄
q
≤ || 0||p

∞X
k=0

|h̃k0| <∞,

||w̃b0||q ≤
∞X
r=1

||h̃r(L) 0 −r||q ≤ (|| 0||q)2
∞X
r=1

∞X
k=0

|h̃kr| <∞.

Consequently, E|w̃a0|q <∞ and E|w̃b0|q <∞, as required. ¥

Lemma 13.11 For the random variables ηht−1 defined in the proof of Theorem 5.2, one has E(η−1)
4 <∞ if ( t)t∈Z

satisfy assumption (D2) with p ≥ 4 and
P∞

j=1 j|cj | <∞.

Proof. As in Lemma 2.1 in Phillips and Solo (1992) and its proof,
P∞

j=1 j|cj | < ∞ implies that
P∞

j=1 |c̃j | <
∞ and, even stronger,

P∞
j=1

P∞
s=j |cs| < ∞. Therefore, under the assumptions of the theorem,

P∞
r=1 |hr(1)| ≤P∞

r=1

P∞
k=0 |ck||c̃k+r|+

P∞
r=1

P∞
k=0 |c̃k||ck+r| ≤ 2

¡P∞
j=0 |cj |

¢¡P∞
j=0 |c̃j |

¢
<∞. Using the triangle inequality for the

L4−norm || · ||4 = (E| · |4)1/4, we get, therefore,

||η−1||4 =
¯̄̄¯̄̄ ∞X
r=1

hr(1) −r

¯̄̄¯̄̄
4
≤ || 0||4

∞X
r=1

|hr(1)| <∞.

Consequently, E( h
−1)

4 = O
¡P∞

r=1 hr(1)
¢
<∞. ¥

Lemma 13.12 Under the assumptions of Theorem 6.1, one has

max
1≤k≤n

E
³
f 0
³ 1√

n

kX
t=1

ut

´´4
≤ L

for some constant L > 0 and all n ∈N.

Proof. The growth condition |f 0(x)| ≤ K(1+ |x|α) evidently implies that (f 0(x))4 ≤ K(1+ x4α). Consequently,
using (4.6), we get that, for all k,

³
f 0
³ 1√

n

kX
t=1

ut

´´4
≤ K

³
1 +

¯̄̄ 1√
n

kX
t=1

ut

¯̄̄4α´
= K

³
1 +

¯̄̄C(1)√
n

kX
t=1

t +
˜0√
n
− ˜k√

n

¯̄̄4α´
≤

K
³
1 +

¯̄̄C(1)√
n

kX
t=1

t

¯̄̄4α
+
¯̄̄ ˜0√

n

¯̄̄4α
+
¯̄̄ ˜k√

n

¯̄̄4α´
.

Thus, for some constant K > 0,

(13.12) max
1≤k≤n

E
³
f 0
³ 1√

n

kX
t=1

ut

´´4
≤ K

³
1 + max

1≤k≤n
E
¯̄̄C(1)√

n

kX
t=1

t

¯̄̄4α
+E

¯̄̄ ˜0√
n

¯̄̄4α´
.

Since, by the assumptions of the theorem, E| 0|p < ∞ for some p ≥ max(6, 4α), we get, by Lemma 13.4, that
E |̃ 0|4α <∞. Since for i.i.d. random variables ηt, t ≥ 1, and p > 2,

E
¯̄̄ kX
t=1

ηt

¯̄̄p
≤ Knp/2E|η1|p(13.13)
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(see, e.g., Dharmadhikari, Fabian and Jogdeo, 1968, and also de la Peña, Ibragimov and Sharakhmetov, 2003), we
also conclude, using Jensen’s inequality, that

max
1≤k≤n

E
¯̄̄C(1)√

n

kX
t=1

t

¯̄̄4α
≤
³
E
¯̄̄C(1)√

n

kX
t=1

t

¯̄̄p´p/(4α)
≤ K(E| 0|p)4α/p

for some constant K > 0. These estimates evidently imply, together with (13.12), that bound (13.12) indeed holds.
¥
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