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Abstract

This paper considers tests of the parameter on endogenous variables in an instru-
mental variables regression model. The focus is on determining tests that have some
optimal power properties. We start by considering a model with normally distrib-
uted errors and known error covariance matrix. We consider tests that are similar
and satisfy a natural rotational invariance condition. We determine tests that maxi-
mize weighted average power (WAP) for arbitrary weight functions among invariant
similar tests. Such tests include point optimal (PO) invariant similar tests.

The results yield the power envelope for invariant similar tests. This allows one
to assess and compare the power properties of existing tests, such as the Anderson-
Rubin, Lagrange multiplier (LM), and conditional likelihood ratio (CLR) tests, and
new optimal WAP and PO invariant similar tests. We Þnd that the CLR test is
quite close to being uniformly most powerful invariant among a class of two-sided
tests. A new unconditional test, P∗, also is found to have this property. For one-
sided alternatives, no test achieves the invariant power envelope, but a new test�the
one-sided CLR test�is found to be fairly close.

The Þnite sample results of the paper are extended to the case of unknown error
covariance matrix and possibly non-normal errors via weak instrument asymptotics.
Strong instrument asymptotic results also are provided because we seek tests that
perform well under both weak and strong instruments.

Keywords: Instrumental variables regression, invariant tests, optimal tests, similar
tests, weak instruments, weighted average power.

JEL ClassiÞcation Numbers: C12, C30.



1 Introduction

In instrumental variables regression with a single included endogenous regressor,
instruments (IV�s) are said to be weak when the partial correlation between the
IV�s and the included endogenous regressor is small, given the included exogenous
regressors. The effect of weak IV�s is to make the standard asymptotic approximations
to the distributions of estimators and test statistics poor. Consequently, hypothesis
tests with conventional asymptotic justiÞcations, such as the Wald test based on the
two stage least squares estimator, can exhibit large size distortions.

A number of papers have proposed methods for testing hypotheses about the co-
efficient, β, on the included endogenous regressors that are valid even when IV�s are
weak. Except for the important early contribution by Anderson and Rubin (1949)
(AR), most of this literature is recent. It includes Staiger and Stock (1997), Zivot,
Startz, and Nelson (1998), Wang and Zivot (1998), Dufour and Jasiak (2001), Kleiber-
gen (2002), Moreira (2001, 2003), Dufour and Taamouti (2003), and Startz, Zivot, and
Nelson (2003). None of these contributions develops a satisfactory theory of optimal
inference in the presence of potentially weak IV�s. Absent such a theory, comparisons
of power to date between competing valid tests are numerical and incomplete.2

The purpose of this paper is to develop a theory of optimal hypothesis testing
when IV�s might be weak, and to use this theory to develop practical valid hypothesis
tests that are nearly optimal whether IV�s are weak or strong. We adopt the natural
invariance condition that inferences are unchanged if the IV�s are transformed by an
orthogonal matrix, e.g., changing the order in which the IV�s appear. The resulting
class of invariant tests includes all tests proposed for this problem of which we are
aware, except those that entail potentially dropping an IV. We focus on the practi-
cally important case of a single endogenous variable (but some results for multiple
endogenous variables are provided).

We show that there does not exist a uniformly most powerful invariant (UMPI)
one-sided or two-sided test of H0 : β = β0. Our numerical results, however, demon-
strate that there are tests that are very nearly optimal, in the sense that their power
functions are numerically very close to the power envelope uniformly in the para-
meter space. In particular, the conditional likelihood ratio (CLR) test proposed by
Moreira (2003) is numerically nearly UMPI, as is a new (unconditional) test, the P∗

test introduced below, which is motivated by the theory of point optimal invariant
testing. We recommend the use of the CLR or P∗ test in empirical practice.

The optimality results are developed for strictly exogenous IV�s, linear structural
and reduced form equations, and homoskedastic Gaussian errors with a known covari-
ance matrix. For this model, we obtain the sufficient statistics, the maximal invariant
(under orthogonal transformations of the IV�s), and the distribution of the maximal
invariant. We determine necessary and sufficient conditions for invariant tests to be
similar. For a one-sided alternative hypothesis, we derive optimal weighted average
power (WAP) invariant similar tests. This gives, as a special case, the Gaussian

2See Stock, Yogo, and Wright (2002), Dufour (2003), and Hahn and Hausman (2003) for surveys
of research on weak IV�s. Also, see the recent paper by Forchini and Hillier (2003).
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power envelope for one-sided point-optimal invariant similar (POIS) tests and the
result that there does not exist a UMPI test, either one- or two-sided.

We propose a new one-sided invariant similar test, the one-sided CLR test (CLR1).
Although the one-sided POIS tests have non-monotonic power functions and are
undesirable for practical use, the CLR1 test is found to have a power function that
is typically not too far below the one-sided Gaussian power envelope, making it an
attractive choice for one-sided testing.

In addition to similar tests, we consider optimal non-similar tests for one-sided al-
ternatives using the least-favorable distribution approach described, e.g., in Lehmann
(1986). Although the nonsimilar and similar tests differ in theory, we Þnd that the
power envelopes of invariant similar and nonsimilar tests are numerically very close.

We consider four approaches to developing tractable families of two-sided invariant
similar tests and two-sided power envelopes. The Þrst consists of WAP tests that are
symmetric in β around the null value β0. These tests have the undesirable feature of
not being consistent against both alternatives when the IV�s are strong. So, we do
not pursue such tests further. The second approach is to consider WAP tests that
are asymptotically efficient two-sided tests when the IV�s are strong. This includes a
class of POIS tests based on two-point weight functions. The third is to consider tests
that satisfy an additional invariance condition that seems natural in the two-sided
problem. The fourth is to consider tests that are unbiased against local alternatives.

We prove that the power envelopes for the second and third approaches to two-
sided tests are identical. Moreover, as a numerical matter, these power envelopes
are very close to those of locally unbiased tests. We refer to the power envelopes
based on the second and third approaches as two-sided asymptotically efficient (AE)
power envelopes. Although no UMPI test exists among this class, we Þnd that as
a numerical matter the power of the CLR test is uniformly very close to the power
envelope for this class, and in this sense the CLR test is approximately UMPI. This
is one of the major Þndings of the paper.

It is known that the power function of the Lagrange multiplier (LM) test is not
monotonic. Our theoretical results indicate why this is so. Our numerical results
indicate that its power is never above that of the CLR test, and in some cases is far
below. Hence, the CLR test dominates the LM test in terms of power and we do not
recommend the LM test for practical use.

We also consider POI nonsimilar two-sided tests (subject to the additional invari-
ance condition as in the third approach). These tests generally have power functions
close to the power envelope. So, following King (1988), we examine the performance
of some speciÞc POI nonsimilar tests. One such test, which we call the P∗ test, is
found to be approximately as powerful as the CLR test. Because the P∗ test does
not entail using a table of conditional critical values, researchers might Þnd it more
convenient than the CLR test in practice.

The foregoing results are developed treating the reduced-form error covariance
matrix as known. In practice, this matrix is unknown and must be estimated. Us-
ing Staiger-Stock (1997) weak-IV asymptotics, we show that the exact distributional
results extend, in large samples, to feasible versions of these statistics using an esti-
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mated covariance matrix and possibly non-normal errors. We show that these Þnite-
sample power envelopes derived with known covariance matrix are also the asymptotic
Gaussian power envelopes with unknown covariance matrix, under weak-IV asymp-
totics. In a Monte Carlo study of the LM, CLR, AR, and P∗ tests with estimated
covariance matrices, we Þnd that sample sizes of 100-200 observations are sufficient
for (i) the size of these tests to be well controlled using weak-IV asymptotic critical
values and (ii) the weak-IV asymptotic power functions to be good approximations
to the Þnite-sample power functions.

This �plug-in� approach to the reduced form covariance matrix makes it possible
to introduce versions of the AR, LM, CLR, CLR1, POIS, and WAP test statistics that
are robust to heteroskedasticity or, for time series applications, to heteroskedasticity
and autocorrelation. We show that the weak-IV asymptotic distributions of these
robust statistics in the presence of heteroskedasticity (or heteroskedasticity and au-
tocorrelation) are those derived in the exact Gaussian model with known covariance
matrix.

Finally, we obtain asymptotic properties of the tests considered in this paper
when the IV�s are strong. These results are essential for determining the class of
WAP tests that are asymptotically efficient under strong IV�s, which lies behind the
second approach to determining two-sided tests. The LM and CLR tests are shown
to be asymptotically efficient with strong IV�s against local alternatives, although
(as is known) the AR test is not. Necessary and sufficient conditions are determined
for WAP invariant similar tests based on two-point weight functions to be AE under
strong IV asymptotics. Such tests determine the two-sided AE power envelope. The
LM, CLR, CLR1, 2-sided AE POIS and two-sided AE WAP tests are also shown to
be consistent against Þxed alternatives under strong IV�s. Curiously, one-sided POIS
tests are not consistent against Þxed alternatives, and can reject with asymptotic
probability zero against alternatives on the �correct� side but with probability one
against alternatives on the �wrong� side. Theoretical results explain why this occurs.

Numerous additional numerical results that supplement those given in Sections 8
and 12 below are provided in Andrews, Moreira, and Stock (2004) (hereafter denoted
AMS-04).

Other papers that consider optimal testing in the exact Gaussian IV regression
model are Moreira (2001) and Chamberlain (2003). Moreira (2001) develops a theory
of optimal one-sided testing without an invariance condition and uses this to develop
one-sided power envelopes. However, without the invariance condition the family of
tests is too large to obtain nearly optimal tests.

Chamberlain (2003) considers minimax decision procedures (including estimators
and tests) in the normal model with known covariance matrix that is considered in
this paper. His results for tests show that the imposition of the invariance condition
considered here does not affect the minimax decision problem. Hence, his results
provide a formal minimax justiÞcation for the restriction to invariant tests that is
adopted in this paper. Chamberlain (2003) does not impose a similarity condition and
does not consider restrictions to tests with two-sided properties (although one can do
so via the choice of prior employed), so the class of tests he considers are analogous to
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the one-sided non-similar tests considered in Section 7.1 below. Chamberlain (2003)
does not explore the properties of the tests in this class, such as their relative power
and the distance of their power functions from the power envelope, which are key
items of interest here.

The remainder of this paper is organized as follows. Section 2 introduces the
model which has one endogenous regressor variable, multiple exogenous regressor
variables, multiple IV�s, normally distributed errors, and known covariance matrix.
This section determines sufficient statistics for this model. Section 3 introduces a
natural invariance condition concerning orthogonal rotations of the IV matrix. It also
provides necessary and sufficient conditions for invariant tests to be similar. Section 4
speciÞes a WAP criterion and determines invariant similar tests that maximize WAP.
Section 5 determines the power envelope for one-sided tests by determining the class
of POIS tests. Section 6 speciÞes optimal WAP tests for two-sided alternatives.
Section 7 determines optimal invariant non-similar WAP tests. Section 8 presents
numerical results for the tests considered in earlier sections. Section 9 adjusts the
tests considered in Sections 4 and 6 to allow for an estimated error covariance matrix
and analyzes the asymptotic properties of these tests under weak IV�s and possibly
non-normal errors. This Section also introduces versions of these tests, as well as
versions of the AR, LM, CLR, and CLR1 tests, that are robust to heteroskedasticity
and other versions that are robust to both heteroskedasticity and autocorrelation.
Section 10 provides a weak IV asymptotic optimal WAP result for the tests introduced
in Section 9 under the assumption of iid normal errors and unknown covariance matrix
Ω. Section 11 provides the asymptotic properties of WAP tests under strong IV�s when
the error covariance matrix is unknown and the errors may be non-normal. Section
12 presents simulation results for the tests introduced in Section 9 for models with an
unknown covariance matrix. Section 13 determines tests that maximize WAP in an
IV regression model that is the same as in Section 2, but with multiple endogenous
regressor variables. An Appendix contains proofs of the results.

2 Model and Sufficient Statistics

In this section, we consider a model with one endogenous variable, multiple ex-
ogenous variables, multiple IV�s, and errors that are normal with known covariance
matrix. In latter sections, we allow for non-normal errors with unknown covariance
matrix and multiple endogenous variables.

The model consists of a structural equation and a reduced-form equation:

y1 = y2β +Xγ1 + u,

y2 = !Zπ +Xξ1 + v2, (2.1)

where y1, y2 ∈ Rn, X ∈ Rn×p, and !Z ∈ Rn×k are observed variables; u, v2 ∈ Rn
are unobserved errors; and β ∈ R, π ∈ Rk, γ1 ∈ Rp, and ξ1 ∈ Rp are unknown
parameters. The matrices X and !Z are taken to be Þxed (i.e., non-stochastic) and
[X : !Z] has full column rank p+k. The n×2 matrix of errors [u:v2] is assumed to be
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iid across rows with each row having a mean zero bivariate normal distribution with
nonsingular covariance matrix.

Our interest is in testing the null hypothesis

H0 : β = β0. (2.2)

The alternative hypothesis of interest may be one-sided, H1 : β > β0 or H1 : β < β0,
or two-sided, H1 : β "= β0.

First, we rewrite the reduced-form equation in such a way that inference on β can
be rendered free of the nuisance parameters (γ1, ξ1). The idea is to transform the IV
matrix !Z so that the transformed IV matrix Z and the exogenous regressor matrix
X are orthogonal. We write

y2 = Zπ +Xξ + v2, where

Z = MX
!Z, MX = In − PX , PX = X(X "X)−1X ", and

ξ = ξ1 + (X
"X)−1X " !Zπ. (2.3)

Note that Z "X = 0.
Next, we consider the two reduced-form equations that correspond to the struc-

tural equation in (2.1) and the reduced-form equation in (2.3). In particular, substi-
tution of the latter into the former gives

y1 = Zπβ +Xγ + v1

y2 = Zπ +Xξ + v2, where

γ = γ1 + ξβ and v1 = u+ v2β. (2.4)

The reduced-form errors [v1:v2] are iid across rows with each row having a mean zero
bivariate normal distribution with 2 × 2 nonsingular covariance matrix Ω. For the
purposes of obtaining exact optimal tests, the model we study is the two equation
reduced-form model given in (2.4) with known nonsingular covariance matrix Ω.
As shown below, asymptotically valid tests can be obtained by replacing Ω by an
estimator when Ω is unknown.

The two equation reduced-form model can be written in matrix notation as

Y = Zπa" +Xη + V, where
Y = [y1 :y2], V = [v1 :v2],

a = (β, 1)", and η = [γ : ξ]. (2.5)

The distribution of Y ∈ Rn×2 is multivariate normal with mean matrix Zπa" +Xη,
independence across rows, and covariance matrix Ω for each row. The parameter
space for θ = (β,π", γ", ξ")" is taken to be R×Rk ×Rp ×Rp.

Because the multivariate normal is a member of the exponential family of distrib-
utions, low dimensional sufficient statistics are available for the parameter θ and the
sub-vector (β,π")":

5



Lemma 1 For the model in (2.5),
(a) Z "Y and X "Y are sufficient statistics for θ,
(b) Z "Y and X "Y are independent,
(c) X "Y has a multivariate normal distribution that does not depend on (β,π")",
(c) Z "Y has a multivariate normal distribution that does not depend on η = [γ :ξ],
and
(d) Z "Y is a sufficient statistic for (β,π")".

Our interest is in tests of the null hypothesis H0 : β = β0. In consequence, there is
no loss (in terms of attainable power functions) in considering tests that are based on
the sufficient statistic Z "Y for (β,π")". Note that the nuisance parameters η = [γ:ξ] are
eliminated from the problem when one considers tests based on Z "Y . The nuisance
parameter π remains.

As shown in Moreira (2003), the k × 2 sufficient statistic Z "Y can be simpliÞed
without loss of information by applying a one-to-one transformation that yields (i)
the Þrst transformed column to be independent of the nuisance parameter π under
the null, (ii) independence of the two transformed columns (under the null and the
alternative), and (iii) independence across rows in each column (under the null and the
alternative). Condition (i) is achieved by using a linear combination of the columns
of Y that has zero mean when β = β0. Condition (ii) is achieved by taking the
second transformed column of Z "Y to be a linear combination of the columns of Z "Y
that is uncorrelated with the Þrst transformed column. Condition (iii) is achieved by
rotating each of the transformed columns so that their covariance matrices equal Ik.
In particular, we consider3

S = (Z "Z)−1/2Z "Y b0 · (b"0Ωb0)−1/2 and
T = (Z "Z)−1/2Z "Y Ω−1a0 · (a"0Ω−1a0)−1/2, where
b0 = (1,−β0)" and a0 = (β0, 1)". (2.6)

The means of S and T depend on the following quantities:

µπ = (Z "Z)1/2π ∈ Rk,
cβ = (β − β0) · (b"0Ωb0)−1/2 ∈ R, and
dβ = a"Ω−1a0 · (a"0Ω−1a0)−1/2 ∈ R, where
a = (β, 1)". (2.7)

The distributions of the sufficient statistics S and T for the parameters (β,π) are
given in the following lemma.

Lemma 2 For the model in (2.5),
(a) S ∼ N(cβµπ, Ik),
(b) T ∼ N(dβµπ, Ik), and
(c) S and T are independent.

3The statistics S and T are denoted S and T , respectively, in Moreira (2003).
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Comments: 1. The results of the lemma hold under H0 and H1. Under H0, S has
mean zero.

2. The statistic T can be written as dβ0(Z
"Z)1/2"π0, where "π0 denotes the maxi-

mum likelihood estimator of π under H0.
3. Independence of S and T can be established by showing that S and T are

jointly multivariate normal with zero covariance. An alternative proof is by applying
Basu�s Theorem, e.g., see Lehmann (1986, Thm. 5.2, p. 191). Basu�s Theorem says
that S and T are independent because the distribution of S does not depend on π
and T is a boundedly complete sufficient statistic for π.

4. The constant dβ that appears in the mean of T can be rewritten as

dβ = b"Ωb0 · (b"0Ωb0)−1/2(det(Ω))−1/2, where
b = (1,−β)". (2.8)

This holds because some algebra shows that

a"0Ω
−1a0 = b"0Ωb0/det(Ω) and

a"Ω−1a0 = b"Ωb0/det(Ω). (2.9)

Using (2.8), some calculations show that dβ0 is proportional to the variance of the
structural equation error ui when β = β0.

3 Invariant Similar Tests

The sufficient statistics S and T are independent multivariate normal k-vectors
with spherical covariance matrices. The coordinate system used to specify the vectors
should not affect inference based on them. In consequence, it is reasonable to restrict
attention to coordinate-free functions of S and T. That is, we consider statistics that
are invariant to rotations of the coordinate system. We note that Hillier (1984) and
Chamberlain (2003) consider similar invariance conditions.

We consider the following groups of transformations on the data matrix [S :T ]
and correspondingly on the parameters (β,π):

G = {gF : gF (x) = Fx for x ∈ Rk×2 for some k × k orthogonal matrix F} and
G = {gF : gF (β,π) = (β, (Z "Z)−1/2F "(Z "Z)1/2π) for some k × k orthogonal

matrix F}. (3.1)

The transformations are one-to-one and are such that if [S:T ] has a distribution with
parameters (β,π), then gF ([S :T ]) has distribution with parameters gF (β,π), as in
Lehmann (1986, p. 283). Furthermore, the problem of testing H0 : β = β0 versus
the alternative hypothesis H1 (for any of the alternative hypotheses H1 considered
above) remains invariant under each transformation gF ∈ G because H0 and H1 are
preserved under gF (i.e., gF (β,π) is in Hj if and only if (β,π) is in Hj for j = 0, 1).

An invariant test, φ(S, T ), under the group G is one for which φ(FS, FT ) =
φ(S, T ) for all k × k orthogonal matrices F. By deÞnition, a maximal invariant is a
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function of [S:T ] that is invariant and takes different values on different orbits of G.4

Every invariant test can be written as a function of a maximal invariant, see Thm.
6.1 of Lehmann (1986, p. 285). Hence, it suffices to restrict attention to the class of
tests that depend only on a maximal invariant.

Let

Q = [S:T ]"[S:T ] =
#
S"S S"T
T "S T "T

$
=

#
QS QST
QST QT

$
and

Q1 =
%
S"S, S"T

&"
= (QS, QST )

". (3.2)

The subscript 1 on Q1 reßects the fact that Q1 is the Þrst column of Q.
For convenience, we useQ and (Q1, QT ) interchangeably. For example, if we deÞne

a function h(Q), then h(Q1, QT ) is presumed to be deÞned such that h(Q1, QT ) =
h(Q). Although this involves some abuse of notation, it is justiÞed by the one-to-one
transformation from Q to (Q1,QT ).

Theorem 1 The 2× 2 matrix Q is a maximal invariant for the transformations G.

Comments: 1. Equivalently, (Q1,QT ) is a maximal invariant.
2. The statistic Q is invariant to nonsingular linear transformations of the in-

struments. Thus, invariance under the transformation group G ensures that tests
of H0 : β = β0 will be unaffected, for example, by changing the units of Z or by
respecifying binary units as contrasts.

3. By deÞnition, the statistic Q has a non-central Wishart distribution because
[S :T ] is a multivariate normal matrix that has independent rows and common co-
variance matrix across rows. The distribution of Q depends on π only through the
scalar λ ≥ 0 deÞned by

λ = π"Z "Zπ. (3.3)

This occurs for the same reason that a noncentral chi-squared distribution only de-
pends on the mean vector through its length. In consequence, the utilization of
invariance has reduced the k-vector nuisance parameter π to a scalar nuisance para-
meter λ. This is true both under the null and under the alternative.

4. Examples of invariant tests in the literature include the AR test; the standard
LR and Wald tests, which use conventional, i.e., strong IV asymptotic, critical values;
the LM test of Kleibergen (2002) and Moreira (2001); and the CLR and CW tests of
Moreira (2003), which depend on the standard LR and Wald test statistics coupled
with �conditional� critical values that depends on QT (where for each of the previous
tests an estimator of the unknown Ω matrix that appears in the test statistic is
replaced by the known matrix Ω because Ω is assumed to be known here). The AR,

4An orbit of G is an equivalence class of k × 2 matrices, where x1 ∼ x2 (mod G) if there exists
an orthogonal matrix F such that x2 = Fx1.
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LM, and LR test statistics depend on Q or (S, T ) in the following ways:

AR = QS = S"S,
LM = Q2ST/QT = (S"T )2/T "T, and (3.4)

LR =
1

2

'
QS −QT +

(
(QS +QT )2 − 4(QSQT −Q2ST )

)
.

The Wald test statistic is a more complicated function of Q. For brevity, we do not
give it. The only tests in the IV literature that we are aware of that are not invariant
to G are tests that involve preliminary decisions to include or exclude a speciÞc
instrument, cf., Donald and Newey (2001).

A test based on the maximal invariantQ is similar if its null rejection rate does not
depend on π. The parameter π determines the strength of the instrumental variables
Z. The Þnite sample performance of some invariant tests, such as a t test based on the
two-stage least squares estimator, varies greatly with π. In consequence, such tests
often exhibit substantial size distortion when conventional (strong IV) asymptotic
critical values are employed. By deÞnition, invariant similar tests do not suffer from
this problem. For this reason, it is important to characterize the class of invariant
similar tests. We do so by adding one simple step to the argument Moreira (2001)
used to characterize the class of similar tests.

Let the [0, 1]-valued statistic φ(Q) denote a (possibly randomized) test that de-
pends on the maximal invariant Q.

Invariant similar tests are characterized as follows:

Theorem 2 An invariant test φ(Q) is similar with signiÞcance level α if and only if
Eβ0(φ(Q)|QT = qT ) = α for almost all qT , where Eβ0(·|QT = qT ) denotes conditional
expectation given QT = qT when β = β0 (which does not depend on π).

Comments. 1. The Theorem suggests that a method of determining an invariant
test with optimal power properties is to Þnd an optimal invariant test conditional on
QT = qT for each qT > 0.

2. The AR and LM statistics are invariant statistics whose distributions under
the null are independent of QT (by Lemma 3(f) below). Hence, the AR and LM tests
that reject the null when the corresponding test statistics exceed given constants are
invariant similar tests by Theorem 2. (This is not a new result.)

3. The LR and Wald statistics are invariant statistics whose distributions under
the null depend on QT . Hence, the standard LR and Wald tests that use conventional
(strong IV asymptotic) critical values are not invariant similar tests. To obtain similar
tests based on the LR and Wald statistics, one must use critical values that depend
on QT , as in Moreira (2003). The CLR test rejects the null hypothesis when

LR > κCLR(QT ), (3.5)

where κCLR(QT ) is deÞned to satisfy Pβ0(LR > κCLR(QT )|QT = qT ) = α and the
conditional distribution of Q1 given QT is speciÞed in Lemma 3(c) below. See Table I

9



of Moreira (2003) for critical values for the CLR test (where his τ corresponds to our
qT ). A GAUSS program for p-values of the CLR test is given in AMS-04b. Similarly,
the critical value function for the conditional Wald test, κCW (QT ), depends on QT .

4. Theorem 2 states that invariant tests are similar if and only if they have
Neyman structure with respect to QT (e.g., as deÞned in Lehmann (1986, pp. 141-
2)).

5. The proof of Theorem 2 is succinct, so we provide it here. Sufficiency follows
immediately from the law of iterated expectations. Necessity uses the fact that S is
ancillary under H0 and the family of distributions of T under H0 is a k-parameter
exponential family indexed by π with parameter space that contains a k-dimensional
rectangle. In consequence, T is a complete sufficient statistic for π under H0 by Thm.
4.1 of Lehmann (1986, p. 142). The statistic QT is complete under H0 because a
function of a complete statistic is complete by the deÞnition of completeness. (This
is the step added to Moreira�s (2001) argument.) In consequence, any function of QT
whose expectation does not depend on π is equal to a constant with QT probability
one. In particular, for a invariant similar test φ(Q), Eβ0(φ(Q)|QT ) is a function of QT
whose expectation equals α for all π. Hence, by completeness of QT , Eβ0(φ(Q)|QT =
qT ) must equal α for almost all qT . Note that Eβ0(φ(Q)|QT ) does not depend on π
by Lemma 3(c) below.

We now introduce a new invariant similar test for the null hypothesis H0 : β = β0
and the one-sided alternative H1 : β > β0. (The adjustment for H1 : β < β0 is
straightforward.) The test is the one-sided version of the CLR test, which we refer
to as the one-sided CLR test and denote by CLR1. The test statistic is based on the
standard LR statistic (i.e., −2 times the logarithm of the likelihood ratio) for these
hypotheses for the model of (2.4) with Ω known. We denote this test statistic by
LR1.

DeÞne

R(β) =
b"Y "PZY b
b"Ωb

, where PZ = Z(Z "Z)−1Z ". (3.6)

The LIML-k estimator (i.e., the LIML estimator for the model with known covariance
matrix), denoted "βLIML−k, minimizes R(β) over β ∈ R. An expression for "βLIML−k
is given in the Appendix. As shown in the Appendix, we have

LR1 = R(β0)− inf
β≥β0

R(β)

=


LR if "βLIML−k ≥ β0
0 if "βLIML−k < β0 and R(β0) ≤ R(∞)
R(β0)−R(∞) if "βLIML−k < β0 and R(β0) > R(∞), (3.7)

where R(∞) = limβ→∞R(β) and, hence, R(∞) equals R(β) with b replaced by
(0,−1)". (For H1 : β < β0, R(∞) is replaced by R(−∞), which equals R(β) with b
replaced by (0, 1)".) In the Appendix, we show that R(β) and LR1 depend on the
observations only through Q.
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The CLR1 test rejects the null hypothesis when the statistic LR1 exceeds a critical
value that depends on QT and is such that the null rejection probability is the desired
value 1− α, as in (3.5). Such critical values can be determined by simulation.

4 Optimal Tests for Weighted Average Power

4.1 Weighted Average Power

The AR, LM, and CLR tests are invariant similar tests and, hence, have good size
properties even under weak IV�s. These tests are somewhat ad hoc, however, in the
sense that they have no known optimal power properties under weak IV�s except in
the just-identiÞed case, i.e., when k = 1. In this case, the AR, LM, and LR tests are
equivalent tests and Moreira (2001) shows that this test is uniformly most powerful
unbiased for two-sided alternatives.

In this section, we address the question of optimal invariant similar tests when
the IV�s may be weak. We determine the invariant similar test that has maximum
weighted average power (WAP) with respect to (wrt) a given weight function W
over the parameter values in the alternative. The two motivations for considering
WAP tests are that (i) such tests yield one- and two-sided power envelopes, which
are important for evaluating the performance of any test, and (ii) such tests provide
a class of tests with the potential for good overall power properties. The use of
sufficiency and invariance reduces the dimension of the alternative parameters that
need to be considered from 1 + k + 2p for θ = (β,π", ξ", γ")" to just 2 for (β,λ)". In
consequence, it is relatively easy to specify weight functions W of interest.

Let W (β,λ) be a probability distribution function on R×R+. Weighted average
power of a test φ(Q) with respect to W is given by the Lebesgue integral

K(φ,W ) =

.
Eβ,λφ(Q)dW (β,λ), (4.1)

where Eβ,λ denotes expectation when the true parameters are (β,λ)".
Let

gW (q1, qT ) =

.
R×R+

fQ1,QT (q1, qT ;β,λ)dW (β,λ), (4.2)

where fQ1,QT (q1, qT ;β,λ) denotes the joint density of (Q1, QT ) at (q1, qT ). Let q1 =
(qS, qST )

". WAP can be written as power against the single density gW (q1, qT ):

K(φ,W )

=

.
R×R+

#.
R+×R×R+

φ(qS , qST , qT )fQ1,QT (qS, qST , qT ;β,λ)dqSdqSTdqT

$
dW (β,λ)

=

.
R+×R×R+

φ(q1, qT )gW (q1, qT )dq1dqT (4.3)

using the Tonelli-Fubini Theorem, e.g., see Dudley (1989, Thm. 4.4.5, p. 104).
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For example, suppose the weight function W corresponds to a point mass distri-
bution at (β∗,λ∗). That is,

Wβ∗,λ∗(β,λ) =

/
1 if (β,λ) ≥ (β∗,λ∗)
0 otherwise.

(4.4)

Then, the test that maximizes WAP among invariant similar tests with signiÞcance
level α is the point-optimal invariant (POI) similar test of level α against (β∗,λ∗).

Most existing tests in the literature are two-sided tests. Examples include the
tests in (3.4). To obtain optimal two-sided tests one can specify W to give weight to
β values both less than and greater than β0, see Section 6 below.

4.2 Optimal Invariant Similar Tests for Weighted Average Power

We want to Þnd a test that maximizes WAP for weight function W among all
level α invariant similar tests. By Theorem 2, invariant similar tests must be similar
conditional on QT = qT for almost all qT . In addition, by (4.3), WAP for weight
functionW equals unconditional power against the single density gW (q1, qT ). In turn,
the latter equals expected conditional power given QT . Hence, it suffices to determine
the test that maximizes conditional power given QT = qT among tests that are
invariant and are similar conditional on QT = qT , for each qT .

Conditional power given QT = qT is

K(φ,W |QT = qT ) =
.
R+×R

φ(q1, qT )gW (q1|qT )dq1, (4.5)

where gW (q1|qT ) denotes the conditional density at q1 of Q1 given QT = qT .We have

gW (q1|qT ) = gW (q1, qT )

gW (qT )
, (4.6)

where gW (q1, qT ) is deÞned in (4.2),

gW (qT ) =

.
R+×R

gW (q1, qT )dq1

=

.
R×R+

.
R+×R

fQ1,QT (q1, qT ;β,λ)dq1dW (β,λ)

=

.
R×R+

fQT (qT ;β,λ)dW (β,λ), (4.7)

and fQT (qT ;β,λ) denotes the density of QT at qT .
Next, we consider the conditional density of Q1 given QT = qT under the null

hypothesis. Because QT is a sufficient statistic for π under H0, this conditional
density does not depend on π or λ. Hence, we denote the conditional density of Q1
given QT = qT under the null hypothesis by fQ1|QT (q1|qT ;β0).

For any invariant test φ(Q1, QT ), conditional on QT = qT , the null hypothesis
is simple because fQ1|QT (q1|qT ;β0) does not depend on π or λ. Given the WAP
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criterion function K(φ,W ), the alternative hypothesis of concern also is simple. In
particular, conditional on QT = qT , the alternative density of interest is gW (q1|qT ).
In consequence, by the Neyman-Pearson Lemma, the test of signiÞcance level α that
maximizes conditional power given QT = qT is of the likelihood ratio (LR) form and
rejects H0 when the LR is sufficiently large. In particular, the conditional WAP-LR
test statistic is

LRW (Q1, qT ) =
gW (Q1|qT )

fQ1|QT (Q1|qT ;β0)
=

gW (Q1, qT )

gW (qT )fQ1|QT (Q1|qT ;β0)
. (4.8)

In order to provide an explicit expression for LRW (Q1, QT ), we now determine
the densities fQ1,QT (q1, qT ;β,λ), fQT (qT ;β,λ), and fQ1|QT (q1|qT ;β0) that arise in
(4.2), (4.7), and (4.8). These densities and the tests considered below depend on the
following quantity:

ξβ(q) = h"βqhβ
= c2βqS + 2cβdβqST + d

2
βqT , where

hβ = (cβ, dβ)
". (4.9)

Note that ξβ(q) ≥ 0 because q is positive semi-deÞnite a.s.

Lemma 3 (a) The density of (Q1, QT ) is

fQ1,QT (q1, qT ;β,λ) = K1 exp(−λ(c2β + d2β)/2) det(q)(k−3)/2

× exp(−(qS + qT )/2)(λξβ(q))−(k−2)/4I(k−2)/2(
(
λξβ(q)),

where q1 = (qS, qST )" ∈ R+ ×R, qT ∈ R+, q =
#
qS qST
qST qT

$
,

K−1
1 = 2(k+2)/2pi1/2Γ((k − 1)/2),

Iν(·) denotes the modiÞed Bessel function of the Þrst kind of order ν, pi = 3.1415...,
and Γ(·) is the gamma function.

(b) The density of QT is a non-central chi-squared density with k degrees of free-
dom and noncentrality parameter d2βλ:

fQT (qT ;β,λ) = K2 exp
%−λd2β/2& q(k−2)/2T exp (−qT/2)

× %λd2βqT &−(k−2)/4 I(k−2)/2 0(λd2βqT1
for qT > 0, where K

−1
2 = 2.

(c) Under the null hypothesis, the conditional density of Q1 given QT = qT is

fQ1|QT (q1, qT ;β0) = K1K
−1
2 exp(−qS/2) det(q)(k−3)/2q−(k−2)/2T .
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(d) Under the null hypothesis, the density of QS is a (central) chi-squared density
with k degrees of freedom:

fQS (qS) = K3q
(k−2)/2
S exp (−qS/2)

for qS > 0, where K−1
3 = 2k/2Γ(k/2).

(e) Under the null hypothesis, the density of S2 = QST/(||S|| · ||T ||) at s2 is

fS2(s2) = K4(1− s22)(k−3)/2

for s2 ∈ [−1, 1], where K−1
4 = pi1/2Γ((k − 1)/2)/Γ(k/2).

(f) Under the null hypothesis, QS, S2, and T are mutually independent and, hence,
QS, S2, and QT also are mutually independent.

Comments: 1. The joint density fQ1,QT (qS , qT ;β,λ) given in part (a) of the Lemma
is a noncentral Wishart density.5 The null density of S2 given in part (e) of the
Lemma is the same as that of the sample correlation coefficient from an iid sample of
k observations from a bivariate normal distribution with means zero and covariance
matrix I2 when the means of the random variables are not estimated.

2. Parts (d)-(f) of the Lemma are used below to simplify the calculation of critical
values for optimal WAP tests.

3. The modiÞed Bessel function of the Þrst kind that appears in the densities in
parts (a) and (b) of the Lemma is deÞned by

Iν(x) = (x/2)
ν
∞2
j=0

(x2/4)j

j!Γ(ν + j + 1)
, (4.10)

for x ≥ 0, e.g., see Lebedev (1965, p. 108). Sometimes the function Iν(x) is referred
to as a Bessel function of the Þrst kind with imaginary argument. For |x| small,
Iν(x) ∼ (x/2)ν/Γ(ν + 1); for |x| large, Iν(x) ∼ ex/

√
2pi · x; and for ν ≥ 0 (which

holds in the expression for fQ1,QT (q1, qT ;β,λ) whenever k ≥ 2), Iν(·) is monotonically
increasing on R+, see Lebedev (1965, p. 136). Expressions for Iν(x) in terms of
elementary functions are available whenever ν is a half-integer (which corresponds
to k being an odd integer). For example, I−1/2(x) = (2/pi)1/2(exp(x) + exp(−x))/2
(which arises when k = 1) and I1/2(x) = (2/pi)1/2(exp(x)−exp(−x))/2 (which arises
when k = 3).

4. Both GAUSS and Matlab have built-in functions for computing the modiÞed
Bessel function of the Þrst kind. These functions are extremely fast. Hence, the
density fQ1,QT (q1, qT ;β,λ) can be computed very quickly.

5 In Johnson and Kotz (1970, 1972), a standard reference for probability densities, the formulae
for the noncentral Wishart and chi-squared distributions in terms of I(k−2)/2(·) contain several ty-
pographical errors. Hence, the densities in Lemma 3(a) and (b) are based on Anderson (1946, eqn.
(6)) and are not consistent with those of Johnson and Kotz (1970, eqn. (5), p. 133; 1972, eqn. (50),
p. 176). Sawa (1969, footnote 6) notes that Anderson�s (1946) eqn. (6) contains a slight error in
that the covariance matrix Σ is missing in one place in the formula. This does not affect our use of
Anderson�s formula, however, because we apply it with Σ = Ik.
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5. Independence of S2 and QT under H0 can be established directly using the
spherical symmetry of the distribution of S2. Or, it can be established using (i) the
bounded completeness of QT for λ pointed out in Comment 4 to Theorem 2, (ii) the
fact that the distribution of S2 does not depend on λ by part (e) of the Lemma, and
(iii) Basu�s Theorem (e.g., see Lehmann (1986, p. 191)).

Equations (4.2), (4.7), and (4.8) and Lemma 3 combine to give the following
result.

Corollary 1 The optimal WAP test statistic for weight function W is

LRW (q1, qT ) =

3
fQ1,QT (q1, qT ;β,λ)dW (β,λ)3

fQT (qT ;β,λ)dW (β,λ)fQ1|QT (q1|qT ;β0,λ)
=
ψW (q1, qT )

ψ2,W (qT )
,

where

ψW (q1, qT ) =

.
exp(−λ(c2β + d2β)/2)(λξβ(q))−(k−2)/4Ik−2

2

0(
λξβ(q)

1
dW (β,λ),

ψ2,W (qT ) =

.
exp

%−λd2β/2& %λd2βqT &−(k−2)/4 Ik−2
2

0(
λd2βqT

1
dW (β,λ),

the integrals are over (β,λ) ∈ R×R+, and cβ, dβ, and ξβ(q) are deÞned in (2.7) and
Lemma 3(a).

Comment: Note that ψW (q1, qT ) does not equal
3
fQ1,QT (q1, qT ;β,λ)dW (β,λ) and

likewise with ψ2,W (qT ). This is because numerous cancellations occur in the second
expression in the Þrst line of the Corollary 1, including the constants K1-K4 (because
K1 = K2K3K4) and the terms that depend on q1 in the denominator.

Because ψ2,W (qT ) does not depend on q1, it could be absorbed into the conditional
critical value given QT = qT . Thus, the test based on LRW (q1, qT ) is equivalent to a
test based on ψW (q1, qT ). For reasons of numerical stability, however, we recommend
constructing critical values using ln(LRW (q1, qT )).

Computation of the integrands of ψW (q1, qT ) and ψ2,W (qT ) in Corollary 1 are
easy and extremely fast using GAUSS or Matlab functions for computing the modiÞed
Bessel function of the Þrst kind. Hence, calculation of the test statistic LRW (Q1, QT )
is very fast unless the weight functionW is ill-behaved. Of course, ill-behaved weight
functions can be avoided because the user selects the weight function.

The test that maximizes WAP among invariant similar tests with signiÞcance
level α rejects H0 if

LRW (Q1, QT ) > κα(QT ), (4.11)

where κα(QT ) is deÞned such that the test is similar. That is, κα(qT ) is deÞned by

Pβ0(LRW (Q1, qT ) > κα(qT )|QT = qT ) = α, (4.12)
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where Pβ0(·|QT = qT ) denotes conditional probability given QT = qT under the null,
which can be calculated using the density in Lemma 3(c). Note that κα(·) does not
depend on Ω, Z, X, or the sample size n.

By Lemma 3(d)-(f), under H0, (i) QS , S2 = QST/(||S|| · ||T ||), and QT are inde-
pendent, (ii) QS ∼ χ2k, and (iii) S2 has density fS2 . The null distribution of (QS , S2)
can be simulated by simulating S ∼ N(0, Ik) and taking (QS , S2) = (S"S, S"e1/||S||)
for e1 = (1, 0, ..., 0)" ∈ Rk. Hence, the null distribution of Q1 = (S"S, S"T ) conditional
on QT = qT can be simulated easily and quickly by simulating S ∼ N(0, Ik) and
taking Q1 = (S"S, S"e1 · qT ).

The critical value κα(QT ) can be approximated by simulating nMC iid random
vectors Si ∼ N(0, Ik) for i = 1, ..., nMC , where nMC is large, computing Q1(i) =
(S"iSi, S

"
ie1 · QT ) for i = 1, ..., nMC , and taking ln(κα(QT )) to be the 1 − α sample

quantile of {ln(LRW (Q1(i), QT )) : i = 1, ..., nMC}. The p-value for the test based on
LRW (Q1, QT ) can be approximated by the fraction of values in {ln(LRW (Q1(i), QT )) :
i = 1, ..., nMC} that exceed the actual value of the statistic computed using the orig-
inal sample Y .

The following theorem summarizes the results of this section:

Theorem 3 The test that rejects H0 when LRW (Q1, QT ) > κα(QT ) maximizes WAP
for the weight function W over all level α invariant similar tests.

Comment: The optimal WAP test statistic LRW (Q1, QT ) depends on S"S, S"T, and
T "T in general. In contrast, the AR statistic depends only on S"S and the LM statistic
depends on S"T and T "T, but not on S"S. Hence, power improvements from optimal
WAP tests compared to these two tests can be attributed to optimal exploitation of
information about β that is contained in all three statistics S"S, S"T, and T "T.

5 Point Optimal Invariant Similar Tests
and the One-sided Power Envelope

In this section, we determine the one-sided power envelope for invariant similar
tests by considering the point optimal invariant similar (POIS) tests for arbitrary
values (β∗,λ∗). In particular, we show that such tests do not depend on λ∗, so that
the POIS tests are of a relatively simple form.

Using the deÞnition of Iν(x) in (4.10), ψW (q1, qT ) can be written as

ψW (q1, qT ) = 2−(k−2)/2
.
exp(−λ(c2β + d2β)/2)

∞2
j=0

(λξβ(q1, qT )/4)
j

j!Γ((k − 2)/2 + j + 1)dW (β,λ)

= 2−(k−2)/2
∞2
j=0

3
exp(−λ(c2β + d2β)/2)(λξβ(q1, qT )/4)jdW (β,λ)

j!Γ((k − 2)/2 + j + 1) . (5.13)

Obviously, ψ2,W (qT ) can be written analogously.
The integrand in the Þrst line of (5.13) is increasing in ξβ(q1, qT ) because

ξβ(q1, qT ) ≥ 0. In consequence, for a Þxed value of β, say β∗ ("= β0), the test that
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rejects H0 when ξβ∗(Q1, QT ) is large maximizes weighted average power for all weight
functions over λ values. That is, the optimal test for Þxed alternative β∗ rejects H0
when

ξβ∗(Q1, QT ) > κβ∗,α(QT ), where

Pβ0(ξβ∗(Q1, qT ) > κβ∗,α(qT )|QT = qT ) = α (5.14)

for all qT . This test is a one-sided test because it directs power at a single point β∗

that is either greater than or less than the null value β0.

Corollary 2 The level α test based on ξβ∗(Q1, QT ) is the uniformly most powerful
test among invariant similar tests against the alternative distributions indexed by
{(β∗,λ) : λ > 0}.

Comments: 1. The one-sided power envelope for invariant similar tests is given by
the test in (5.14) by varying the value β∗. Although the form of the test in (5.14)
does not depend on λ∗, its power depends on the true value of λ. Hence, the power
envelope depends on both parameters β and λ.

2. The test based on ξβ∗(Q1, QT ) is equivalent to a test based on QS+
2(dβ∗/cβ∗)QST . Hence, the test statistic is a linear combination of QS and QST .
The coefficients of the linear combination depend on Ω, β0, and β

∗.
3. A test based on ξβ∗(Q1, QT ) is equivalent to a test that rejects when

POIS1δ =
QS + δS2

√
QS − k4

2k + δ2
> κδ,α(QT ), where

δ = (2dβ∗/cβ∗)
4
QT and

Pβ0(POIS1δ > κδ,α(QT )|QT = qT ) = α. (5.15)

This formulation of the test is convenient because QS, S2, and QT are independent
under H0 by Lemma 3(f), which simpliÞes calculation of critical values.

4. Corollary 2 shows that no UMPI one-sided test exists because ξβ∗(Q1, QT )
depends on β∗.

5. The quantity dβ∗ is a linear function of β∗ and equals zero iff β∗ = βAR, where

βAR =
ω11 − ω12β0
ω12 − ω22β0

(5.16)

and ωij denotes the (i, j) element of Ω (provided ω12 − ω22β0 "= 0). In this case,
δ = 0 and POIS10 reduces to QS/

√
2k, which is the AR statistic rescaled. Hence,

the AR test is one-sided POIS against the alternative β = βAR.
6. The sign of δ in (5.15) can change as β∗ changes even for β∗ values on the same

side of the null hypothesis because dβ∗ is a linear function of β
∗. For example, if β0 = 0

and ω12 > 0, then βAR = ω22/ω12 > 0, sgn(δ) = sgn(dβ∗) > 0 for 0 < β
∗ < βAR, and

sgn(δ) = sgn(dβ∗) < 0 for β
∗ > βAR > 0. In consequence, the form of the statistic

POISδ changes dramatically as β∗ varies. The constant δ determines the weight put
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on the statistic S2. The optimal value of δ for small values of β > β0 has the wrong
sign for large values of β and vice versa. This has adverse consequences for the overall
one-sided power properties of POIS1 tests, see Section 8 below.

7. The optimal one-sided test for β∗ local to β0 with β
∗ > β0 and arbitrary

weight functions over λ values (i.e., the LMPI test) is the one-sided LM test that
rejects H0 if

QST/Q
1/2
T > κφ,α, (5.17)

where κφ,α is the 1− α quantile of the standard normal distribution. Analogously, if
β∗ is local to β0 with β

∗ < β0, then the LMPI test rejects H0 if −QST/Q1/2T > κφ,α.
(See the Appendix for the proof.)

8. The power function of the one-sided LM test exhibits unusual behavior as β
changes from values less than βAR to values greater than βAR. By Lemma 2, the con-
ditional distribution of QST/Q

1/2
T given T is N((cβ(T0 + dβµπ)/||T0 + dβµπ||)"µπ, 1),

where T = T0 + dβµπ and T0 ∼ N(0, Ik). Hence, QST/Q1/2T has a mixed normal dis-
tribution. For simplicity, consider the case β0 = 0. Then, for β > 0, cβ is positive and
linearly increasing in β. But, dβ is proportional to ω11 − ω12β, is linearly decreasing
in β when ω12 > 0, and is negative for β > βAR when ω12 > 0. In this case, the mean
of the mixing distribution switches sign at βAR and this has a dramatic effect on
the power of the one-sided LM test. For large enough values of β its power drops to
zero because ((T0+ dβµπ)/||T0+ dβµπ||)"µπ is negative with probability close to one.
When β0 = 0 and ω12 < 0, the one-sided LM test against positive β values does not
exhibit this unusual behavior, but the one-sided LM test against negative β values
does. The non-monotonic behavior of the one-sided LM test also arises when β0 "= 0.

9. The optimal one-sided test for β∗ arbitrarily large and any weight function
over λ values is of the form: reject H0 if

QS + 2(det(Ω))
−1/2(β0ω22 − ω12)QST > κ∞,α(QT ) (5.18)

for some κ∞,α(·), where ωij denotes the (i, j) element of Ω. The same test is the
optimal one-sided test for β∗ negative and arbitrarily large in absolute value for any
weight functions over λ. In consequence, the optimal two-sided test for |β∗ − β0|
arbitrarily large and any weight function over λ values is the test in (5.18).

For the common case where the null hypothesis speciÞes that β0 = 0, the optimal
test for |β∗ − β0| large rejects H0 if

QS − 2 ρ

(1− ρ2)1/2QST > κ∞,α(QT ), (5.19)

where ρ = ω12/(ω11ω22)
1/2 is the correlation between the errors v1 and v2 in (2.4).

(See the Appendix for the proof.)

6 Two-Sided Tests and Power Envelope

In this section, we discuss tests and the power envelope for the two-sided alter-
native hypothesis H1 : β "= β0. As described in the following four subsections, there
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are several methods of constructing WAP tests and the power envelope for two-sided
alternatives. The Þrst method we consider is simple, but is found to have signiÞcant
drawbacks and, hence, is not recommended. The second through fourth methods are
recommended and are found to yield closely related results.

6.1 Symmetric-Alternative WAP Tests and Power Envelope

First, we consider invariant similar tests that maximize WAP for a weight function
W that depends on β only through |β − β0|. We call such tests optimal WAP tests
for symmetric alternatives. A corresponding power envelope can be constructed by
considering two-point weight functions for the points (β0 − δ,λ) and (β0 + δ,λ) for
δ > 0 and λ > 0.

Although simple, weight functions for symmetric alternatives have some serious
drawbacks. These drawbacks stem from the fact that the underlying testing problem
is not symmetric for the parameter vectors (β0−δ,λ) and (β0+δ,λ). The distribution
of QT is noncentral χ2k with non-centrality parameter d

2
βλ, see Lemma 3(b). This

noncentrality parameter takes on different values for the parameter vectors (β0−δ,λ)
and (β0+δ,λ).

6 In consequence, the problems of testing against these two alternative
parameter vectors are not equally difficult testing problems. This has undesirable
consequences for the power of WAP tests for symmetric alternatives under strong
IV asymptotics. In particular, calculations in Section 11 below show that such tests
are not asymptotically efficient under strong IV asymptotics according to the usual
criterion for asymptotic efficiency of two-sided tests in regular models.7 Given this,
we do not recommend WAP tests for symmetric alternatives.

The power envelope generated by two-point symmetric alternative weight func-
tions does not represent a proper two-sided power envelope because the point optimal
tests that generate the envelope are asymptotically one-sided tests under strong in-
strument asymptotics, see Section 11. Hence, we do not consider this power envelope
any further.

6.2 Asymptotically Efficient WAP Tests and Power Envelope

We are interested in tests that have good all-around two-sided power properties.
This includes high power when the IV�s are strong. The appropriate benchmark
power envelope for such tests is a power envelope based on two-point optimal invariant
similar (POIS2) tests that are asymptotically efficient under strong IV asymptotics.
We consider this power envelope here.

We consider �two-point weight functions,� which are distribution functions that

6This is true except in the special case in which β0 = ω12/ω22, where ω12 is the off-diagonal
element of Ω and ω22 is the (2, 2) element of Ω.

7The usual criterion is that of Wald (1943), who considers weighted average power over certain
ellipses in the parameter space. Lack of asymptotic efficiency for a test does not mean that the test
is asymptotically inadmissible under strong IV asymptotics. Rather, it means that the test does
not possess the standard two-sided asymptotic optimality properties that LR, LM, and Wald tests
possess in regular models.
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place equal mass on two points (β∗,λ∗) and (β∗2,λ
∗
2). They are of the form

W2P (β,λ) =
1

2
1(β ≥ β∗,λ ≥ λ∗) + 1

2
1(β ≥ β∗2,λ ≥ λ∗2), (6.1)

where β∗ and β∗2 lie on opposite sides of β0. Different types of two-point weight
functions arise depending on how (β∗2,λ

∗
2) is selected given (β

∗,λ∗).
Here, we consider two-point weight functions that have a number of desirable

features. First, as shown in Section 11 below, they are the only two-point weight
functions that lead to POIS2 tests that are asymptotically efficient under strong IV
asymptotics. Second, they lead to POIS2 tests that have the same power against each
of the two points. Third, given (β∗,λ∗), the second point (β∗2,λ

∗
2) satisÞes: (i) β

∗
2 is

on the other side of the null value β0 from β∗, (ii) the marginal distributions of QS ,
QST, and QT under (β∗2,λ

∗
2) are the same as under (β

∗,λ∗), (iii) the joint distribution
of (QS, QST,QT ) under (β∗2,λ

∗
2) equals that of (QS ,−QST,QT ) under (β∗,λ∗), which

corresponds to β∗2 being on the other side of the null from β
∗, and (iv) the distribution

of [−S : T ] under (β∗2,λ∗2) equals that of [S : T ] under (β∗,λ∗).
Given (β∗,λ∗), the point (β∗2,λ

∗
2) that has these properties solves

(λ∗2)
1/2cβ∗2 = −(λ∗)1/2cβ∗ ("= 0) and (λ∗2)1/2dβ∗2 = (λ∗)1/2dβ∗ . (6.2)

This follows from Lemma 2, Lemma 3(a), and λ = µ"πµπ. Note that cβ is proportional
to β − β0 and dβ is linear in β. Some calculations show that provided β∗ "= βAR, the
solution to the two equations in (6.2) are

β∗2 = β0 −
dβ0(β

∗ − β0)
dβ0 + 2g(β

∗ − β0)
and

λ∗2 = λ∗
(dβ0 + 2g(β

∗ − β0))2
d2β0

, where

g = e"1Ω
−1a0 · (a"0Ω−1a0)−1/2 and e1 = (1, 0)". (6.3)

(If β∗ = βAR, then there is no solution to (6.2) with β
∗
2 on the other side of the null

from β∗.)
We refer to the power envelope based on POIS2 tests with W as in (6.1) and

(β∗2,λ
∗
2) as in (6.3) as the asymptotically efficient two-sided (AE-2S) power envelope.

Next, we consider WAP tests that are designed to have good all-around two-
sided power properties. We consider a class of weight functions that generalize the
AE two-point weight functions of (6.1) and (6.3) to more than two points. These
weight functions deliver WAP tests that are asymptotically efficient under strong IV
asymptotics, see Section 11 below, and, hence, are called AE weight functions. These
weight functions are of the form

WAE(β,λ) =
1

2
W∗(β,λ) +

1

2
W∗(β2,λ2), (6.4)

where (a) W∗ is a distribution function with Þnite support and (b) given (β,λ),
(β2,λ2) is deÞned as (β

∗
2,λ

∗
2) is deÞned in (6.3) but with (β,λ) in place of (β

∗,λ∗).
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Such weight functions place equal weight on (β,λ) and (β2,λ2). The parameter
vector (β2,λ2) is the appropriate �other-sided� parameter vector to (β,λ) in the
sense described in (i)-(iv) above. We call tests based on weight functions of the form
(6.4) asymptotically efficient (AE) WAP tests.

We refer to LRWAE
(q1, qT ) as an AE-WAP test statistic. It can be written con-

veniently without explicit dependence on (β2,λ2) as follows:

ψWAE
(q1, qT ) =

1

2

.
exp(−λ(c2β + d2β)/2)(λξβ(q))−(k−2)/4Ik−2

2

0(
λξβ(q)

1
dW∗(β,λ)

+
1

2

.
exp(−λ(c2β + d2β)/2)(λξ∗β(q))−(k−2)/4Ik−2

2

0(
λξ∗β(q)

1
dW∗(β,λ),

(6.5)

and likewise for ψ2,WAE
(qT ), where

ξ∗β(q) = c
2
βqS − 2cβdβqST + d2βqT . (6.6)

This holds because the equations in (6.2) imply that λ2(c2β2 + d
2
β2
) = λ(c2β + d

2
β) and

λ2ξβ2(q) = λξ
∗
β(q).

Note that the POIS2 test statistics LRW2P (q1, qT ) with (β
∗
2,λ

∗
2) as in (6.3), which

are used to construct the AE-2S power envelope, can be written as in (6.5) with
W∗(β,λ) = (1/2)1(β ≥ β∗,λ ≥ λ∗). The dependence of such tests on (β∗,λ∗) shows
that no UMPI two-sided test exists.

6.3 Sign Invariant WAP Test and Power Envelope

Next, we consider tests that satisfy an additional invariance condition to that in
(3.1):

[S : T ]→ [−S : T ]. (6.7)

The corresponding transformation in the parameter space is (β,λ)→ (β2,λ2), where
(β2,λ2) is deÞned in (b) following (6.4). This sign invariance condition is a natural
condition to impose to obtain two-sided tests because the parameter vector (β2,λ2)
is the appropriate �other-sided� parameter vector to (β,λ) for the reasons stated in
the Þrst paragraph of the previous subsection. The maximal invariant under this sign
invariance condition (plus the invariance conditions in (3.1)) is

(S"S, |S"T |, T "T ) = (QS , |QST |,QT ). (6.8)

The AR, LM, and LR test statistics all depend on the data only through this maximal
invariant and, hence, satisfy the sign invariance condition (6.7).

The density of the maximal invariant (QS, |QST |, QT ) at (qS,qST , qT ) for qST ≥ 0
is given by

1

2
fQ1,QT (qS,qST , qT ) +

1

2
fQ1,QT (qS, − qST , qT ), (6.9)
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where Lemma 3 provides an expression for fQ1,QT (qS,qST , qT ). Hence, following the
same argument as in Section 4.2, given a weight functionW∗(β,λ), the optimal WAP
test statistic, call it LR∗W∗(q1, qT ), can be shown to satisfy

8

LR∗W∗(q1, qT ) = LRWAE
(q1, qT ). (6.10)

Thus, the class of WAP tests that are invariant to (3.1) and (6.7) and that have
weight functions W∗ equals the class of WAP tests that are invariant to (3.1) and
that have weight functions WAE . Furthermore, the power envelope for the class of
invariant similar tests under the invariance conditions of (3.1) and (6.7) equals the
AE-2S power envelope.

6.4 Locally-Unbiased WAP Tests

A fourth approach to constructing tests and a power envelope designed for two-
sided alternatives is to impose an unbiasedness or a local (to the null) unbiasedness
condition. This approach has a long tradition in the statistics literature and is a stan-
dard way to derive optimal tests for two-sided alternatives. In exponential families,
UMP two-sided tests exist among the class of unbiased tests, see Lehmann (1986,
Thm. 4.3, p. 147). This is not the case in the curved exponential family testing
problem considered here. Nevertheless, one can develop optimal WAP tests among
the class of locally unbiased (LU) invariant tests.

We start by determining two necessary conditions for an invariant test (under the
invariance condition of (3.1)) to be unbiased. The Þrst condition is similarity and the
second condition is local unbiasedness. Local unbiasedness requires that the power
function has zero derivative at the null hypothesis. Otherwise, the power function
would dip below the size of the test for some alternatives close to the null. We show
that the AR, LM, and CLR tests are LU.

Next, we determine the test that maximizes WAP, as deÞned in (4.1), among the
class of LU invariant similar tests. We do so using the same argument as in Section
4.2, but using the generalized Neyman-Pearson Lemma (see Lehmann (1986, Thm.
3.5, pp. 96-7)) in place of the Neyman-Pearson Lemma. The form of the optimal
WAP test statistic is the same as in Section 4.2, only the critical value function differs.

Theorem 4 An invariant test φ(Q) is unbiased with signiÞcance level α only if
Eβ0(φ(Q)|QT = qT ) = α and Eβ0(φ(Q)QST |QT = qT ) = 0 for almost all qT .

Comments. 1. The Þrst condition establishes that all unbiased invariant tests must
be similar. The second establishes that the power function must have zero derivative
under H0. The second condition is the local unbiasedness condition.

2. The two conditions in Theorem 4 are closely related to the conditions used
for two-sided alternatives in the classical hypothesis testing theory for exponential
families, see Lehmann (1986, Ch. 4).

8The proof of this relies on the fact that qST enters the densities only through q2ST in each place
except in the modiÞed Bessel function. In consequence, the cancellations that occur in the middle
expression of the Þrst line of Corollary 1 still hold.
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3. The second condition of Theorem 4 is equivalent to

Eβ0,λ(φ(Q)QST/Q
1/2
T ) = 0 for all λ ≥ 0. (6.11)

That is, any unbiased invariant test statistic φ(Q) must be uncorrelated with the
pivotal statistic QST/Q

1/2
T under H0.9

The AR, LM, and LR test statistics depend on the data through (QS , Q2ST , QT ).
The following result shows that these tests satisfy the second condition of Theorem
4.

Corollary 3 Any similar level α test that depends on the observations through
(QS , Q

2
ST , QT ) satisÞes the local unbiasedness condition of Theorem 4.

Comment. Corollary 3 shows that the class of AE-2S invariant similar tests consid-
ered in Section 6.2 is contained in the class of LU invariant similar tests considered
in this section.

The next result uses local unbiasedness to specify an optimal WAP test for two-
sided alternatives.

Theorem 5 The test that maximizes WAP among LU invariant similar tests with
signiÞcance level α rejects H0 if

LRW (Q1,QT ) > κ1α(QT ) +QSTκ2α(QT ),

where κ1α(QT ) and κ2α(QT ) are chosen such that the two conditions in Theorem 4
hold.

Comment. Point optimal LU invariant similar tests are obtained by taking the
weight function W to give point mass at a given alternative parameter (β,λ) of
interest. The power of these tests maps out the power envelope for locally-unbiased
invariant similar (LUIS) tests, which we refer to as the LUIS power envelope.

7 Point Optimal Invariant Non-similar Tests

7.1 One-sided Alternatives

Non-similar tests have null rejection probability below the signiÞcance level for
some values of the nuisance parameter, in this case, λ. Due to the continuity of
the power function, for such values of λ, the power of a non-similar test will be less
than the power of a similar test for alternatives close enough to the null hypothesis.
However, for other values of λ, or for more distant alternatives, non-similar tests
can have greater power than similar tests. For this reason, we also consider optimal
invariant non-similar tests of β = β0 against a point alternative.

9The second condition of Theorem 4 clearly implies (6.11). The converse holds by the completeness
of QT because by iterated expectations the left-hand side in (6.11) can be written as Eβ0,λh(QT ),
where h(QT ) = Eβ0(φ(Q)QST |QT = qT )/Q1/2T .
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Our construction of POI non-similar tests follows Lehmann (1997, Sec. 3.8).
Consider the composite null hypothesis

H0 : (β,λ) ∈ {(β0,λ) : 0 ≤ λ <∞}, (7.1)

and the point alternative

H1 : (β,λ) = (β
∗,λ∗). (7.2)

Let Λ be a probability distribution over {λ : 0 ≤ λ <∞} and let hΛ be the weighted
pdf,

hΛ(q) =

.
fQ1,QT (q1, qT ;β,λ)dΛ (λ) , (7.3)

where fQ1,QT (q1, qT ;β,λ) is given in Lemma 3(a). The effect of weighting by Λ under
the null is to turn the composite null into a point null, so that the most powerful test
can be obtained using the Neyman-Pearson Lemma. SpeciÞcally, let φΛ be the most
powerful test of hΛ against fQ1,QT (q1, qT ;β

∗,λ∗), so that φΛ rejects the null when

NPΛ(q) =
fQ1,QT (q1, qT ;β,λ)

hΛ(q)
> dΛ,α, (7.4)

where dΛ,α is the critical value of the test, chosen so that NPΛ(q) rejects the null
with probability α under the distribution hΛ.

If the test φΛ has size α for the null hypothesis H0 in (7.1), i.e.,

sup
0≤λ<∞

Pβ,λ(NPΛ(Q) > dΛ,α) = α, (7.5)

then the test φΛ is most powerful for testing H0 against H1, and the distribution Λ
is least favorable; cf. Lehmann (1986, Sec. 3.8, Thm. 7, and Cor. 5).

Given a distribution Λ, condition (7.5) is easily checked numerically. What proves
more computationally difficult, however, is Þnding the distribution that satisÞes (7.5).
In the numerical work we consider distributions Λ that put point mass on some point
λ0. In this case, we have

NPΛ =
fQ1,QT (q1, qT ;β

∗,λ∗)
fQ1,QT (q1, qT ;β0,λ0)

=
exp(−λ∗(c2β∗ + d2β∗)/2)

%
λ∗ξβ∗(q)

&−(k−2)/4
I(k−2)/2

0(
λ∗ξβ∗(q)

1
exp(−λ0d2β0/2)

0
λ0ξβ0(q)

1−(k−2)/4
I(k−2)/2

0(
λ0ξβ0(q)

1 , (7.6)

where the second equality follows from Lemma 3(a).
Let R(β0,λ0,β

∗,λ∗|β,λ) be the rejection rate of the test based on the statistic
given by (7.6) when the true values are β and λ. The numerical problem is to Þnd
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the value of λ0 such that the test has size α. Denote this value of λ0 by λLF0 ; then
λLF0 solves

R(β0,λ
LF
0 ,β∗,λ∗|β0,λLF0 ) = α and

sup
0≤λ<∞

R(β0,λ
LF
0 ,β∗,λ∗|β0,λ) ≤ α. (7.7)

If there is a λLF0 (β0,β
∗,λ∗) that satisÞes (7.7), then the test based on NPλLF0 is

the POI non-similar test. The power envelope for invariant non-similar tests is
R(β0,λ

LF
0 (β0,β

∗,λ∗),β∗,λ∗|β∗,λ∗).

7.2 Two-sided Alternatives

Next, we consider invariant non-similar tests that have maximum WAP for the
two-point AE weight functions deÞned in (6.1) and that satisfy (6.2). The op-
timal test is of the same form as in (7.4), but with the numerator replaced by3
fQ1,QT (q1, qT ;β,λ)dW2P (β,λ). The numerator can be written in terms of (β∗,λ∗)

alone (and not (β∗2,λ
∗
2)) by the same argument as used to get (6.5).

As in the one-sided case, we consider distributions Λ that place point mass on
some point λ0, so that the test statistic is

NPΛ = exp(−λ∗(c2β∗ + d2β∗)/2)
5%
λ∗ξβ∗(q)

&−(k−2)/4
I(k−2)/2

0(
λ∗ξβ∗(q)

1
+0

λ∗ξ∗β∗(q)
1−(k−2)/4

I(k−2)/2
0(

λ∗ξ∗β∗(q)
1$
×#

exp(−λ0d2β0/2)
0
λ0d

2
β0
qT

1−(k−2)/4
I(k−2)/2

0(
λ0d2β0

qT

1$−1
, (7.8)

where ξ∗β(q) is deÞned in (6.6). Algebra and the strong-IV asymptotic results of
Section 11 reveal that if a one point least favorable distribution exists it must satisfy

λLF0 ≥ λ0, where λ0 = λ1d2β1/d2β0 . (7.9)

Otherwise, the critical value of NPΛLF is unbounded. The numerical problem is to
Þnd λ0 = λLF0 that solves (7.7) and the additional restriction (7.9).

8 Numerical Results I: Model with
Known Covariance Matrix

This section reports numerical results for power envelopes and comparative pow-
ers of tests developed in Sections 4-7 for the case of known Ω and normal errors. The
model considered is given in (2.4) with Ω speciÞed by ω11 = ω22 = 1 and ω12 = ρ.10

Without loss of generality, no X matrix is included. The parameters characterizing
10There is no loss of generality in taking ω11 = ω22 = 1 because the distribution of the maximal

invariantQ under (!β, !π, !Ω) for arbitrary pd !Ω with elements !ωjk equals its distribution under (β,π,Ω),
where ω11 = ω22 = 1, β = (!ω22/!ω11)1/2!β, and π = !ω−1/222 !π.
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the distribution of the tests are λ (= π"Z "Zπ), the number of IV�s k, the correlation
between the reduced form errors ρ, and the parameter β. Throughout, we focus on
tests with signiÞcance level 5% and on the case where the null value is β0 = 0.11

Numerical results have been computed for λ/k = 0.5, 1, 2, 4, 8, 16, which span the
range from weak to strong instruments, ρ = 0.95, 0.50, and 0.20, and k = 2, 5, 10,
20. To conserve space, we report only a subset of these results here. The full set of
results is available in AMS-04.

Conditional critical values for the POIS1δ test and the (two-sided) CLR test were
computed by numerical integration based on the distributional results in Lemma 3.
Conditional critical values for other statistics were computed by Monte Carlo simula-
tion on a grid of 150 values of qT , yielding lookup tables that were then interpolated.
Least favorable distributions were approximated using a single-point distribution.
All results reported here are based on 5,000 Monte Carlo simulations. Details of the
numerical methods are given in the supplement to this paper, AMS-04.

The results are presented as plots of power envelopes and power functions against
various alternative values of β and λ. Power is plotted as a function of the rescaled
alternative (β − β0)λ1/2. These can be thought of as local power plots, where the
local neighborhood is 1/λ1/2 instead of the usual 1/n1/2, since λmeasures the effective
sample size.

8.1 One-sided tests

Figure 1 presents the power envelope for invariant similar (conditional) tests
(POIS1) based on Corollary 2, the power envelope for invariant non-similar (uncon-
ditional) tests based on Section 7.1, and the power function of the CLR1 test of the
one-sided hypothesis H1 : β > 0. The single-point approximation of the least favor-
able distribution was found to work well in the sense that (7.5) is satisÞed within
Monte Carlo accuracy.

Inspection of Figure 1 reveals three salient Þndings. First, the power envelopes for
the similar and non-similar tests are essentially the same up to numerical accuracy.
This is true not just for the values reported here but for all values of λ, β, ρ, and
k considered. The reason for this is twofold. On one hand, the conditional critical
values for the POIS1 tests depend on qT only weakly in the range of qT that is
most likely to occur under the alternative. Thus, the POIS1 tests are very nearly
unconditional. On the other hand, the POI non-similar tests have null rejection rates
that are very nearly equal to 5% for all values of λ; thus, the POI non-similar tests
are very nearly similar. Because POI similar tests are nearly unconditional and the
POI non-similar tests are nearly similar, the two types of tests have nearly the same
rejection regions.

Second, there is a curious blip in some power envelopes. This blip occurs at the
value of the alternative for which β = 1/ρ. This is the value βAR deÞned in (5.16).

11There is no loss of generality in taking β0 = 0 because the structural equation y1 = y2β+Xγ1+u
and hypothesis H0 : β = β0 can be transformed into !y1 = y2!β +Xγ1 + u and H0 : !β = 0, where!y1 = y1 − y2β0 and !β = β − β0.
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The blip occurs because the sign of δ changes as β∗ changes from values less than
1/ρ to values greater than 1/ρ.

Third, the CLR1 test has power that is close to the power envelope for local and
distant alternatives, but deviates from the power envelope for alternatives near the
point β = βAR. For smaller values of ρ and larger values of λ/k, the power of the
CLR1 test is closer to the power envelope than in Figure 1, see AMS-04.

One approach to testing in the absence of a UMPI test is to consider POI tests
that have power functions tangent to the power envelope at a certain value; cf. King
(1988). Accordingly, Figure 2 graphs power functions of various POIS1 tests along
with the invariant similar power envelope for λ = 5 and λ = 20. The individual power
functions plotted in Figure 2 are for (i) the local-to-β0 POIS1 test given by (5.17), (ii)
the most distant POIS1 test given by (5.19), and (iii) several tests with intermediate
points of tangency (at powers of approximately 0.25, 0.5, and 0.75). Clearly, the
power functions of the POIS1 tests are not monotonic. This is a consequence of the
ßip in sign of δ in the POIS1 test statistic. For β < βAR, POIS1 tests have higher
power with positive δ, but for β > βAR POIS1 tests have higher power with negative
δ. Hence, tests designed for β < βAR perform poorly when β > βAR and vice versa.
In consequence, no single POIS1 test provides good overall performance.

Experiments with optimal WAP tests for various one-sided weight functions lead
to some tests whose power was similar to, but not better than, the power of the CLR1
test, see AMS-04. Hence, the best test in terms of overall one-sided power that we
found is the CLR1 test. Given that there is some difference between the power of the
CLR1 test and the one-sided power envelope, it may be possible to Þnd a one-sided
test that performs better, but we were not able to do so. On the other hand, no
UMP one-sided test exists, so the CLR1 test may be as good a test as possible in an
overall sense.

8.2 Two-sided tests

Figure 3 presents power envelopes for the asymptotically efficient (AE) and locally
unbiased (LU) families of invariant similar tests. There is no discernible difference
between these two power envelopes. Hence, the power envelopes obtained from two
quite different criteria for imposing two-sidedness, viz., local-unbiasedness and two-
sided asymptotic efficiency under strong IV asymptotics, yield essentially the same
power envelope. This is a notable and very convenient result. The AE invariant
similar tests are more tractable numerically than the LU invariant similar tests, so
we focus henceforth on the AE family.

Figure 3 also presents the power envelope for the AE family of invariant non-
similar tests in the range in which we were able to compute it. According to our
computations, if (7.9) is satisÞed then there exists a one-point least favorable distri-
bution. This occurs in an interval containing β0 where the end points of the interval
are deÞned by λLF0 = λ0. Within this interval, λ

LF
0 is very close to λ0�within .02 in

all the cases plotted in Figure 3. Outside this interval, we were unable to Þnd a one-
point least favorable distribution. Where we could compute it, the power envelope
for AE invariant non-similar tests equals that for AE invariant similar tests, within
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numerical accuracy.12

Figure 4 presents the power functions of two POIS2 tests, along with the power
envelope for AE invariant similar tests. The Þrst POIS2 tests is point-optimal against
β∗ = 0.8 and λ∗ = 5 (for k = 5), and the second is point-optimal against β∗ = 1.45
and λ∗ = 5. We denote these as POIS2(.8, 5) and POIS2(1.45, 5), respectively. The
POIS2(.8, 5) and POIS2(1.45, 5) tests have power functions that are tangent to the
power envelope at powers of approximately 25% and 75% for λ = 5. Note that these
tests depend on ρ but not on the unknown values of β or λ and thus are feasible tests
if Ω is known. Unlike the case for the one-sided POIS1 tests, the power functions of
the POIS2 tests effectively lie on the two-sided AE power envelope. Evidently, both
these tests are numerically nearly UMP among AE invariant similar tests.

Figure 5 plots the power functions of the two-sided CLR, LM, and AR tests, along
with the power envelope for AE invariant similar tests. The striking new Þnding based
on this work is that the power function of the CLR test effectively achieves the power
envelope for AE invariant similar tests, even more closely than the POIS2(.8, 5) and
POIS2(1.45, 5) tests. Figure 5 documents other results as well. The power function of
the AR test is generally below the AE power envelope, except at its point of tangency
at β = βAR. Also, as is known from previous simulation work (e.g. Moreira (2003)
and Stock, Wright, and Yogo (2002)), the power function of the LM statistic is not
monotonic. This is due to the switching of the sign of dβ as β moves through the
value βAR. The adverse effect of the sign switching of dβ is considerably muted for
the two-sided LM test compared to the one-sided LM test because, roughly speaking,
power lost on one side of the null is partially picked up by power on the other side.

The numerical equality of the similar and non-similar AE invariant power en-
velopes and the good overall performance of the POIS2 tests suggests that an un-
conditional point optimal invariant non-similar test might also exhibit good power
properties. We restrict attention to non-similar tests that are asymptotically efficient
if the IV�s are strong, which requires the α quantile of their null distribution (given
λ) to be maximal in the limit λ → ∞, which in turn cannot occur if λ0 < λ0. We
therefore consider tests of the form (7.8) with λ0 = λ0, with upward sloping rejection
functions for λ large, and, as a simpliÞcation, with d2β1 = c2β1 . This leads to test
statistics of the form

P ∗ =

1
2 exp(−κ/2)

#%
κξ
&−(k−2)/4

I(k−2)/2
04

κξ
1
+
0
κξ
∗1−(k−2)/4

I(k−2)/2

'(
κξ
∗
)$

(κqT )
−(k−2)/4 I(k−2)/2

%√
κqT

& ,

(8.1)

where ξ = qS + 2qST + qT , ξ
∗
= qS − 2qST + qT , and κ = λ1d

2
β1
= λ1c

2
β1
= λ0d

2
β0
.

Note that with these simpliÞcations the parameters β1, β0, ρ, λ1, and λ0 enter only
through κ.

Figure 5 plots the power function of the P ∗ test with κ = 3.25, which corresponds
approximately to the POI non-similar test that is tangent to the AE non-similar
12We thank Anna Mikoucheva for research assistance in the computation of the AE invariant

non-similar power envelopes.
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power envelope at β1 = 0.792 and λ1 = 5.18 (the 5% critical value for this test is
3.37). The power of this test falls slightly below the power envelope near βAR, but
otherwise numerically achieves the power envelope.

In sum, the results of Figure 5 (and further results documented in AMS-04) show
that the CLR test dominates the LM and AR tests and is, in a numerical sense, UMP
among AE invariant similar tests and among locally-unbiased invariant similar tests.
Also, the P ∗ test nearly achieves this power envelope and thus is, in the same sense,
approximately UMPI.

Figure 6 shows how the power results change with k. Figure 6 gives the power
envelopes for AE invariant similar tests and the power functions of the two-sided
CLR, LM, AR, and P ∗ tests for k = 2 (Figure 6(a) and 6(b)) and for k = 10 (Figure
6(c) and 6(d)) (for k = 2, κ = 2 and the 5% critical value is 2.95 for the P ∗ test, and
for k = 10, κ = 4.25 and the 5% critical value is 3.40). Three Þndings of these (and
related results reported in AMS-04) are noteworthy. First, note that the scale is the
same in Figure 6 as in Figure 5, and, aside from the location of the blip, the power
envelopes are numerically close in each panel in the two Þgures. This conÞrms that
the appropriate measure of information for optimal invariant testing is λ1/2, and this
scaling does not depend on k. In particular, this implies that the AE power envelope
does not deteriorate signiÞcantly with the addition of an irrelevant instrument.

Second, the power of the CLR test is numerically essentially the same as the
power envelope, conÞrming the Þnding above for k = 5 that the CLR test is nearly
UMP among invariant similar tests of the AE family.

Third, for k = 2, the power function of the P ∗ test is effectively on the power
envelope. For k = 10, the power of the P ∗ test drops slightly below the power
envelope, suggesting that for values of k > 5 it would be of interest to investigate
different unconditional POI tests as alternatives to the P ∗ test.

9 Weak IV Asymptotics for Case of Unknown
Covariance Matrix and Non-normal Errors

In this section, we consider the same model and hypotheses as in Section 2,
but with unknown error covariance matrix, (possibly) non-normal, heteroskedastic,
and/or autocorrelated errors, and (possibly) random IV�s and/or exogenous variables.
The latter allows for lagged dependent and endogenous variables as regressors or IV�s.

We use weak IV asymptotics, as in Staiger and Stock (1997), to analyze the prop-
erties of the procedures considered. We consider three versions of the Þnite sample
tests introduced in Sections 4 and 6. The Þrst version is suitable for the case of
uncorrelated errors that exhibit contemporaneous homoskedasticity. By this we mean
that E(ViV "i |Zi,Xi) is a constant matrix that does not depend on i, where Vi denotes
the reduced-form error vector for the i-th observation (i.e., Vi is the i-th row of V
written as a column 2-vector). In a time series setting this still allows for the errors to
exhibit temporal conditional heteroskedasticity with respect to lagged values of the er-
rors, IV�s, and exogenous variables (i.e., E(ViV "i |Zi−1,Xi−1, Vi−1, Zi−2,Xi−2, Vi−2, ...)
may be random).

29



The second version of the tests that are introduced here is designed for uncorre-
lated errors that may exhibit contemporaneous heteroskedasticity (i.e., E(ViV "i |Zi,Xi)
may be random or depend on i). This version adjusts the statistics (S, T ) to obtain
robustness to heteroskedasticity. Note that most procedures in the literature, includ-
ing the AR, LM, CLR, and Staiger and Stock (1997) procedures, are not robust to
heteroskedasticity.

The third version of the tests is designed to be robust to both contemporaneous
heteroskedasticity and autocorrelation in the reduced-form errors.

For clarity of the asymptotics results, throughout this section we write S, T, Q1,
QT , QS , QST , S2, λ, AR, LM, LR, and LR1 of Sections 2-8, as Sn, Tn, Q1,n, QT,n,
QS,n, QST,n, S2,n, λn, ARn, LMn, LRn, and LR1n, respectively, where n is the sample
size. All limits are taken as n→∞.

Let Z = [Z : X] . Let Yi, Zi, Xi, Zi, and Vi denote the i-th rows of Y, Z, X, Z,
and V, respectively, written as column vectors of dimensions 2, k, p, k + p, and 2.

9.1 Assumptions

We use the following high-level assumptions concerning the IV�s, exogenous vari-
ables, and errors. The assumptions are quite similar to those of Staiger and Stock
(1997), but they allow for the possibility of heteroskedastic and autocorrelated errors
because the form of the asymptotic variance matrix Φ in Assumption 3 is not re-
stricted. The parameter π which determines the strength of the IV�s is local to zero
and the alternative parameter β is Þxed, not local to the null value β0.

Assumption WIV-FA. (a) π = C/n1/2 for some non-stochastic k-vector C.
(b) β is a Þxed constant for all n ≥ 1.
(c) k is a Þxed positive integer that does not depend on n.

Assumption 1. n−1Z "Z →p D for some pd (k + p)× (k + p) matrix D.
Assumption 2. n−1V "V →p Ω for some pd 2× 2 matrix Ω.
Assumption 3. n−1/2vec(Z "V )→dN(0,Φ) for some pd 2(k+p)×2(k+p) matrix Φ.

In Assumption 3, vec(·) denotes the column by column vec operator.
The quantities C, D, Ω, and Φ are assumed to be unknown.
Assumption WIV-FA is the �weak IV�s with Þxed alternative� assumption. As-

sumptions 1 and 2 hold under suitable conditions by a weak law of large numbers
(WLLN), see below. Assumption 3 holds under suitable conditions by a central limit
theorem (CLT). Assumptions 1-3 are consistent with non-normal, heteroskedastic,
autocorrelated errors and IV�s and regressors that may be random or non-random.

For example, Assumptions 1-3 are implied by any one of the following assumptions:

Assumption IID. {(Vi, Zi) : i ≥ 1} are iid, E(Vi ⊗ Zi) = 0, E||Vi||2 + E||Zi||2 +
E||Vi ⊗ Zi||2 <∞, Ω = EViV "i is pd, and Φ = E(Vi ⊗ Zi)(Vi ⊗ Zi)" is pd.
Assumption INID. {(Vi, Zi) : i ≥ 1} are independent, E(Vi⊗Zi) = 0 for all i ≥ 1,
supi≥1(E||Vi||2+δ+E||Zi||2+δ+E||Vi⊗Zi||2+δ) <∞ for some δ > 0, n−1

6n
i=1EViV

"
i

→ Ω for some pd 2× 2 matrix Ω, and n−16n
i=1E(Vi ⊗ Zi)(Vi ⊗ Zi)" → Φ for some

pd 2(k + p)× 2(k + p) matrix Φ.
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Assumption MDS. {(Vi⊗Zi,Fi) : i ≥ 1} is a martingale difference sequence, where
Fi = σ(Vi, Zi, Vi−1, Zi−1, ...), {(Vi, Zi) : i ≥ 1} is a stationary and ergodic sequence,
E||Vi||2+E||Zi||2+E||Vi⊗Zi||2 <∞, Ω = EViV "i is pd, and Φ = E(Vi⊗Zi)(Vi⊗Zi)"
is pd.

Assumption CORR. {(Vi, Zi) : i = ..., 0, 1, ...} is a doubly inÞnite stationary
and ergodic sequence with E(Vi ⊗ Zi) = 0, E||Vi||2 + E||Zi||2 + E||Vi ⊗ Zi||2 < ∞,6∞
j=1(E||E(Vi⊗Zi|Fi−j)||2)1/2 <∞, where Fi = σ(Vi, Zi, Vi−1, Zi−1, ...), Ω = EViV "i

is pd, and Φ =
6∞
j=−∞E(Vi ⊗ Zi)(V "i−j ⊗ Z

"
i−j) is pd.

The random vectors {Vi ⊗ Zi : i ≥ 1} are uncorrelated under Assumption IID,
INID, or MDS, but are (possibly) correlated under Assumption CORR.

If the errors are contemporaneously homoskedastic and {Vi ⊗ Zi : i ≥ 1} are un-
correlated, the following key assumption holds. Under this assumption (and Assump-
tions WIV-FA and 1-3), the tests described in Sections 4 and 6 but with Ω replaced
by a consistent estimator "Ωn have asymptotic signiÞcance level α, as desired.
Assumption 4. Φ = Ω⊗D, where Φ is deÞned in Assumption 3.
In Section 9.2 below, we impose Assumption 4, but in Sections 9.3 and 9.4, we do
not. Assumption 4 is implied by any one of Assumptions IID, INID, and MDS plus
the following.

Assumption HOM. E((ViV "i )⊗ (ZiZ
"
i)) = Ω⊗D for all i ≥ 1.

By iterated expectations, a sufficient condition for Assumption HOM is E(ViV "i |Zi) =
EViV

"
i = Ω a.s. for all i ≥ 1.
Note that Assumptions MDS and CORR allow for intertemporal conditional het-

eroskedasticity even when Assumption HOM holds.

Lemma 4 (a) Any one of Assumptions IID, INID, MDS, and CORR implies As-
sumptions 1-3.

(b) Any one of Assumptions IID, INID, and MDS plus Assumption HOM imply
Assumption 4.

The asymptotic results stated below hold for any true parameter values β, C,
γ, ξ, and Ω, provided Ω is positive deÞnite. Hence, we do not need to be speciÞc
regarding the parameter space. Of course, for the testing problem to be well deÞned,
the parameter space should include the null value β0 and at least one other value of
β. In addition, for tests to exist that have non-trivial power, it is necessary for the
parameter space to include at least one non-zero vector C.

We estimate Ω (∈ R2×2) (deÞned in Assumption 2) via"Ωn = (n− k − p)−1"V " "V , where "V = Y − PZY − PXY, (9.1)

where k and p are the dimensions of Zi and Xi, respectively.13 Let "Vi denote the i-th
row of "V written as a column 2-vector.

Under Assumptions 1-3, the variance estimator is consistent.

13This deÞnition of "Ωn is suitable if Z or X contains a vector of ones, as is usually the case. If
not, then "Ωn is deÞned with the sample mean of "V subtracted off.
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Lemma 5 Under Assumptions 1-3, "Ωn →p Ω.

Comment. The convergence in the Lemma occurs uniformly over all true parameters
β, C, γ, and ξ no matter what the parameter space is. This can be seen by inspection
of the proof of the Lemma.

9.2 Homoskedastic Uncorrelated Errors

We now introduce tests that are suitable for (possibly) non-normal, homoskedas-
tic, uncorrelated errors and unknown covariance matrix. That is, the tests are suitable
when Assumptions 1-4 hold.

We deÞne analogues of Sn, Tn, Q1,n, and QT,n that replace the unknown matrix
Ω with "Ωn: "Sn = (Z "Z)−1/2Z "Y b0 · (b"0"Ωnb0)−1/2,"Tn = (Z "Z)−1/2Z "Y "Ω−1n a0 · (a"0"Ω−1n a0)−1/2,"Q1,n = 0 "QT,n, "QST,n1" = 0"S"n "Sn, "S"n "Tn1" , and "QT,n = "T "n "Tn. (9.2)

The AR, LM, LR, LR1, and POISδ test statistics for the case of unknown Ω are de-
Þned as in (3.4), (3.7), and (5.15), but withQS, QST , andQT replaced by "QS,n, "QST,n,
and "QT,n. Denote these test statistics by7ARn, 7LMn,7LRn, 7LR1n, and !POIS1"δ, re-
spectively.

A homoskedastic optimal WAP test, referred to as an HOM-WAP test, rejects
the null hypothesis H0 : β = β0 when

LRW ( "Q1,n, "QT,n) > κα( "QT,n), (9.3)

where LRW (·, ·) is deÞned in Corollary 1 and κα(·) is deÞned in (4.12) (and can be
calculated by simulation using the method described there). An LU version of the
HOM-WAP test is deÞned using the statistic LRW ( "Q1,n, "QT,n) combined with the
critical value given in Theorem 5 with QT and QST replaced by "QT,n and "QST,n,
respectively.

Next, we show that "Sn and "Tn converge in distribution to independent k-vectors
S∞ and T∞, respectively, which are deÞned as follows. Let NZ be a k × 2 normal
matrix. Let

vec(NZ) ∼ N(vec(DZCa
"),Ω0 ⊗DZ),

S∞ = D
−1/2
Z NZb0 · (b0Ωb0)−1/2 ∼ N(cβD1/2Z C, Ik),

T∞ = D
−1/2
Z NZΩ

−1a0 · (a0Ω−1a0)−1/2 ∼ N(dβD1/2Z C, Ik), where

DZ = D11 −D12D−122 D21,
D =

#
D11 D12
D21 D22

$
, and Dj( ∈ Rk×k for j, 3 = 1, 2. (9.4)
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The matrix DZ is the probability limit of n−1Z "Z. Under H0, S∞ has mean zero, but
T∞ does not. Let

Q∞ = [S∞ : T∞]"[S∞ : T∞],
Q1,∞ =

%
S"∞S∞, S

"
∞T∞

&"
, QT,∞ = T "∞T∞, QST,∞ = S"∞T∞,

QS,∞ = S"∞S∞, S2,∞ = S"∞T∞/(||S∞|| · ||T∞||), and
λ∞ = C "DZC. (9.5)

The following result holds under the null hypothesis and Þxed (i.e., non-local)
alternative hypotheses.

Lemma 6 Under Assumptions WIV-FA and 1-4,
(a) (Sn, Tn)→d (S∞, T∞),
(b) ("Sn, "Tn)− (Sn, Tn)→p 0, and
(c) ("Sn, "Tn)→d (S∞, T∞).

Comments. 1. Inspection of the proof of the Lemma shows that the results of the
Lemma hold uniformly over compact sets of true β and C values and over arbitrary
sets of true γ and ξ values. In particular, the results hold uniformly over vectors C
that include the zero vector. Hence, the asymptotic results hold uniformly over cases
in which the IV�s are arbitrarily weak. In consequence, we expect the asymptotic
test procedures developed here to perform well in terms of size even for very weak
IV�s. Note that it is precisely these cases in which the t, Wald, and LR tests based
on standard asymptotics perform poorly in terms of size.

2. Lemma 6 and the continuous mapping theorem imply that the asymptotic
distributions of the7ARn, 7LMn,7LRn, 7LR1n, and !POIS1"δ test statistics are given by
the distributions of the test statistics in (3.4), (3.7), and (5.15) with (QS, QST , QT )
replaced by (QS,∞, QST,∞,QT,∞). In particular, under the null hypothesis,7ARn and7LMn have asymptotic χ2k and χ

2
1 distributions, respectively. The one-sided POI

similar test against β∗ = βAR is the AR test, see Comment 4 to Corollary 2, and,
hence, the AR test for the case of unknown nonsingular Ω is asymptotically point
optimal under weak IV asymptotics.

Using Lemma 6, we establish the asymptotic distributions of the {LRW ( "Q1,n, "QT,n) :
n ≥ 1} test statistics and {κα( "QT,n) : n ≥ 1} critical values.
Lemma 7 The density, conditional density, and independence results of Lemma 3
for (Q1,n, QT,n), QT,n, QS,n, and S2,n also hold for (Q1,∞, QT,∞), QT,∞, QS,∞, and
S2,∞ with λn replaced by λ∞.

Comment. Lemma 7 holds by (9.4) and the proof of Lemma 3.
As above, the following results hold under the null and Þxed alternatives.

Theorem 6 Under Assumptions WIV-FA and 1-4,
(a) (LRW (Q1,n,QT,n), κα(QT,n))→d (LRW (Q1,∞, QT,∞), κα(QT,∞)),
(b) (LRW ( "Q1,n, "QT,n), κα( "QT,n))− (LRW (Q1,n, QT,n), κα(QT,n))→p 0, and
(c) (LRW ( "Q1,n, "QT,n), κα( "QT,n))→d (LRW (Q1,∞, QT,∞), κα(QT,∞)).
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Theorem 6 leads to the following results.

Corollary 4 Under Assumptions WIV-FA and 1-4,
(a) 1(LRW ( "Q1,n, "QT,n) > κα( "QT,n))− 1(LRW (Q1,n,QT,n) > κα(QT,n))→p 0,
(b) P (LRW (Q1,n,QT,n) > κα(QT,n))→ P (LRW (Q1,∞, QT,∞) > κα(QT,∞)),
(c) P (LRW ( "Q1,n, "QT,n) > κα( "QT,n))→ P (LRW (Q1,∞, QT,∞) > κα(QT,∞)), and
(d) under the null hypothesis, P (LRW (Q1,∞, QT,∞) > κα(QT,∞)) = α.

Comments. 1. Corollary 4(a) shows that the critical regions of the tests with
known and unknown error covariance matrix differ with probability that converges
to zero as n → ∞. Hence, estimation of the error covariance matrix has no effect
asymptotically.

2. Corollary 4(b) and (c) provide the asymptotic power functions of the tests
based on known and unknown error covariance matrix. Consistent with the result of
Corollary 4(a) , the asymptotic power functions are the same. The asymptotic power
function depends only on β, C, and DZ . It can be written as:

PowW (β, C,DZ) = P (LRW (Q1,∞, QT,∞) > κα(QT,∞)) (9.6)

=

.
1(LRW (q1, qT ) > κα(qT ))fQ1,QT (q1, qT ;β, C,DZ)dq1dqT ,

where fQ1,QT (q1, qT ;β, C,DZ) is the density given in Lemma 3(a) with λ = C
"DZC.

3. Combining Corollary 4(b) and (c) with Corollary 4(d) implies that the tests
based on LRW (Q1,n, QT,n) and LRW ( "Q1,n, "QT,n) both have asymptotic null rejection
rates of α, as desired.

4. For the LU version of the HOM-WAP test, analogous results to those of
Theorem 6 and Corollary 4 hold with κα( "QT,n) and κα(QT,∞) replaced by κ1α( "QT,n)+"QST,nκsα( "QT,n) and κ1α(QT,∞) +QST,∞κsα(QT,∞), respectively.
9.3 Heteroskedasticity-Robust Tests

We now introduce alternatives to the statistics ("Sn, "Tn) that are adjusted to
achieve robustness to heteroskedasticity. DeÞne!Sn = !Σ−1/2S,n n−1/2Z "Y b0 and (9.7)!Tn = !Σ−1/2T,n

0
n−1/2Z "Y "Ω−1n a0 − !ΣTS,n!Σ−1/2S,n

!Sn1 , where
!ΣS,n = n−1k,p

n2
i=1

0"V "i b0Zi10"V "i b0Zi1", !ΣTS,n = n−1k,p n2
i=1

0"V "i "Ω−1n a0Zi10"V "i b0Zi1",
!ΣT,n = !Σ∗T,n − !ΣTS,n!Σ−1S,n!Σ"TS,n, !Σ∗T,n = n−1k,p n2

i=1

0"V "i "Ω−1n a0Zi10"V "i "Ω−1n a0Zi1",
nk,p = n− k − p, and "Ωn and "Vi are deÞned in (9.1).14
14There is no need to recenter {"V #

i b0Zi : i ≤ n} by subtracting off its sample mean,
n−1

6n
j=1

"V #
j b0Zj , in the deÞnition of !ΣS,n because its sample mean is identically zero. The same

holds for !ΣTS,n and !Σ∗T,n.
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The statistic !Sn is based on n−1/2Z "Y b0, just as "Sn is, but is normalized by !Σ−1/2S,n ,
which is a consistent estimator of the square root of the asymptotic variance matrix
of n−1/2Z "Y b0 even in the presence of heteroskedasticity. The statistic !Tn is based on
n−1/2Z "Y "Ω−1n a0, as "Tn is, but is adjusted by subtracting off !ΣTS,n!Σ−1/2S,n

!Sn to achieve
zero asymptotic covariance with !Sn even in the presence of heteroskedasticity and
is normalized by !Σ−1/2T,n to achieve identity asymptotic covariance matrix even in the

presence of heteroskedasticity. In the case of homoskedasticity, !ΣTS,n →p 0 and the!ΣTS,n!Σ−1/2S,n
!Sn adjustment has no effect asymptotically.

Heteroskedasticity-robust AR, LM, CLR, CLR1, and POIS1 tests, denoted HR-
AR, HR-LM, HR-CLR, HR-CLR1, and HR-POIS1, respectively, are deÞned as fol-
lows. The heteroskedasticity-robust test statistics, denoted8ARn, 8LMn,8CRn, 8LR1n,
and "POIS1!δ, respectively, are deÞned as in (3.4), (3.7), and (5.15), but with (QS ,
QST , QT ) replaced by ( !QS,n, !QST,n, !QT,n). The appropriate critical values for these
test statistics are the same as in the homoskedastic case. Thus, the critical values
for the HR-AR and HR-LM tests are from χ2k and χ

2
1 distributions, respectively. The

critical value functions for the HR-CLR, HR-CLR1, and HR-POIS1 tests are the
same as in the homoskedastic error case. For the CLR test, see Table I of Moreira
(2003).

A heteroskedasticity-robust optimal WAP test, referred to as an HR-WAP test,
rejects H0 : β = β0 when

LRW ( !Q1,n, !QT,n) > κα( !QT,n), where!Q1,n = (!S"n !Sn, !S"n !Tn)", !QT,n = !T "n !Tn, (9.8)

and κα(·) is deÞned in (4.12) (and can be calculated by the method following (4.12)).
Note that the critical value function κα(·) for the HR-WAP test is the same as for the
HOM-WAP test. An LU version of the HR-WAP test is deÞned using the statistic
LRW ( !Q1,n, !QT,n) coupled with the critical value in Theorem 5 with QT and QST
replaced by !QT,n and !QST,n = !S"n !Tn, respectively.

We now analyze the asymptotic properties of the various HR tests. DeÞne!ΣS = MB0ΦB
"
0M

", !ΣTS =MA0ΦB"0M ", !Σ∗T =MA0ΦA"0M ", and!ΣT = !Σ∗T − !ΣTS!Σ−1S !Σ"TS, where (9.9)

M =
9
Ik : −D12D−122

:
, B0 = (b

"
0 ⊗ Ik+p), and A0 = (Ω−1a0)" ⊗ Ik+p.

The estimators !ΣS,n, !ΣTS,n, and !ΣT,n converge in probability to !ΣS , !ΣTS, and!ΣT , respectively, when Assumptions WIV-FA and 1-3 and the following assumptions
hold.

Assumption 5. n−1
6n
i=1(Vi ⊗ Zi)(Vi ⊗ Zi)" →p Φ.

Assumption 6. n−1
6n
i=1(||Zi||4 + ||Zi||3||Vi||) = Op(1).

Any one of Assumptions IID, INID, or MDS is sufficient for Assumption 5.
Assumption 6 holds under Assumption IID or MDS plus the following assumption.

Assumption MOM. E||Zi||4 +E||Zi||3||Vi|| <∞.
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Assumption 6 holds under Assumption INID plus the following assumption.

Assumption MOM2. E||Zi||4+δ +E||Zi||3+δ||Vi||1+δ <∞ for some δ > 0.

Let !S∞ and !T∞ be independent random k-vectors with

!S∞ ∼ N(!Σ−1/2S DZCa
"b0, Ik) and!T∞ ∼ N

0!Σ−1/2T

0
DZCa

"Ω−1a0 − !ΣTS!Σ−1S DZCa"b01 , Ik1 . (9.10)

Let !Q1,∞ =
0!S"∞ !S∞, !S"∞ !T∞1" and !QT,∞ = !T "∞ !T∞.

The asymptotic properties of tests based on (!Sn, !Tn) are as follows.
Theorem 7 Under Assumptions WIV-FA, 1-3, 5, and 6,
(a) !ΣS,n →p

!ΣS , !ΣTS,n →p
!ΣTS , and !ΣT,n →p

!ΣT and
(b) Lemma 6(c), Theorem 6(c), and Corollary 4(c) and (d) hold with "Sn, "Tn, S∞,
T∞, Q1,∞, and QT,∞ replaced by !Sn, !Tn, !S∞, !T∞, !Q1,∞, and !QT,∞, respectively.
Comments. 1. Part (b) of the Theorem shows that HR-WAP tests have the
correct signiÞcance level asymptotically whether or not the errors satisfy Assumption
HOM. It shows that estimation of Ω, !ΣS, !ΣTS , and !ΣT does not affect the asymptotic
distribution of {(LRW ( !Q1,n, !QT,n), κα( !QT,n)) : n ≥ 1}. It also shows that if the errors
satisfy Assumption HOM, then the HR-WAP tests have the same asymptotic power
as HOM-WAP tests because (!S∞, !T∞) and (S∞, T∞) have the same distribution in
this case.

2. Theorem 7(b) and the continuous mapping theorem imply that the asymp-

totic distributions of the8ARn, 8LMn, 8CRn, 8LR1n, and "POIS1!δ test statistics under
Assumptions WIV-FA, 1-3, 5, and 6 are given by the distributions of the test statis-
tics in (3.4), (3.7), and (5.15) with (S, T ) replaced by (!S∞, !T∞). Hence, the HR-AR
and HR-LM statistics have asymptotic null χ2k and χ

2
1 distributions, respectively.

In addition, the critical value functions of the HR-CLR, HR-CLR1, and HR-POIS1
tests are the same as in the homoskedastic case and are determined by the density
in Lemma 3(c). If Assumption HOM holds, then the asymptotic power functions of
the HR-AR, HR-LM, HR-CLR, HR-CLR1, and HR-POIS1 tests are the same as the
non-heteroskedasticity-robust versions of these tests.

3. For the LU version of the HR-WAP test, analogues of Theorem 6(c) and Corol-
lary 4(c) and (d) hold under the assumptions of Theorem 7 with "Q1,n, "QT,n, Q1,∞,
QT,∞, κα( "QT,n), and κα(QT,∞) replaced by !Q1,n, !QT,n, !Q1,∞, !QT,∞, κ1α( !QT,n) +!QST,nκ2α( !QT,n), and κ1α( !QT,∞) + !QST,∞κ2α( !QT,∞), respectively, where !QST,∞ =!S"∞ !T∞.
9.4 Heteroskedasticity and Autocorrelation Robust Tests

Tests that are robust to heteroskedasticity and autocorrelation in the reduced-
form errors {Vi : i ≥ 1} are obtained by using the tests introduced in the previous
subsection but with different estimators in place of !ΣS,n, !ΣTS,n, !ΣT,n, and !Σ∗T,n.
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These are the only changes that are needed. In place of these estimators, one uses
estimators of ΣS,∞, ΣTS,∞, ΣT,∞, and Σ∗T,∞, respectively, that are consistent (at least
under the null hypothesis), where

Σ∞ =

#
ΣS,∞ Σ"TS,∞
ΣTS,∞ Σ∗T,∞

$
= lim
n→∞ var

;
n−1/2

n2
i=1

'
V "i b0Zi

V "iΩ
−1a0Zi

)<
and

ΣT,∞ = Σ∗T,∞ −ΣTS,∞Σ−1S,∞Σ"TS,∞. (9.11)

Let

Σn =

=
ΣS,n Σ

"
TS,n

ΣTS,n Σ
∗
T,n

>
(9.12)

be a consistent estimator of Σ∞ based on {("V "i b0Z "i, "V "i "Ω−1n a0Z "i)" : i ≤ n}. There are
many HAC estimators in the literature that can be used for this purpose, e.g., see
Newey and West (1987), Andrews (1991), and Andrews and Monahan (1992). For
brevity, we do not provide an explicit set of conditions under which one or more of
these HAC estimators is consistent. We note, however, that the presence of weak
IV�s does not complicate standard proofs of the consistency of HAC estimators.

Given the estimator Σn, the estimators !ΣS,n, !ΣTS,n, !ΣT,n, and !Σ∗T,n are replaced
in (9.7) by ΣS,n, ΣTS,n, ΣT,n, and Σ

∗
T,n, respectively, where

ΣT,n = Σ
∗
T,n −ΣTS,nΣ−1S,nΣ"TS,n. (9.13)

Let Sn, Tn, Q1,n, QS,n, QST,n, and QT,n denote !Sn, !Tn, !Q1,n, !QS,n, !QST,n, and !QT,n,
respectively, with these changes. Heteroskedasticity and autocorrelation-robust AR,
LM, LR, LR1, and POIS1 test statistics, denoted ARn, LMn, LRn, LR1n, and
POIS1δ, respectively, are deÞned as in (3.4), (3.7), and (5.15), but with (QS ,QST , QT )
replaced by (QS, QST , QT ). The corresponding tests are denoted HAR-AR, HAR-LM,
HAR-CLR, HAR-CLR1, and HAR-POIS1, respectively. The appropriate critical val-
ues for these test statistics are the same as in the homoskedastic case.

A heteroskedasticity and autocorrelation-robust optimal WAP test, referred to as
an HAR-WAP test, rejects H0 : β = β0 when

LRW (Q1,n, QT,n) > κα(QT,n), (9.14)

where κα(·) is deÞned in (4.12). An LU version of the HAR-WAP test is deÞned using
the statistic LRW (Q1,n,QT,n) combined with the critical value given in Theorem 5
with QT and QST replaced by QT,n and QST,n, respectively.

The HAR-AR, HAR-LM, HAR-CLR, HAR-CLR1, HAR-POIS1, HAR-WAP, and
LU-HAR-WAP tests have correct asymptotic signiÞcance level under Assumptions
WIV-FA and 1-3 plus the additional conditions that are needed to obtain consis-
tency of Σn for Σ∞. Furthermore, if Assumption 4 also holds, these tests have the
same asymptotic power functions as the corresponding AR, LM, CLR, CLR1, POIS1,
HOM-WAP, and LU-HOM-WAP tests, or if Assumptions 5 and 6 also hold, they have
the same asymptotic power functions as the HR-AR, HR-LM, HR-CLR, HR-CLR1,
HR-POIS1, HR-WAP, and LU-HR-WAP tests.
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10 Asymptotic Optimality and Power Envelope
with Weak IV�s

In this section, we show that the tests HOM-WAP, HR-WAP, and HAR-WAP,
and the corresponding LU versions of these tests, exhibit certain asymptotic WAP
optimality properties when the IV�s are weak and the errors are iid normal with
unknown covariance matrix. These results immediately provide one- and two-sided
asymptotic power envelopes by considering one- and two-point weight functions, see
Sections 5 and 6.2. These asymptotic power envelopes are the same as the Þnite
sample power envelopes determined in Sections 5 and 6.2 for the case of iid normal
errors with known covariance matrix.

For the asymptotic optimality results, we set up a sequence of models (or experi-
ments) with the parameters renormalized such that no parameter can be estimated
asymptotically without error, as is standard in the asymptotic efficiency literature,
e.g., see van der Vaart (1998, Ch. 9). For the parameters β and C, no renormalization
is required given Assumption WIV-FA because neither can be consistently estimated
in the weak IV asymptotic setup. For the parameters Ω and η, renormalizations are
required. We take the true parameters Ω and η to satisfy

Ω = Ω0 +Ω1/n
1/2 and η = η0 + η1/n

1/2, (10.1)

where Ω0 and η0 are taken to be known and the unknown parameters to be estimated
are the perturbation parameters η1 and Ω1. The matrices Ω0 and Ω1 are assumed to
be symmetric and pd.

The least squares estimator of η in the model of (2.5) is denoted "ηn = (X "X)−1X "Y.
(The form of "ηn relies on the fact that Z "X = 0 by construction of Z.)

For any symmetric 3×3 matrix A, let vech(A) denote the 3(3+1)/2-column vector
containing the column by column vectorization of the non-redundant elements of A.

The following basic results hold under the null hypothesis β = β0 and Þxed
alternatives β "= β0:

Lemma 8 Suppose Assumption WIV-FA holds, the reduced-form errors {Vi : i ≥ 1}
are iid normal, independent of {Zi : i ≥ 1}, with mean zero and pd variance matrix
Ω, and Ω and η are as in (10.1). Then,
(a) (n−1/2Z "Y, n1/2("ηn−η0), n1/2("Ωn−Ω0)) are sufficient statistics for (β, C,Ω1, η1),
(b) (n−1/2Z "Y, n1/2("ηn−η0), n1/2("Ωn−Ω0))→d (NZ , NX , NΩ), where NZ , NX , and
NΩ are independent k × 2, p × 2, and 2 × 2 normal random matrices, respectively,
with vec(NZ) ∼ N(vec(DZCa

"),Ω0 ⊗ DZ), vec(NX) ∼ N(vec(η1),Ω0 ⊗ D−122 ), NΩ
is symmetric, and vech(NΩ) ∼ N(Ω1, E(ζ − Eζ)(ζ − Eζ)"), where ζ = vech(v0v

"
0),

v0 ∈ R2, and v0 ∼ N(0,Ω0), provided Assumption 1 also holds.

Given the result of part (a) of the Lemma, there is no loss in attainable power
by considering only tests that depend on the data through (n−1/2Z "Y, n1/2("ηn− η0),
n1/2("Ωn −Ω0)). Let φn(n−1/2Z "Y, n1/2("ηn − η0), n1/2("Ωn −Ω0)) be such a test. The
test φn is {0, 1}-valued and rejects the null hypothesis when φn = 1. We say that
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a sequence of tests {φn : n ≥ 1} is a convergent sequence of asymptotically similar
tests if, for some function φ(·, ·, ·),

φn(n
−1/2Z "Y, n1/2("ηn − η0), n1/2("Ωn −Ω0)) →d φ(NZ , NX , NΩ) and

Pβ,C,Ω0,η0(φ(NZ , NX , NΩ) = 1) = α (10.2)

for β = β0 and all (C,Ω0, η0) in the parameter space, where Pβ,C,Ω0,η0(·) denotes
probability when the true parameters are (β, C,Ω0, η0). Examples of convergent
sequences of asymptotically similar tests include sequences of AR, HR-AR, HAR-AR,
LM, HR-LM, HAR-LM, CLR, HR-CLR, HAR-CLR, CLR1, HR-CLR1, HAR-CLR1,
HOM-WAP, HR-WAP, and HAR-WAP tests. Standard Wald and LR tests are not
asymptotically similar due to the effect of weak IV�s.

The transformation, call it hΩ(·), from NZ to [S∞ : T∞] in (9.4) is one-to-one.
Hence, for some function φ, we have

φ(NZ ,NX , NΩ) = φ(h
−1
Ω (S∞, T∞), NZ , NΩ) = φ(S∞, T∞, NX , NΩ). (10.3)

As in Section 3, we consider the group of transformations given in (3.1) but with
gF (β,π) replaced by gF (β, C) = (β, D

−1/2
Z F "D1/2Z C) acting on the parameters (β, C).

The maximal invariant is Q∞ (deÞned in (9.5)).
We say that a sequence of tests {φn : n ≥ 1} is a convergent sequence of as-

ymptotically invariant tests if the Þrst condition of (10.2) holds and distribution of
φ(S∞, T∞, NX , NΩ) depends on (S∞, T∞) only through Q∞, i.e.,

φ(S∞, T∞, NX , NΩ) ∼ φ∗(Q∞, NX , NΩ) (10.4)

for some function φ∗, where ∼ denotes �has the same distribution as.� Examples
of convergent sequences of asymptotically invariant and asymptotically similar tests
include the tests listed above in the paragraph containing (10.2).

We now establish an upper bound on asymptotic WAP.

Theorem 8 Suppose Assumptions WIV-FA and 1 hold, the reduced-form errors {Vi :
i ≥ 1} are iid normal, independent of {Zi : i ≥ 1}, with mean zero and pd variance
matrix Ω, and Ω and η are as in (10.1). For any convergent sequence of asymptotically
invariant and asymptotically similar tests {φn : n ≥ 1}, we have

lim
n→∞

.
Pβ,λ,Ω,η(φn(n

−1/2Z "Y, n1/2("ηn − η0), n1/2("Ωn −Ω0)) = 1)dW (β,λ)
=

.
Pβ,λ,Ω0,η0(φ

∗(Q∞, NX , NΩ) = 1)dW (β,λ)

≤
.
Pβ,λ,Ω0,η0(LRW (Q1,∞, QT,∞) > κα(QT,∞))dW (β,λ),

where Pβ,λ,Ω,η(·) denotes probability when the true parameters are (β, C,Ω, η) for
some C such that C"DZC = λ.
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Comment. Under H0 : β = β0, the left- and right-hand sides of the inequality in
the Theorem equal α.

Combining Theorem 8 with Corollary 4(c), Theorem 7(b), and the results of
Section 9.4 gives the following asymptotic optimality property for HOM-WAP, HR-
WAP, and HAR-WAP tests.

Corollary 5 Under the conditions of Theorem 8, the HOM-WAP, HR-WAP, and
HAR-WAP tests of Section 9 are convergent sequences of asymptotically invariant
and asymptotically similar tests that attain the upper bound on asymptotic WAP
given in Theorem 8.

Comments. 1. By considering one- and two-point weight functions, as in Sections
5 and 6.2, Corollary 5 gives the one- and two-sided asymptotic power envelopes for
asymptotically invariant and asymptotically similar tests. These asymptotic power
envelopes are the same as the Þnite sample power envelopes for known Ω given in
Sections 5 and 6.2 with λ∞ = C "DZC in place of λ = π"Z "Zπ (where C "DZC =
limn→∞ π"Z "Zπ under weak IV asymptotics).

2. In Theorem 8 and Corollary 5, the assumption that the reduced-form errors
{Vi : i ≥ 1} are iid normal, independent of {Zi : i ≥ 1}, with mean zero and pd
variance matrix Ω, can be replaced by Assumptions 2-4. The latter allow for non-
normal errors. But, with this replacement, Lemma 8(a) no longer holds and it is no
longer true that there is no loss in attainable power by considering only tests that
depend on the data through (n−1/2Z "Y, n1/2("ηn − η0), n1/2("Ωn −Ω0)).

3. We say that a convergent sequence {φn : n ≥ 1} of asymptotically invariant and
asymptotically similar tests is asymptotically LU if Eβ,C,Ω0,η0φ

∗(Q∞, NX , NΩ)QST,∞
/Q

1/2
T,∞ = 0 for β = β0 and for all (C,Ω0, η0) in the parameter space, where QST,∞ =

S"∞T∞ and QT,∞ = T "∞T∞. An analogue of Theorem 8 holds for sequences of such
tests with κα(QT,∞) replaced by κ1α(QT,∞) +QST,∞κ2α(QT,∞) in the upper bound.
Similarly, an analogue of Corollary 5 holds for the LU versions of the HOM-WAP,
HR-WAP, and HAR-WAP tests with the critical value in the upper bound in The-
orem 8 altered as above. Hence, these tests possess some asymptotic optimality
properties under weak IV�s. By considering one-point weight functions, these re-
sults yield the asymptotic power envelope for convergent sequences of asymptotically
invariant/similar/LU tests.

11 Strong IV Asymptotics for Case of Unknown
Covariance Matrix and Non-normal Errors

In this section, we analyze the strong IV asymptotic properties of the tests con-
sidered above for both local alternatives and Þxed alternatives. Under strong IV
asymptotics, π is a Þxed non-zero vector. We utilize the same notation as in Sections
9 and 10. Thus, S = Sn, Q = Qn, etc.
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11.1 Local Alternatives

For local alternatives, β is local to the null value β0 as n→∞. We assume:
Assumption SIV-LA. (a) β = β0 +B/n1/2 for some constant B ∈ R.

(b) π is a Þxed non-zero k-vector for all n ≥ 1.
(c) k is a Þxed positive integer that does not depend on n.

The strong IV-local alternative (SIV-LA) asymptotic behavior of Sn, "Sn, Tn, and"Tn depends on
ζS ∼ N(αS, Ik),

αS = D
1/2
Z πB(b"0Ωb0)

−1/2, and

αT = D
1/2
Z π(a"0Ω

−1a0)1/2. (11.1)

The SIV-LA asymptotic behavior of !Sn and !Tn depends on!ζS ∼ N (!αS , Ik) ,!αS = !Σ−1/2S DZπB, and!αT = !Σ−1/2T DZπa
"
0Ω

−1a0. (11.2)

Using these deÞnitions, we obtain the following results.

Lemma 9 (a) Under Assumptions SIV-LA and 1-4, (i) (Sn, Tn/n1/2) →d (ζS,αT ),
(ii) ("Sn, "Tn/n1/2) = (Sn, Tn/n

1/2) + op(1), and (iii) ( "QS,n, "QST,n/n1/2, "QT,n/n) →d

(ζ "SζS ,α"T ζS,α
"
TαT ) as n→∞.

(b) Under Assumptions SIV-LA, 1-3, 5, and 6, (i) !ΣS,n →p
!ΣS , !ΣTS,n →p

!ΣTS ,
and !ΣT,n →p

!ΣT , (ii) (!Sn, !Tn/n1/2)→d (!ζS , !αT ), and (iii) ( !QS,n, !QST,n/n1/2, !QT,n/n)
→d (!ζ "S!ζS , !α"T!ζS, !α"T !αT ) as n→∞.

Using Lemma 9, we determine the asymptotic distributions of the AR, LM, LR,
and LR1 test statistics and their heteroskedasticity-robust versions under SIV-LA
asymptotics.

Theorem 9 (a) Under Assumptions SIV-LA and 1-4, (i) 7ARn = ARn + op(1) →d

ζ "SζS ∼ χ2k(α"SαS), (ii)7LMn = LMn+op(1)→d (α
"
T ζS)

2/||αT ||2 ∼ χ21((α"TαS)2/||αT ||2),
(iii)7LRn = LRn+ op(1) = LMn+ op(1)→d α

"
T ζS/||αT || ∼ χ21((α"TαS)2/||αT ||2), and

(iv) 7LR1n = LR1n + op(1)→d LR1∞, where LR1∞ is deÞned in the proof.

(b) Under Assumptions SIV-LA, 1-3, 5, and 6, (i) 8ARn →d
!ζ "S!ζS ∼ χ2k(!α"S!αS),

(ii) 8LMn →d (!α"T!ζS)2/||!αT ||2 ∼ χ21((!α"T !αS)2/||!αT ||2), (iii)8LRn = 8LMn + op(1) →d

(!α"T!ζS)2/||!αT ||2 ∼ χ21((!α"T !αS)2/||!αT ||2), and (iv) 8LR1n →d
8LR1∞, where 8LR1∞ is

deÞned in the proof.

Comments. 1. Parts (a)(iii) and (b)(iii) of Theorem 9 show that the LM and LR
test statistics are asymptotically equivalent under SIV-LA asymptotics for any value
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of k (the number of IV�s). (When k = 1, the AR, LM, and LR test statistics are the
same, so the tests are trivially asymptotically equivalent.)

2. The critical values for AR and LM tests are non-random. However, the critical
values for CLR tests are functions of QT,n, "QT,n, or !QT,n. Hence, for LM and CLR
tests to be asymptotically equivalent, the CLR critical value, call it κCLRα (QT,n),
must converge in probability to a constant as n → ∞. Under strong IV asymptot-
ics, QT,n →p ∞. In consequence, asymptotic equivalence holds if κCLRα (qT ) con-
verges to a Þnite constant as qT diverges to inÞnity. Moreira (2003) shows that
limqT→∞ κCLRα (qT ) equals the 1 − α quantile of the χ21 distribution. Hence, the LM
and CLR tests are indeed asymptotically equivalent under SIV-LA asymptotics.

3. When Assumption 4 holds, !αS = αS, !αT = αT , !ζS = ζS , and the asymptotic
distributions of 8ARn, 8LMn, 8LRn, and 8LR1n are the same of those of 7ARn, 7LMn,7LRn, and 7LR1n, respectively.

4. Theorem 9(a)(i) and (a)(ii) are not new results, but the rest of Theorem 9 is
new. Moreira (2003) does not provide the SIV-LA asymptotic distribution of 7LRn
and the test statistics 7LR1n,8ARn, 8LMn,8LRn, and 8LR1n are new to this paper.

5. The heteroskedasticity and autocorrelation robust test statistics ARn, LMn,
LRn, and LR1n satisfy analogous results to those in part (b) of the Theorem for8ARn,8LMn,8LRn, and 8LR1n, but with !ΣS and !ΣT replaced by ΣS,∞ and ΣT,∞ in deÞnitions
of !αS and !αT . These analogous results hold under assumptions of the Theorem plus
the additional conditions that are needed to obtain consistency of Σn for Σ∞.

Under SIV-LA asymptotics and iid normal errors with unknown covariance matrix
Ω, the model for (y1, y2) is a �regular� parametric model in the sense of standard
likelihood theory. Hence, the usual Wald, likelihood ratio, and Lagrange multiplier
tests have standard large sample optimality properties. Such optimality properties
include maximizing average asymptotic power over certain ellipses in the parameter
space and uniformly maximizing asymptotic power among asymptotically unbiased
tests, see Wald (1943). We refer to tests with such properties as asymptotically
efficient (AE) tests under SIV-LA asymptotics and iid normal errors.

We have the following AE result for LM and CLR tests under SIV-LA asymptotics.

Theorem 10 Suppose Assumptions SIV-LA and 1 hold and the reduced-form errors
{Vi : i ≥ 1} are iid normal, independent of {Zi : i ≥ 1}, with mean zero and pd
variance matrix Ω which may be known or unknown. Then, the LM tests based
on 7LMn, 8LMn, and LMn and the CLR tests based on 7LRn, 8LRn, and LRn are
asymptotically efficient under strong IV asymptotics.

Comment. The AR tests based on7ARn,8ARn, and ARn are not AE under SIV-LA
asymptotics and iid normal errors unless k = 1. This holds because their asymptotic
distribution under SIV-LA asymptotics differs from that of 7LMn when k > 1 by
Theorem 9.

We now consider the behavior of one-sided POI similar tests under SIV-LA as-
ymptotics.
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Theorem 11 (a) Under Assumptions SIV-LA and 1-4, (i) if β∗ "= βAR and β∗ "= β0,
then !POIS1"δ/"δ = POIS1δ/δ+op(1) = sgn(cβ∗dβ∗)QST/Q1/2T +op(1)→d sgn(cβ∗dβ∗)

×(α"T ζS)/||αT || ∼ N(sgn(cβ∗dβ∗)(α"TαS)/||αT ||, 1), and (ii) if β∗ = βAR,
√
2k !POIS1"δ

+k =
√
2kPOIS1δ+k+op(1) = QS →d ζ

"
SζS ∼ χ2k(α"SαS), where β∗ is the alternative

against which POIS1δ is POI and βAR is deÞned in (5.16).
(b) Under Assumptions SIV-LA, 1-3, 5, and 6, (i) if β∗ "= βAR and β

∗ "= β0,

then "POIS1!δ/!δ = sgn(cβ∗dβ∗) !QST/ !Q1/2T + op(1) →d sgn(cβ∗dβ∗)(!α"T!ζS)/||!αT || ∼
N(sgn(cβ∗dβ∗)×
(!α"T !αS)/||!αT ||, 1) , and (ii) if β∗ = βAR, then

√
2k "POIS1!δ + k = !QS →d

!ζ "S!ζS ∼
χ2k(!α"S!αS).
Comments. 1. The Theorem shows that one-sided POI test statistics are asymp-
totically equivalent to a one-sided LM statistic whose sign depends on β∗ except in
the special case in which β∗ = βAR. Furthermore, the critical value of a POIS1 test,
call it κPOIS1α (QT ), converges in probability to the 1 − α quantile of the standard
normal distribution as qT → ∞. (See the Appendix for a proof.) Hence, one-sided
POI tests are asymptotically equivalent to one-sided LM tests when β "= βAR.

When β = βAR,, the one-sided POI test statistic is asymptotically equivalent to
the (centered and rescaled) AR statistic. In consequence, the AR test is asymptoti-
cally POI for a particular one-sided local alternative.

2. It is quite interesting to see that the one-sided LM statistic (to which the
one-sided POI test statistic is asymptotically equivalent) can change sign depending
upon the magnitude of β∗ even for β∗ values on the same side of the null hypothesis.
This occurs because dβ∗ can change sign even for β

∗ values on the same side of the
null.

We have sgn(cβ∗dβ∗) = sgn(β
∗ − β0)sgn(dβ∗) and dβ∗ is proportional to (ω11 −

ω12β0) − β∗(ω12 − ω22β0). For example, if β0 = 0, then sgn(cβ∗dβ∗) exhibits the
following properties. If β∗ > 0 and ω12 > 0, then slope(dβ∗) < 0 (where slope(dβ∗)
denotes the slope of dβ∗ as a function of β

∗), βAR > 0 (where by deÞnition dβ = 0 for
β = βAR), sgn(cβ∗dβ∗) = 1 for 0 < β

∗ < βAR, and sgn(cβ∗dβ∗) = −1 for β∗ > βAR.
If β∗ > 0 and ω12 < 0, then slope(dβ∗) > 0, βAR < 0, dβ∗ > 0, and sgn(cβ∗dβ∗) = 1.
If β∗ < 0 and ω12 < 0, then slope(dβ∗) > 0, βAR < 0, sgn(cβ∗dβ∗) = −1 for
βAR < β∗ < 0, and sgn(cβ∗dβ∗) = 1 for β∗ < βAR. If β

∗ < 0 and ω12 > 0, then
slope(dβ∗) < 0, βAR > 0, dβ∗ > 0, and sgn(cβ∗dβ∗) = −1 for all β∗ < 0. Hence, when
β0 = 0, cβ∗dβ∗ switches sign for β

∗ > 0 when ω12 > 0 and cβ∗dβ∗ switches sign for
β∗ < 0 when ω12 < 0.

Next, we consider the SIV-LA asymptotic behavior of various WAP tests designed
for two-sided alternatives. We consider WAP tests based on two-point weight func-
tions W2P . Our results imply that, under iid normal errors, a test based on W2P is
asymptotically efficient under SIV-LA asymptotics if and only if W2P satisÞes (6.2).
We also consider WAP tests based on AE weight functions WAE. Our results imply
that such tests are asymptotically efficient when the errors are iid normal.
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Theorem 12 (a) Under Assumptions SIV-LA and 1-4, (i) LRW2P (
"Q1,n, "QT,n) =

LRW2P (Q1,n, QT,n) + op(1), (ii) if W2P satisÞes (6.2), then LRW2P (
"Q1,n, "QT,n) =

e−
1
2
(γ∗)2 cosh(γ∗LM1/2

n ) + op(1), where γ∗ = (λ∗)1/2cβ∗ , which is a strictly-increasing
continuous function of LMn, (iii) ifW2P does not satisfy (6.2), then LRW2P

( "Q1,n, "QT,n)
= η2(QST,n/Q

1/2
T,n)+op(1) for a continuous function η2(·) that is not even, and (iv) if

WAE satisÞes (6.4) and conditions (a) and (b) following it, then LRWAE
( "Q1,n, "QT,n) =

η3(LMn) + op(1) for a strictly-increasing continuous function η3(·).
(b) Under Assumptions SIV-LA, 1-3, 5, and 6, (i) if W2P satisÞes (6.2), then

LRW2P
( !Q1,n, !QT,n) = η1(8LMn)+op(1) for η1(·) as above, (ii) if W2P does not satisfy

(6.2), then LRW2P
( !Q1,n, !QT,n) = η2( !QST,n/ !Q1/2T,n) + op(1) for η2(·) as above, and

(iii) LRWAE
( !Q1,n, !QT,n) = η3(8LMn) + op(1) for η3(·) as above.

Comments. 1. The critical values for the LRW2P
and LRWAE

tests converge in
probability to constants as n→∞ under strong IV asymptotics. (See the Appendix
for a proof.) Hence, Theorem 12(a)(ii) and (a)(iii), combined with Theorem 10,
imply that a WAP test based on W2P is AE under SIV-LA asymptotics and iid
normal reduced-form errors iff W2P satisÞes (6.2).

2. Theorem 12(a)(i) shows that, under SIV-LA asymptotics and the homoskedas-
tic errors assumptions (which do not require normality), a WAP test with estimated
error variance matrix Ω is asymptotically equivalent to the corresponding WAP test
with known Ω. Under the same assumptions, Theorem 12(a)(ii) shows that a WAP
test based on W2P is asymptotically equivalent to the two-sided LM test with known
Ω when (6.2) holds. Under the same assumptions, Theorem 12(a)(iii) shows that a
WAP test based on W2P is asymptotically equivalent to a test based on a continuous
function of the two one-sided LM statistics with known Ω, viz., ±QST,n/Q1/2T,n, when
(6.2) fails to hold. Theorem 12(b)(i)-(iii) establishes analogous results to those of
Theorem 12(a)(ii)-(iv) but under assumptions that allow for heteroskedastic errors
and for heteroskedasticity-robust WAP and two- and one-sided LM tests.

3. The proof of Theorem 12(a)(iii) shows that if the second condition of (6.2)
fails to hold, then η2(·) is a monotone function and, hence, the WAP test based
on W2P is asymptotically equivalent to one or the other of the one-sided LM tests
based on ±QST,n/Q1/2T,n. On the other hand, the proof shows that if second condition
of (6.2) holds and the Þrst condition fails, then the WAP test based on W2P is
asymptotically equivalent to a function of both one-sided LM statistics ±QST,n/Q1/2T,n
that is not invariant to permutations of the two one-sided statistics.

4. As deÞned, two-point weight functions W2P place equal weight (1/2) on the
two points (β∗,λ∗) and (β∗2,λ

∗
2). One also could consider weight functions that place

unequal weight on two points. The proof of Theorem 12 shows that any such weight
function behaves as in Theorem 12(a)(iii) and, hence, leads to a test that is not AE
under iid normal errors.

5. The HAR test statistics LRW2P
(Q1,n, QT,n) and LRWAE

(Q1,n, QT,n) satisfy

analogous results to those in part (b) of the Theorem for LRW2P
( !Q1,n, !QT,n) and

LRWAE
( !Q1,n, !QT,n), but with !ΣS and !ΣT replaced by ΣS,∞ and ΣT,∞ in deÞnitions
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of !αS and !αT . These analogous results hold under the given assumptions plus the
additional conditions that are needed to obtain consistency of Σn for Σ∞.

11.2 Fixed Alternatives

We now consider strong IV-Þxed alternative (SIV-FA) asymptotics. This asymp-
totic framework determines the consistency, or lack thereof of, of tests. For SIV-FA
asymptotics, we assume:

Assumption SIV-FA. (a) β "= β0 is a Þxed scalar for all n ≥ 1.
(b) π is a Þxed non-zero k-vector for all n ≥ 1.
(c) k is a Þxed positive integer that does not depend on n.

Let

λFA = π
"DZπ, (11.3)

where DZ is deÞned in (9.4). DeÞne

!ϕS = !Σ−1/2S DZπ(β − β0),!ϕT = !Σ−1/2T

0
DZπa

"Ω−1a0 − !ΣTS!Σ−1/2S !ϕS1 , and
ςk ∼ N(0, Ik). (11.4)

We have the following basic results.

Lemma 10 (a) Under Assumptions SIV-FA and 1-3, (i) (Sn/n1/2, Tn/n1/2) →p

(cβD
1/2
Z π, dβD

1/2
Z π), (ii) ("Sn/n1/2, "Tn/n1/2) = (Sn/n

1/2, Tn/n
1/2) + op(1),

(iii) ( "QS,n/n, "QST,n/n, "QT,n/n) →p (c
2
βλFA, cβdβλFA, d

2
βλFA), and (iv) if β = βAR

and Assumption 4 also holds, then Tn →d ςk, "Tn = Tn+op(1), and ( "QS,n/n, "QST,n/n1/2,"QT,n)→d (c
2
βλFA, cβπ

"D1/2Z ςk, ς
"
kςk) as n→∞.

(b) Under Assumptions SIV-FA 1-3, 5, and 6, (i) !ΣS,n →p
!ΣS , !ΣTS,n →p

!ΣTS ,
and !ΣT,n →p

!ΣT , (ii) (!Sn/n1/2, !Tn/n1/2) →p (!ϕS , !ϕT ), and (iii) ( !QS,n/n, !QST,n/n,!QT,n/n)→d (!ϕ"S!ϕS , !ϕ"S!ϕT , !ϕ"T !ϕT ) as n→∞.

Using Lemma 10, we determine the asymptotic behavior under SIV-FA asymp-
totics of the AR, LM, LR, POIS1, POIS2, and WAP test statistics and their HR
versions.

Theorem 13 (a) Under Assumptions SIV-FA and 1-3, (i) 7ARn/n = ARn/n +

op(1)→p c
2
βλFA > 0, (ii) 7LMn/n = LMn/n+op(1)→p c

2
βλFA > 0 provided β "= βAR,

(iii)7LRn/n = LRn/n + op(1) →p c
2
βλFA > 0, (iv) ( !POIS1"δ · (2k + "δ2)1/2 + k)/n =

(POIS1δ · (2k+ δ2)1/2 + k)/n+ op(1)→p λFA(c
2
β +2(dβ∗/cβ∗)cβdβ), where β

∗ is the
alternative against which POIS1δ is POI, (v) if β "= βAR and Assumption 4 also
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holds, then 7LMn/n = LMn/n+ op(1)→d (cβπ
"D1/2Z ςk)

2/ς "kςk ("= 0 a.s.), (vi) if W2P

satisÞes (6.2), then LRW2P (
"Q1,n, "QT,n)→p ∞, and (vii) LRWAE

( "Q1,n, "QT,n)→p ∞.
(b) Under Assumptions SIV-FA, 1-3, 5, and 6, (i) 8ARn/n →p !ϕ"S!ϕS > 0, (ii)8LMn/n→p (!ϕ"S!ϕT )2/!ϕ"T !ϕT > 0 provided β "= βAR, (iii) 28LRn/n→p !ϕ"S!ϕS−!ϕ"T !ϕT +

((!ϕ"S!ϕS + !ϕ"T !ϕT )2− 4(!ϕ"S!ϕS!ϕ"T !ϕT − (!ϕ"S!ϕT )2))1/2, and (iv) ( "POIS1!δ · (2k+!δ2)1/2+
k)/n→p !ϕ"S!ϕS + 2(dβ∗/cβ∗)!ϕ"S!ϕT .
Comments. 1. The results of part (a) of the Theorem establish the consistency
against any alternative β "= β0 of the tests based on 7ARn, 7LMn, 7LRn,
LRW2P (

"Q1,n, "QT,n) (provided W2P is AE), and LRWAE
( "Q1,n, "QT,n). (This makes use

of the fact that the critical values of these tests are either constants or converge in
probability to constants as n→∞, see comments in Section 11.1 regarding this.)

2. The result of Theorem 13(a)(iv) indicates that the one-sided POIS test,
!POIS1"δ, is consistent against an unusual array of alternatives. First, if the al-
ternative for which the test is designed equals the true value, i.e., β∗ = β, then the
POIS1 test is consistent because c2β + 2(dβ∗/cβ∗)cβdβ = c2β + 2d

2
β > 0. Second, the

POIS1 test may fail to be consistent against alternatives on the same side of the null
as β∗ yet be consistent against alternatives on the other (�wrong�) side of the null
from β∗.

For example, suppose the alternative is H1 : β > β0, β
∗ > β0, β0 = 0, and

ω12 > 0. Then, cβ > 0 and cβ∗ > 0. In addition, dβ is a linear function of β with
dβ > 0 for all β < βAR, and dβ < 0 for β > βAR, where βAR = ω22/ω12 > 0,
and likewise with β∗ in place of β. Hence, if 0 < β∗ < βAR, then the POIS1 test
is inconsistent against all alternatives for which β is sufficiently large. This holds
because the second term of c2β + 2(dβ∗/cβ∗)cβdβ has negative sign and is arbitrarily
large for β large. In addition, if 0 < β < βAR, then the POIS1 test is inconsistent for
all sufficiently large values of β∗. These results are borne out in the power curves of
Figure 3.

On the other hand, POIS1 tests with β∗ > βAR > 0 are consistent for all values
β < 0 in the example. For all β < 0, cβ < 0 and dβ > 0. For β∗ > βAR, cβ∗ > 0
and dβ∗ < 0. Hence, c2β + 2(dβ∗/cβ∗)cβdβ > 0. That is, POIS1 tests designed for
β > βAR > 0 are consistent when β < 0.

3. The results of part (b) of the Theorem show that the HR tests8ARn and 8LMn

are consistent against any alternative β "= β0 and the HR tests8LRn and "POIS1!δ are
consistent against any alternative for which the limit value given in the Theorem is
non-zero.

12 Numerical Results II: Model with
Unknown Covariance Matrix

This section summarizes the results of a Monte Carlo study of the Þnite-sample
rejection rates of selected two-sided tests for the case that Ω is unknown�the tests
based on7LRn, 7LMn,7ARn, and "P ∗n (where the "P ∗n is the P ∗ test with Ω replaced by
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"Ωn). The model considered is the same as in Section 8 (where as above ω11 = ω22 = 1
wlog) except that Ω is unknown and both equations include an intercept (so X is a
column of 1�s). The IV�s are taken to be iid standard normal random variables. All
results are for β0 = 0 (where as above this choice is wlog). We consider several values
of (i) the distance of the true parameter from the null, β

√
λ, viz., 0.0, −2.0, 2.0, (ii)

the strength of IV�s, λ, viz., 5, 20 (which corresponds to λ/k = 1.0, 4.0 when k = 5),
(iii) the sample size, n, viz., 50, 100, 200, and∞ (i.e., the weak IV asymptotic limit),
and (iv) the number of IV�s, k, viz., 2, 5, and 10. All results are based on 5,000 Monte
Carlo simulations.

The results are summarized in Table 1. The Þrst column reports β
√
λ; the second

column reports λ; and the third column reports n. The remaining columns report
the rejection rates under the speciÞed true values of β, λ, and n. When β = 0,
the entries correspond to the size of the test and for β "= 0 the entries are (size-
unadjusted) power. To obtain more accurate size-unadjusted power comparisons, we
use the asymptotic χ2 critical values for the7ARn test rather than the exact F critical
values.

The results (and additional unreported results) suggest four general conclusions.
First, for n ≥ 100, the size typically is very close to .05 with the largest deviation
being .019. Second, the four tests have comparable size distortions for very small n.
Third, the size is better controlled when the estimator of Ω is adjusted for degrees
of freedom (results with no df adjustment are not reported here).14 Fourth, for
n ≥ 100, the rejection rates are close to the asymptotic powers of the tests. Taken
together, these Þndings suggest that a sample size of 100 is sufficient for the weak-IV
asymptotic results to provide reliable guides to the sampling distribution of these
statistics uniformly in λ, both for size and power.

13 Normal Model with Multiple Endogenous Variables
and Known Covariance Matrix

In this section, we consider a generalization of the model considered in Sections
2-8 to the case where m endogenous variables appear. We assume that m ≤ k (where
k is the number of instrumental variables, i.e., the number of columns of Z). In
particular, we consider the model as speciÞed in (2.1)-(2.5), but with

y2, v2 ∈ Rn×m;β ∈ Rm;π ∈ Rk×m; ξ1, ξ ∈ Rp×m; η ∈ Rp×(2m);
Ω ∈ Rm×m;Y, V ∈ Rn×(m+1);
θ = (β", vec(π)", vec(γ)", vec(ξ)")" ∈ Rm+km+2pm; and
a = [β : Im] ∈ Rm×(m+1). (13.1)

The known (m+1)× (m+1) covariance matrix Ω is assumed to be nonsingular. The
parameter space for θ = (β,π", γ", ξ")" is taken to be Rm+km+2pm.
14Larger degrees of freedom adjustments than n− k − p appear to improve the size results. This

is a topic of ongoing research.
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The null hypothesis is

H0 : β = β0 for some β0 ∈ Rm. (13.2)

The alternative hypothesis can be two-sided H1 : β "= β, multivariate one-sided
H1 : β < β0 or H1 : β > β0, , or H1 : β ∈ B for any subset B of Rm that does not
include β0.

As in the case where m = 1, low dimensional sufficient statistics are available for
θ and the sub-vector (β,π")":

Lemma 11 For the model in (2.5) generalized as in (13.1),
(a) Z "Y and X "Y are sufficient statistics for θ,
(b) Z "Y and X "Y are independent,
(c) X "Y has a multivariate normal distribution that does not depend on (β", vec(π)")",
(c) Z "Y has a multivariate normal distribution that does not depend on η = [γ :ξ],
and
(d) Z "Y is a sufficient statistic for (β", vec(π)")".

As when m = 1, given our interest in tests concerning β, we base tests on the
sufficient statistic Z "Y ∈ Rk×m for (β", vec(π)")". (This is done without loss of attain-
able power.) We consider a one-to-one transformation of Z "Y that yields (i) the Þrst
column to be independent of the nuisance parameter π under H0; (ii) independence of
the m transformed columns under the null and alternative; (iii) independence across
rows of each transformed column; and (iv) unit variance for all transformed elements.
DeÞne

S = (Z "Z)−1/2Z "Y b0 · (b"0Ωb0)−1/2 ∈ Rk and
Tj = (Z "Z)−1/2Z "YΩ−1α0,j ∈ Rk, for j = 1, ...,m,
T = [T1 : · · · : Tm] = (Z "Z)−1/2Z "Y Ω−1α0 ∈ Rk×m, where
b0 = (1,−β"0)", α0 = [α0,1 : · · · : α0,m], (13.3)

and α0,1, ...,α0,m are deÞned as follows. For conditions (ii)-(iv) to hold, it turns
out that α0,j must satisfy b"0α0,j = 0 and α"0,jΩ

−1α0,j = 1 for all j = 1, ...,m and
α"0,jΩ

−1α0,( = 0 for all j, 3 = 1, ...,m with j "= 3. These conditions are satisÞed
by constructing {α0,j : j = 1, ...,m} using a Gram-Schmidt-like orthogonalization
scheme applied to the linearly independent (m + 1)-vectors {b0, e2, ..., em+1}, where
ej is the j-th elementary (m+ 1)-vector for j = 2, ...,m+ 1. Let

α0,1 = Mb0e2/||Ω−1/2Mb0e2||,
α0,2 = M[b0:Ω−1α0,1]e3/||Ω−1/2M[b0:Ω−1α0,1]e3||,

... (13.4)

α0,m = M[b0:Ω−1α0,1:···:Ω−1α0,m−1]em+1/||Ω−1/2M[b0:Ω−1α0,1:···:Ω−1α0,m−1]em+1||,

where as above MA = I −A(A"A)−1A" for any matrix A.
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Some algebra shows that when m = 1 we obtain α0,1 = a0 · (a"0Ω−1a0)−1/2, where
a0 is deÞned in (2.6). Thus, T of Section 2 is the same as T deÞned in (13.4) when
m = 1.

The means of S and Tj for j = 1, ...,m depend on

µπ = (Z
"Z)1/2π ∈ Rk×m. (13.5)

The distributions of the sufficient statistics {S, T1, ..., Tm} for the parameters
(β", vec(π)")" are given in the following lemma.

Lemma 12 For the model in (2.5) generalized as in (13.1),
(a) S ∼ N(µπ(β − β0) · (b"0Ωb0)−1/2, Ik),
(b) Tj ∼ N(µπa"Ω−1α0,j , Ik) for j = 1, ...,m, and
(c) S, T1, ..., Tm are mutually independent.

Comments: 1. Under H0, S has mean zero.
2. Minus two times the log-likelihood function for π based on the normal density

of T is a constant plus

m2
j=1

(Tj − (Z "Z)1/2πa"0Ω−1α0,j)"(Tj − (Z "Z)1/2πa"0Ω−1α0,j)

= tr

 m2
j=1

(Tj − (Z "Z)1/2πa"0Ω−1α0,j)(Tj − (Z "Z)1/2πa"0Ω−1α0,j)"
 .

Consequently, the T statistic can be written as (Z "Z)1/2"π0a"0Ω−1α0, where "π0 denotes
the maximum likelihood estimator of π under H0 and a0 = [β0 : Im] ∈ Rm×(m+1),!π = (Z "Z)1/2πa"0Ω−1α0, where a0 = [β0 : Im].

Next, we consider the same groups of transformations G and G deÞned in (3.1)
when m ≥ 2 as when m = 1 (except that x ∈ Rk×(m+1) in the deÞnition of G
rather than x ∈ Rk×2). An invariant test, φ(S, T ), under the group G is one for
which φ(FS,FT ) = φ(S, T ) for all k× k orthogonal matrices F. It suffices to restrict
attention to the class of tests that depend only on a maximal invariant.

DeÞne Q, QS, QST , QT , and Q1 as in (3.2), but with T = [T1 : · · · :Tm]. Hence,
Q = [S :T ]"[S :T ] ∈ R(m+1)(m+1), QS = S"S ∈ R, QST = S"T ∈ Rm, QT = T "T ∈
Rm×m, and Q1 = (S"S, S"T )" ∈ Rm+1.

Theorem 14 The (m+1)× (m+1) matrix Q is a maximal invariant for the trans-
formations G.

Comments: 1. As in the model with one endogenous variable, when m ≥ 2 the
statistic Q has a non-central Wishart distribution because [S :T ] is a multivariate
normal matrix that has independent rows and common covariance matrix across

49



rows. The distribution of Q depends on π only through the positive deÞnite (pd)
matrix λ deÞned by

λ = π"Z "Zπ ∈ Rm×m. (13.6)

In consequence, the utilization of invariance has reduced the km dimensional nuisance
parameter vec(π) to the m×m symmetric matrix nuisance parameter λ, which has
m(m+1)/2 non-redundant elements. This is true both under the null and under the
alternative. For example, if k = 5 and m = 2, then the reduction is from 10 nuisance
parameters to 3 nuisance parameters.

2. Examples of invariant tests in the literature include the AR test, the LM test
of Kleibergen (2002) and Moreira (2001), and the CLR test of Moreira (2003). The
AR and LM tests depend on Q or (S, T ) in the following ways:

AR = QS = S"S,
LM = QSTQ

−1
T Q

"
ST = S

"T (T "T )−1T "S. (13.7)

Invariant similar tests are characterized as follows:

Theorem 15 An invariant test φ(Q) is similar with signiÞcance level α if and only if
Eβ0(φ(Q)|QT = qT ) = α for almost all qT , where Eβ0(·|QT = qT ) denotes conditional
expectation given QT = qT when β = β0 (which does not depend on π).

Comment: The two tests in (13.7) are invariant similar tests. Hence, they satisfy
the property speciÞed in the theorem.

Let W be a weight function over (β,λ) values. That is, W is a probability
distribution on the product of Rm and the space of pd m×m matrices, call it Rm×mpd .
Weighted average power of a test φ(Q) with respect to W is given by (4.1). The
expressions in (4.2)-(4.8) hold when m ≥ 2 just as when m = 1, provided one adjusts
the range of integration suitably. In particular, the integral over (β,λ) values is
over Rm × Rm×mpd , rather than R × R+, and the integral over (q1, qT ) values is over
(R+ × Rm) × Rm×mpd , rather than (R+ × R) × R+. In particular, the optimal WAP
LR statistic LRW (Q1, QT ) is as given in (4.8).

As in Section 4.2, in order to provide an explicit expression for the optimal WAP
LR statistic LRW (Q1, QT ), we determine the densities fQ(q;β,λ), fQT (qT ;β,λ), and
fQ1|QT (q1, qT ;β0) that arise in (4.2), (4.7), and (4.8). Let

∆β = [β − β0 : a"Ω−1α0] ∈ Rm×(m+1) and
∆T,β = a"Ω−1α0 = [β : Im]Ω−1α0 ∈ Rm×m. (13.8)

Note that tr(∆"β0λ∆β0) = tr(∆
"
T,β0

λ∆T,β0). Let etr(A) denote exp(tr(A)) for a matrix
A.
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Lemma 13 (a) The density of Q at q ∈ R
(m+1)×(m+1)
pd is a non-central Wishart

density with k degrees of freedom, covariance matrix Im+1, and non-centrality matrix
(i.e., means sigma matrix ) ∆"βλ∆β:

fQ(q;β,λ) = K1,metr(−∆"βλ∆β/2)|q|(k−m−2)/2etr(−q/2) 0F1
%
k/2;∆"βλ∆βq/4)

&
,

where q ∈ R(m+1)×(m+1),
K−1
1,m = 2

k(m+1)/2Γm+1(k/2),

0F1(·; ·) denotes a hypergeometric function with matrix argument, and Γm+1(k/2)
denotes the multivariate gamma function.

(b) The density of QT at qT ∈ Rm×mpd is a non-central Wishart density with k
degrees of freedom, covariance matrix Im, and noncentrality parameter ∆"T,βλ∆T,β:

fQT (qT ;β,λ)=K2,metr(−∆"T,βλ∆T,β/2)|qT |(k−m−1)/2
×etr(−qT/2) 0F1

%
k/2;∆"T,βλ∆T,βqT/4)

&
,

where qT ∈ Rm×m and

K−1
2,m = 2

km/2Γm(k/2).

(c) Under the null hypothesis, the conditional density of Q1 given QT = qT is

fQ1|QT (q1|qT ;β0) = K1,mK−1
2,m|q|(k−m−2)/2|qT |−(k−m−1)/2etr(−qS/2)

Comments: 1. Hypergeometric functions of matrix argument are deÞned in Muir-
head (1982, p. 258). They involve series of zonal polynomials.

2. The multivariate gamma function at k/2, Γm+1(k/2), can be written in terms
of the ordinary gamma function as follows: Γm+1(k/2) = pik(k−2)/16

Ck/2
j=1 Γ((k− j +

1)/2), e.g., see Muirhead (1982, Thm. 2.1.12, p. 62), where pi = 3.1415... The test
statistics considered below do not depend on Γm+1(k/2), however, so computation is
not an issue.

3. When m = 2 alternative expressions for the densities in parts (a)-(c) of the
lemma are available in Anderson (1946, eqn. (7)), which are easier to compute. These
expressions are in terms of the modiÞed Bessel function of the Þrst kind.

Equations (4.2), (4.7), and (4.8) and Lemma 13 combine to give the following
result.

Corollary 6 The optimal WAP test statistic for weight function W is given by

LRW (q1, qT ) =

3
fQ1,QT (q1, qT ;β,λ)dW (β,λ)3

fQT (qT ;β,λ)dW (β,λ)fQ1|QT (q1|qT ;β0,λ)
=
ψW (q1, qT )

ψ2,W (qT )
,

where

ψW (q1, qT ) =

.
etr(−∆"βλ∆β/2) 0F1

%
k/2;∆"βλ∆βq/4)

&
dW (β,λ),
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ψ2,W (qT ) =

.
etr(−∆"T,βλ∆T,β/2) 0F1

%
k/2;∆"T,βλ0∆T,βqT/4)

&
dW (β,λ),

the integrals are over (β,λ) ∈ Rm ×Rm×mpd , and ∆β and ∆T,β are deÞned in (13.8).

Comments: 1. As when m = 1, ψW (q1, qT ) does not equal
3
fQ1,QT (q1, qT ;β,λ)

dW (β,λ) and likewise with ψ2,W (qT ). This is because numerous cancellations occur
in the second expression in the Þrst line of the Corollary 6, including the constants
K1,m and K2,m.

2. When m = 2, the density formulae given in Comment 3 following Lemma 13
yield alternative expressions for ψW (q1, qT ) and ψ2,W (qT ) that are easier to compute.

Because ψ2,W (qT ) does not depend on q1, it could be absorbed into the conditional
critical value given QT = qT . But, as above, for reasons of numerical stability, we
recommend obtaining critical values for the equivalent test statistic ln(LRW (q1, qT )).

The test that maximizes WAP among invariant similar tests with signiÞcance
level α rejects H0 if

LRW (Q1, QT ) > κα(QT ), (13.9)

where κα(QT ) is deÞned such that the test is similar. That is, κα(qT ) is deÞned by

Pβ0(LRW (Q1, qT ) > κα(qT )|QT = qT ) = α, (13.10)

where Pβ0(·|QT = qT ) denotes conditional probability given QT = qT under the null,
which can be calculated using the density in Lemma 3(c).

The results of this section are summarized as follows:

Theorem 16 The test that rejects H0 when LRW (Q1, QT ) > κα(QT ) maximizes
WAP for the weight function W over all level α invariant similar tests.
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14 Appendix of Proofs

14.1 Proofs of Results Stated in Section 2

Proof of Lemma 1. Let Z = [Z1 :· · ·:Zn]" and X = [X1 :· · ·:Xn]". The distribution
of Y is multivariate normal with

EY = Zπa" +Xη, (14.1)

independence across rows, and covariance matrix Ω for each row. Hence, the density
of Y evaluated at the n× 2 matrix y = [y1:· · ·:yn]" is

(2π)−n/2|Ω|−n/2 exp
;
−1
2

n2
i=1

(yi − aπ"Zi − η"Xi)"Ω−1(yi − aπ"Zi − η"Xi)
<

= (2π)−n/2|Ω|−n/2 exp
;
−1
2

=
n2
i=1

y"iΩ
−1yi − 2π"(

n2
i=1

Ziy
"
i)Ω

−1a

−2tr((
n2
i=1

Xiy
"
i)Ω

−1η") +
n2
i=1

(aπ"Zi − η"Xi)"Ω−1(aπ"Zi − η"Xi)
><

. (14.2)

If a density can be factorized as pθ(x) = fθ(T (x))h(x), then T (X) is a sufficient
statistic for θ. In consequence, given that Ω is known, Zi and Xi are Þxed and
known, a = (β, 1)", and η = [γ : ξ], sufficient statistics for θ = (β,π", γ", ξ")" are6n
i=1 ZiY

"
i = Z

"Y and
6n
i=1XiY

"
i = X

"Y and part (a) of the lemma holds.
To prove part (b) of the lemma, note that Z "Y and X "Y are (jointly) multivariate

normal random matrices and Z "X = 0. For any m1,m2 ∈ R2, we have

cov(Z "Ym1,X "Ym2) = cov(
n2
i=1

ZiY
"
im1,

n2
i=1

XiY
"
im2)

=
n2
i=1

ZiX
"
icov(Y

"
im1, Y

"
im2) = Z

"X ·m"1Ωm2 = 0, (14.3)

where the second equality uses independence across i and the third equality uses the
assumption that the covariance matrix Ω of Yi does not depend on i. Hence, Z "Y and
X "Y are independent.

The distribution of X "Y is multivariate normal with variances and covariances
that depend on X and Ω, but not on θ, and with mean

X "EY = X "(Zπa" +Xη) = X "Xη (14.4)

because X "Z = 0. Hence, the distribution of X "Y does not depend on (β,π) and part
(c) of the lemma holds.

The distribution of Z "Y is multivariate normal with variances and covariances
that depend on Z and Ω, but not on θ, and with mean

Z "EY = Z "(Zπa" +Xη) = Z "Zπa" (14.5)
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because Z "X = 0. Hence, the distribution of Z "Y does not depend on (γ, ξ) and part
(d) of the lemma holds.

Part (e) of the lemma follows from parts (b)-(d). !

Proof of Lemma 2. The k-vector S is multivariate normal with mean

ES = (Z "Z)−1/2Z "EY b0 · (b"0Ωb0)−1/2
= (Z "Z)−1/2Z "(Zπa" +Xη)b0 · (b"0Ωb0)−1/2 = cβµπ (14.6)

using (14.1), Z "X = 0, and a"β0 = β − β0. We have

var(Z "Y b0) = var(
n2
i=1

ZiY
"
i b0) =

n2
i=1

ZiZ
"
ivar(Y

"
i b0) =

n2
i=1

ZiZ
"
ib
"
0Ωb0 = Z

"Zb"0Ωb0.

(14.7)

Hence, from the deÞnition of S, var(S) = Ik and part (a) of the lemma holds.
The k-vector T is multivariate normal with mean

ET = (Z "Z)−1/2Z "Y Ω−1a0 · (a"0Ω−1a0)−1/2
= (Z "Z)−1/2Z "(Zπa" +Xη)Ω−1a0 · (a"0Ω−1a0)−1/2 = dβµπ. (14.8)

>From (14.7) with b0 replaced by Ω−1a0, we have var(Z "Y Ω−1a0) = Z "Za"0Ω−1a0.
Hence, from the deÞnition of T, var(T ) = Ik and part (b) of the lemma holds.

The random vectors S and T are independent because they are non-stochastic
functions of Z "Y b0 and Z "Y Ω−1a0, respectively, and the latter are jointly multivariate
normal with covariance given by

cov(Z "Y b0, Z "Y Ω−1a0) = cov(
n2
i=1

ZiY
"
i b0,

n2
i=1

ZiY
"
iΩ

−1a0)

=
n2
i=1

ZiZ
"
icov(Y

"
i b0, Y

"
iΩ

−1a0) =
n2
i=1

ZiZ
"
ib
"
0ΩΩ

−1a0 = 0, (14.9)

using b"0a0 = 0. Hence, part (c) of the lemma holds. !

14.2 Proofs of Results Stated in Section 3

Proof of Theorem 1. LetM(S, T ) = [S:T ]"[S:T ] = Q. M(S, T ) is a maximal invari-
ant if it is invariant and it takes different values on different orbits of G. Obviously,
M(S, T ) is invariant. The latter condition holds if given any k-vectors µ1, µ2, !µ1, and!µ2 such that M(µ1, µ2) =M(!µ1, !µ2) there exists an orthogonal k × k matrix F such
that !µ1 = Fµ1 and !µ2 = Fµ2, e.g., see Lehmann (1986, eqn. (7), p. 285).

First, suppose µ1 and µ2 are linearly independent (which implies that k ≥ 2).
Then, there exist linearly independent k-vectors µ3, ..., µk such that {µ1, ..., µk} span
Rk. Applying the Gram-Schmidt procedure to {µ1, ..., µk}, we now construct an or-
thogonal matrix F such that Fµ1 and Fµ2 depend on (µ1, µ2) only through µ

"
1µ1,
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µ"1µ2, and µ"2µ2. For a full column rank k×3matrix A, letMA = Ik−A(A"A)−1A". We
take f1 = µ1/||µ1||, f2 =Mµ1µ2/||Mµ1µ2||, ..., fk =M[µ1:···:µk−1]µk/||M[µ1:···:µk−1]µk||.
DeÞne F = [f1: · · · :fk]". We have

Fµ1 = (f "1µ1, ..., f
"
kµ1)

" = (||µ1||, 0, ..., 0)" and
Fµ2 = (µ"1µ2/||µ1||, µ"2Mµ1µ2/||Mµ1µ2||, 0, ..., 0)". (14.10)

Because µ"2Mµ1µ2 = µ"2µ2 − (µ"1µ2/||µ1||)2, we Þnd that Fµ1 and Fµ2 depend on
(µ1, µ2) only through µ

"
1µ1, µ

"
1µ2, and µ

"
2µ2.

DeÞne !F analogously to F but with {!µ1, ..., !µk} in place of {µ1, ..., µk}. Then,!F!µ1 and !F!µ2 depend on (!µ1, !µ2) only through !µ"1!µ1, !µ"1!µ2, and !µ"2!µ2.
Now, suppose (µ1, µ2) and (!µ1, !µ2) are such that M(µ1, µ2) = M(!µ1, !µ2). That

is, µ"1µ1 = !µ"1!µ1, µ"1µ2 = !µ"1!µ2, and µ"2µ2 = !µ"2!µ2. Then, the orthogonal matrices
F and !F are such that Fµ1 = (||µ1||, 0, ..., 0)" = (||!µ1||, 0, ..., 0)" = !F!µ1 and !µ1 =!F−1Fµ1 = Fµ1, where F = !F−1F is an orthogonal matrix. Similarly, Fµ2 = !F!µ2
and !µ2 = !F−1Fµ2 = Fµ2. This completes the proof for the case where µ1 and µ2 are
linearly independent.

Next, suppose µ1 and µ2 are linearly dependent (as necessarily occurs when
k = 1). Then, we can ignore µ2 and proceed as above using just µ1 and some
additional linearly independent vectors {µ∗2, ..., µ∗k} for which {µ1, µ∗2, ..., µ∗k} span
Rk. The matrix F constructed in this way is such that if M(µ1, µ2) = M(!µ1, !µ2),
then !µ1 = Fµ1. In addition, because µ2 = κµ1 and !µ2 = κ!µ1 for some κ, we obtain!µ2 = Fµ2. This completes the proof. !
Derivation of the One-sided Likelihood Ratio Statistic

The log-likelihood function for known Ω with all parameters concentrated out
except β is

L(Y ;β) = −n
2
ln det(Ω)− 1

2

%
tr(Ω−1Y "Y ) +R(β)

&
, (14.11)

e.g., see Moreira (2003, Appendix A). Hence, we have

LR1 = sup
β≥β0

L(Y ;β)− L(Y ;β0) = R(β0)− inf
β≥β0

R(β). (14.12)

We now determine infβ≥β0 R(β). By deÞnition, "β = "βLIML−k minimizes L(Y ;β)
over β ∈ R. Equivalently, "β minimizesR(β) over β ∈ R. If "β ≥ β0, then infβ≥β0 R(β) =
R("β) = infβ∈RR(β) and LR1 = R(β0) − infβ∈RR(β) = LR. If "β < β0, then
infβ≥β0 R(β) equals either R(β0) or R(∞) because R(β) is the ratio of two quadratic
forms in β with pd weight matrices. Hence, the second equality in (3.7) holds.

Next, we show that LR1 only depends on the observations through Q. Let

J =

=
Ω1/2b04
b"0Ωb0

...
Ω−1/2a04
a"0Ω−1a0

>
. (14.13)
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By algebra,

[S : T ] = (Z "Z)−1/2Z "Y Ω−1/2J ,
Q = [S : T ]"[S : T ] = J "Ω−1/2Y "PZY Ω−1/2J, and

Y "PZY = Ω1/2J "−1QJ−1Ω1/2. (14.14)

Hence, R(β) and LR1 only depend on the observations through Q.
It remains to provide an expression for "βLIML−k. The LIML-k estimator maxi-

mizes L(Y ;β) or minimizes R(β) over β ∈ R. We have

R(β) =
!b"Ω−1/2Y "PZY Ω−1/2!b!b"!b =

!b"J "−1QJ−1!b!b"!b , where !b = Ω1/2b. (14.15)

The minimum of the rhs is obtained by the eigenvector !b∗ that corresponds to the
smallest eigenvalue of J "−1QJ−1. Hence,"βLIML−k = −b∗2/b∗1, where b∗ = (b∗1, b∗2)" = Ω−1/2!b∗. (14.16)

14.3 Proofs of Results Stated in Sections 4 and 5

Proof of Lemma 3. First, we prove part (a). The k×2 matrix [S:T ] is multivariate
normal with mean matrix M = µπh

"
β, where hβ = (cβ, dβ)

", all variances equal to
one, and all correlations equal to zero. Hence, Q = [S :T ]"[S :T ] has a noncentral
Wishart distribution with mean matrix of rank one and identity covariance matrix.
By (6) of Anderson (1946), the density of Q at q is

K1 exp(−tr(M "M)/2)|q|(k−3)/2 exp(−tr(q)/2)
×(tr(M "Mq))−(k−2)/4I(k−2)/2

04
tr(M "Mq)

1
. (14.17)

We have M "M = λhβhβ
", where λ = µ"πµπ, tr(M "M) = λ(c2β + d

2
β), tr(M

"Mq) =
λh"βqhβ, and h

"
βqhβ = ξβ(q). Hence, part (a) holds.

Part (b) holds because the distribution of QT is a noncentral chi-squared distrib-
ution with non-centrality parameter d2βλ by Lemma 2(b) and (3.3). The stated form
of the density is given in Anderson (1946, eqn. (6)).

Part (c) holds by calculating the ratio of the densities given in parts (a) and
(b) of the lemma each evaluated at β = β0 and using the fact that cβ0 = 0 and
ξβ0(q) = d

2
β0
qT .

Part (d) holds because the null distribution of QS is a central chi-squared distri-
bution with k degrees of freedom by Lemma 2(a) and cβ0 = 0.

For part (e), the null density of S2 is derived as follows: (i) S2 = S"T/(||S|| · ||T ||)
has the same distribution as A = S"α/||S|| for any α ∈ Rk with α"α = 1 because
S ∼ N(0, Ik) under the null and S and T are independent using Lemma 2(a) and (c),
(ii) for α = (1, 0, ..., 0)", (k−1)1/2A/(1−A2)1/2 = (k−1)1/2S1/(

6k
j=2 S

2
j )
1/2 ∼ tk−1 by

deÞnition of the tk−1 distribution, and (iii) transformation of (k−1)1/2A/(1−A2)1/2
to A gives the density in part (d), e.g., see Muirhead (1982, pf. of Thm. 1.5.7(i), pp.
38-9; eqn. (5), p. 147).
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Next, we prove part (f). Under the null, S ∼ N(0, Ik), T ∼ N(dβ0µπ, Ik), and S
and T are independent by Lemma 2. Hence, QS = S"S and T are independent. The
distribution of S"α/||S|| for α ∈ Rk with α"α = 1 does not depend on α by spherical
symmetry of S. In consequence, the conditional distribution of S2 = S"T/(||S|| · ||T ||)
given T = t does not depend on t and S2 is independent of T. Independence of
QS = S

"S and S"α/||S|| is a well-known result that holds by spherical symmetry of
S. !

Proof of Comment 7 to Corollary 2. The optimal test against β∗ rejects if
ξβ∗(Q1, QT ) is large and we have

lim
β∗→β0

0
ξβ∗(q1, qT )− d2β∗qT

1
/(β∗ − β0)

= lim
β∗→β0

0
(β∗ − β0)(b"0Ωb0)−1qS + 2b∗"Ωb0(b"0Ωb0)−1(det(Ω))−1/2qST

1
= 2(det(Ω))−1/2qST , (14.18)

where b∗ = (1,−β∗)". Hence, if β∗−β0 > 0, the optimal test rejects when QST = S"T
is large or, equivalently, when QST/Q

1/2
T is large since the critical value can depend

on QT . The null distribution of QST/Q
1/2
T conditional on T or on QT is standard

normal by Lemma 2, so the critical value for the test is the 1− α quantile, κφ,α, of
the standard normal distribution. !

Proof of Comment 9 to Corollary 2. Comment 9 holds because (i) the optimal
test against β∗ rejects if ξβ∗(Q1,QT ) is large, (ii) we have

lim
β∗→∞

0
ξβ∗(q1, qT )− d2β∗qT

1
/c2β∗

= lim
β∗→∞

%
qS + 2(dβ∗/cβ∗)qST

&
= qS + 2(det(Ω))

−1/2(β0ω22 − ω12)qST , (14.19)

and (iii) the limit as β∗ → −∞ in (14.19) is the same as when β∗ →∞. The second
equality in (14.19) holds because

(det(Ω))1/2dβ∗/cβ∗ =
b∗"Ωb0
β∗ − β0

=
ω11 − (β∗ + β0)ω12 + β∗β0ω22

β∗ − β0
and so

lim
β∗→∞

dβ∗/cβ∗ = (det(Ω))−1/2 (β0ω22 − ω12) and

lim
β∗→−∞

dβ∗/cβ∗ = (det(Ω))−1/2 (β0ω22 − ω12) . ! (14.20)

14.4 Proofs of Results Stated in Section 6

Proof of Theorem 4. By continuity of the power function, which holds by Lehmann
(1986, Thm. 9, p. 59), any unbiased test φ(Q) is similar. Hence, the Þrst condition
of the Theorem holds by Theorem 2.
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Now, for a test to be unbiased, (∂/∂β)Eβ,λφ(Q1, QT )|β=β0 = 0 for all values of
λ. By interchanging derivatives and integrals (which is justiÞed by Lehmann (1989,
Thm. 2.9, p. 59)) and the chain rule, the left-hand side of this equality equals I1+I2,
where

I1 =

. .
φ(q1, qT )

∂fQ1|QT (q1, qT ;β0,λ)
∂β

dq1fQT (qT ;β0,λ)dqT and

I2 =

. .
φ(q1, qT )fQ1|QT (q1, qT ;β0)dq1

∂fQT (qT ;β0,λ)

∂β
dqT

=

.
α
∂fQT (qT ;β0,λ)

∂β
dqT = 0, (14.21)

where the second last equality holds by the condition for similarity and the last
equality holds because

3
fQT (qT ;β,λ)dqT = 1 for all β.

To compute the derivative of the conditional density of Q1 given QT = qT with
respect to β evaluated at β0, it is convenient to write the conditional density of Q1
given QT = qT as

fQ1|QT (q1, qT ;β,λ) = K1K
−1
2 exp(−qS/2) det(q)(k−3)/2q−(k−2)/2T ×

∞2
j=0

(λξβ(q)/4)
j

j!Γ((k − 2) /2 + j + 1)

D ∞2
j=0

(λd2βqT/4)
j

j!Γ((k − 2/2) + j + 1) (14.22)

using Lemma 3(a) and (b) and (4.10).
Tedious algebraic manipulations show that

∂fQ1|QT (q1, qT ;β0,λ)
∂β

=
λ

2
fQ1|QT (q1, qT ;β0)qST (det(Ω))

−1/2 ×

Ik/2(
(
λa"0Ω−1a0qT )/I(k−2)/2(

(
λa"0Ω−1a0qT ). (14.23)

The function Ik/2(·) arises because

∂

∂β

∞2
j=0

(λξβ(q)/4)
j

j!Γ((k − 2) /2 + j + 1) =
λ

4

∂ξβ(q)

∂β

∞2
s=0

(λξβ(q)/4)
s

s!Γ(k/2 + s+ 1)
(14.24)

and likewise with ξβ(q) replaced by (d
2
βqT ).

The necessary condition for unbiasedness, (14.21), and (14.23) give

0 =

.
h(qT )fQT (qT ;β0,λ)dqT

Ik/2(
4
λa"0Ω−1a0qT )

I(k−2)/2(
4
λa"0Ω−1a0qT )

, where

h(qT ) =

.
φ(q1, qT )qST fQ1|QT (q1, qT ;β0)dq1. (14.25)

By completeness of QT under H0, see Comment 5 following Theorem 2, it must be
the case that h(qT ) is zero for almost all qT and all λ ≥ 0, which yields the second
condition of the Theorem. !
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Proof of Corollary 3. Any test that depends on (QS ,Q2ST ,QT ) can be written as
φ(QS,S22 , QT ), where S2 = QST/(QSQT )

1/2. By Lemma 3(e) and (f), QS , S2, and
QT are independent under H0 and S2 has a distribution that is symmetric about
zero. Hence, we have

Eβ0(φ(QS,S22 , QT )QST |QT = qT ) = Eβ0(φ(QS,S22 , qT )S2Q
1/2
S )q

1/2
T

=

.
Eβ0(φ(qS ,S22 , qT )S2)q

1/2
S fQS (qS)dqS · q1/2T = 0 (14.26)

for all qT , where the last equality holds because φ(qS ,S22 , qT )S2 is an odd function of
S2 and S2 is symmetrically distributed about zero. !

Proof of Theorem 5. By the same argument as in Section 4.2, it suffices to
Þnd the test that maximizes power against the single alternative density gW (q1|qT )
conditional on QT = qT . Given the restriction to locally-unbiased tests, we apply
the generalized Neyman-Pearson (GNP) Lemma, see Lehmann (1986, Thm. 3.5, pp.
96-7), rather than the Neyman-Pearson Lemma. The GNP Lemma implies that the
optimal (conditional) test rejects when LRW (Q1, qT ) > !κ1α(qT ) + !κ2α(qT )QST for
some !κ1α(qT ) and !κ2α(qT ) that are chosen such that the two conditions of Theorem
4 hold.

It remains to verify the conditions needed to apply the generalized Neyman-
Pearson Lemma. Let M be the set of points

(E (φ(Q1, QT )|QT = qT ) , E (φ(Q1, QT )QST |QT = qT )) (14.27)

as φ ranges over all possible critical functions. It suffices to show that (α, 0) is an
interior point of M, see Lehmann (1986, Thm. 3.5(iv), p. 97).

The set M is convex because the conditional expectation operator is linear.
Moreover, M contains (α, 0) by considering the LM test. It also contains points
(α, u+α ) with u

+
α > 0 by considering the one-sided LM test which rejects H0 when

QST/Q
1/2
T > cα. This follows because the derivative of the conditional power function

of this test is an increasing linear transformation of.
1
0
qST/q

1/2
T > cα

1
qST fQ1|QT (q1, qT ;β0)dq1, (14.28)

which is strictly positive. Likewise, M also contains points (α, u−α ) with u−α < 0

by considering the test which rejects H0 when −QST /Q1/2T > cα by an analogous
argument. This completes the veriÞcation that (α, 0) lies in the interior of M. !

14.5 Proofs of Results Stated in Section 9

Proof of Lemma 4. Under Assumptions IID, INID, or MDS, Assumptions 1 and 2
hold by standard LLN�s and Assumption 3 holds by a MDS CLT, such as Cor. 3.1 of
Hall and Heyde (1980, p. 58). Under Assumption CORR, Assumptions 1 and 2 hold
by the ergodic theorem and Assumption 3 holds by the CLT given in the Theorem
of Heyde (1975) (of which there is only one). !
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Proof of Lemma 5. Using the deÞnition Y = Zπa" + Xη + V, we obtain "V =
V − PZV − PXV. This and PZPX = 0 gives

n−1"V " "V −Ω = (n−1V "V −Ω)− n−1V "PZV − n−1V "PXV. (14.29)

The Þrst summand on the right-hand side of (14.29) converges in probability to zero
by Assumption 2. The second summand satisÞes

0 ≤ n−1V "PZV ≤ n−1V "P !ZV = n−1(n−1/2V " !Z)(n−1 !Z " !Z)−1(n−1/2 !Z "V )→p 0,
(14.30)

where the second inequality holds because the span of Z is contained in the span of!Z and the convergence to zero holds by Assumptions 1 and 3. The third summand
of (14.29) converges in probability to zero by an analogous argument. !

Proof of Lemma 6. To establish part (a), we have

n−1Z "Z = n−1 !Z " !Z − n−1 !Z "PX !Z →p D11 −D12D−122 D21 = DZ (14.31)

using Assumption 1. Let N∗ be a (k + p) × 2 random matrix with vec(N∗) ∼
N(0,Ω⊗D). Using Assumptions 1 and 3, we obtain

n−1/2Z "V b0 = n−1/2( !Z − PX !Z)"V b0 = n−1/2( !Z −XD−122 D21)"V b0 + op(1)
=
9
Ik : −D12D−122

:
n−1/2Z "V b0 + op(1)→d

9
Ik : −D12D−122

:
N∗b0

=
9
Ik : −D12D−122

:
(b"0 ⊗ Ik+p)vec(N∗). (14.32)

Hence, we have

Sn = (n−1Z "Z)−1/2(n−1/2Z "V b0 + n−1Z "ZCa"b0) · (b"0Ωb0)−1/2 →d H, where

H = D
−1/2
Z

%9
Ik : −D12D−122

:
(b"0 ⊗ Ik+p)vec(N∗) +DZCa"b0

& · (b"0Ωb0)−1/2 (14.33)
and the Þrst equality holds by Assumption WIV-FA and Z "X = 0. Using Assumption
4, the random vector H has a normal distribution with

EH = D
1/2
Z Ca"b0 · (b"0Ωb0)−1/2 = cβD1/2Z C and

var(H) = D
−1/2
Z

9
Ik : −D12D−122

:
(b"0 ⊗ Ik+p)(Ω⊗D)(b0 ⊗ Ik+p)

× 9Ik : −D12D−122 :"D−1/2Z · (b"0Ωb0)−1

= D
−1/2
Z

9
Ik : −D12D−122

:
D
9
Ik : −D12D−122

:"
D
−1/2
Z = Ik, (14.34)

which completes the proof for Sn.
Analogously to (14.32), we have

n−1/2Z "V Ω−1a0 →d

9
Ik : −D12D−122

:
((a"0Ω

−1)⊗ Ik+p)vec(N∗). (14.35)
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Using this, we obtain

Tn= (n
−1Z "Z)−1/2

0
n−1/2Z "VΩ−1a0+n−1Z "ZCa"Ω−1a0

1
·(a"0Ω−1a0)−1/2 →d J , for

J =D
−1/2
Z

%9
Ik : −D12D−122

:
((a"0Ω

−1)⊗Ik+p)vec(N∗) +DZCa"Ω−1a0
&·(a"0Ω−1a0)−1/2.

(14.36)

Analogously to (14.34), J has a normal distribution withEJ = dβD
1/2
Z C and var(J) =

Ik, which completes the proof for Tn.
The asymptotic normal distributions of Sn and Tn are independent because the

covariance of the random components of H and J is zero:

E(b"0 ⊗ Ik+p)vec(N∗)vec(N∗)"((Ω−1a0)⊗ Ik+p)
= E(b"0 ⊗ Ik+p)(Ω⊗D)((Ω−1a0)⊗ Ik+p) = (b"0a0)⊗D = 0. (14.37)

This completes the proof of part (a).
Part (b) holds by the deÞnitions of "Sn, "Tn, Sn, and Tn because (i) (Z "Z)−1/2Z "Y =

Op(1) by the same sort of argument as in (14.31) and (14.32), (ii) "Ωn →p Ω by Lemma
5, and (iii) Ω is pd by Assumption 2.

Part (c) follows immediately from parts (a) and (b). !

Proof of Theorem 6. The functions ψW (·, ·) and ψ2,W (·) are continuous and do not
depend on n, see their deÞnitions in Corollary 1. The same is true of the critical value
function κα(·) because the conditional distribution of Q1,n given QT,n is absolutely
continuous with a density that is a smooth function of qT and does not depend on
n, see Lemma 3(c) and the deÞnition of κα(·) in (4.12). In consequence, the result of
the Theorem follows from Lemma 6, (9.5), and the continuous mapping theorem. !

Proof of Corollary 4. To prove part (a), let "Ψn = LRW ( "Q1,n, "QT,n) − κα( "QT,n),
Ψn = LRW (Q1,n,QT,n) − κα(QT,n), and Ψ = LRW (Q1,∞,QT,∞) − κα(QT,∞). By
Theorem 6(b),

P (|"Ψn −Ψn| > ε)→ 0 for all ε > 0. (14.38)

We have

P (|1("Ψn > 0)− 1(Ψn > 0)| > ε)
≤ P ("Ψn > 0 & Ψn ≤ 0) + P ("Ψn ≤ 0 & Ψn > 0). (14.39)

The Þrst summand on the right-hand side of (14.39) satisÞes

P ("Ψn > 0 & Ψn ≤ 0) ≤ P (0 < "Ψn ≤ ε) + o(1)→ P (0 < Ψ ≤ ε), (14.40)

where the inequality holds by (14.38) and the convergence holds by Theorem 6(c).
The right-hand side of (14.40) converges to zero as ε→ 0 because Ψ has an absolutely
continuously distribution by Lemma 3(a). Hence, the left-hand side of (14.40) con-
verges to zero as n→∞.
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By an analogous argument, the second summand on the right-hand side of (14.39)
converges to zero as n→∞, which completes the proof of part (a).

Parts (b) and (c) follow immediately from Theorem 6(a) and (c).
Part (d) holds for the following reasons. The conditional distribution of Q1,∞

given QT,∞ = qT is the same as that of Q1,n given QT,n = qT because the former
distribution does not depend on λ∞ and the latter does not depend on λ, see Lemma
3(c). Hence, by deÞnition of κα(·), for all constants qT,∞, P (LRW (Q1,∞, qT,∞) >
κα(qT,∞)|Q1,∞ = qT,∞)) = α. This result and iterated expectations establishes part
(d). !

Proof of Theorem 7. First, we prove part (a). We have

"V "j b0 = V "j b0 − Z "j(Z "Z)−1Z "V b0 −X "
j(X

"X)−1X "V b0 (14.41)

because "V = V − PZV − PXV. Using (14.41), some manipulations, and Assumption
6, we obtain

n−1
n2
j=1

("V "j b0)2ZjZ "j − n−1 n2
j=1

(V "j b0)
2ZjZ

"
j →p 0. (14.42)

In addition, we have

n−1
n2
j=1

(V "j b0)
2ZjZ

"
j

= n−1
n2
j=1

(V "j b0)
2( !Zj −D12D−122 Xj)( !Zj −D12D−122 Xj)" + op(1)

= n−1
n2
j=1

MB0(Vi ⊗ Zi)(V "i ⊗ Z "i)B"0M " + op(1)

→ p MB0ΦB
"
0M

", (14.43)

where the Þrst equality holds using Assumption 1 via some manipulations, the second
equality holds by linear algebra, and convergence holds by Assumption 5. Combining
(14.42) and (14.43), gives !ΣS,n →p

!ΣS.
By similar arguments, !ΣTS,n →p

!ΣTS and !Σ∗T,n →p
!Σ∗T . (The arguments are

somewhat more involved because b0 is replaced by the random quantity "Ω−1n a0, but
no additional assumptions are needed.) These results combine to give !ΣT,n →p

!ΣT .
To establish part (b), we Þrst show that the result of Lemma 6(c) holds. We have

!Sn = !Σ−1/2S,n

0
n−1/2Z "V b0 + n−1Z "ZCa"b0

1
→ d

!Σ−1/2S

9
Ik : −D12D−122

:
(b"0 ⊗ Ik+p)vec(N∗) + !Σ−1/2S DZCa

"b0

∼ N(!Σ−1/2S DZCa
"b0, Ik), (14.44)
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where vec(N∗) ∼ N(0,Φ), the equality uses (9.7) and Assumption 1, and the conver-
gence holds by part (a), (14.31), and (14.32).

By Lemma 5, part (a), and Assumption 3, the use of "Ω−1n , rather than Ω−1, in
the deÞnition of Tn has no effect asymptotically. Hence, we have

!Tn = !Σ−1/2T,n

0
n−1/2Z "Y Ω−1a0 − !ΣTS,n!Σ−1S,nn−1/2Z "Y b01+ op(1)

= !Σ−1/2T,n

0
n−1/2Z "V Ω−1a0 − !ΣTS,n!Σ−1S,nn−1/2Z "V b01

+!Σ−1/2T,n

0
n−1Z "ZCa"Ω−1a0 − !ΣTS,n!Σ−1S,nn−1Z "ZCa"b01+ op(1)

→ d
!Σ−1/2T

0
MA0 vec(N

∗)− !ΣTS!Σ−1S MB0 vec(N∗)
1

+!Σ−1/2T

0
DZCa

"Ω−1a0 − !ΣTS!Σ−1S DZCa"b01 , (14.45)

where M, A0, and B0 are deÞned in (9.9) and the convergence holds by (14.32) and
(14.36). The covariance matrix of the limiting distribution in (14.45) is Ik because

var
0
MA0 vec(N

∗)− !ΣTS!Σ−1S MB0 vec(N∗)
1

= MA0ΦA
"
0M

" −MA0ΦB"0M "!Σ−1S !Σ"TS − !ΣTS!Σ−1S MB0ΦA"0M "

+!ΣTS!Σ−1S MB0ΦB"0M "!Σ−1S !Σ"TS
= !Σ∗T − !ΣTS!Σ−1S !Σ"TS = !ΣT . (14.46)

The convergence in (14.44) and (14.45) is joint and the limit random vectors are
independent because

cov(MA0 vec(N
∗)− !ΣTS!Σ−1S MB0 vec(N∗), !Σ−1/2S MB0 vec(N

∗)) (14.47)

= MA0ΦM
"B"0!Σ−1/2S − !ΣTS!Σ−1S MB0ΦB"0M "!Σ−1/2S = !ΣTS!Σ−1/2S − !ΣTS!Σ−1/2S = 0.

To complete the proof of part (b), we note that (i) Theorem 6(c) (with the changes
indicated in Theorem 7(b)) follows from (14.44)-(14.47) by the continuous mapping
theorem, (ii) Corollary 4(c) follows immediately from Theorem 6(c), and (iii) Corol-
lary 4(d) holds with ( !Q1,∞, !QT,∞) by the same reason as with (Q1,∞,QT,∞). !
14.6 Proofs of Results Stated in Section 10

Proof of Lemma 8. Part (a) holds because (i) conditional on [Z : X], equation
(14.2) with (π,Ω, η) replaced by (C/n1/2,Ω0 +Ω1/n1/2, η0 + η1/n

1/2), where Ω0 and
η0 are known and Ω1 and η1 are unknown, implies that (Z

"Y,X "Y, Y "Y ) are sufficient
statistics for (β, C,Ω1, η1) and (ii) (n

−1/2Z "Y, n1/2("ηn − η0), n1/2("Ωn − Ω0)) is an
equivalent set of sufficient statistics to (Z "Y,X "Y, Y "Y ).

Part (b) holds because (i) vec(n−1/2Z "V ) ∼ N(0,Ω ⊗ (n−1Z "Z)) conditional on
n−1Z "Z and n−1Z "Z →p DZ (by (14.32) using Assumption 1) imply that
vec(n−1/2Z "V ) →d N(0,Ω ⊗ DZ), (ii) vec(n−1/2Z "Zπa") = vec(n−1Z "ZCa") →p

DZCa
" by Assumption 1, (iii) n1/2("ηn−η0) = (n−1X "X)−1n−1/2X "V +η1 ∼ N(η1,Ω⊗
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(n−1X "X)−1) conditional on n−1X "X and (n−1X "X)−1 →p D
−1
22 (using Assump-

tion 1) imply that vec(n1/2("ηn − η0)) →d N(η1,Ω ⊗ D−122 ), (iv) n1/2("Ωn − Ω0) =
n1/2(n−1V "V −Ω0)− n−1/2V "PZV − n−1/2V "PXV using (14.29), (v) n1/2(n−1V "V −
Ω0) = n−1/2(V "V − EV "V ) + Ω1, (vi) vech(n−1/2(V "V − EV "V )) →d N(0, E(ζ −
Eζ)(ζ − Eζ)") by a triangular array CLT for row-wise iid random vectors, (vii)
n−1/2V "PZV = n−1/2 · n−1/2V "Z(n−1Z "Z)−1n−1/2Z "V →p 0 using (i),
(viii) n−1/2V "PXV →p 0 by an analogous argument to (vii), and (ix) the three
random matrices on the left-hand side of part (b) are asymptotically independent
because they are independent in Þnite samples conditional on n−1Z "Z and n−1X "X
and the randomness in n−1Z "Z and n−1X "X is asymptotically negligible. !

Proof of Theorem 8. The equality in the Theorem holds by the deÞnition of
a convergent sequence of asymptotically invariant tests. The inequality holds be-
cause (i) given the random quantities (Q∞,NX , NΩ), Q∞ is a sufficient statistic for
β and C since it is independent of NX and NΩ and the latter have distributions
that do not depend on β or C, (ii) part (i) implies that the WAP of the similar
test φ∗(Q∞, NX , NΩ) is less than or equal to that of some similar test !φ(Q∞) that
depends on (Q∞, NX , NΩ) only through Q∞, and (iii) Theorem 3 with Q replaced
by Q∞ implies that the WAP of the similar test !φ(Q∞) is less than or equal to the
upper bound given in Theorem 8. !

14.7 Proofs of Results Stated in Section 11

Proof of Lemma 9. To prove part (a)(i), we use (2.6), (9.4), (14.6)-(14.8), and
Assumptions SIV-LA, 1, 3, and 4 to obtain

Sn = cβµπ + (Z
"Z)−1/2Z "V b0 · (b"0Ωb0)−1/2 →d ζS and

Tn/n
1/2 = dβµπ/n

1/2 + (Z "Z/n)−1/2(Z "V/n)Ω−1a0 · (a"0Ω−1a0)−1/2
= dβ(Z

"Z/n)1/2π + op(1) = αT + op(1). (14.48)

Part (a)(ii) holds by Lemma 5. Part (a)(iii) holds by part (a)(i), part (a)(ii), and the
continuous mapping theorem.

Part (b)(i) holds by Theorem 7(a) (whose proof does not rely on AssumptionWIV-
FA). Part (b)(ii) holds for !Sn using part (b)(i) and (14.44) but with n−1Z "ZCa"b0
replaced by n−1/2Z "Zπa"b0 = n−1Z "ZπB = DZπB + op(1). Part (b)(ii) holds for !Tn
using part (b)(i), the result of part (b)(ii) for !Sn, Lemma 5, and (9.4):!Tn/n1/2 = !Σ−1/2T,n

0
n−1Z "Y "Ω−1n a0 − n−1/2!ΣTS,n!Σ−1/2S,n

!Sn1
= !Σ−1/2T

%
n−1Z "Zπa"Ω−1a0 + n−1Z "VΩ−1a0

&
+ op(1)

= !Σ−1/2T DZπa
"
0Ω

−1a0 + op(1) = !αT + op(1). (14.49)

Part (b)(iii) holds by part (b)(ii) and the continuous mapping theorem. !

Proof of Theorem 9. Parts (a)(i), (a)(ii), (b)(i), and (b)(ii) of the Theorem follow
immediately from Lemma 9(a) and 9(b).
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The Þrst equality of part (a)(iii) follows from Lemma 9(a). The second equality
of part (a)(iii) of the Theorem is established as follows. For brevity, we drop the
subscript n on QS,n, QT,n, and QST,n. Equation (3.4) and simple algebra yields

2 · LRn = QS −QT + (QS +QT )
4
1− δn/n

= QS

0
1 +

4
1− δn/n

1
− (QT/n)n

0
1−

4
1− δn/n

1
, where

δn = 4n
%
QSQT −Q2ST

&
(QS +QT )

−2 . (14.50)

Some algebra and Lemma 9(a) gives

δn = 4
%
QS −Q2ST/QT

& %
QSQ

−1
T + 1

&−2
(QT/n)

−1

= 4
%
QS −Q2ST/QT

&
(α"TαT )

−1 + op(1) = Op(1). (14.51)

A mean-value expansion about δn/n = 0 gives

n
0
1−

4
1− δn/n

1
= n

'
1−

'
1− 1

2

δn
n
+Op(n

−2)
))

=
1

2
δn + op(1). (14.52)

This result,
4
1− δn/n→p 1, (14.50), and (14.51) yield

LRn =
1

2

%
2QS − 2

%
QS −Q2ST/QT

&&
+ op(1) = Q

2
ST/QT + op(1), (14.53)

which establishes the second equality of part (a)(iii).
By the same argument as in (14.50)-(14.53), but using Lemma 9(b) in place of

Lemma 9(a), we obtain8LRn = 8LMn + op(1), which establishes the equality in part
(b)(ii).

Next, for part (a)(iv) of the Theorem, deÞne LR1∞ as LR1 is deÞned in (3.7) but
with LR, R(β), and "βLIML−k replaced by (α"T ζS)2/||αT ||2, R∞(β), and "βLIML−k,∞,
respectively, where R∞(β) is deÞned as R(β) is deÞned in (14.15) but with Q replaced
by its SIV-LA limit given in Lemma 9(a)(iii) and by deÞnition "βLIML−k,∞ minimizes
R∞(β) over β ∈ R. The Þrst equality of part (a)(iv) holds by Lemma 9(a)(ii) and
the convergence holds by Lemma 9(a)(iii) and the continuous mapping theorem given
the absolute continuity of ζS .

For part (b)(iv), deÞne 8LR1∞ analogously but with (ζS,αT ) replaced by (!ζS , !αT )
and with Q replaced by its SIV-LA limit given in Lemma 9(b)(iii). The result of
part (b)(iv) of the Theorem holds by Lemma 9(b)(iii) and the continuous mapping
theorem given the absolute continuity of !ζS . !
Proof of Theorem 10. We suppose that Ω is known and determine the standard
LM statistic for this case, which is asymptotically efficient by standard results. In
particular, we show that the standard LM statistic is LMn = Q2ST/QT . By Theo-
rem 9, all the LM and LR statistics listed in the statement of the present Theorem
are asymptotically equivalent to LMn under the null hypothesis and local alterna-
tives under strong IV asymptotics and the asymptotic behavior of these statistics
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does not depend on knowledge of Ω. Hence, the tests based on these statistics are
asymptotically efficient whether or not Ω is known.

The standard LM statistic is a quadratic form in the derivative with respect to
(wrt) β of the log likelihood function of the sufficient statistics (S, T ) evaluated at
the null restricted maximum likelihood estimator of π, which we denote by "π0. Under
the null hypothesis, S ∼ N(0, Ik) is ancillary, "π0 depends on T ∼ N(dβ0µπ, Ik)

alone, and "π0 is easily seen to be "π0 = d−1β0 (Z "Z)−1/2T. The log-likelihood of (S, T )
is proportional to

−1
2
(S − cβµπ)"(S − cβµπ)−

1

2
(T − dβµπ)"(T − dβµπ). (14.54)

The derivative of this expression wrt β evaluated at (β,π) = (β0, "π0) is'
d

dβ
cβµ

"
πS −

1

2

d

dβ
(c2β)µ

"
πµπ +

d

dβ
dβµ

"
πT −

1

2

d

dβ
(d2β)µ

"
πµπ

)EEEE
(β,π)=(β0,"π0)

=
d

dβ
cβ0µ

""π0S + d

dβ
dβ0µ

""π0T − dβ0 ddβdβ0µ""π0µ"π0
=

d

dβ
cβ0 · d−1β0 T

"S, (14.55)

using the facts that cβ0 = 0, µ"π0 = d−1β0 T and µ
""π0T = dβ0µ

""π0µ"π0 . The asymptotic
variance of T "S/n1/2 under H0 is p limn→∞ T "T/n = α"TαT . Hence, the standard LM
statistic is (T "S)2/T "T = LMn, which completes the proof. !

Proof of Theorem 11. First, we establish Theorem 11(a)(i). The Þrst equality
holds by Lemma 9(a)(ii) and the deÞnition of POIS1δ/δ in (5.15). Next, using (5.15),
we have

POIS1δ/δ =
QS/δ +QST/

√
QT − k/δ

sgn(δ)
4
2k/δ + 1

. (14.56)

By Lemma 9(a)(i),

1/δ =
0
(2dβ∗/cβ∗)

4
QT/n

1−1
/
√
n = Op(n

−1/2). (14.57)

By deÞnition of δ, sgn(δ) = sgn(cβ∗dβ∗). Combining this, (14.56), (14.57), and
Lemma 9(a)(i) gives QS/δ = op(1) and the second equality of part (a)(i) holds.
The convergence in part (a)(i) holds by Lemma 9(a)(i).

Theorem 11(a)(ii) holds because β∗ = βAR implies that dβ∗ = 0 and δ = 0. In
consequence, the second equality of part (a)(ii) holds by the deÞnition of POIS1δ
and the Þrst equality holds using Lemma 9(a)(ii).

The proof of part (b) is the same as that of part (a) except that Lemma 9(b) is
used in place of Lemma 9(a). !

Proof of Comment 1 to Theorem 11. The critical value function of a POIS1
test, κPOIS1α (qT ), converges to the 1 − α quantile of the standard normal distri-
bution as qT → ∞. This holds because QT enters POIS1δ only through δ and

66



limδ→∞ POIS1δ = QST/Q
1/2
T ∼ N(0, 1). Since QT →p ∞ under SIV-LA asymptot-

ics, this implies that κPOIS1α (QT ) converges in probability to the 1 − α quantile of
the standard normal distribution as qT →∞. !

Proof of Theorem 12. Part (a)(i) of the Theorem holds by Lemma 9(a)(i) and the
continuity of ψW2P

(q1, qT ) and ψ2,W2P
(q1, qT ) in (q1, qT ).

To prove Theorem 12(a)(ii) and 12(a)(iii), we establish some preliminary results.
Let β1 and λ1 be any Þxed constants for which dβ1 "= 0 (i.e., β1 "= βAR). DeÞne hβ1 =
(cβ1 , dβ1)

". Then, we have (I) QT/n→p α
"
TαT > 0 by Lemma 9(a)(i) and Assumption

SIV-LA(b), (II) QST/
√
QT = Op(1) by (I) and Lemma 9(a)(i), (III) QS/QT = op(1)

and QS/Q
1/2
T = op(1) by (I) and Lemma 9(a)(i), and (IV) h"1Qh1/(d2β1QT ) →p 1

by (II) and (III). Next, we apply the mean-value theorem: (x + a)1/2 − x1/2 =
(1/2)(x∗)−1/2a, where x∗ lies between x and a, with x = d2β1QT and a = 2cβ1dβ1QST+
c2β1QS. This gives(

h"1Qh1 −
(
d2β1
QT =

1

2
m−1/2

0
2cβ1dβ1QST + c

2
β1
QS

1
=
cβ1dβ1QST

(d2β1
QT )1/2

;
d2β1QT

m

<1/2
+
1

2

c2β1QS

(d2β1
QT )1/2

;
d2β1QT

m

<1/2
=
cβ1sgn(dβ1)QST

Q
1/2
T

+ op(1), (14.58)

where m lies between h"1Qh1 and d2β1QT and the third equality holds using (II)-(IV)
and the deÞnition of m.

By Lebedev (1965, (5.11.10), p. 123), we have Iν(x) = exp(x)(2pi · x)−1/2(1 +
O(x−1)) as x→∞ for any ν ∈ R. Hence, using (I), we obtain

Iν

0(
d2β1
QT

1
e
−
(
d2β1

QT
0
2pi
(
d2β1
QT

11/2
= 1 +Op(n

−1/2) (14.59)

and likewise with h"1Qh1 in place of d2β1QT .
We now consider a weight function W2P (β,λ) (that does not necessarily satisfy

(6.2)). It is convenient to make a change of variables from (β,λ) to (γ, µ), where

γ = λ1/2cβ and µ = λ
1/2dβ. (14.60)

Let !h = (γ, µ)". Then, λξβ(Q) = !h"Q!h and λd2βQT = µ2QT . Let F2P (γ, µ) be the
two-point distribution on (γ, µ) that corresponds toW2P (β,λ) and, hence, puts equal
weight on (γ∗, µ∗) = ((λ∗)1/2cβ∗ , (λ∗)1/2dβ∗) and (γ∗2, µ∗2) = ((λ

∗
2)
1/2cβ∗2 , (λ

∗
2)
1/2dβ∗2).

Let µmax denote the value of µ that maximizes |µ| over µ in the support of F2P (γ, µ).
That is, µmax = max{|µ∗|, |µ∗2|}. Let ν = (k − 2)/2.

Using this notation and the deÞnition of LRW in Corollary 1, we have LRW2P
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equals

3
e−

1
2
(γ2+µ2)

0!h"Q!h1− 1
2
ν
Iν

'(!h"Q!h) dF2p(γ, µ)3
e−

1
2
µ2 (µ2QT )

−1
2
ν Iν

04
µ2QT

1
dF2P (γ, µ)

=

3
e−

1
2
(γ2+µ2)

0!h"Q!h1− 1
2
(ν+ 1

2
)
e
√!h#Q!hdF2p(γ, µ)3

e−
1
2
µ2 (µ2QT )

−1
2
(ν+ 1

2
) e
√
µ2QT dF2P (γ, µ)

(1 + op(1))

=

3
e−

1
2
(γ2+µ2)

0 !h#Q!h
µ2QT

1− 1
2
(ν+ 1

2
) %
µ2
&− 1

2
(ν+ 1

2
)
e(
√
µ2−
√
µ2max)

√
QT e

√!h#Q!h−√µ2QT dF2p(γ, µ)3
e−

1
2
µ2 (µ2)−

1
2
(ν+ 1

2
) e(
√
µ2−
√
µ2max)

√
QT dF2P (γ, µ)

×(1 + op(1)) (14.61)

=

3
e−

1
2
(γ2+µ2)

%
µ2
&− 1

2
(ν+1

2
)
e(
√
µ2−
√
µ2max)

√
QT eγsgn(µ)QSTQ

−1/2
T dF2p(γ, µ)3

e−
1
2
µ2 (µ2)−

1
2
(ν+1

2
) e(
√
µ2−
√
µ2max)

√
QT dF2P (γ, µ)

(1 + op(1))

where the Þrst equality holds by (14.59), the second equality holds by algebra, and
the third equality holds by (IV) and (14.58).

If W2P satisÞes (6.2), then γ∗ = −γ∗2, µ∗ = µ∗2, and µmax = |µ∗| = |µ∗2|. In this
case, the terms in the numerator and denominator of the right-hand side (rhs) of
(14.61) that involve (

4
µ2 −4µ2max)√QT equal zero and the rhs of (14.61) without

(1 + op(1)) equals

1
2e
− 1
2
((γ∗)2+(µ∗)2) %(µ∗)2&−1

2
(ν+ 1

2
)
(eγ

∗sgn(µ∗)QSTQ
−1/2
T + e−γ∗sgn(µ∗)QSTQ

−1/2
T )

e−
1
2
(µ∗)2 ((µ∗)2)−

1
2
(ν+ 1

2
)

= e−
1
2
(γ∗)2 cosh(γ∗QSTQ

−1/2
T ), (14.62)

using (exp(x) + exp(−x))/2 = cosh(x). The function cosh(·) is even. Hence,
cosh(γ∗QSTQ

−1/2
T ) = cosh(γ∗LM1/2

n ). The latter is strictly increasing in LMn be-
cause cosh(·) is continuous and strictly increasing on R+. This completes the proof
of Theorem 12(a)(ii).

We now establish Theorem 12(a)(iii). Suppose W2P does not satisfy the second
condition of (6.2), then either µmax > |µ∗2| or µmax > |µ∗|. Suppose µmax > |µ∗2|,
then exp((

4
(µ∗2)2 −

4
µ2max)

√
QT ) = op(1) using (I), µmax = |µ∗| > 0, and the rhs of

(14.61) without (1 + op(1)) equals

e−
1
2
((γ∗)2+(µ∗)2) %(µ∗)2&− 1

2
(ν+ 1

2
)
eγ

∗sgn(µ∗)QSTQ
−1/2
T + op(1)

e−
1
2
(µ∗)2 ((µ∗)2)−

1
2
(ν+ 1

2
) + op(1)

= e−
1
2
(γ∗)2eγ

∗sgn(µ∗)QSTQ
−1/2
T + op(1), (14.63)

which is a strictly monotone, continuous function of QSTQ
−1/2
T and, hence, is not an

even function of QSTQ
−1/2
T . The same argument applies when µmax > |µ∗|.
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Note that the case where β∗ = βAR or β
∗
2 = βAR is subsumed in the case just

considered because in such cases there is no solution to the second equation in (6.2)
and, hence, we must have µmax > |µ∗| or µmax > |µ∗2|.

Next, suppose W2P satisÞes the second condition of (6.2), but not the Þrst con-
dition. Then, γ∗ "= −γ∗2, µ∗ = µ∗2, µmax = |µ∗| = |µ∗2| > 0, and the rhs of (14.61)
without (1 + op(1)) equals

1

2

0
e−

1
2
(γ∗)2eγ

∗sgn(µ∗)QSTQ
−1/2
T + e−

1
2
(γ∗2)

2
eγ

∗
2sgn(µ

∗)QSTQ
−1/2
T

1
, (14.64)

which is a continuous function of QSTQ
−1/2
T that is not even because γ∗ "= −γ∗2. This

completes the proof of Theorem 12(a)(iii).
We now establish Theorem 12(a)(iv). We use the same argument as above except

with WAE in place of W2P . Let FAE(γ, µ) be the weight function on (γ, µ) that cor-
responds to WAE(β, γ) on (β,λ). By (6.4) and the conditions following it, FAE(γ, µ)
is of the form

FAE(γ, µ) =
1

2
F∗(γ, µ) +

1

2
F∗(−γ, µ) (14.65)

for some function F∗(γ, µ) with Þnite support. Then, LRWAE
equals the expressions

in (14.61) with F2P replaced by FAE.
Let µmax denote the value of µ that maximizes |µ| over µ in the support of

F∗(γ, µ). Let Θµmax denote the set of (γ, µ) values in the support of F∗(γ, µ) for
which |µ| = µmax. Now, by (14.65), the rhs of (14.61) without (1 + op(1)) can be
written as3

e−
1
2
(γ2+µ2)

%
µ2
&− 1

2
(ν+1

2
)
e(
√
µ2−
√
µ2max)

√
QT cosh(γQSTQ

−1/2
T )dF∗(γ, µ)3

e−
1
2
µ2 (µ2)−

1
2
(ν+ 1

2
) e(
√
µ2−
√
µ2max)

√
QT dF∗(γ, µ)

=

6
(γ,µ)∈Θµmax e

− 1
2
γ2 cosh(γ(Q2STQ

−1
T )

1/2)f∗(γ, µ)6
(γ,µ)∈Θµmax f∗(γ, µ)

+ op(1), (14.66)

where f∗(γ, µ) denotes the probability mass F∗(γ, µ) puts on (γ, µ) and the equality
uses the fact that exp((

4
µ2 −4µ2max)√QT ) = op(1) for any µ with |µ| < µmax.

By the properties of cosh(·), the rhs is a strictly-increasing, continuous function of
Q2STQ

−1
T = LMn, which establishes Theorem 12(a)(iv).

Given Lemma 9(b)(iii), the proof of Theorem 12(b)(i)-(iii) is the same as that of
Theorem 12(a)(ii)-(iv) with (QST , QT ) replaced by ( !QST , !QT ) throughout. !
Proof of Comment 1 to Theorem 12. We write the LRW2P (Q1, QT ) statistic as
a function of QS, S22 , and QT , say LRW2P (QS,S22 ,QT ). The statistics (QS ,S22 , QT )
are independent under the null. Hence, we can condition on QT without affect-
ing the distribution of (QS,S22 ). Consider a sequence of constants {qT,m : m ≥ 1}
for which qT,m/m → α"TαT > 0. Then, by the argument of (14.58)-(14.66) with
(QS ,S22) held Þxed, whenW2P satisÞes (6.2) we have limm→∞ LRW2P (QS,S22 , qT,m) =
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exp(−1
2(γ

∗)2) cosh(|γ∗|(QSS22 )1/2). Because QSS22 ∼ χ21, this implies that the condi-
tional critical value function of LRW2P

, viz., κW2P
α (qT ), converges as qT → ∞ to a

strictly-increasing continuous function of the 1− α quantile of χ21. In turn, this im-
plies that κW2P

α (QT ) converges in probability to the same constant as n→∞ because
QT/n→p α

"
TαT > 0. An analogous argument holds for LRWAE

(Q1, QT ). !

Proof of Lemma 10. Part (a)(i) of the Lemma is established as follows:

n−1Z "Y b0 = n−1Z "(Zπa" +Xη + V )b0
= n−1Z "Zπa"b0 + n−1Z "V b0 →p DZπa

"b0 (14.67)

using Assumptions SIV-FA, 1, and 3 and Z "X = 0.. Hence, we have

Sn/n
1/2 = (n−1Z "Z)−1/2n−1Z "Y b0 · (b"0Ωb0)−1/2

→p D
1/2
Z πa"b0 · (b"0Ωb0)−1/2 = D1/2Z πcβ. (14.68)

Similarly,

Tn/n
1/2 = (n−1Z "Z)−1/2n−1Z "Y Ω−1a0 · (a"0Ω−1a0)−1/2

→p D
1/2
Z πa"Ω−1a0 · (a"0Ω−1a0)−1/2 = D1/2Z πdβ. (14.69)

Part (a)(ii) of the Lemma follows from Lemma 5 and part (a)(i). Part (a)(iii) of
the Lemma follows from parts (a)(i) and (a)(ii) and Slutsky�s Theorem.

Next, we prove part (a)(iv) of the Lemma. If β = βAR, then a
"Ω−1a0 = 0 and

using Assumption 4, we have

Tn = (n−1Z "Z)−1/2n−1/2Z "(Zπa" +Xη + V )Ω−1a0 · (a"0Ω−1a0)−1/2
= (n−1Z "Z)−1/2n−1/2Z "V Ω−1a0 · (a"0Ω−1a0)−1/2
→d ςk ∼ N(0, Ik). (14.70)

The remaining two results of part (a)(iv) follow from Lemma 5, part (a)(i), part
(a)(ii), and the continuous mapping theorem.

The proof of part (b) of the Lemma is similar to that of part (a) using the
deÞnitions of !Sn and !Tn in (9.7) and Theorem 7(a) (which holds without Assumption
WIV-FA). !

Proof of Theorem 13. Parts (a)(i)-(iv) of the Theorem hold by Lemma 10(a)(ii)
and 10(a)(iii) and simple calculations. In the case of LMn, part (a)(ii) only holds if
β "= βAR (which implies dβ "= 0) because dβ appears in the denominator. Part (a)(v)
of the Theorem hold by Lemma 10(a)(ii) and 10(a)(iv) and simple calculations.

Next, we prove part (a)(vi) of the Theorem by altering the proof of Theorem
12(a)(ii). Result (I) of this proof still holds under Assumption SIV-FA, but (II)-(IV)
and (14.58) do not. We want to make use of (14.61), so we need alternatives to (IV)
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and (14.58). Our alternative to (14.58) is the following:

1√
n

'(!h" "Qn!h−(µ2 "QT,n)
=

(
γ2 "QT,n/n+ 2γµ "QST,n/n+ µ2 "QT,n/n−(µ2 "QT,n/n

→p λ
1/2
FA

0(
γ2c2β + 2γµcβdβ + µ

2d2β −
(
µ2d2β

1
= g1(γ, µ,β), (14.71)

using Lemma 10(a)(iii). Now, the two-point df F2P puts mass on (γ, µ) = (γ∗, µ∗)
and (−γ∗, µ∗) because (6.2) is assumed to hold. We claim that g1(γ∗, µ∗,β) "= 0 or
g1(−γ∗, µ∗,β) "= 0 or both. The claim holds because g1(γ∗, µ∗,β) = 0 iff (γ∗)2c2β +
2γ∗µ∗cβdβ = 0 iff γ∗cβ+2µ∗dβ = 0 and similarly g1(−γ∗, µ∗,β) = 0 iff γ∗cβ−2µ∗dβ =
0. These two equations are incompatible given that γ∗ "= 0 (because β∗ "= β0)
and cβ "= 0 (because β "= β0). The claim implies that the left-hand side of (14.71)
multiplied by

√
n diverges to inÞnity in probability for (γ, µ) = (γ∗, µ∗) or (−γ∗, µ∗)

or both.
Our alternative to (IV) is the following:!h" "Qn!h

µ2 "QT,n =
!h"( "Qn/n)!h
µ2 "QT,n/n →p

γ2c2β + 2γµcβdβ + µ
2d2β

µ2d2β
= g2(γ, µ,β) (14.72)

using Lemma 10(a)(iii).
Now, using the above alternatives to (14.58) and (IV), LRW2P

( "Q1,n, "QT,n) equals
the expressions in (14.61) with the following adjustments to the rhs expression in
(14.61): exp(γsgn(µ)QSTQ

−1/2
T ) is replaced by exp(

√
n[g1(γ, µ,β) + op(1)]),

g2(γ, µ,β)
−1
2
(ν+ 1

2
) is added in the numerator, and (Q,QT ) is replaced by ( "Qn, "QT,n).

The term exp(
√
n[g1(γ, µ,β) + op(1)]) with (γ, µ) = (γ∗, µ∗) or (−γ∗, µ∗) ensures

that the rhs of (14.61) diverges to inÞnity in probability because g1(γ∗, µ∗,β) "= 0 or
g1(−γ∗, µ∗,β) "= 0 or both. This completes the proof of part (a)(vi).

The proof of part (a)(vii) of the Theorem is quite similar to that of part (a)(vi).
The proofs of parts (b)(i)-(iv) of the Theorem are analogous to those of parts

(a)(i)-(iv) using Lemma 10(b)(ii)-(iv) in place of Lemma 10(a)(ii)-(iv). !

14.8 Proofs of Results Stated in Section 13

Proof of Lemma 11. The proof is essentially the same as that of Lemma 1. !

Proof of Lemma 12. The proof is similar to that of Lemma 2. For brevity, we
only discuss the aspects of the proof that differ. To show independence of S and Tj ,
it suffices to show lack of covariance between S and Tj , because S and Tj are jointly
multivariate normal. We have

cov(Z "Y b0, Z "Y Ω−1α0,j) = cov(
n2
i=1

ZiY
"
i b0,

n2
i=1

ZiY
"
iΩ

−1α0,j)

=
n2
i=1

ZiZ
"
icov(Y

"
i b0, Y

"
iΩ

−1α0,j) =
n2
i=1

ZiZ
"
ib
"
0ΩΩ

−1α0,j = 0, (14.73)
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because b"0α0,j = 0. By analogous calculations Tj and T( have zero covariance for
j "= 3 provided α"0,jΩ−1α0,( = 0 for all j "= 3. Lastly, Tj has covariance matrix equal
to Ik provided cov(Z "Y b0, Z "Y Ω−1α0,j) = Z "Z. By analogous calculations to those
in (14.73), the latter occurs if α"0,jΩ

−1α0,j = 1 for j = 1, ...,m. The vectors α0,j are
chosen so that the desired conditions b"0α0,j = 0, α"0,jΩ

−1α0,( = 0, and α"0,jΩ
−1α0,j = 1

hold. !

Proof of Theorem 14. The proof is the same as that of Theorem 1, but one
considers vectors (µ1, ..., µm) and (!µ1, ..., !µm) instead of (µ1, µ2) and (!µ1, !µ2). !
Proof of Theorem 15. The proof is the same as that of Theorem 2 provided T
is a complete sufficient statistic. The latter holds if the family of distributions of
T = [T1 : · · · : Tm] under H0 is a km-parameter exponential family with parameter
space that contains a km-dimensional rectangle. The log of the null density of T
times minus two is k log(2π) plus

m2
j=1

(Tj − (Z "Z)1/2πa"0Ω−1α0,j)"(Tj − (Z "Z)1/2πa"0Ω−1α0,j)

= tr

 m2
j=1

TjT
"
j

+ tr
 m2
j=1

(Z "Z)1/2πa"0Ω
−1α0,j

0
(Z "Z)1/2πa"0Ω

−1α0,j
1"

−2tr
 m2
j=1

(Z "Z)1/2πa"0Ω
−1α0,jT "j

 , (14.74)

where a"0 = [β0 : Im] ∈ Rm×(m+1).
The Þrst summand depends on the data, but not the parameters. The second

summand depends on the parameters, but not the data. Hence, these two terms are
not important. The third term can be written as

−2tr
 m2
j=1

!πjT #
j

 = −2
m2
j=1

k2
(=1

!πj,(Tj,(, where
!πj = (Z "Z)1/2πa"0Ω−1α0,j ∈ Rk,!πj = (!πj,1, ..., !πj,k)", and
Tj = (Tj,1, ..., Tj,k)

". (14.75)

The parameters !π = [!π1 : · · · : !πm] ∈ Rk×m are the �natural� parameters of
the exponential family. There is a one-to-one transformation from π to !π provided
Z "Z and Ω are nonsingular, which is assumed, a"0 = [β0 : Im] is full row rank m,
which holds by the deÞnition of a0, and α0 = [α0,1 : · · · : α0,m] ∈ R(m+1)×m is full
column rank m. The latter holds because Ω−1/2α0,1, ...,Ω−1/2α0,m are orthogonal by
construction, so Ω−1/2α0 = [Ω−1/2α0,1 : · · · : Ω−1/2α0,m] is full column rank m and,
in turn, α0 is full column rank using the fact that Ω is nonsingular. The parameter
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space for π includes a km-dimensional rectangle. Hence, the same is true for !π. We
conclude that the family of distributions of T underH0 is a km-parameter exponential
family with parameter space that contains a km-dimensional rectangle. !

Proof of Lemma 13. First, we establish part (a). The k × (m+ 1) matrix [S :T ]
is multivariate normal with mean matrix M = µπ∆β, all variances equal to one, and
all correlations equal to zero by Lemma 12. Hence, Q = [S:T ]"[S:T ] has a noncentral
Wishart distribution with k degrees of freedom, covariance matrix Im+1, and matrix of
noncentrality parametersM "M = ∆"βλ∆β, where λ = µ

"
πµπ. By (10.3.1) of Muirhead

(1982), the density of Q at q is as given in part (a) of the lemma.
Part (b) is established as follows. The distribution of QT is a noncentral Wishart

distribution with k degrees of freedom, covariance matrix Im, and matrix of non-
centrality parameters ∆"T,βλ∆T,β by Lemma 12(b). By (10.3.1) of Muirhead (1982),
the density of QT at qT is as given in part (b) of the lemma.

For part (c), by calculating the ratio of the densities in parts (a) and (b) of the
lemma evaluated at β = β0 and using the fact that tr(∆

"
β0
λ∆β0) = tr(∆

"
T,β0

λ∆T,β0),
we obtain

fQ1|QT (q1|qT ;β0,λ) = K1,mK
−1
2,m|q|(k−m−2)/2|qT |−(k−m−1)/2etr(−qS/2) (14.76)

× 0F1

0
k/2;∆"β0λ∆β0q/4)

10
0F1

0
k/2;∆"T,β0λ∆T,β0qT/4)

11−1
.

We show below that the conditional distribution of Q1 given QT = qT does not
depend on λ. Hence, we can take λ = 0 in (14.76). Because 0F1 (k/2; 0m×m) = 1 for
all positive integers m (e.g., see Muirhead (1982) p. 226 for the case m = 1 and pp.
227-8 and p. 258 for the case m ≥ 1), this yields the expression given in part (c) of
the lemma.

The conditional distribution of Q1 given QT = qT does not depend on λ by the
following argument. Theorem 15 states that invariant tests are similar if and only if
they have Neyman structure with respect to QT (e.g., as deÞned in Lehmann (1986,
pp. 141-2)). By Theorem 4.2 of Lehmann (1986, p. 144), the latter implies that
QT is a boundedly complete sufficient statistic under H0 for the parameter λ > 0.
Sufficiency of QT implies the desired result.

An alternative (and more direct) proof that the conditional distribution of Q1
given QT = qT does not depend on λ is the following: (i) there is a one-to-one
transformation from Q1 to !Q1 = (QS , S"T1/||S||, ..., S"Tm/||S||), so it suffices to show
that the conditional distribution of !Q1 does not depend on λ, (ii) the distribution
of !Q1 depends on T = [T1 : · · · : Tm] only through T "jT( for j, 3 = 1, ...,m by the
spherical symmetry of the null distribution of S, which is N(0, Ik) by Lemma 12(a),
(iii) by (ii) the conditional distribution of !Q1 given QT = T "T is the same as the
conditional distribution of !Q1 given T , and (iv) the conditional distribution of !Q1
given T is a random function of S only and the null distribution of S is N(0, Ik),
which does not depend on λ. !
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Figure 1.  Power envelopes for one-sided invariant similar and nonsimilar tests 
and power function of the one-sided CLR (CLR1) test; ρ = .95, k = 5 

 
 

Figure 2.  Power envelope for one-sided invariant similar tests and power functions of various POI similar tests:  locally most 
powerful, POI at powers of .25, .5, and .75, and the most-distant most-powerful; ρ = .95, k = 5 

 



Figure 3.  Power envelopes for two-sided asymptotically efficient invariant similar tests, locally unbiased invariant similar tests,  
and asymptotically efficient invariant nonsimilar tests; ρ = .95, k = 5 

 



Figure 4.  Power envelope for two-sided asymptotically efficient invariant similar tests and power functions of two-sided POI similar 
tests that are point optimal against β* = 0.8, λ* = 5 (POIS2(.8,5)) and against β* = 1.45, λ* = 5 (POIS2(1.45,5)); ρ = .95, k = 5  

 
Figure 5.  Power envelopes for two-sided asymptotically efficient invariant similar tests 

and power functions for the two-sided CLR, LM, AR, and P* tests; ρ = .95, k = 5 

 



Figure 6.  Power envelopes for two-sided asymptotically efficient invariant similar tests 
and power functions for the two-sided CLR, LM, AR, and P* tests; ρ = .95, k = 2 and k = 10 

 

 



Table 1   
Monte Carlo Rejection Rates of 5% 2-sided CLR, LM, AR, and P* Tests with Ω estimated (ρ = 0.5) 

 
k = 2 k = 5 k = 10  

β λ  
λ n CLR LM AR P* CLR LM AR P* CLR LM AR P* 

A.  Size 
0 5 50 0.060 0.059 0.061 0.052 0.068 0.060 0.071 0.054 0.090 0.075 0.090 0.075 
0 5 100 0.056 0.054 0.056 0.048 0.058 0.055 0.060 0.046 0.069 0.063 0.069 0.055 
0 5 200 0.050 0.050 0.051 0.043 0.054 0.052 0.054 0.041 0.059 0.056 0.060 0.046 
0 5 ∞ 0.050 0.050 0.050 0.045 0.050 0.050 0.050 0.038 0.050 0.050 0.050 0.036 
0 20 50 0.058 0.058 0.061 0.054 0.061 0.058 0.071 0.055 0.073 0.065 0.090 0.069 
0 20 100 0.054 0.054 0.056 0.050 0.055 0.054 0.060 0.048 0.061 0.058 0.069 0.055 
0 20 200 0.050 0.050 0.051 0.046 0.052 0.051 0.054 0.045 0.054 0.053 0.060 0.048 
0 20 ∞ 0.050 0.050 0.050 0.047 0.050 0.050 0.050 0.043 0.050 0.050 0.050 0.041 

B.  Power (size-unadjusted) 
-2.0 5 50 0.481 0.475 0.416 0.460 0.421 0.408 0.310 0.389 0.365 0.342 0.256 0.335 
-2.0 5 100 0.488 0.485 0.418 0.465 0.422 0.412 0.298 0.388 0.357 0.341 0.237 0.323 
-2.0 5 200 0.490 0.487 0.413 0.465 0.418 0.408 0.293 0.382 0.357 0.345 0.229 0.321 
-2.0 5 ∞ 0.484 0.483 0.417 0.461 0.431 0.423 0.292 0.390 0.352 0.345 0.217 0.314 
-2.0 20 50 0.498 0.497 0.416 0.484 0.473 0.470 0.310 0.450 0.436 0.428 0.256 0.411 
-2.0 20 100 0.503 0.502 0.418 0.490 0.473 0.473 0.298 0.450 0.437 0.432 0.237 0.410 
-2.0 20 200 0.507 0.506 0.413 0.491 0.475 0.472 0.293 0.448 0.444 0.440 0.229 0.411 
-2.0 20 ∞ 0.502 0.500 0.417 0.486 0.488 0.486 0.292 0.455 0.445 0.443 0.217 0.405 
2.0 5 50 0.433 0.376 0.415 0.403 0.328 0.250 0.306 0.285 0.280 0.202 0.258 0.241 
2.0 5 100 0.430 0.374 0.413 0.398 0.321 0.243 0.303 0.276 0.258 0.182 0.239 0.215 
2.0 5 200 0.430 0.372 0.414 0.398 0.319 0.242 0.297 0.273 0.241 0.172 0.227 0.198 
2.0 5 ∞ 0.433 0.377 0.418 0.400 0.311 0.233 0.294 0.260 0.223 0.156 0.210 0.180 
2.0 20 50 0.486 0.482 0.415 0.466 0.425 0.416 0.306 0.394 0.378 0.355 0.258 0.346 
2.0 20 100 0.487 0.484 0.413 0.465 0.430 0.422 0.303 0.397 0.372 0.356 0.239 0.336 
2.0 20 200 0.491 0.489 0.414 0.470 0.434 0.427 0.297 0.399 0.365 0.352 0.227 0.329 
2.0 20 ∞ 0.497 0.494 0.418 0.472 0.429 0.422 0.294 0.398 0.356 0.348 0.210 0.317 

 

Notes:  Rows with n = ∞ correspond to the weak-instrument asymptotic limit.  Conditional p-values for the CLR statistic were 

computed by numerical integration of the conditional density based on Lemma 3.  The P* tests were computed using κ = 2 for k = 2,  

κ = 3.25 for k = 5, and κ = 4.25 for k = 10.  All rejections are based on the weak-instrument asymptotic critical values or conditional 

critical values, as appropriate. All calculations are based on 50,000 Monte Carlo simulations. 


