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Abstract: This paperstudiestheeconometricproblemsassociatedwith estimationof a stochasticprocessthat is endogenously

sampled.Our interestis to infer thelaw of motionof a discrete-timestochasticprocess
�
pt � that is observedonly at a subsetof

times
�
t1 ��������� tn � thatdependontheoutcomeof aprobabilistic samplingrule thatdependsonthehistory of theprocessaswell as

otherobservedcovariatesxt . Wefocusonaparticularexamplewherept denotesthedaily wholesalepriceof astandardizedsteel

product. However thereareno formal exchangesor centralizedmarketswheresteelis tradedand pt canbe observed. Instead

nearlyall steeltransactionpricesarea resultof privatebilateralnegotiationsbetweenbuyersandsellers,typically intermediated

by middlemenknown assteelservicecenters. Even thoughthereis no centralrecordof daily transactionspricesin the steel

market, we do observe transactionpricesfor a particularfirm — a steelservicecenterthatpurchaseslargequantitiesof steelin

thewholesalemarket for subsequentresalein theretail market. Theendogenoussampling problemarisesfromthefact that the

firm only records pt on thedaysthat it purchasessteel.We presenta parametricanalysisof this problemundertheassumption

that the timing of steelpurchasesis part of an optimal trading strategy that maximizesthe firm’s expecteddiscountedtrading

profits. We derive a parametricpartial informationmaximumlikelihood(PIML) estimatorthatsolvestheendogenoussampling

problemandefficiently estimatestheunknown parametersof a Markov transition probability thatdeterminesthe law of motion

for theunderlying
�
pt � process.ThePIML estimatoralsoyieldsestimatesof thestructuralparametersthatdeterminetheoptimal

tradingrule. We alsointroduceanalternative consistent,lessefficient,but computationally simplersimulatedminimumdistance

(SMD) estimatorthatavoidshighdimensionalnumericalintegrationsrequiredby thePIML estimator. UsingtheSMD estimator,

we provideestimatesof a truncatedlognormalAR(1) modelof thewholesalepriceprocessesfor particulartypesof steelplate.

We usethis to infer theshareof themiddleman’s discountedprofits thataredueto markupspaidby its retail customers,andthe

sharedueto price speculation. The latter measuresthe firm’s successin forecastingsteelpricesandin timing its purchasesin

orderto “buy low andsell high”. Themoresuccessfulthefirm is in speculation(i.e. in strategically timing its purchases),the

moreseriousarethepotential biasesthatwould resultfrom failing to accountfor theendogeneity of thesamplingprocess.

Keywords: endogenoussampling,Markov processes,maximumlikelihood,simulationestimation

JEL classification:C1,C6,L2

�
Correspondingauthor. Departmentof Economics,University of Maryland,CollegePark,MD 20742,phone:(301)405-3489,

fax: (301) 405-3542 e-mail: jrust@gemini.econ.umd.edu, web page:http://gemini.econ.umd.edu/jrust. This paper
wasoriginally preparedfor the Cowles Foundation EconometricsConference,October23-24, 1999. We thankour discussant,
HalbertWhite, and the conferenceparticipantsincluding RobertEngleand George Tauchenfor helpful comments.We also
receivedhelpful feedbackfrom MichaelKeaneandKennethWolpin andotherseminarattendeesat subsequentpresentationsof
this paperat the University of Pennsylvania,BostonUniversity, JohnsHopkins, Rice,PennState,theUniversitiesof Chicago,
Maryland,Pittsburgh, Virginia andFlorida, the 2001Conferenceof the Societyfor ComputationalEconomics,and the 2001
Midwest EconometricsGroupAnnual Meeting. We aregratefulfor financialsupportfrom NationalScienceFoundation grant
SES-9905145.



1 Intr oduction

This paperstudiesthe econometric problemsassociatedwith estimation of a stochasticprocessthat is

endogenously sampled. Our interest is to infer the law of motion of a discrete-timestochastic process�
pt 	 that is observedonly at a subsetof times

�
t1 
������
 tn 	 thatdependon theoutcomeof a probabilistic

samplingrule thatdependson thehistory of theprocessaswell asotherobservedcovariates xt . We focus

on a particularexamplewherept denotesthedaily wholesale priceof a standardizedsteel product. There

areno formal marketsor centralizedexchangeswheresteelis traded. Instead nearlyall steeltransaction

prices area resultof privatebilateral negotiationsbetweenbuyersandsellers,typically intermediatedby

middlemenknown assteelservicecenters.1 Even thoughthere is no central recordof daily transactions

prices in thesteelmarket, we do observe transactionpricesfor a particular firm — a steel servicecenter

thatpurchaseslargequantitiesof steelin thewholesale market for subsequentresale in theretail market.

The endogenoussamplingproblemarisesfrom the fact that the firm only recordspt on the daysthat is

purchasessteel.

We introducetheendogenoussamplingproblem in thecontext of pricespeculation in thesteelmarket

in orderto provide a concreteexample.However we believe thatsimilar endogenous samplingproblems

arisein many othercontexts. Examplesincludefinancialapplicationswheretransactionpricesareob-

served at randomlyspacedintervals (seeAı̈t-Sahalia andMykland, 2001,EngleandRussell,1999,and

RussellandEngle,1998),andin marketing applicationswheretheprices of goodsthata householdpur-

chasesaregenerally only recordedfor the itemsthe householdpurchased andon the datesit purchased

them(seeAllenby, McCullochandRossi1996,andErdemandKeane,1996).However we arenot aware

of any econometric literaturethatis directly relevantfor handlingendogenoussamplingproblemsin atime

series context. Themostdirectly relatedwork is theliteratureon likelihood-basedmethodsfor correcting

for endogenoussamplingin cross-sectional andpanelcontexts (Heckman,1981,ManskiandMcFadden,

1981,andMcFadden, 1997).

We presenta parametric analysis of theendogenoussamplingproblemunderthemaintainedassump-

tion that thetiming of steelpurchasesis partof anoptimal tradingstrategy thatmaximizesthefirm’s ex-

1It is a puzzlewhy centralizedexchangesexist for somecommoditiessuchaspork bellies,but not for steel. Rustand
Hall (2003) developa theoryof intermediation in whichthemicrostructureof tradein acommodityor assetis endogenously
determined.Dependingon theparametersof this modelthereareequilibria consistentwith all tradeoccurringvia a market
maker onacentralizedexchange,or all tradeoccurringvia decentralizedtransactionswith middlemen,, or tradesegmenting
betweenmiddlemenandmarketmakers.This theorycouldexplain thevarietyof differenttrading institutionsthatwe seein
differentmarkets,including thenonexistenceof centralizedexchangesfor steel.
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pecteddiscountedtradingprofits. Wederiveaparametric partial informationmaximumlikelihood(PIML)

estimator thatsolvestheendogenoussamplingproblemandefficiently estimates theunknown parameters

of theMarkov law of motion for
�
pt 	 togetherwith thestructural parametersthatdetermine theoptimal

trading rule. We alsointroduceanalternative consistent,lessefficient, but computationally simplersim-

ulatedminimumdistance (SMD) estimator thatavoidshigh dimensional numericalintegrationsrequired

by thePIML estimator. TheSMD estimator canalsobeviewedasa simulatedmomentsestimator(SME)

(LeeandIngram, 1991andDuffie andSingleton,1993),applied to a situation wherethedataareendoge-

nouslysampled.Using theSMD estimator, we estimate theparameters of a truncated lognormalAR(1)

modelof thewholesale priceprocessesfor particular typesof steelplate. We usetheseestimatesto infer

theshareof thefirm’sdiscountedprofitsthataredueto markupspaidby its retail customers,andtheshare

dueto pricespeculation. The latter measuresthefirm’s success in forecasting steel pricesandin timing

its purchasesin orderto “buy low andsell high”. Themoresuccessful thefirm is in speculation (i.e. in

strategically timing its purchases), themoreseriousarethepotential biases thatwould resultfrom failing

to accountfor theendogeneity of thesampling process.

This paperoriginatedfrom previous work (Hall andRust, 1999, 2000 and 2001)on modelingthe

speculative trading and inventory investmentdecisionsof a particular steelwholesaler. This firm does

minimalproduction processing: its mainactivity is to stockpile quantitiesof varioustypesof steel via bulk

purchasesat wholesale pricesfrom steelproducers andotherlarge intermediariesin orderto profit from

subsequent resaleto retail customersat a mark-up.This firm hasprovideduswith a uniquenew dataset

with daily observationsonpurchasesandsalesof themorethan2,300products it carries. While thesedata

areuniquein their level of detail andquality, thefirm doesnot recordany pricesin its computerizeddata

baseunlessa purchase,sale, or adjustmentoccurs.Theessenceof the endogenoussamplingproblemis

thatweonlyobservepurchaseprices on thedaysthatpurchasesoccur.

Let
�
pt 	 denotethestochastic processrepresentingthelowestpriceofferedby any sellerof aparticular

steelproducton day t. We assumethat thefirm observes pt at eachday t, but it only records pt whenit

decidestoplaceanorder. Letqo
t denotethequantity orders(purchased)ondayt. Theendogenoussampling

rulecanbestated asfollows:

pt is observed ��� qo
t � 0�

It is notationally convenientto treattheendogenoussamplingproblemasa censoredsamplingproblem:

i.e.,we setpt to somearbitrary valuesuchaspt � 0 whenqo
t � 0, andlet pt equaltheobservedpurchase
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pricewhenqo
t � 0. Notethatwealsoobservetheretail salesprices

�
pr

t 	 thatthefirm chargesits customers.

Sinceretail salesoccurmuchmorefrequentlythanpurchaseson the wholesale market, retail price data�
pr

t 	 canprovide a key sourceof information for learning about
�
pt 	 . However on the subsetof days

whereboth pt andpr
t areobserved,we observe thatmarkupspr

t � pt arequitevolatile, andvary by time,

location, andtypeof thecustomer. In otherwords,thereis considerablepricediscriminationin theretail

market for steel. As a result theretail price of steelpr
t is bestregardedasa noisyandbiasedsignalof the

wholesale price pt andtherefore theretail pricemaynot provide information that is directly relevant for

estimating theunknown parametersof thewholesale priceprocess.2

The estimationmethodswe proposerequiresnestednumerical solutionof a dynamicprogramming

problemthatdeterminethefirm’s optimal tradingstrategy. This mustbedonefor eachtrial valuefor the

unknown parameter vectorθ, andasa result, the estimators we proposearecomputationally intensive.

However significant computationalsavingscanbeachievedby exploiting special featuresof thesolutions

to thesedynamicprogrammingproblems.Extendinga seminalresultby Scarf(1959)for a simplerclass

of inventory investmentproblems,Hall andRust(2001)showed that the optimal speculative investment

strategy for afairly generalclassof commoditypricespeculationproblemstakestheform of ageneralized�
S
 s� rule. In ageneralized

�
S
 s� rule,Sands� arefunctionsof thecurrentwholesale price p andavector

of otherstatevariablesx suchasinterestrates,demandshifters,andothervariables thataffect thefirm’s

beliefs aboutfutureprices andsaleslevels.ThefunctionsS
�
p
 x� ands

�
p
 x� satisfy S

�
p
 x��� s

�
p
 x� . The

lower bands
�
p
 x� is thefirm’s order threshold: it is optimal for thefirm to placeanorderwhenever its

current inventory level q falls below s
�
p
 x� . The upperbandS

�
p
 x� is the firm’s target inventorylevel:

whenever thefirm placesanorderto replenishits inventory, it ordersanamountsufficient to insure that

inventory on hand(thesumof thecurrent inventory plusnew orders) equalsS
�
p
 x� .

2Our treatmentof thewholesalepriceprocess
�
pt � asanexogenouslyspecified“forcing process”that is known up to a

finite numberof parametersis admittedly only a first approximationto reality. Theassumptionsthat
�
pt � is observedeach

dayby thefirm andevolvesasanexogenous stochasticprocess(i.e. its realizationsdo not dependon actionsof thefirm)
areparticularly strongrestrictionsthatwe intendto relax in futurework. As we notedabove, pricesin thesteelmarket are
determinedvia bilateralnegotiations:thereis nocentralmarketplacewherethelowestpricecanbeeasilyobserved. Instead,
in orderto getpricequotes,purchasingagentswithin thefirm mustcommunicatewith steelproducersor otherintermediaries
via telephone, fax, telex, or recently, theWWW. Thuseachpricequoteinvolvesa smallmonetaryandtime cost. However
this leadspotential endogeneity problems,sincethe bestprice the firm is ableto negotiate dependson the intensityof its
search/bargaining process,andthis intensity level could vary depending on the conditionsit faces.We deferthe difficult
issuesassociatedwith potentialendogeneity in

�
pt � to future research.Howeverwhile amorerealistic modelof speculation

would resultin a morecomplicateddynamicprogrammingproblem,we believe thegeneralapproachesto estimationof the
underlying price processesdescribedin this paperwill still apply. The main modificationis that whenthereis no central
wholesalemarketandthe“law of oneprice” doesnothold, wewouldneedto estimateaconditionalprobability distribution
representingthefirm’s beliefsaboutthedistribution of potential pricesavailableata givenpoint in time.
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Theorderthreshold function s
�
p
 x� is thesourceof theendogenoussamplingproblemsincethefirm

only recordsthe wholesaleprice p on thosedayswherea purchaseoccurs. Therefore the endogenous

samplingrulecanberestatedasthefollowing thresholdrule:

pt is observediff qt � s
�
pt 
 xt � � (1)

Conditional ona purchaseoccurring,weobserveanorderof sizeqo
t givenby

qo
t � S

�
pt 
 xt � � qt 
 (2)

andqo
t � 0 otherwise. Usingthegeneralized

�
S
 s� rule asour modelof theendogenousdeterminationof

samplingdates, we proposeestimatorsthat areableto consistently estimatethe unknown parametersof

the
�
pt 	 processeventhoughwe only have incomplete information on

�
pt 	 .

Themain ideabehindthe likelihoodbasedapproachto solving theendogenoussamplingproblem is

to write down a likelihoodthatreflects a correctly specifiedprobability law for theendogenous sampling

scheme. In somecases,consistent, but lessefficient quasi-maximumlikelihood and GMM estimators

have beenproposed.Theseestimatorswork by appropriately re-weightingtheobservationsto adjust for

the effects of non-randomsampling,similar in somerespects to the way the conditional probabiliti esin

the likelihoodreflectan appropriateweightingof the outcomes.We follow this generalstrategy in this

paper, and proposea partial information maximumlikelihood (PIML) estimator that is consistent and

asymptotically normally distributed. However the PIML estimatorrequireshigh dimensional numerical

integrationsthat canonly be feasibly donevia recursive quadrature, or by Monte Carlo or quasi-Monte

Carlomethods.

We introducean alternative lessefficient but computationally simplersimulated minimum distance

(SMD) estimator that doesnot attempt to re-weight the observationsin orderto insureconsistency and

thusavoids theneedfor high dimensional integrations. The SMD estimatoronly relieson theability to

simulaterealizationsof theoptimaltrading model.Thesesimulationsarethencensoredin exactlythesame

wayastheobserveddataarecensored, anapproach thatis similar in many respects to thestrategy of “data

augmentation” usedin Bayesianinferenceof latentvariablemodels.TheideabehindtheSMD estimatoris

to chooseparametervaluesthatresult in simulatedmomentsthatmatchtheobservedmomentsasclosely

aspossible, whereboth the real andsimulated dataarecensored according to the samesamplingrule;

namelythe onegiven in equation (1). Even thoughthe momentsentering the SMD criterion arebiased

andinconsistentdueto theendogenoussamplingproblem,thefactthatwecancensorthedataentering the
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simulatedandrealmomentsin thesameway impliesthattheSMD estimator itself is consistent. It should

beapparent thatalthoughthetwo estimationmethodswepresentherearespecializedto ourparticularsteel

example,it shouldbestraightforwardto generalize thesemethodsto othertypesof endogenoussampling

problemsthatarisein avarietyof othercontexts.

Section2 describesour datasetandintroducesthesteel speculation andinventory problemthatmoti-

vatesthis research. Section3 presentsa parametric, full informationapproachto inferenceusinga gener-

alization of a modelof optimalcommoditypricespeculation andinventory investmentdevelopedin Hall

andRust(1999,2000,2001). An independentcontribution of this sectionis to provide a tractablespec-

ification for unobserved statevariablesaffecting the speculator’s tradingdecisionsthat accounts for the

frequently binding inequality constraints thatpurchasesof steel mustbenon-negative. The fact that this

constraint is strictly bindingat qo
t � 0 preventstheuseof standard Eulerequation methodsto uncover the

trader’s decision rule andtheassociated endogenoussamplingrule for wholesalesteelprices. By intro-

ducinganunobservedstatevariable,wederiveanondegenerateconditionalprobability distribution for qo
t

thatallows us to derive a partial information likelihood function for the full setof datathatwe observe,

ξt � �
qt 
 qo

t 
 pt 
 pr
t 
 xt � . We establish the consistency of the PIML estimatorby showing that the values

of the joint process
�
ξti 	 on successive purchasedates ti (whenall componentsof ξt areobserved) is an

embeddedMarkov chain. Thisallowsusto invokeastandardInformationInequality argumentto establish

the consistency of the PIML estimator. Via a standard Taylor seriesapproximationandan appealto an

appropriateCentralLimit Theoremfor mixing processes,it is possible to establish theasymptotic normal-

ity of the PIML estimator. Section4 introducesthe simulated minimum distance estimatorandderives

its asymptotic distribution. Section 5 presents someinitial MonteCarloevidenceon theperformanceof

the estimatorsproposedin this paperaswell asresults of an empirical application to several platesteel

products for which wholesale pricesareassumedto evolve according to a univariate truncatedlognormal

AR(1) process. We estimatethe unknown parameters of the price processandthe unknown parameters

affecting thefirm’s costof purchasing andholdinginventory. We thenevaluatehow well our generalized�
S
 s� tradingstrategy fits thesedata,anduseourresults to infer thefraction of thefirm’sdiscountedprofits

aredueto themarkupsit chargesits retail customers,andthefraction thatis dueto purecommodityprice

speculation, i.e., its successin timing purchasesof steelin orderto profit from “buying low andselling

high.”
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2 Description of the Data and the Model of Price Speculation

In this section we introduce the dataanddescribe a generalized version of a modelof commodityprice

speculation introducedby Hall and Rust (1999, 2000, 2001) that allows for additional covariates and

unobservedstatevariables. Thismodelprovidestheframework for inferenceandprovidesthekey insights

thatenabledusto poseandsolve theendogenoussamplingproblem.

2.1 The Data

Via apersonal contactwith anexecutiveatalargeU.S.steelwholesaler, weacquired anew highfrequency

micro databaseon transactionsin thesteelmarket. This firm hasprovided uswith anongoingdatafeed

thatenablesusto observevirtually all aspectsof its operations,including thepurchaseandsalepricesand

quantitiesandtheidentitiesof its customersfor all of its 2300� individual steelproductsonadaily basis.

Theempirical resultspresentedin section 5 arebasedondataonevery transaction thefirm madebetween

July1, 1997to March14,2002(1191businessdays)for two of its highestvolumesteelproducts. For each

transactionweobserve thequantity (numberof unitsand/orweightin pounds)of steelboughtor sold,the

salesprice, theshipping costs, andtheidentity of thebuyeror seller.

Althoughthis is anexceptionally cleanandrich dataset, we only observe prices on thedaysthefirm

actually madetransactions: thefirm doesnot recordany priceinformation ondaysthatit doesnot transact

(either asa buyer or seller of steel). This shortcoming of our datasetis muchmore importantfor steel

purchasesthansteelsales, since thefirm purchasesnew steelinventory in thewholesalemarketmuchless

frequently thanit sells steelto its retail customers.Indeed, evenfor its highest volumeproducts, it makes

purchasesonly aboutonceevery two weeks.The
�
S
 s� theorywe presentbelow predicts thatpurchases

arenotmadeat random.Instead, thefirm tendsto makepurchaseswhenpricesarelow, sothattheaverage

price on the daysthe firm makespurchaseswill be lower thanthe averagewholesaleprice on daysthe

firm doesnot purchase.Theexception to thisgeneralrule is thatthefirm maymake purchases evenwhen

prices arerelatively high if its inventoriesarelow. Conversely, thefirm mayrefrain from purchasing even

if pricesandinventoriesarelow if it expectsthattherateof retail saleswill bedepressedfor a longperiod

of time, saydueto badmacroeconomics conditions. Thus,while thefirm is attempting to “buy low and

sell high”, its purchasedecisionsinvolvea tradeoff amonganumberof differentconsiderations.

We ill ustrateourdataby plotting thetimeseriesof inventoriesandpricesof oneof thefirm’sproducts

in figures1 and2. This product, which we call product 4, is oneof highest volumeproductssoldby this

6



firm. It is alsoa benchmarkproductwithin theindustry sincethepricesof severalothersteelproductsare

oftencomputedasa function of this product’s price. It is possible to getweeklyandmonthlysurvey data

on prices for certain classes of steelproducts through tradepublicationssuchasPurchasingMagazine

andAmericanMetal Market. However, since there areno public exchangemarkets for steel products,

transaction in the steelmarket are carried out in private negotiations. Hencetheseprice surveys rely

on participants in the steelmarket to report truthfully the pricesthey paid or received for varioussteel

products. Thefirm often facesconsiderablydifferent pricesthanthosein thesurvey data.

As aresult, in ourplotsof wholesale transaction pricesin figure2 (thelowercurvewith thelargeblack

circles), we usedstraight line interpolationsbetweenobserved purchase pricesat successive purchase

dates.Theblackcircle at eachpurchasedateis proportional to thesizeof thefirm’s purchasein pounds.

This gives us our first visual indication of the endogenoussamplingproblem. First, we seethat even

thoughwe have 1191observations on this firm, we observe purchasesin the wholesale market on only

184 days. Second,the patterns of the black dotssuggests that the firm is morelikely to purchaselarge

quantitiesof steelwhenwholesale pricesarelow, althoughothereconomicfactors seemto beinfluencing

thefirm’spurchasedecisionsaswell. Onekey factor is thelevel of inventory: thefirm tendsto make large

purchaseswhenits inventory is low. We alsoseethateventhoughwholesale pricescontinued to decline

during2000and2001,thefirm’s largestpurchasesof steeloccurredduring the “turning point” in prices

in early1998.Thefirm mayhaveavoidedmakinglargepurchasesin late2000and2001dueto economic

uncertainties resulting from the“dot comcrash”andtheeconomicuncertaintiesfollowing the9/11/2001

terroristattack on theU.S.

Overall, our interpolated plot of steelwholesalepricesin figure 2 suggeststhat we shouldbe wary

of usingtherelatively smallnumberof irregularly spacedobservations to make inferencesabouttheun-

derlying law of motion for
�
pt 	 . The observed purchasepricesareunlikely to be representative of the

unconditionalmeanlevel of prices in thewholesale market (especially if thefirm is attempting to “buying

low andsell high”), andthe estimated serial correlation coefficient for theseirregularly spacedtransac-

tionsis unlikely to bea goodestimate of theserialcorrelationcoefficientbetween daily wholesale prices

(assumingwewereableto observe them).

Figure2 alsoplots the interpolatedsequence of daily retail salesprices. Retail sales occuron about

two out every three businessdays,sotheamountof interpolation in theretail priceseries is modest.The

wholesaleandretail pricesmove in a roughlyparallel way, althoughthereappearsto beconsiderableday-

to-dayvariation in retail prices. Retailpricesarequotednetof transportation costs, but still muchof the
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Figure1: Timesseries plot of theinventory for product4.
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series, thesizeof themarker is proportional to thesizeof thepurchase.
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the high frequency variation is dueto observablefactors. Athreya (2002)finds that roughly 65% of the

high frequency variation in retail pricescanbeexplained by observablecustomercharacteristics suchas

geographical location andpastvolumeof purchases. Theremaining 35%of thevariation in retail prices

appearsto bedueeitherto highfrequency fluctuationsin wholesale pricesor to somesortof “informational

pricediscrimination” in theretailmarket. Usingthelimited numberof dayson whichbothwholesaleand

retail prices are available, Chan(2001) finds that at most 50% of the variation in retail pricescan be

explained by variationsin thewholesale priceof steel. This conclusionis possibledueto thefact thaton

many daystherearemultiple retail salesto differentcustomers.Thesefindingssuggestthata largeshare

of thehigh frequency variation in retail pricescanbeascribedto pricediscrimination, i.e. thefirm charges

higherpricesto moreimpatientor poorly informedretail customers(seeChan,Hall andRust(2003)for a

moredetailedanalysis of bargaining,pricesetting,andpricediscriminationin theretail market for steel).

We conclude thateventhoughretail sales occurmuchmorefrequentlythanwholesale purchases, thefact

thatretail pricesinvolve a numberof otherdifferent considerations(including price discrimination based

on observable andunobservablecharacteristics of the customer) suggestthat the retail price is at besta

verynoisyand(upward)biasedsignalof theunderlying wholesaleprice.

Figure1 plots theevolution of inventoriesover thesameperiod. Purchasesof steelareeasily recog-

nizable asthediscontinuousupwardjumpsin theinventory trajectories.As is evidentfrom thesaw-tooth

pattern of theinventory holdings,thefirm purchasestheproductmuchlessfrequently thanit sells it. The

firm’s opportunistic purchasing behavior is very clearfor this product. As canbeseenin figures1 and2,

duringthefirst tenmonthsof thesample,from July, 1997until March,1998,thefirm heldrelatively low

levels of inventoriesat a time when the averageprice the firm paid for steel was about20.5 cents per

pound.However astheAsianfinancialcrisis deepened, foreign steelproducersbegancutting their prices

andaggressively increasingtheir exports.We seethis clearly in our data,wherein April 1998,wholesale

prices droppedto 18.5 centsper pound. At that time the firm madea large purchase. As the price of

steelcontinuedto fall to historical lows duringtheremainderof 1998thefirm madea succession of large

purchasesthat leadit to hold historically unprecedentedhigh levelsof inventories. We view this asclear

evidencethatthefirm is attempting to profit from a“buy low, sell high” strategy.
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2.2 The Model

Ourmodelis anextension of previouswork by Hall andRust(2001),who showedthatin abroadclassof

commoditypricespeculationproblems,theoptimaltradingruleis ageneralizedversionof theclassic
�
S
 s�

rule from inventory theory. Theirwork canbeviewedaslinkingcontributionsby Arrow et. al. (1951)and

Scarf(1959)who first proved the optimality of
�
S
 s� policies in inventory investmentproblemsto more

recentwork by Will iamsandWright (1991),DeatonandLaroque(1992)andMirandaandRui (1997)on

therationalexpectationscommoditystoragemodel.Thefixed
�
S
 s� thresholdsderivedby Scarfunderthe

assumption thattheprice(cost)of procuring (producing)inventoriesis constant areclearly suboptimalin

a speculative trading environment, sincethestochasticfluctuations in thepriceof steelaffects thefirm’s

perception of the optimal level of inventory S, and the threshold for purchasing new inventory s. Hall

andRust(2001)showedthatthefirm’soptimalspeculative trading strategy is a generalizedthe
�
S
 s� rule

whereSands arefunctionsof certain underlying statevariables includingthewholesale priceof steelp.3

Beforewe describehow the generalized
�
S
 s� rule allows us to formulate andsolve the problem of

endogenoussamplingof steelwholesale prices,we describethenotation andkey assumptionsunderlying

Hall andRust’smodelof commoditypricespeculation.Thenweformally definethe
�
S
 s� tradingstrategy,

andshow how in abroadclassof modelsof speculation,the
�
S
 s� ruleconstitutestheoptimal strategy for

“buying low andselling high”. We assumethata middleman(which we alsorefer to asthe “firm”) can

purchase unlimited quantities of steelat a time-varying wholesale price pt that evolves according to a

Markov transition densityto be specified below. We assumethat the middlemansubsequently sellsthis

steelto retail customersat a retail price pr
t that includesa randomlyvarying markupover the current

wholesaleprice pt (if we think of thefirm asselling to different customersondifferentbusinessdays,this

3This analysisextendsprevious resultsin the operationsresearchliterature suchas Fabianet. al. (1959),Kingman
(1969),Kalymon (1971), Golabi (1985), SongandZipkin (1993), Moinzadeh(1997), andOzekici andParlar (1999) that
prove theoptimality of generalizedversionsof the � S� s� rule whenthecost(price)of producing(procuring) new inventory
fluctuatesstochastically. While Hall andRust (2001)arenot the first to prove the optimality of generalizedversions of
the � S� s� rule, they build on theOR literature by makingtheconnectionbetweenmodelsof optimal inventory policiesand
modelsof storageandcommodityprices.Moreover in thecurrentpaperwe computationally solve andestimateour model.
Thuswe canformally comparethemodel’s optimalpoliciesto theinventory policieswe seein thedata.Besidesthework
notedabove, themostcloselyrelatedrecentwork thatwe areawareof is theambitiouspaperby Aguirregabiria(1999)that
modelspriceandinventory decisionsby a supermarket chain.A supermarket is similar to our steelwholesalerin thatboth
typesof firms hold inventoriesof a substantialnumberof differentproducts,purchasingthemin thewholesalemarket and
sellingtheir inventoriesata markupto retail customers.Thekey differenceis thatpricesin supermarketsarealmostalways
postedso thereis no directpricediscrimination andthereis presumablya larger “menucost” to changingpriceson a day
by daybasis.Aguirregabiriaalsodid not directly addresstheendogenoussamplingissue,usingmonthly priceaveragesas
proxiesfor underlying daily prices.For this reasonwe areunableto directlyemploy his innovative andambitiousapproach
to estimation.
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randomlyvaryingmarkupis intendedto bea “reduced-form” approachto capturing thepricing andprice

discriminationdecisionsby thefirm).

On eachbusinessdayt thefollowing sequenceof actionsoccurs:

1. At the startof day t the firm knows its inventory level qt , the current wholesale price pt , andthe

valuesof theotherstatevariables xt .

2. Given
�
qt 
 pt 
 xt � thefirm ordersadditional inventory qo

t for immediatedelivery.

3. Given
�
qt 
 qo

t 
 pt 
 xt � thefirm setsa retail price pr
t that is modeledasa randomdraw from a density

γ
�
pr

t � qt � qo
t 
 pt 
 xt � .

4. Given
�
qt 
 qo

t 
 pt 
 pr
t 
 xt � thefirm observesarealizedretail demandfor its steel, qr

t , modeledasadraw

from a distributionH
�
qr

t � pt 
 pr
t 
 xt � with a pointmassatqr

t � 0.

5. Thefirm cannotsellmoresteel thanit hasonhand,sotheactualquantity soldsatisfies

qs
t � min �qt � qo

t 
 qr
t � � (3)

6. Saleson dayt determinethelevel of inventorieson handat thebeginningof businessdayt � 1 via

thestandard inventory identity:

qt � 1 � qt � qo
t � qs

t � (4)

7. New valuesof
�
pt � 1 
 xt � 1 � aredrawn from aMarkov transitiondensity g

�
pt � 1 
 xt � 1 � pt 
 xt � .

Notethatweabstract from deliverylagsandassumethatthefirm cannotbacklog unfilledorders. Thus,

whenever demandexceedsquantity on hand,theresidualunfilled demandis lost. Thus,in addition to the

censoringof thepurchaseandretail prices
�
pt 
 pr

t � , weonly observeatruncatedmeasureof thefirm’sretail

demand,i.e., we only observe theminimumof qr
t andqt � qo

t asgivenin equation(3). Sincethequantity

demandedhassupportonthe � 0
 ∞ � interval, equation (3) impliesthatthereis alwaysapositiveprobability

of astockout givenby:

δ
�
q
 p
 pr 
 x� � 1 � H

�
q � pr 
 p
 x� � (5)

Sinceretail sales occurmuchmorefrequently that purchasesof new inventory, the retail sales price pr
t

providesan importantsource of informationaboutthewholesale price pt . Presumablyfor mosttransac-

tions we shouldhave pr
t � pt , reflecting nonnegative markupsover the current wholesale price of steel.

11



However asnotedabove markupsvary in anapparently randomfashionfrom dayto day, soat bestpr
t is

a biased andnoisyindicator of thewholesale price pt . In this version of thepaperwe bypasssomeof the

difficult issuesassociatedwith modelingendogenouspricesetting andpricediscriminationby adopting a

“reduced-form” modelof price setting. We modelthedaily averageretail priceasa draw from a condi-

tionaldensityγ
�
pr

t �qt � qo
t 
 pt 
 xt � . Thiswayof modelingpricesis sufficiently flexible to beconsistentwith

avarietyof theoriesof bargainingandpricediscrimination by thefirm.4

Thefirm’s expected salesrevenuefunction,ES
�
p
 q
 x� is theconditionalexpectation of realizedsales

revenueprqr giventhecurrent wholesale price p, quantity on handq, andtheobservedinformation vari-

ablesx. Thefirm’sretailsalesondatet is arandomdraw qr
t from aconditionaldistributionH

�
qr

t � pr
t 
 pt 
 xt �

that dependson the retail price quotepr
t , the current wholesaleprice pt , andthe valuesof the otherob-

servedstatevariables xt . We assumethatthereis a positive probability η
�
pr 
 p
 x� � H

�
0 � pr 
 p
 x� thatthe

firm will notmakeany retail saleson aparticularday, soH canberepresentedby

H
�
qr � pr 
 p
 x� � η

�
pr 
 p
 x� �!�1 � η

�
pr 
 p
 x� �

" qr

0
h
�
q � pr 
 p
 x� dq
 (6)

whereh is a continuousstrictly positive probability density function over the interval � 0
 ∞ � . Given this

stochastic “demandfunction”, thefirm’sexpectedsalesrevenueES
�
p
 q
 x� is:

ES
�
p
 q
 x� � E

�
p̃r q̃s � p
 q
 x	

� E
�
p̃rE

�
min � q
 q̃r �#� pr 
 p
 q
 x	 � p
 q
 x	 (7)

�
" ∞

0
pr �1 � η

�
pr 
 p
 x� �

" q

0
qrh

�
qr � pr 
 p
 x� dqr � δ

�
q
 pr 
 p
 x� q γ

�
pr �q
 p
 x� dpr �

In orderto state theperperiod profit function, we needto describe thecoststhat thefirm incurs.The

main cost is the cost of ordering new inventory, representedby the order cost function co � qo 
 p� . We

assumethat the firm incursa fixed costK � 0 associated with placing new orders for inventory, which

impliesthatco � qo 
 p� is givenby

co � qo 
 p� � pqo � K if qo � 0
0 otherwise,

(8)

4Hall andRust(2000)solveda versionof themodelin which thefirm choosesbothqo
t and pr

t . In this case,thevalue
function is no longer guaranteedto be K-concave, and the solution to the inventory problem may no longer be of the
generalized� S� s� form. Solving this modeltakesconsiderablylonger thanthemodelpresentedherefor two reasons.First,
theHall andRust(2000)modelrequiresatwo-dimensionaloptimizationinsteadof anone-dimensionaloptimization ateach
iterationof theBellmanequation.Second,in modelswith endogenouspricesetting, thegeneralized� S� s� rule is notalways
guaranteedto beanoptimal tradingstrategy. As a resultwe cannotrestrictour searchto thesubclassof generalized� S� s�
policiesaswe canwhenwe solve themodelpresentedhere.Thisgreatlyincreasesthecomputationaltime requiredto solve
modelsthatincorporateeitherendogenous(uniform) pricesetting(asin Hall andRust2000),or in modelsof bargainingand
pricediscrimination(asin Chan,Hall andRust,2003).
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The firm’s remaining costsaresummarizedby the holding costfunction ch � q
 p
 x� . Thesecostsinclude

physical storage costs,and“goodwill costs” representingthe present valueof lost future businessfrom

customerswhoseorderscannotbefilled dueto astockout. Goodwill costscanbeviewedastheinverseof

the“convenienceyield” discussedin thecommoditystorageliterature(Kaldor, 1939,Wil liamsandWright,

1991).In thiscaseaconvenienceyield emergesfrom adesire to holdabuffer stockor precautionarylevel

of inventories in order to minimize goodwill costsfrom stockouts. This allows the model to capture

otherreasons besidespureprice speculation for holding inventories.5 The firm’s single-periodprofits π

equalsits sales revenues,lessthe costof new ordersfor inventory co � qo 
 p� andinventory holdingcosts

ch � q � qo 
 p
 x� :
π
�
p
 pr 
 qr 
 q � qo 
 x� � prqs � co � qo 
 p� � ch � q � qo 
 p
 x� � (9)

whereqs � min�qr 
 q � qo� . Eachperiodthefirm choosesinvestmentqo
t given

�
pt 
 qt 
 xt 	 to maximizethe

discountedpresentvalueof profits:

V
�
pt 
 qt 
 xt � � max

qo
E

∞

∑
j $ t

ρ % j & t ' π � p j 
 pr
j 
 qr

j 
 qo
j � q j 
 x j � pt 
 qt 
 xt 
 (10)

whereρ � 1( � 1 � r � andr is thefirm’s discountrate.ThevaluefunctionV
�
p
 q
 x� is givenby theunique

solution to Bellman’sequation:

V
�
p
 q
 x� � max

0 ) qo ) q & q
W
�
p
 q � qo 
 x� � co � qo 
 p� 
 (11)

whereq is thefirm’smaximumstorage capacity and

W
�
p
 q
 x��* ES

�
p
 q
 x� � ch � q
 p
 x�+� ρEV

�
p
 q
 x� 
 (12)

andEV denotestheconditionalexpectation of V givenby:

EV
�
p
 q
 x� � E

�
V
�
p̃
 max�0
 q � q̃r � 
 x̃� � p
 q
 x� (13)

� λ1
�
p
 q
 x�

"
p,
"

x, V
�
p- 
 q
 x-�� g� p- 
 x- � p
 x� dp- dx-

� λ2
�
p
 q
 x�

"
p,
"

x, V
�
p- 
 0
 x-�� g� p- 
 x- � p
 x� dp- dx-

� λ3
�
p
 q
 x�

"
p,
"

x,
" q

0
V
�
p- 
 q � q- 
 x-�� h� q- � p
 q
 x� g� p- 
 x- � p
 x� dq- dp- dx- 


5The firm obtainsmuchof its steelfrom foreignsources.In themodelordersoccurinstantaneouslywith certainty. In
practice,however, delivery lagscanbeseveralmonthsandthesteeldeliveredcanoftenbeof lower quality thanagreedon.
Thefirm doeshave theoptionof refusingto takedelivery if thesteelis notof thequality promised.Having abuffer stockof
inventorieson handreducesthecostto firm of exercisingthis option. Also foreignproducersof steeldo from time to time
renegeonpreviously negotiateddeals,failing to deliver theamountof steeloriginally promised.
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where

λ1
�
p
 q
 x� �

"
pr

η
�
pr 
 p
 x� γ � pr � p
 q
 x� dpr (14)

λ2
�
p
 q
 x� �

"
pr
�1 � η

�
pr 
 p
 x� � δ � pr 
 p
 q
 x� γ � pr � p
 q
 x� dpr

λ3
�
p
 q
 x� �

"
pr
�1 � η

�
pr 
 p
 x� � γ � pr � p
 q
 x� dpr

h
�
q- � p
 q
 x� �

"
pr

h
�
q- � pr 
 p
 q
 x� γ � pr � p
 q
 x� dpr �

Theoptimaldecision ruleqo � p
 q
 x� is givenby:

qo � p
 q
 x� � inf argmax
0 ) qo ) q & q

W
�
p
 q � qo 
 x� � co � qo 
 p� � (15)

Weinvoketheinf operator in thedefinition of theoptimaldecisionrule in equation(15) to handlethecase

wheretherearemultiple maximizingvaluesof qo. We effectively breakthetie in suchcasesby defining

qo � p
 q� asthesmallest of theoptimizingvaluesof qo.

In this modelthevariables q andqo do not enterasseparateargumentsin thevaluefunctionW given

in (12): ratherthey enterasthesumq � qo asshown in equation(15). This symmetryproperty is a con-

sequenceof our timing assumptions: since new ordersof steelarrive instantaneously, thefirm’s expected

sales, inventory holdingcosts,andexpecteddiscountedprofitsonly dependonthesumq � qo, representing

inventory onhandat thebeginningof theperiodafter new ordersqo havearrived. It followsthatif thefirm

is holding lessthanits desired level of inventoriesS
�
pt 
 xt � at thestartof day t, it will only have to order

theamountqo � p
 q
 x� � S
�
p
 x� � q in orderto achieve its target inventory level S

�
p
 x� . Anotherway to

seethis is to notethatwhenit is optimalfor thefirm to order, theoptimalorderlevel solvesthefirst order

condition:
∂W
∂qo

�
p
 q � qo 
 x� � p� (16)

If W werestrictly concave in q, there would bea uniquevalueof q � qo thatsolvesequation (16) for any

valueof p. Call thissolution S
�
p
 x� :

∂W
∂qo

�
p
 S� p
 x� 
 x� � p� (17)

Thenwe haveq � qo � S
�
p
 x� , or qo � p
 q
 x� � S

�
p
 x� � q.

In turnsout that if K � 0 the function W
�
p
 q
 x� will not be strictly concave. However underfairly
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generalconditionsW is K-concaveasa function of q for eachfixed p.6 Using theK-concavity property

we canprove thatwhenever q � s
�
p
 x� , it is not optimal to order: qo � p
 q
 x� � 0. Whenq � s

�
p
 x� the

symmetryproperty implies thatqo � p
 q
 x� � S
�
p
 x� � q asdiscussedabove. In particularHall andRust

(2001)proved:

Theorem1: ConsiderthefunctionW
�
p
 q � qo 
 x� definedin equation(12),whereW is definedin termsof

theuniquesolution V to Bellman’s equation (11). Underappropriate regularity conditionsgivenin Hall

andRust(2001),theoptimalspeculativetradingstrategy qo � p
 q
 x� takestheform of an
�
S
 s� rule. That

is, there exist a pair of functions
�
S
 s� satisfying S

�
p
 x�.� s

�
p
 x� where S

�
p
 x� is the desired or target

inventory levelands
�
p
 x� is theinventory order threshold, i.e.

qo � p
 q
 x� � 0 if q � s
�
p
 x�

S
�
p
 x� � q otherwise

(18)

whereS
�
p
 x� is givenby:

S
�
p
 x� � argmax0 ) qo ) q & q W

�
p
 qo 
 x� � co � qo 
 p� (19)

andthelowerinventoryorderlimit, s
�
p
 x� is thevalueof q thatmakesthefirm indifferentbetweenordering

andnotorderingmore inventory:

s
�
p
 x� � inf

q / 0

�
q �W �

p
 q
 x� � pq � W
�
p
 S� p
 x� 
 x� � pS

�
p
 x� � K 	0� (20)

By a simplesubstitution of thegeneralized
�
S
 s� rule in equation (18) into thedefinition of V in equation

(11)we obtain thefollowing corollaries:

Corollary 1: ThevaluefunctionV is linear with slopep on theinterval � 0
 s� p
 x� � :

V
�
p
 q
 x� � W

�
p
 S� p
 x� 
 x� � p �S� p
 x� � q�1� K if q 23� 0
 s� p
 x� �

W
�
p
 q
 x� if q 2 �

s
�
p
 x� 
 q� � (21)

Corollary 2: TheS
�
p
 x� ands

�
p
 x� functionsare non-increasingin p andare strictly decreasing in p in

theset
�
p � 0 � S

�
p
 x� � q	 .

Corollary 3: If fixedcostsof ordering is zero, K � 0, thentheminimumordersizeis 0 and

S
�
p
 x� � s

�
p
 x� � (22)

6A functionW � p� q� : 4 p� p57684 0 � q5:9 R is K-concavein its secondargumentq if andonly if ; W � p� q� is K-convex in its
secondargument.More directly, W � p� q� is K-concavein q if f < K = 0 suchthat for every p >?4 p� p5 , andfor all z = 0 and
b = 0 suchthatq @ z A q andq ; b = 0 we haveW � p � q @ z�B; K A W � p� q�:@ z 4W � p � q�B; W � p� q ; b��5DC b.
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3 Maximum Lik elihoodEstimation

Thissectionderivesthelikelihoodfunctionfor thecommoditypricespeculationproblem presentedabove.

The problemis complicatedby the existence of frequently binding inequality constraints on inventory

investment,qo. This implies thatit is not possibleto usestandardEulerequation methodsto estimate the

unknown parameters of themodelvia generalized methodof moments.Note thatTheorem1 doesyield

a first ordercondition thatcouldpossiblyprovide a basisfor a generalized methodsof moments(GMM)

strategy for estimatingtheunknown parametersof themodel:

∂W
∂q

�
p
 S� p
 x� 
 x� � p � 0� (23)

If weassumethatthereis additivemeasurementerror ε in thewholesalepricep, or assumethatε represents

otherunobserved(perunit) componentsof thecostof ordering new inventory, thenit is temptingto treat

equation(23)asan“Eulerequation”anduseGMM toestimateparametersof themodel.Howeverthereare

severalbig obstaclesto thisapproach.First,wedonothaveaconvenient analytical formulafor thepartial

derivativeof thevaluefunction,∂W ( ∂q. Second,asweshow in Theorem 2 below, evenif theunconditional

meanof ε is zero,theconditional meanof ε over thosevaluesof
�
p
 ε � for which it is optimal to purchase

(i.e. for which q � s
�
p
 x� ), is generally nonzero. Finally, thereis theissueof endogenoussampling,and

thefactthatweobservepurchasesonly anarelatively smallsubsetof businessdaysin ouroverallsample.

Theseproblemsmotivatea searchfor an alternative likelihood-basedapproachthat is capableof in-

corporating otherinformationsuchasretail salespricesin orderto improveourability to make inferences

aboutthe
�
pt 	 process.We show how to derive a non-degeneratelikelihoodfunction via theinclusion of

a singleIID unobservablestatevariable εt in thefirm’s optimizationproblem. The resulting conditional

probability distribution function for qo hasa masspoint atqo � 0 thatreflectsthefrequently binding con-

straint that inventory investmentcannotbe negative. This conditional distribution allows us to derive a

full- information maximumlikelihoodestimatorthat provides a completesolution to the problemof en-

dogenoussamplingof the whole price process. It doesthis by integrating out the unobserved valuesof

thewholesale prices in periodswherethey areunobserved. This likelihoodis theanalogof theChapman-

Kolmogorov equation for computingmulti-step transition probabilities from a one-step transition prob-

abilities. We will discusssomeof the drawbacksof this approach in orderto motivatecomputationally

simplerbut lessefficientsimulatedminimumdistanceestimatorin section 4.

Someform of measurementerror or unobserved state variablemustbe included asoneof the state

variablesx in themodelpresentedin section 2. Without somesortof “error term” themodelyieldsa de-

16



terministic optimaldecision rule qo � p
 q
 x� thatcanbecontradicted by any observation
�
qo

t 
 qt 
 pt 
 xt � that

doesnot lie onits graph.To avoid theresulting “zero likelihood”problem,considerthecasewherethereis

anunobservedcomponentof theperunit costof steel,denoted by εt . Weassumethatthedistributionof εt

hassupporton theentire realline andcontinuous,strictly positive density φ
�
ε � . Theorem2 below derives

theimpliedconditionaldistributionof qo given
�
p
 q
 x� formedby integratingoutε from thedeterministic

decision ruleqo � p
 q
 x
 ε � .

Theorem 2: Let εt bean (unobservedto theeconometrician) componentof theper unit costof ordering

new inventory. Assumethat
�
εt 	 is an IID processwhosedensity φ is continuousandstrictly positiveover

theentire real line. Thentheoptimaltradingstrategy is still a generalized
�
S
 s� rule andtheconditional

distributionof theoptimalorderquantity qo given
�
p
 q
 x� is givenby

F
�
qo � p
 q
 x� � Pr

�
qo � p
 q
 x
 ε �FE qo � p
 q
 x	

�
" � ∞

& ∞
I
�
qo � p
 q
 x
 ε �0E qo 	 φ

�
ε � dε

�
" ∞

sG 1 % p H x H q'
φ
�
ε � dε

� I
�
S
�
p
 x
 s& 1 � p
 x
 q���FE qo � q E q	

" sG 1 % p H x H q'
SG 1 % p H x H q� qo ' φ

�
ε � dε

� I
�
qo � q � q	

" SG 1 % p H x H q'
& ∞

φ
�
ε � dε 
 (24)

where

S& 1 � p
 x
 q� � inf
�
ε �S� p
 x
 ε � � q	

s& 1 � p
 x
 q� � inf
�
ε � s� p
 x
 ε � � q	I� (25)

Let f � dF denotethemixeddiscrete/continuousconditionaldensity of qo given
�
p
 q
 x� . It is givenby

f
�
qo � p
 q
 x� �

J ∞
sG 1 % p H x H q' φ

�
ε � dε if q0 � 0J SG 1 % p H x H q'& ∞ φ
�
ε � dε if q0 � q � q& φ % SG 1 % p H x H q� qo 'K'

∂2WL ∂2q% p H x H q� qo ' otherwise.

(26)

Theformulafor thedensity of qo in equation(26) canbederivedby differentiating theconditionaldistri-

bution in equation(24)with respectto qo for qo in theinterval �S� p
 x
 s& 1 � p
 x
 q��� � q
 q � q� to obtain:

dF
�
qo � p
 q
 x� � � φ

�
S& 1 � p
 x
 q � qo �� ∂S& 1

∂qo

�
p
 x
 q � qo � � (27)
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Usingthedefinitionof S
�
p
 x
 ε �

∂W
∂q

�
p
 S� p
 x
 ε � 
 x� � p � ε 
 (28)

andtheinverseandimplicit functiontheoremsweobtain:

∂S& 1

∂qo

�
p
 x
 q � qo � � 1

∂S
�
p
 x
 S& 1

�
p
 x
 q � qo ���( ∂ε � 1

∂2W
�
p
 q � qo 
 x�M( ∂2q � (29)

NotethatTheorem2 impliesthatthetransitiondensity for qo is mixeddiscreteandcontinuous,with mass

pointsatqo � 0 andqo � q � q, andstrictly positivedensity overtheinterval �S� p
 x
 s & 1 � p
 x
 q�� � q
 q � q� .
However thereis a “gap” wherethereis zerodensity for qo in theinterval � 0
 S� p
 x
 s& 1 � p
 x
 q�� � q� since

thequantity S
�
p
 x
 s& 1 � p
 x
 q�� � q representstheminimumordersizeimplied by the

�
S
 s� modelin the

state
�
p
 q
 x� . Thegapis problematicfor maximumlikelihoodestimationsincea single observationwith

an ordersmallerthanthe predictedminimum ordersizewould result in a zerovaluefor the likelihood

function. To obtaina fully nondegenerate likelihoodfunction,wewouldhave to introduceasecondunob-

servable, suchasanunobservablecomponentυ of thefixedcostK of placinganorder. If thedistribution

of thiscomponentis suchthatthere is positiveprobability thatthecombinedordercostK � υ is arbitrarily

closeto zerofor sufficiently smallrealizationsof υ, thenconsistentwith Corollary 3 of section 2, thegap

will bezero,thuseliminating thepossibility of a“zero likelihoodproblem.” In practicefor thevaluesof K

we encounteredin ourestimation, thegapis sufficiently smallthatzerolikelihoodproblemsdid notarise.

Therefore in orderto simplify the themodelandtheexposition we decided to omit thecasewherethere

areunobservablecomponentsof K aswell asp.

Let theconditionaldensity of next period inventory qt � 1 given
�
pt 
 pr

t 
 xt 
 qt 
 qo
t � bedenotedby µ. From

ourdiscussionof themodelin section 2, it is easyto seetheµ is amixeddiscrete/continuousdensity with

threeclassesof outcomesfor qt � 1: 1) with probability η
�
pr 
 p
 x� the firm will not make any salesand

qt � 1 � qt � qo
t ; 2) with probability

�
1 � η

�
pr

t 
 pt 
 xt ��� δ � pr
t 
 pt 
 qt � qo

t 
 xt � thefirm will have a stockout and

qt � 1 � 0; 3) otherwise qt � 1 is distributedcontinuouslyover theinterval
�
0
 qt � qo

t � with density givenby�
1 � η

�
pr

t 
 pt 
 xt ��� h� qt � qo
t � qt � 1 � pr

t 
 pt 
 xt � whereh is thedensityof retail salesandqr
t � qt � qo

t � qt � 1 is

theimplied valueof retail salesgiven
�
qt � 1 
 qt 
 qo

t � . We summarizethisas:

Theorem 3: The(mixed discrete/continuous)densityof next period inventory q - given
�
p
 pr 
 q
 qo 
 x� is

givenby:

µ
�
q- � p
 pr 
 q
 qo 
 x� �

�
1 � η

�
pr 
 p
 x�� δ � pr 
 p
 q � qo 
 x� if q- � 0

η
�
pr 
 p
 x� if q- � q � qo�

1 � η
�
pr 
 p
 x�� h� q � qo � q- � pr 
 p
 x� otherwise

(30)
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Underour setup,we canshow that the observables
�
pt 
 pr

t 
 qt 
 qo
t 
 xt 	 evolve asa joint Markov process

whichalsohasadiscrete/continuoustransitionprobability densityλ. WestatethisasTheorem4:

Theorem 4: Thejoint process
�
pt 
 pr

t 
 qt 
 qo
t 
 xt 	 is Markov with (discrete/continuous)transition density λ

givenby:

λ
�
pt � 1 
 pr

t � 1 
 qt � 1 
 qo
t � 
 xt � 1 � pt 
 pr

t 
 qt 
 qo
t 
 xt � � g

�
pt � 1 
 xt � 1 � pt 
 xt �

N µ
�
qt � 1 � pt 
 pr

t 
 qt 
 qo
t 
 xt �

N f
�
qo

t � 1 � pt � 1 
 qt � 1 
 xt � 1 �
N γ

�
pr

t � 1 � pt � 1 
 qt � 1 � qo
t � 1 
 xt � 1 � � (31)

Now consider thefull informationcasewhereall of thevariables
�
pt 
 pr

t 
 qt 
 qo
t 
 xt 	 areobservedover the

entiresampleperiodt � 0
������
 T.

Definition 1: Thefull informationmaximumlikelihood(FIML) estimatorθ̂ f
T is definedas:

θ̂ f � argmax
θ O Θ

l f
��

pt 
 pr
t 
 qt 
 qo

t 
 xt 	 T
t $ 1 � p0 
 pr

0 
 q0 
 qo
0 
 x0 
 θ � 
 (32)

wherel f is givenby:

l f
���

pt 
 pr
t 
 qt 
 qo

t 
 xt 	 T
t $ 1 � p0 
 pr

0 
 q0 
 qo
0 
 x0 
 θ � �

T

∏
t $ 1

λ
�
pt 
 pr

t 
 qt 
 qo
t 
 xt � pt & 1 
 pr

t & 1 
 qt & 1 
 qo
t & 1 
 xt & 1 
 θ � � (33)

whereθ denotesa vectorcompromisingthe unknown parameters of the densities
�

f 
 g
 h
 η 
 µ
 γ 
 φ 	 and

theunknown parametersentering thefirm’scostfunctions
�
co 
 ch 	 andthefirm’sdiscountfactor ρ. Let Θ

denoteacompactparameterspace.

Now considerthepartial information casewherewe only observe wholesale priceson thesubsetof n

trading days,Tn * �
t1 
�����M
 tn 	 at which purchasesoccur. To simplify notation we assume(without lossof

generality) that thedatabegin on thedayof thefirst observedpurchase, so t1 � 0, andendon thedayof

thelastobservedpurchase,tn � T. Therelevantlikelihoodin this caseis a marginal likelihoodl p formed

by integrating thefull likelihoodfunction l f in equation (33) over wholesale pricespt for all time indices

t in the complementof Tn. For simplicity, we will considerthe casewhereretail salesareobserved in

every period. Otherwise, an additional setof integrationswould needto be performedover the values

of pr
t for businessdayst whereno retail sales occurred. As notedin the Introduction,it is notationally

convenient to convert theendogenoussamplingproblem into acensored sampling problem by definingan

observedcensoredpricesequence
�
pt 	 in termsof theunderlying uncensoredpriceprocess

�
p Pt 	 . Thus,
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theobservedpricespt aregivenby:

pt � pPt if qo
t � 0

0 otherwise.
(34)

Definition 2: ThePartial Information MaximumLikelihood(PIML) estimator θ̂p
T is definedas:

θ̂p � argmax
θ O Θ

lp
���

pt 
 pr
t 
 qt 
 qo

t 
 xt 	 T
t $ 1 � p0 
 pr

0 
 q0 
 qo
0 
 x0 
 θ � 
 (35)

wherelp is givenby:

lp
���

pt 
 pr
t 
 qt 
 qo

t 
 xt 	 T
t $ 1 � p0 
 pr

0 
 q0 
 qo
0 
 x0 
 θ � �

"
pTn

"
εTn Q�Q�Q

"
pT1

"
εT1

l f ∏
t LO Tn

I
�
qt � s

�
pt 
 xt 
 εt � 	 q� εt � dptdεt �

(36)

Thus,the PIML likelihood l p is derived from the FIML likelihood l f by integrating out the unobserved

wholesale pricesover the datest (2 Tn that purchasesdo not occur. The region of integrationis limited

to the region of the statespacewheremakinga purchase is not optimal. This is given by the indicator

function I
�
1t � s

�
pt 
 xt 
 εt � 	 . Notice that this region involvesthe unobserved statevariableεt . Thusthe

integrationmustbedoneoverbothunobservedvariables
�
pt 
 εt � overall of theT � n datest (2 Tn atwhich

purchasesdo notoccur.

We will now sketchtheasymptotic propertiesof thePIML estimatorundertheassumptionthat there

is only one firm, but T R ∞. The asymptoticproperties of the FIML estimator are well known: the

logarithm of l f canbeapproximated asa (normalized)sumof randomvariables. Despitethecorrelation

in theserandomvariablesin successive timeperiods,standardlimit theoremsfor ergodic processescanbe

usedto show thatthisnormalizedsumconvergesto awell definedscorefunction. A standard “inf ormation

inequality” argumentcanthenbeusedto show thatthisscorefunction is maximizedat thetrueparameter

valueθ P , assumingthat the model is correctly specified.A formal proof would require specification of

regularity conditions similar to Billi ngsley (1961)andWhite (1982) to ensurethat the convergenceof

thesenormalizedsumsto thescorefunction is uniform andthatthescorefunction is uniquelymaximized

at θ P . Thesearestandard sufficient conditionsfor theconsistency of maximumlikelihood.

However the argumentfor the consistency of the PIML estimator is more complicated. The high-

dimensional integrationsovertheirregularlyspacedintervalsbetweensuccessivepurchasescreatelinkages

betweenthe observationsin the PIML estimator. When we take the logarithm of the likelihood it no

longerdecomposesinto a normalizedsumof T randomvariables asin theFIML case.Thusthestandard

argumentsusedto provetheconsistency andasymptoticnormality in theFIML casedonotappearto apply
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in thePIML case. At best,thelogarithmof thePIML likelihooddecomposesinto asumof n terms,where

eachterm is the logarithm of a high dimensionalintegral of the transition probability density λ over the

timesbetweensuccessive purchases.However if thejoint process
�
pt 
 pr

t 
 qt 
 qo
t 
 xt 	 is ergodic, we should

haven R ∞ with probability 1 asT R ∞. Ourstrategy will beto dotheasymptoticsfor thePIML estimator

asa function of thenumberof purchases n rather thanasa function of thenumberof time periods T over

which the firm is observed. In orderto derive the asymptotic properties of the PIML estimator, we will

usethefactthatthestateof theprocessatsuccessivepurchasedatesis anembeddedMarkov chainandthe

sequenceof realizedstates betweensuccessive purchasesformsa segmentedMarkov chain. We will then

arguethatthesegmentedMarkov chainis ergodic, whichwill allow usto applytherelevantlimit theorems

to establish theasymptoticpropertiesof thePIML estimator.

Let
�
ξt 	 denotethejoint Markov processin theorem4, i.e., theprocesswhosevalueat t is givenby:

ξt * �
pt 
 pr

t 
 qt 
 qo
t 
 xt � � (37)

Definition 3: ThepurchasesetΓ is givenby:

Γ � �I�
ξ 
 ε � � qo � 0	S� �T�

ξ 
 ε � � q � s
�
p
 x
 ε � 	0
 (38)

andthesetof purchasedatesTn � �
t1 
�������
 tn 	 is definedrecursivelyas:

ti � 1 � inf
�
t � ti � ξt 2 Γ 	F� (39)

Definition 4: Let
�
ζi 	 denotetheembeddedprocessassociatedwith

�
ξt 	 andΓ. Thisis thediscrete time

Markov processwhich is observed at successivepurchasedatest 2 Tn, i.e.,

�
ζi 	S� �

ξti 	I� (40)

We derive the transition density ν for theembeddedprocess
�
ζ i 	 asa ti � ti & 1-step transition density for

successive visits to thepurchasesetΓ.

Lemma 1: Theembeddedprocess
�
ζi 	 is a Markov chainwith transition density νe givenby:

νe
�
ζi � ζi & 1 
 θ � � λ

�
ξti � ξti G 1 
 θ � �

"
ξti G 1 U 1

"
εti G 1 U 1 QQ�Q

"
ξti G 1

"
εti G 1

t $ ti & 1

∏
ti G 1 � 1

I
�I�

ξt 
 εt �V(2 Γ 	 λ
�
ξt � ξt & 1 
 θ � dξtdεt � (41)

Definition 5: Let
�
ωi 	 be the segmentedprocessassociated with

�
ξt 	 , i.e. theprocessfor which ωi is

definedas the realized (observed)valuesof
�
ξt 	 for the sequenceof ti � ti & 1 time periodsfollowing the

purchaseat ti & 1 until thepurchaseat ti :

ωi � �
ξtiG 1 � 1 
�������
 ξti � � (42)
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Notice that the numberof componentsin the segmentωi is a randomvariable, equalto the difference

ti � ti & 1, in thesuccessive timesthat
�
ξt 	 visits thepurchasesetΓ.

Lemma 2: Thesegmentedprocess
�
ωi 	 is a Markov chainwith transition density νs givenby:

νs
�
ωi �ωi & 1 
 θ � � (43)"

pti U 1

"
εti U 1 Q�QQ

"
pti U 1G 1

"
εti U 1G 1

ti U 1

∏
t $ ti � 1

λ
�
ξt � ξt & 1 
 θ �

ti U 1 & 1

∏
t $ ti � 1

I
�
qt � s

�
pt 
 xt 
 εt � 	 q

�
εt � dptdεt �

Thus,thetransition density for thesegmentedchain
�
ω i 	 is basically theproductof thetransition densities

for theuncensored
�
ξt 	 processbetweensuccessive purchasesat periodst i andti � 1, ∏ti U 1

t $ ti � 1 λ
�
ξt � ξt & 1 
 θ � ,

but integratedover theregion of
�
pt 
 εt � spacebetweentimeperiodsti � 1
�����M
 ti � 1 � 1 whenpurchasesare

not observed. The appropriateregion of integration is definedby the productof the indicator functions

I
�
qt � s

�
pt 
 xt 
 εt � 	 thatspecify that therelevantprice pathsarethosefor which inventorieslie above the

s
�
p
 x
 ε � band,sothatit is notoptimalto purchaseduringthis time interval.

Notice that dueto the Markov property for
�
xt 	 , only the last elementof the segmentωi & 1, ξti G 1, is

neededto fully determinethe conditional probability of ω i � �
ξtiG 1 � 1 
���M��
 ξti � . Let τ � ti � 1 � ti , be the

duration betweensuccessive purchases,or in the languageof Markov processes,the recurrencetime for

successivevisitsto thepurchasesetΓ. If themeanrecurrencetimeto Γ is finite,E
�
τ 	W� ∞, theprocess

�
ξ t 	

will visit Γ infinitely oftenandthenumberof visits n observedover any horizonT tendsto infinity with

probability 1 asT R ∞.

Assumption 1: TheMarkov chain
�
ξt 	 is ergodic(i.e. it possessesa uniquestationarydistribution), the

purchasesetΓ is recurrent (i.e. E
�
τ 	X� ∞), and theembeddedandsegmentedprocesses

�
ζ i 	 and

�
ωi 	

areergodicMarkov chains.

To studytheasymptotic propertiesof thePIML estimator, it is usefulto rewrite thelikelihoodfunction

lp asa productof n � 1 terms,eachof which describesthe integratedlikelihood betweenthen purchase

dates:

lp
��

pt 
 pr
t 
 qt 
 qo

t 
 xt 	 T
t $ 1 � p0 
 pr

0 
 q0 
 qo
0 
 x0 
 θ � �

n & 1

∏
i $ 1

νs
�
ωi � 1 �ωi 
 θ � � (44)

By Assumption1 andthe Renewal Theoremfor Markov chains (see,e.g. Resnick1992),we have with

probability 1

lim
T Y ∞

n
T � 1

E
�
τ 	 � (45)

Thus,as long asE
�
τ 	Z� ∞, the process

�
ξt 	 visits Γ infinitely often andn R ∞ with probability 1 as

T R ∞. Thereforewe will carry out theasymptotic analysis indexing thesamplesizeby thenumberof
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purchasesn rather than the total numberof time periodsthat the processis observed, T. To establish

consistency of thePIML estimator, it is convenient to work with thenormalizedlog-likelihoodfunctions.

First, we multiply anddivide the likelihood l p by a productof theconditionaldensitiesof therecurrence

times∏n & 1
i $ 1 Pr

�
τ � ti � 1 � ti � ξti 
 θ 	 where

Pr
�
τ � ti � 1 � ti � ξti 
 θ 	V�

"
ξti U 1

"
εti U 1

I qti U 1 E s
�
pti U 1 
 xti U 1 
 εti U 1 � λ

�
ξti U 1 � ξti U 1 & 1 
 θ � N (46)

"
ξti U 1

"
εti U 1 QQ�Q

"
ξti U 1G 1

"
εti U 1G 1

ti U 1 & 1

∏
t $ ti � 1

I
�
qt � s

�
pt 
 xt 
 εt � 	 λ

�
ξt � ξt & 1 
 θ � dξtdεt dξti U 1dεti U 1 �

Takinglogsanddividing by n � 1 weobtain thefollowing form for thenormalized log-likelihoodfunction

1
n � 1

loglp
���

pt 
 pr
t 
 qt 
 qo

t 
 xt 	 T
t $ 1 � p0 
 pr

0 
 q0 
 qo
0 
 x0 
 θ �

� 1
n � 1

n & 1

∑
i $ 1

logρ
�
ωi � 1 �ωi 
 ti � 1 � ti 
 θ �[� 1

n � 1

n & 1

∑
i $ 1

logPr
�
ti � 1 � ti �ωi 
 θ 	

� 1
n � 1

n & 1

∑
i $ 1

v1
�
ωi � 1 
 ωi 
 θ � � 1

n � 1

n & 1

∑
i $ 1

v2
�
ωi � 1 
 ωi 
 θ � 
 (47)

where

ρ
�
ωi � 1 �ωi 
 ti � 1 � ti 
 θ � � (48)"

pti U 1

"
εti U 1 QQ�Q

"
pti U 1G 1

"
εti U 1G 1

ti U 1

∏
t $ ti � 1

λ
�
ξt � ξt & 1 
 θ �

Pr
�
ti � 1 � ti � ξti 
 θ 	

ti U 1 & 1

∏
t $ ti � 1

I
�
qt � s

�
pt 
 xt 
 εt � 	 q

�
εt � dptdεt �

Thus,ρ is theconditional densityof thesegmentωi � 1 given theprevioussegmentωi , andgiventhat the

lengthof segmentωi � 1 is ti � 1 � ti , i.e. the duration betweenpurchasesat timesti andti � 1. Comparing

equations(44)and(49)andnoting thatdueto theMarkov property wehavePr
�
τ �ω 	S� Pr

�
τ � ξ 	 whenthe

lastsubvectorin ω is ξ, we seethat

νs
�
ω- �ω 
 θ � � ρ

�
ω- �ω 
 τ 
 θ � Pr

�
τ �ω 
 θ 	T� (49)

Note that ωi � 1 implicitly contains the information on ti � 1 � ti sincethis duration is alsoproportional to

the lengthof ωi � 1 aswe canseein Definition 5. Thus,since the realizedvalueof theduration between

successivepurchasesti � 1 � ti is implicitly determined by ωi � 1, wesuppressti � 1 � ti in formula(47)in order

to emphasizethat thenormalizedlog-likelihood function canbewrittenasa normalizedsumof random

variables that dependon the realizationsof an ergodic segmentedMarkov chain
�
ω i 	 . Undersuitable

regularity conditionsonthemomentsof thefunctionsv j , j � 1
 2, Assumption1 andtheErgodic Theorem
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for Markov processesimply thatasn R ∞ wehave with probability 1:

1
n � 1

n & 1

∑
i $ 1

v j
�
ωi � 1 
 ωi 
 θ �0R E v j

�
ω- 
 ω 
 θ � 
 j � 1
 2� (50)

wheretheexpectation is takenwith respect to theinvariantdistribution for
�
ω - 
 ω � andis givenby

E v j
�
ω- 
 ω 
 θ � �

"\"
v j
�
ω- 
 ω 
 θ � νs

�
dω- �ω 
 θ P � ψ �

dω 
 θ P � 
 j � 1
 2� (51)

whereνs
�
ω- �ω 
 θ P � is thetransitiondensityfor thesegmentedprocessgivenin equation (44)andψ

�
ω 
 θ P �

is the invariant distribution for the segmentedchain
�
ω i 	 . Using the alternative representation of l p in

equation (47), we arenow ableto verify theconsistency of thePIML estimator. Notethatasn R ∞, the

existenceof theergodic limits in equation (51) imply thatthefollowing limitshold

1
n � 1

n & 1

∑
i $ 1

logρ
�
ωi � 1 �ωi 
 ti � 1 � ti 
 θ ��R E logρ

�
ω- �ω 
 τ 
 θ � 
 (52)

and
1

n � 1

n & 1

∑
i $ 1

logPr
�
ti � 1 � ti � ξti 
 θ 	 R E

�
logPr

�
τ �ω 
 θ 	T	F
 (53)

whereτ is therecurrencetime to thepurchasesetΓ. Wehave

E log ρ
�
ω- �ω 
 τ 
 θ � �

" ∞

∑
τ $ 1

"
log ρ

�
ω- �ω 
 τ 
 θ � ρ � dω- �ω 
 τ 
 θ P � Pr

�
τ �ω 
 θ P 	 ψ

�
dω 
 θ P � � (54)

Notethatfor any ω andτ, theInformationInequality guaranteesthattheexpression in bracketsin (54) is

maximizedat θ � θ P . Similarly wehave

E
�
log �Pr

�
τ � ξ 
 θ 	 � 	V� E

�
log �Pr

�
τ �ω 
 θ 	 � 	S�

" ∞

∑
τ $ 1

log �Pr
�
τ �ω 
 θ 	 � Pr

�
τ �ω 
 θ P 	 ψ

�
dω � (55)

will alsobemaximizedat θ � θ P . This implies that the limiti ng expected log likelihoodis maximizedat

θ P . Standard uniform consistency argumentscanbeusedto show thatwith probability 1 wehave θ̂p R θ P
asn R ∞.

We concludethis section with a brief sketchthederivation of theasymptoticdistribution of thePIML

estimator. If modelis correctly specified andappropriate regularity conditions hold, the first ordercon-

ditions for θ̂p canbe expandedin Taylor seriesaboutthe true parameterθ P . Applying a CentralLimit

Theoremfor mixing processesto thekey scoretermin thisTaylor seriesexpansiononecanshow that:

]
n θ̂p � θ P � R N

�
0
#^ & 1 � θ P ��� (56)
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where

^ � θ P � �\^ 1 � θ P � � ^ 2 � θ P �
where

^ 1 � θ P � � E
∂2

∂θ∂θ- log ρ
�
ω- �ω 
 τ 
 θ P �

and

^ 2 � θ P � � E
∂2

∂θ∂θ- log �Pr
�
τ � ξ0 
 θ P 	 � �

Furtherit is not difficult to show that thedifferencebetween the informationmatricesfor theFIML and

PIML estimatorsis apositivesemi-definitivematrix. Thisimpliesthatthereis indeedalossof information,

andtherefore an increasein variance,caused by theendogenoussamplingproblem.However aslong as

ourmodelis correctly specified, thePIML estimatorwill beconsistent.If themodelis misspecified, thena

modificationof argumentsin White(1982)canbeusedto show thatthePIML andFIML still convergeand

haveanasymptotically normaldistribution,but they convergeto avalueof θ P thatminimizestheKullbeck-

Lieblerdistance between theparametric modelandthetruedatagenerating process. Theformulas for the

asymptotic varianceof the estimators mustbe changedto the outerproductof the informationandthe

inverse Hessiansof thelog likelihoodwhenthemodelis misspecified, since in thatcasethecovarianceof

θ̂n is no longergivenby theinverse of theinformation matrix,seeWhite (1982).

Thedrawbackof thePIML estimator is thatit is computationally intensivedueto thehighdimensional

integrationsthatarerequired to evaluatel p. Sinceno purchasesof steelareobserved on themajority of

businessdaysin our sample,themeantime betweenpurchasesis about10 businessdays,so thaton av-

erage10 dimensional integralsmustbecalculatedfor eachtermentering the likelihood. Although there

have beenimportantadvancesin simulation estimation andlow discrepancy methodsfor computinghigh

dimensional integrals (see, e.g. Rust, Traub andWoźniakowski, 2002), the PIML will still be a fairly

computationally burdensomeestimator. A seconddrawbackis that if our interest is primarily on making

inferencesaboutthe law of motion for
�
pt 
 xt 	 , theotherstructural parametersthatmustbeestimatedto

adjustfor theendogeneity of thesamplingprocessamountto nuisance parameters. Errorsin thespecifi-

cation of thefirm’soptimalinvestmentandspeculationproblemwill result in inconsistentestimatesof the

parametersof interestin thetransition density g
�
pt � 1 
 xt � 1 � pt 
 xt � .

It is possibleto consider theuseof flexible reduced-form specificationsfor thedensitiesentering the

overall decomposition of thetransition densityλ givenin Theorem4. Howeverwithoutsomestrongprior

parametric restrictions on someof thesedensities, it is doubtful that an unrestricted model wherethe
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densities
�
g
 µ
 f 
 γ � aretreatedasunknown objects to beestimatednon-parametrically is even identified.

In particular the
�
S
 s� modelcombinedwith theobservationsof retail transaction pricesprovidesstrong

identifying restrictions,limit ing how far the wholesalepriceprocess
�
pt 	 candrift away from observed

retail price for a given sequence of observedpurchases. In particular, asthe implied markupgetslarger

or smaller, the
�
S
 s� modelpredicts that the numberof ordersshouldbe increasinganddecreasing in a

correspondingfashion.Giventheobservedsequenceof purchases,this property enablesusto separately

identify theparametersof g
�
p- 
 x- � p
 x� andthestructuralparametersof the

�
S
 s� model.However if anon-

parametric modeldoesnot imposeany sortof profit maximizingor lossminimizingbehavioral motivation

on thepartof thefirm, thenthewholesalemarketprice
�
pt 	 coulddrift arbitrarily faraway from theretail

prices
�
pr

t 	 withouttherebeingany strongeffectonthelikelihoodof theobservedsequencesof purchases.

Thusit seemsthat it would bequitedifficult if not impossible to non-parametrically identify the form of

g
�
p- 
 x- � p
 x� andthe trading rule usedby the firm whenwe only have access to endogenouslysampled

data.

4 SimulatedMinimum DistanceEstimation

This section introducesa simulated minimumdistanceestimator (SMD) that may be lessefficient than

the PIML estimator, but which doesnot require the high dimensional integration andis mucheasierto

compute.Similar estimatorshave beenproposed in othercontexts by LeeandIngram(1991)andDuffie

andSingleton(1993).TheideabehindtheSMD estimatoris quitestraightforward,andis similar in spirit

to themethodof “calibration”. Themaindifferenceis thattheSMD estimatoris basedon anexplicit sta-

tistical criterionfunction thatenablesusto computeasymptotic distributions for theparameterestimator,

evaluatethefit of alternativespecifications,andto conductgoodnessof fit tests.

TheSMD estimatoris simply theparametervaluethatminimizesthedistancebetweena setof simu-

latedandsamplemomentsusingtheobservedcensoredobservations. First we calculatesamplemoments

usingthecensoredobservationsin thedata,i.e. with pt � 0 whenqo
t � 0. Thenwe generateoneor more

simulated realizationsof the
�
S
 s� modelfor a given trial valueθ of theunknown parametervector. We

defineθ̂smdasthevalueof θ thatminimizesa quadratic form in thedifferencebetweenthesamplemo-

mentsfor theactual dataandthesamplemomentsof thesimulated data,wherethesimulated datahasbeen

censored in exactly thesamefashionastheactual data,i.e. wesetpt � 0 whenever thesimulated valueof

qo
t � 0. Thuseventhoughvariousmomentsbasedoncensoreddatamaybebiased, inconsistentestimators
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of thecorrespondingmomentsof theergodic processin theabsenceof censoring, thisdoesnotpreventus

from deriving a consistent SMD estimator for θ P . In factwe show that the SMD estimatoris consistent

evenif weuseonly asinglesimulatedrealizationof the
�
S
 s� model.

The asymptotic varianceof the SMD estimator is multiplied by a factor
�
1 � 1( S� whereS is the

numberof simulations.Consequently, thereis anefficiency gain to runningadditionalsimulationssinceit

reducesthevariance of theestimator. However the“penalty” to forminganSMD estimator basedon only

a singlerealization appearsrelatively small: theasymptotic variance is only twiceaslargeasthevariance

of anestimatorthateliminatesall simulationnoiseby letting S R ∞. This increasein varianceseemssmall

in comparisonto the substantial reduction in computational burdenfrom usingonly a singlesimulation

of themodel.Estimation still requiresa nested fixedpoint algorithm to solve for theoptimal
�
S
 s� policy

anda re-simulationof themodelusinga fixedsetof randomshocks(seebelow) eachtime theparameter

θ is updated,so theSMD estimatoris still fairly computationally demanding.Its otherdrawbackis that

it requires the analystto determinean appropriate set of momentsto represent the relevant metric for

assessing thedistancebetweenthepredictionsof themodelandthedata. In principle aninfinite number

of differentmomentconditionscouldbespecified, but only afinite numbercanbeusedin practice.

Let
�
ξt 	 denotethecensored processintroducedin section 3 (i.e. with pt � 0 whenqo

t � 0), andlet θ

denotetheL N 1 vectorof parametersto beestimated.TheSMD estimator is basedonfindingaparameter

valuethatbestfits aJ N 1 vectorof momentsof theobservedprocess:

hT * 1
T

T

∑
t $ 1

h
�
ξt 
 ξt & 1 � 
 (57)

whereJ � K andh is a known (smooth)function of
�
ξt 
 ξt & 1 � that determines the momentswe wish to

match.We includeξt andits lagξt & 1 asargumentsof h in orderto handlesituationswerewearetrying to

fit momentssuchasmeansandcovariancesof thecomponentsof ξt . It is straightforwardto allow moments

that involve morethanonelag: we only includea single laggedvalueof ξt in our presentationbelow for

notationalsimplicity.

By Assumption1, the process
�
ξt 	 is ergodic so that, with probability 1, hT convergesto a limit

E
�
h
�
ξ- 
 ξ � 	 wheretheexpectationis takenwith respectto theergodicdistributionof

�
ξ - 
 ξ � (i.e. thelimiti ng

distributionof
�
ξt � 1 
 ξt � ast R ∞). Undersuitableadditional regularity conditions,acentral limit theorem

will hold for hT , i.e. wehave ]
T �hT � E

�
h	 � � � N

�
0
 Ω �

h�� 
 (58)
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where

Ω
�
h� � E

�
h
�
ξ- 
 ξ � � E

�
h	 � � h� ξ- 
 ξ � � E

�
h	 �_- 
 (59)

wheretheexpectation in (59) is takenwith respectto theergodic distributionof
�
ξ - 
 ξ � .

Now assumeit is possibleto generatesimulatedrealizationsof the
�
ξ t 	 processfor any candidatevalue

of θ, andthat this processis censored in exactly thesameway astheobserved
�
ξ t 	 process is censored,

i.e., with pt � 0 whenqo
t � 0. Thesesimulations dependon a T N 1 vector, u, of IID U

�
0
 1� random

variablesthataredrawn onceat thestart of theestimationprocessandheldfixedthereafter in orderfor the

estimator to satisfy stochasticequicontinuity conditionsnecessary to establishasymptotic normality of the

SMD estimator. Wewill considersimulated processesof theform

�
ξt
���

us	 s) t 
 θ 
 ξ0 � 	I
 t � 2
�M����
 T (60)

wherefor eacht � 1, ξt
��

us	 s) t 
 θ 
 ξ0 � is acontinuously differentiablefunctionof θ. Thenotation
�
us 	 s) t

reflects thefact that thesimulated processis adaptedto therealization of the
�
ut 	 process,i.e. thefirst t

realizedvaluesof
�
ξt
��

us	 s) t 
 θ � 	 dependonly on thefirst t realizedvaluesof
�
us 	 andnotonsubsequent

realizedvaluesof us for s � t. Notethatwe allow thesimulated process to dependon thefirst valueξ0 of

theobserveddataasaninitializing condition.

To show that it is possible to construct suchsmoothsimulators, considerthe unidimensional case

whereξt 2 R1 for all t. Let λ
�
ξt � 1 � ξt 
 θ � denoteits transition densityandP

�
ξt � 1 � ξt 
 θ � bethecorresponding

conditionalCDF. Thefirst valueof thesimulatedprocess is simplysetto theobservedvalueξ0. Usingthe

probability integral transform,we candefineξ1
�
u1 
 θ 
 ξ0 � by:

ξ1
�
u1 
 θ 
 ξ0 � � P& 1 � u1 � ξ0 
 θ � � (61)

Clearly ξ1
�
u1 
 θ 
 ξ0 � will bea continuously differentiable function of θ if P & 1 � u1 � ξ0 
 θ � is a continuously

differentiable function of θ. Now definerecursively for t � 2
 4
���M�
ξt
���

us	 s) t 
 θ 
 ξ0 � � P& 1 � ut � ξt & 1
��

us	 s) t & 1 
 θ 
 ξ0 � 
 θ � � (62)

We canseerecursively thatξt
���

us	 s) t 
 θ 
 ξ0 � will bea continuously differentiable function of θ provided

thatP& 1 � u � ξ 
 θ � is acontinuouslydifferentiable function of ξ andθ.

In thecasewhere
�
ξt 	 is themultidimensionalprocesswith ξt � �

pt 
 pr
t 
 qt 
 qo

t 
 xt � , wecandoasimilar

simulation asin theunivariate casedescribedabove,usinga factorization of thetransition density of
�
xt 	
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into a productof univariate conditionaldensitiessuchasgivenin Theorem4. For example,if ξ t hastwo

components,ξt � �
ξ1 H t 
 ξ2 H t � , supposethatits transition densityλ canbefactored as

λ
�
ξt � 1 � ξt 
 θ � � λ2

�
ξ2 H t � 1 � ξ1 H t � 1 
 ξt 
 θ � λ1

�
ξ1 H t � 1 � ξt 
 θ � 
 (63)

with correspondingconditionalCDFsdenotedby P1 andP2. Now wecangeneratesimulationsof
�
ξt 	 that

will besmoothfunctionof θ justasin theunivariatecase,exceptthatin thetwo-dimensional caseweneed

to generate two randomU
�
0
 1� variables ut � �

u1 H t 
 u2 H t � for eachtime periodsimulated. For exampleto

generateasimulatedvalueof ξ1 � �
ξ1 H 1 
 ξ2 H 1 � we compute

ξ1 H 1 � P& 1
1

�
u1 H 1 � ξ0 
 θ �

ξ2 H 1 � P& 1
2

�
u2 H 1 � ξ1 H 1 
 ξ0 
 θ � � (64)

Clearly, the resulting realization for ξ1 is of the form ξ1
�
u1 
 ξ0 
 θ � andwill be a smoothfunction of θ

providedthatP1 andP2 aresmoothfunctionsof
�
ξ 
 θ � . Continuing recursively we have:

ξ1 H t � 1 � P& 1
1

�
u1 H t � 1 � ξt 
 θ �

ξ2 H t � 1 � P& 1
2

�
u2 H t � 1 � ξ1 H t � 1 
 ξt 
 θ � � (65)

The resulting simulations take the form
�
ξt
��

us	 s) t 
 θ 
 ξ0 � 	 andwill be smoothfunctions of θ provided

thatP1 andP2 aresmoothfunctionsof their conditioningarguments
�
ξ 
 θ � .

Now consider usinga single simulatedrealizationof
�
ξt
���

us	 s) t 
 θ 
 ξ0 � 	 to form a simulated sample

momenthT
���

us	 s) T 
 ξ0 
 θ � givenby

hT
���

us	 s) T 
 ξ0 
 θ � � 1
T

T

∑
t $ 1

h
�
ξt
��

us	 s) t 
 θ 
 ξ0 � 
 ξt & 1
��

us	 s) t & 1 
 θ 
 ξ0 ��� � (66)

Let
���

u1
s 	 s) T 
�����M
 � uS

s 	 s) T � denoteSIID T N 1 sequencesof U
�
0
 1� randomvectorsusedto generate the

S independentrealizations of theendogenously sampledprocess
�
ξt
���

ui
s 	 s) t 
 θ 
 ξ0 � 	 , i � 1
���M��
 S. Define

hSH T � θ � astheaverageof S independent timeaverageshT
��

ui
s	 s) T 
 ξ0 
 θ �

hSH T � θ � � 1
S

S

∑
i $ 1

hT
���

ui
s	 s) T 
 ξ0 
 θ � � (67)

Definition 6: Thesimulatedminimum distanceestimator θ̂T is definedby:

θ̂T � argmin
θ O Θ

�
hSH T � θ � � hT ��- WT

�
hSH T � θ � � hT � 
 (68)
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whereWT is a J N J positivedefiniteweightingmatrix.

In order to simplify the asymptotic analysis, we initially assumethat we have a correct parametric

specificationof theendogenoussamplingproblem.Thatis wemake

Assumption2: Theparametric modelintroducedin section 2 is correctly specified,i.e., there is a θ P 2 Θ

such that: �
ξt
���

us	 s) t 
 θ P 
 ξ0 � 	S` �
ξt 	 (69)

thatis,whenθ � θ P , thesimulatedsequenceinitializedfromtheobserved valueξ0 hasthesameprobability

distributionastheobservedsequence
�
ξt 	 .

We believe that it is possible to relaxassumption 2 to allow theparametric modelto bemisspecified,

following ananalysissimilar to thatof Hall andInoue(2002)whocharacterizedtheasymptotic properties

of the GMM estimatorin the misspecified case. We conjecture that their analysis will alsoapply to the

caseof SMD estimationandthat the asymptoticpropertiesof the SMD estimatorthat we derive for the

correctly specifiedcasewill still hold,exceptthatnow θ P is interpreted asthevalueof θ theminimizesthe

distancebetweenthemomentsof the truedatageneratingprocessandtheparametricsimulated process,

wheretheexpectation is takenin thelimit asbothS R ∞ andT R ∞.7

We now sketch the derivation of the asymptotic distribution of the SMD estimator, listing the key

assumptionsandshowing how its asymptotic variancedependson thenumberof simulationsS.

Assumption 3: For any θ 2 Θ the process
�
ξt
��

us	 s) t 
 θ 
 ξ0 � 	 is ergodic with uniqueinvariant density

ψ
�
ξ � θ � givenby:

ψ
�
ξ- � θ � �

"
λ
�
ξ- � ξ 
 θ � dψ

�
ξ �θ � � (70)

DefinethefunctionsE
�
h � θ 	 , ∇E

�
h � θ 	 , and∇hSH T � θ � by:

E
�
h � θ 	 �

"
h
�
ξ- 
 ξ � dλ

�
ξ- � ξ 
 θ � dψ

�
ξ � θ �

∇E
�
h � θ 	 � ∂

∂θ
E
�
h � θ 	

∇hSH T � θ � � ∂
∂θ

hSH T � θ � � (71)

Assumption 4: θ P is identified; that is, if θ a� θ P , then E
�
h � θ 	 a� E

�
h � θ P 	b� E

�
h	 . Furthermore,

rank
�
∇E

�
h �θ 	 � � L and limT Y ∞WT � W with probability 1 whereW is a J N J positivedefinitematrix.

7Whenthereis misspecification,thestandardformulafor theasymptotic covariancematrix whenthemodelis correctly
specifiedwill generallynot beconsistentwhenthemodelis misspecified.However similar to thecaseof maximumlikeli-
hoodestimationof misspecifiedmodels(White,1982),therearealternative estimatorsof theasymptoticcovariancematrix
thatareconsistentwhenthemodelis misspecified.
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The consistency of the SMD estimatorcanbe establishedby providing appropriate regularity con-

ditions underwhich the simulated processis uniformly ergodic, i.e., underwhich with probability 1 we

have

lim
T Y ∞

sup
θ O Θ

�
hSH T � θ � � hT ��- WT

�
hSH T � θ � � hT � � �

E
�
h � θ 	 � E

�
h � θ P 	 ��- W �

E
�
h � θ 	 � E

�
h � θ P 	 � � 0� (72)

Assumption3 guaranteesthat theuniqueminimizerof
�
E
�
h � θ 	 � E

�
h � θ P 	 � - W �

E
�
h � θ 	 � E

�
h � θ P 	 � is θ P ,

and this combinedwith the uniform consistency result implies the consistency of θ̂T . The asymptotic

normality of θ̂T canbeestablishedby aTaylor series expansion of thefirst ordercondition

�
hSH T � θ̂T � � hT � - WT∇hSH T � θ̂T � � 0� (73)

ExpandinghSH T � θ̂T � aboutθ � θ P wehave

hSH T � θ̂T � � hSH T � θ P �+� ∇hSH T � θ̃T � � θ̂T � θ P � 
 (74)

whereθ̃T denotes a vectorthatis (elementwise)on theline segmentbetweenθ̂T andθ P . Substituting (74)

into thefirst ordercondition for θ̂T in equation(73)andsolvingfor
�
θ̂T � θ P � we obtain

�
θ̂T � θ P � � � ∇hSH T � θ̃T �_- WT∇hSH T � θ̂T � & 1 ∇hSH T � θ̂T ��- WT �hSH T � θ P � � hT � 
 (75)

wherewe assumethat ∇hSH T � θ̃T � - WT∇hSH T � θ̂T � is invertible, which will be thecasewith probability 1

for sufficiently largeT dueto assumptions3 and4. Now multiply bothsidesof equation (75) by
]

T and

applya Central Limit theorem to thedifference
]

T � hSH T � θ P � � hT � to obtain

]
T �hSH T � θ P � � hT � � � N

�
0
 � 1 � 1( S� Ω �

h
 θ P �� � (76)

Tounderstandthisresult, notethathSH T � θ P� isanaverageof Sindependentrealizationsof
�
ξt
��

us	 s) t 
 θ 
 ξ0 � 	 ,
which by assumption2 hasthesamedistribution as

�
ξt 	 . As a result eachof thetermsentering hSH T � θ P � ,

hT
���

ui
s	 s) T 
 θ P � , hasthesameprobability distribution ashT andaredistributedindependently of hT . The

CentralLimit Theoremappliedto hT yields

]
T �hT � E

�
h � θ P 	 � � � N

�
0
 Ω �

h
 θ P ��� � (77)

Similarly, for eachi � 1
�M����
 Swe have

]
T hT

��
ui

s	 s) T 
 θ P � � E
�
h � θ P 	 � � N

�
0
 Ω �

h
 θ P ��� � (78)
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Notethat

�hSH T � θ P � � hT � � 1
S

S

∑
i $ 1

� hT
���

ui
s 	 s) T 
 θ P � � E

�
h � θ P 	 � � E

�
h � θ P 	 � hT 
 (79)

sothatwe have ]
T � hSH T � θ P � � hT � � � 1

S

S

∑
i $ 1

X̃i � X̃0 
 (80)

where
�
X̃0 
 X̃1 
�����M
 XS� areIID N

�
0
 Ω �

h
 θ Pc��� randomvectors.It follows immediately that theasymptotic

distributionof
]

T �hSH T � θ Pc� � hT � is N
�
0
 � 1 � 1( S� Ω �

h
 θ Pc��� . Usingthis result andequation (75)wehave

]
T θ̂T � θ P � � N

�
0
 � 1 � 1( S� Λ & 1

1 Λ2Λ & 1
1 � 
 (81)

where

Λ1 � �∇E
�
h � θ P 	 � - W∇ �E � h � θ P 	 �

Λ2 � �∇E
�
h � θ P 	 � - WΩ

�
h
 θ P � W �∇E

�
h � θ P 	 � � (82)

Borrowing from the literatureon generalizedmethodof momentsestimation,theoptimalweightmatrix

W � �Ω �
h
 θ P � � & 1 results in anSMD estimatorwith minimal variance. In this casetheasymptotic distri-

butionof θ̂T simplifiesto:

Theorem 5: ConsidertheSMDestimator θ̂T formedusinga weighting matrixWT equalto theinverseof

a consistentestimator of Ω
�
h
 θ P � . Thenwehave:

]
T � θ̂T � θ P � � � N

�
0
 � 1 � 1( S� Λ & 1 � (83)

where:

Λ � ∇E
�
h � θ P 	 -M�Ω �

h
 θ P � � & 1∇E
�
h � θ P 	 � (84)

Themostimportant point to noteaboutthis resultis that thepenalty to forming anSMD estimator using

only a single realization S � 1 of the endogenously sampledprocess
�
ξt
���

us 	 s) t 
 θ 
 ξ0 � 	 is fairly small.

Thevarianceof theresulting estimatoris only twiceaslargeasanestimator thatcomputestheexpectation

of hT
��

us	 s) T 
 θ � exactly, suchaswould bedonevia MonteCarlointegrationwhenS R ∞.

TheSMD estimatorcanbeimplementedin practiceby solving

θ̂T � argmin
θ O Θ

�
hSH T � θ � � hT ��- Ω̂

�
h
 θ � & 1 �

hSH T � θ � � hT � 
 (85)

where

Ω̂
�
h
 θ � � 1

T

T

∑
t $ 1

εt
�
θ � εt

�
θ �_- (86)
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where

εt
�
θ � � h

�
ξt
���

us	 s) t 
 θ 
 ξ0 � 
 ξt & 1
���

us	 s) t & 1 
 θ 
 ξ0 ��� � hT
��

us 	 s) T 
 ξ0 
 θ � � (87)

Thus,an estimateof the optimal weighting matrix Ω
�
h
 θ � is recomputed eachtime the parameter θ is

updated.

Moreefficient estimatorscanbeobtained by selecting “efficientmomentfunctions” h suchasthescore

of thepartial informationmaximumlikelihoodfunction derivedin section 3. Suchanestimatorcanattain

the Cramer-Raoefficiency boundderived for the PIML estimatorin equation (56). However the score

involvesa ratioof integrals,andit is not clear thatthese integralscanbereplaced by simulation estimates

andstill obtainaconsistentSMD estimator. If accuratenumericalintegralsarerequired,thecomputational

advantageof the SMD estimatoris lost andit may be lesscomputationally burdensometo computethe

PIML estimatordirectly. This is a topic for futurework. Wenotethatthedefinition of theSMD estimator

canbeextendedto allow momentsformedfrom thesegmentedMarkov chain
�
ω i 	 definedin section 3.

This formulation would berequired in thecasewhereh is thescoreof thepartial information likelihood

function, since the componentsof the scoreinvolve the segmentedchainasshown in section3. Using

momentsfrom thesegmentedchaininvolvessomeminormodificationsof theargumentsgivenabove. We

now do theasymptoticsasa function of thenumberof purchasesn rather thanthe total numberof time

periodsT overwhich theprocess is observed. In thiscasewe definethesamplemomentshn by

1
n � 1

n & 1

∑
i $ 1

h
�
ωi � 1 
 ωi � 
 (88)

andthesimulatedmomentshSH n � θ � canbedefinedaccordingly, usingthesimulatedprocess
�
ξt
��

ui
s	 s) t 
 θ 
 ξ0 � 	 ,

i � 1
�M����
 S to constructSIID realizationsof thesegmentedprocess.

Finally, we notethat it is appearsthat it is possible to relax assumption2 that the parametric model

is correctly specified. As long asassumptions3 and4 hold, there will still exist well definedlimiti ng

momentsfor the simulated process,E
�
h � θ 	 , for eachθ 2 Θ. Defineθ P asthe valuethat minimizesthe

distancebetweenthesimulated modelandthetruedatagenerating process:

θ P � argmin
θ O Θ

�E � h � θ 	 � E
�
h	 � - W �E � h � θ 	 � E

�
h	 � 
 (89)

whereE
�
h	 denotesthelimit of hT asT R ∞ for thetruedatagenerating process.If thevalueof θ P that

minimizesthis distanceis interior to theparameter spaceΘ, thenthefollowing first ordercondition must

holdatθ P : �
E
�
h � θ P 	 � E

�
h	 �_- W∇E

�
h � θ P 	S� 0
 (90)
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whereE
�
h	 denotesthe long run or ergodic expectation of h with respectto the true datagenerating

process. This impliesthatast R ∞ therandomvector

Xt * ∇E
�
h � θ P 	 - W �

h
�
ξt
��

us	 s) t 
 θ P 
 ξ0 ��� � h
�
ξt ��� 
 (91)

satisfies

lim
t Y ∞

E
�
Xt 	 � 0

lim
t Y ∞

cov
�
Xt � � Λ2 (92)

for someJ N J covariancematrixΛ2. Howeverin themisspecifiedcase,Λ2 maynotequalthesameformula

astheΛ2 givenin equation (82). Usinga suitable Central Limit theoremfor mixing processes,we should

have ]
T∇E

�
h � θ P 	 - W �hT

��
u	I
 θ P � � hT � � � N

�
0
 Λ2 � � (93)

Following a Taylor expansionargumentjustasin thecorrectly specified caseabove,we shouldbeableto

derive thesamegeneralform for theasymptotic distributionof θ̂T in themisspecified case,i.e.

]
T θ̂T � θ P � � N

�
0
 � 1 � 1( S� Λ & 1

1 Λ2Λ & 1
1 � 
 (94)

where

Λ1 � ∇E
�
h � θ P 	 - W∇E

�
h � θ P 	 (95)

andwhere ]
T∇hT

���
us	T
 θ P ��- WT �hT

���
us	T
 θ P � � hT � � � N

�
0
 Λ3 � � (96)

Themainoutstandingissueis to actually establish thelimiting asymptotic distribution thatis conjectured

in (96) andrelate the asymptotic covariance matrix Λ3 to the asymptotic covariancematrix Λ2 in (93).

As we notedabove,we believe thatresults of Hall andInoue(2002)on GMM estimation of misspecified

modelscanbeadaptedto establish theasymptotic distribution of theSMD estimatorin themisspecified

case. However given the spaceconstraintswe leave this topic, together with Monte Carlo tests andan

empirical application of theSMD estimatorfor amisspecifiedmodel,asa topic for subsequent research.

5 Empiric al Application

To illustratethesimulatedminimumdistance estimator, we considera specialcaseof themodelin which

thereareno additional state variables,x. In this case,the
�
S
 s� bandsareonly functionsof the current
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wholesale price,S
�
p� ands

�
p� . We first estimate the modelusingdatagenerated from themodelitself.

In this case,we know themodelis correctly specified,andwe know the trueparameter vector. Second,

we estimate the model twice usingactual datafor two productsfrom the steelservice center. Finally,

we decomposethe firm’s profits by productinto four components.We usethis decomposition to infer

theshareof thefirm’s profits thataredueto markupspaidby retail customersandthesharedueto price

speculation. Wealsousethisdecomposition to comparethegeneral manager’spurchasingdecisionsto the

model’s trading rules.

5.1 A specialcaseof the model

Consideraversionof themodelin which thefirm’sgeneral managersolvesthefollowing problem:

maxd
qo

t e E
∞

∑
t $ 0

ρt pr
t q

s
t � co � qo

t 
 pt � � ch � qt � qo
t 
 pt � (97)

subjectto (3) and(4), andwhere

co � qo
t 
 pt � � ptqo

t � K if qo
t � 0

0 otherwise,
and

ch � qt � qo
t 
 pt � � φ

�
qt � qo

t � 2 �
As before, the managertakesthe wholesale price pt andquantity demandedqr

t asgiven. The manager

knows pt before deciding qo
t . The managerthendraws qr

t . The ordercostfunction, co �
Q 
 Q � andholding

cost function, ch �
Q � , aredescribed in section 2. The holding cost function is quadratic so the marginal

convenienceyield is decreasingin thelevel of inventories.

We assumethewholesalepriceevolvesaccording to a truncatedlognormal AR
�
1� process:

log
�
pt � 1 � � µp � λplog

�
pt �+� wp

t (98)

wherewp
t is an IID N

�
0
 σ2

p � sequence.If we let µ̄p and σ̄p denotethe uncensored meanandstandard

deviation of thewholesaleprice distribution,we cancompute

σ̃p � log
�
σ̄2

p � µ̄2
p � � 2log

�
µ̄p � � (99)

Usingσ̃p wecancomputeµp andσp by:

µp � �
1 � λp � � log

�
µ̄p � � σ̃2

p ( 2� and σp � σ̃p
N 1 � λ2

p � (100)
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Thefirm setstheretail price by usingafixedlinear markupruleover thecurrent wholesaleprice:

pr
t � α0 � α1pt � (101)

Thefirm drawsaquantity demandedqr
t eachperiod from amixedtruncatedlognormaldistributioncondi-

tional on pt That is, with probability η, qd
t � 0, andwith probability 1 � η, qd

t is drawn from a truncated

normaldistributionwith location parameter µq
�
p� � µp � ςlog

�
pt � . Bothς, thepriceelasticity of demand,

andη arefixed,time-invariantconstants.

Let µ̄q andσ̄q denotetheunconditional meanandstandarddeviation of thequantity demandeddistri-

bution. Wecancompute

µ̃q � log
�
µ̄q � � σ̃2

q ( 2 and σ̃q � log
�
σ̄2

q � µ̄2
q � � 2log

�
µ̄q � �

Thenthemeanandstandard deviation of quantity demandedconditionedon pt anda sales occurring, µq

andσq, arecomputedby:

µq � µ̃q � ς N µp ( � 1 � λp � and σq � σ̃2
q � ς2 N σ̃2

p ( � 1 � λ2
p � �

Finally θ denotesthe
�
L N 1� parametervectorto beestimated:θ � �

K 
 α0 
 α1 
 λp 
 µ̄p 
 σ̄p 
 µ̄q 
 σ̄q 
 ς 
 φ 	I�
5.2 Computation

The SMD estimation procedurerequiresus to solve for the optimal inventory investmentrule eachtime

we evaluatethe criterion for a new parametervector. We solve the modelby the methodof parameter-

izedpolicy iteration(PPI).ThePPIalgorithm involvesapproximating thevaluefunction V
�
p
 q� givenin

equation (11)asa linearcombination of N basisfunctions,
�
ϕ1

�
p
 q� 
 ϕ2

�
p
 q� 
��K�f�g
 ϕN

�
p
 q� 	 :

V
�
p
 q�Fh

N

∑
n$ 1

ϑnϕn
�
p
 q� � (102)

WediscretizethestatespaceintoM pairs
�
p
 q� , andwedenotethemth pairby

�
pm
 qm� . Thuswetransform

thevaluefunction into asystemof M linear equationswith N unknowns
�
ϑ1 
 ϑ2 
�g�f�g�K
 ϑN 	 :

N

∑
n$ 1

ϑnϕn
�
pm
 qm � � max

0 ) qo ) q & qm

ES
�
pm 
 qm� � co � qo 
 pm� � ch � qm
 pm � �

ρE
N

∑
n$ 1

ϑnϕn
�
p- 
 max�0
 qm � qs � qo� � � pm
 qm for m � 1
��f�g�K
 M. (103)
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As thenamesuggests, PPIemploys an iterative strategy to find theN coefficientson thebasisfunctions

thatsolve thesystemof equationsin (103).Givenaninitial guessof thecoefficientvector, ϑ, wesolve the

two-periodproblemontheright-handsideof (103)for eachdiscretizedpair
�
p
 q� . Thisyieldsan

�
M N 1�

vectorcontaining thecurrentestimateof theoptimaldecision rule qo � p
 q� at eachgrid point
�
p
 q� . Note

thatalthoughwediscretizedthestatevariables,qo is acontinuousvariablesubjectto thefrequently binding

constraint: 0 E qo
i E q̄ � q.

Usingthedecision rulevector, we construct two
�
M N N � matrices, P andEP, with elementsPmH n and

EPmH n givenby:

PmH n � ϕn
�
pm
 qm�

EPmH n � E ϕn
�
p- 
 qm � qs � qo � pm
 qm ��� � pm 
 qm �

Definethe
�
M N 1� vectory with themth elementgivenby

ym � ES
�
pm 
 qm� � co � qo � pm
 qm � 
 pm� � ch � qm
 pm� 


andlet the
�
M N N � matrixX begivenby X � �

P � ρEP� . Thenthesystemof equations(103)canwritten

in matrix form asy � Xϑ. If M � N andX is invertible, thesolution for ϑ is simply ϑ̂ � y( X. If M � N,

we form anapproximatesolution usingordinary leastsquaresestimation,i,e. ϑ̂ � �
X - X � & 1X - y. Using ϑ̂

asour updatedcoefficient vector, we iterateon this procedureuntil thecoefficient vectorconverges to a

fixedpoint.

We approximated the value function by a completeset of Chebychev polynomials of degree3 in

p andq (so N � 10). We discretized the state spaceinto 225
�
p
 q� pairs choosing 15 discretevalues

for p and15 discrete valuesfor q. The grid pointsarefixed at the Chebychev zeros,so they aremore

heavily weightedtoward the boundaries of the statespace.This parameterization of the valuefunction

doesnot guaranteeconcavity of the valuefunction; nevertheless,for the problemat handwe foundPPI

to be relatively accurate, robust, andfastcomparedto alternative solutionmethods.SeeBenitez-Silva,

Hall, Hitsch,Pauletto,andRust(2001)for detailedcomparisonsof thePPIalgorithm with othersolution

techniquesfor avariety of different models.

5.3 Estimation

Wehaveconsiderablefreedomin ourchoiceof momentsfunctions,theh vector, to usein thecriterion. As

discussedabove,themostefficient momentfunctionswecouldusewouldbethescoreof thepartial infor-

mationmaximumlikelihoodfunction derivedin section 3. Howevergiventhedifficultiesin computingthe
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high dimensional integralsinvolved in evaluatingthescore,we insteadmatchthemeansandhistograms

(four of thefivequintile bins)of the p, pr , qo, qs, andq processes for a totalof 25momentconditions.We

setthenumberof simulations,S, to 10.

Computinghistogrambinsrequirestheuseof indicator functions.However indicatorfunctionswould

create discontinuities into thecriterionfunction,sowe usedlogistic transformsof theindicator functions,

approximatingI
�
x E y	 by thelogistic functionexp

�T�
x � y�( σ � 	 ( � 1 � exp

�I�
x � y�( σ 	 � for asmallpositive

numberσ. Theresulting estimationcriterion is asmoothfunctionof theparameters,asdiscussed in section

4. However, in or simulationswe did not allow for unobserved IID componentsεt to thewholesale order

price pt asdescribed in section 3. Without thesmoothing providedby theε’s, theestimation criterion is

no longerguaranteedto becontinuouslydifferentiable. Thereason is thateven thoughthes
�
p� function

is a continuously differentiable function of θ, small shifts in s
�
p� canhave a discontinuousimpacton

simulated orders. For examplea small changein θ that shifts a given point
�
p
 q� from beingabove the

s
�
p� bandto below it would result in a discontinuousshift in simulatedpurchasesfrom 0 to S

�
p� � q. In

fact, we did find regionsin the parameter spacein which concentrated“slices” of the criterion function

had“steps” and“clif fs.” However, asyou canseefrom figure 3, therearerelatively few pointsthat are

nears
�
p� at low priceswherethe gap betweenS

�
p� ands

�
p� is large. Most simulated pointsareclose

to s
�
p� only at high priceswhereS

�
p� is very closeto s

�
p� andthusthe potential discontinuity caused

by shifts in s
�
p� is small. With the additional help from the averagingthat occursin formulating the

simulatedmoments,we observedthat theestimation criterionappearedto besmoothfor mostparameter

values.To guardagainstpossiblediscontinuitiesor local minima,we employedMATLAB’ s constrained

minimization routinefmincon.m, andwe visually inspectedconcentratedslicesof thecriterion function

after eachestimation. However we acknowledgethat even thoughplots of the objective appearto be

smooth,theremaybe“microscopic” discontinuities in theslopesin thecriterionthatmayberesponsible

for unusuallysmallestimated standard errorsthatwediscussbelow.

As presentedin equations(86) and(87) of theprevioussection, the inverseof theoptimal weighting

matrix, Ω̂
�
h
 θ � is thevariance-covariance of theresidualsfrom thesimulation sequence. However if the

modelis correctly specified, thenwhenθ � θ P , thesimulatedsequencewill have theprobability distribu-

tion astheobservedsequence;thereforewe useinverse of thevariance-covariance matrix of theresiduals

of theobservedsequenceasourweightingmatrix,W, wheretheresidualsaregivenby ε t � h
�
ξt 
 ξt & 1 � � hT

whereht is thesamplemeangiven in formula (57). Sincethis weighting matrix is just a function of the

samplemoments,it remainsfixedthroughouttheestimation.
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Simulation1 Simulation 2 Simulation3
parameter truth point standard point standard point standard

estimate error estimate error estimate error
K 100 108.6 11.6 138.7 16.5 87.4 10.5
α0 1.50 1.46 0.66 1.80 0.47 1.45 0.45
α1 1.15 1.13 0.04 1.11 0.03 1.20 0.03
λp 0.990 0.991 0.0003 0.989 0.0007 0.990 0.0003
µ̄p 19.50 20.06 0.60 20.10 0.49 19.78 0.55
σ̄p 5.60 6.39 0.29 6.18 0.27 5.33 0.30
µ̄q 150.0 137.1 6.5 157.1 4.7 130.3 3.6
σ̄q 300.0 363.5 25.2 270.3 12.1 250.5 11.4
ς 1.50 1.31 0.17 1.41 0.17 1.62 0.21
φ -2.5 -2.69 1.36 -1.87 1.37 -2.67 1.01
r 0.075/365 0.075/365 0.075/365 0.075/365
η 0.35 0.35 0.36 0.33

χ2 � 15� 381 187 217

Table1: Estimation resultsondatagenerated by themodel.
Two parameterswerefixedprior to estimation. Thedaily interestrate,r, wassetto 0.075/365,andthefractionof daysin which
quantity demandedis zero,η, wassetto 1 ;i� ∑ I � qs

t j 0���kC T.

In our initial exercise, there aretwo setsof simulations: first, we fixed the parameter valuesin the

modelto thosein secondcolumnof table 1; we solved the modelandcreated threesimulateddatasets

of 1191periods from the model; secondusingthesesimulated datasets,we estimatedthe modelusing

our simulated minimum distanceestimator. The point estimatesandstandard errors for eachof the ten

parameters arereported in table1. Prior to estimation,we settheinterestrateequalto its’ truevalueand

η equalto thefraction of daysin whichnosaleoccurred.

Thequantity dataarein hundred-weight(i.e. in 100’sof pounds)sothepriceparametersarein dollars-

per-hundredweight(or centsperpound).Thefixedcost, K, is setto $100perorder. Theparameterchoices

for µ̄p andσ̄p imply theuncensoredpriceprocesshasa meanof $17.60perhundred-weightor 17.6cents

perpoundanda standard deviation of $3.70dollars perhundred-weight. Theparameter valuesof µ̄q, σ̄q

andς imply theaveragesaleis 107hundred-weightor 1,070pounds.Theinterestrater is setto 7.5percent

perannum.Thestoragecostnetof convenienceyield, φ is set-2.75dollars persquared hundred-weight,

sotheconvenienceyield dominatesthestoragecost.

For mostof theparameters,thepointestimatesseemreasonablycloseto theirtruevalues.For example,

all threeof the point estimates of the AR(1) coefficient of the wholesale price process, λ p, arewithin

two-tenths of onepercentof the true value. All threepoint estimatesof the fixed cost,K, aresensible
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particularly giventhedifficulty in estimatingK. Thefixedcostof ordering largely determines thedistance

betweentheSandsbandsandthustheminimumordersize. To accurately identify thisfixedcostrequires

numerousobservationsof daysin which thefirm is holdinginventory levelscloseto s particularly at low

prices. Giventherelatively few daysthefirm purchases,particular at low prices,therearevery few days

thefirm holdsinventoriescloseto s.

While we feel the SMD estimator deliverssensible point estimates, only two-thirds of the point es-

timatesarewithin two standard errors of the true values.Several of the numerical standard errors seem

implausibly small,particularly giventhevariation in thethreepoint estimates. For example,thestandard

deviationsof thethreepoint estimatesfor K andλp areconsiderably larger thantheir estimated standard

errors. Moreover, theestimation procedureprovidesa formal criterion of thevalidity of model.Sincethe

numberof momentconditionsexceedsthenumberof parametersestimated (J � L) themodelis overiden-

tified. Following Hansen(1982),weusetheobjective functionto testtheoveridentifying restrictions:

T�
1 � 1( S� 2

�
hSH T � θ̂ � � hT �_- Ω̂

�
h� & 1 �

hSH T � θ̂ � � hT �FR χ2 � J � L � (104)

In bottomrow of table 1 we report thevalueof this χ2 statistic for eachof threeestimates.In eachcase,

themodelis decisively rejected.Thesmallstandard errorsandthelargeChi-squaredstatisticsmaybedue

to smalldiscontinuitiesin theestimation criterion,a result of our failureto accountfor unobservablecom-

ponentsεt of orderpricespt . Theseresults suggestthatalthough theconsistency of theSMD estimatoris

not jeopardizedby smalldiscontinuities,theestimatedcovariancematrixandstandard errorsmaybemuch

moresensitive to small discontinuitiesin the simulated moments.In futurework we plan to investigate

how discontinuities couldaffect theasymptotic propertiesof theSMD estimator, but this investigation is

beyond the scopeof this paper. Our results suggestthat in the absenceof an asymptotictheorythat ac-

countsfor discontinuitiesin theestimationcriterion,it maybeimportantto includeunobservablessuchas

εt in thesimulationsin orderto smoothout thesediscontinuitiesin orderto obtain consistentestimatesof

theasymptotic covariancematrix.

We now estimatethemodelfor two products independently. In table2 we reportthepoint estimates

andstandard errors for theparametersof themodelfor productswe call product2 and4. As before, the

interestrater, andη arefixedprior to estimation: r is setto 0.075/365.Wedid notattemptto estimatethe

parameter η alongwith theotherparameters.Insteadweusedaninitial consistentestimatorof η equalthe

fraction of daysno saleoccurred. Thegeneral managerwould not provide usspecific dataon thefirm’s

borrowing andlending(many salesinvolve tradecredit), but told usthatoneandthree-quarterpointsover
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Product2 Product4
parameter point standard point standard

estimate error estimate error
K 39.2 6.1 59.6 6.9
α0 1.33 0.98 0.99 1.10
α1 0.98 0.04 1.10 0.05
λp 0.992 0.0006 0.984 0.003
µ̄p 24.40 0.66 18.55 0.60
σ̄p 7.98 0.25 4.83 0.41
µ̄q 215.2 7.7 301.8 6.9
σ̄q 747.6 41.8 496.5 31.1
ς 1.48 0.20 0.92 0.15
φ -2.70 3.65 -2.72 2.74
r 0.075/365 0.075/365
η 0.34 0.34

χ2 � 15� 522 334

Table2: Estimation Results usingdatafor product2 andproduct4.
Two parameterswerefixedprior to estimation. For bothproducts, thedaily interestrate,r, wassetto 0.075/365;for eachproduct
individually, thefractionof daysin whichquantity demandedis zero,η, wassetto 1 ;Z� ∑ I � qs

t j 0���kC T.

ashort-termLIBOR ratewasagoodestimateof theinterest rate they faced. Theaverage3-monthLIBOR

rateover theperiod studiedis about5.75,which implies anaverageannualborrowing ratefor thefirm of

about7.5%.

Althoughwe estimated theparameters for eachof theseproducts independently, it is reassuringthat

several of the point estimates are similar acrossthe two products. It is reasonable to expect that the

parameters,K, α0, α1, λp, ς, andφ to bequitesimilar, if not identical, acrossproducts.8 In general this is

case.After we estimatedthemodels,we askedthegeneralmanagerwhatheestimatedthefixedcostsof

placinganorderto be(thisfixedcostcorrespondsto theparameterK in ourmodel).His estimatewas$50

– themidpointof our two estimates.Themainfixedcostto ordering is thevalueof thegeneral manager

andhisadministrative assistant’s time in takesto completethepaperwork.

Themarginal costof storageparameter, φ, is negative for bothproductssothemarginal convenience

yield dominatesthephysical costsof storage.Thisresultis consistentwith theobservationin thecommod-

ity storage literaturethatnegative storagecostsareakey determinateof theautocorrelation in commodity

prices. We experimentedwith variousfunction formsfor theholdingcostfunction andstock-outpenalty

functions. If the marginal valueof holding inventories is small when inventoriesarecloseto zero(i.e.

8Wecouldhaveestimatedthemodeljointly acrossthetwo products,constrainingthesevalueto beequalacrossproducts.
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Figure3: Scatterplotof purchasepriceandinventory holdingpairs from a simulation for product4. The
solid linesaretheS

�
p� ands

�
p� bandsfrom themodel.

whenthewholesalepriceis high), theoptimalstrategy is for thefirm to effectively shutdown by holding

no inventoriesuntil thewholesalepricefalls. In otherwords,thes
�
p� bandequalszerofor p greater than

somethreshold. Whilewedoobservenear-zerolevelsinventoriesin thedatafrom timeto time,thesenear

stockout levelsdonotpersist for morethanafew days.If themarginal valueof holdinginventoriesis “too

large” evenwhenthefirm is holding largelevelsof inventories,themodelimpliesthefirm should(coun-

terfactually) alwayshold inventoriesnearits capacity constraint. Hencewe foundhaving someconvexity

in theholding costhelpful in matchingmeanandspreadof inventoriesholdingsweseein thedata.

Theendogenoussamplingproblem is illustrated in figures3, 4, and5. In figure3 we plot we theS
�
p�

ands
�
p� bandsderived from the optimal decisions rulesfor the manager’s problem usingthe estimated

parameter vectorfor product 4. Dueto thefixedcostsof ordering, theS
�
p� bandis strictly above thes

�
p�

bandalthough thedifferencebetweenthetwo bandsdecreasesasthepriceincreases.In otherwords,the

minimumordersizeis adecreasing function of theprice. In figure3 wealsoscatterplotasetof simulated

statespacepairs(pt 
 qt). According to thefirm’soptimaltrading rule,thefirm only makespurchaseswhen

the
�
pt 
 qt � pair is below thes

�
p� band(in thesouthwestcorner of thegraph).In thesimulationpresented,

thisoccurslessthan16percentof time.
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Figure4: Simulatedinventory datafrom theestimated
modelfor product4.
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Figure5: Censored(solid line) anduncensored (dot-
ted line) purchaseprices, pt from a simulation for
product 4.

In table 2 we also report the minimizedSMD estimation criterion. Although both modelsare for-

mally rejected,themodelsat theestimated parametervaluescapture severalof thesalient featuresof the

inventory andpricedata. facts of inventory investmentbehavior thatwe observe in our data(for further

discussion, seeHall andRust,1999).Figures3, 4, 5 highlightsomeof thestrengthsof themodel.First, in

thedatapurchases aremadeinfrequently. Figure5 presents thecensored anduncensoredpurchaseprice

series, pt . Thesolid line is theanalogof whatwe observe in thedata:we linearly interpolated between

the pricesat which transactions took place; the dottedline includesthe unobserved pricesat which no

transactionsoccurred. During periodsof low prices(e.g. days100-200,350-400and750-800)the firm

aggressively madepurchasesto build up large levelsof inventories. The large levelsof inventorieswere

slowly drawn down aspricesinevitably rose. Notetherewereonly four purchasesmadebetweenbusiness

days200and320.Thusafterexploiting a low price opportunity, thefirm maysubsequently make no new

purchasesfor many days.Second,we observe bothsmallandlargepurchasesin thedata.Again this can

beenin bothgraphs.In figure3 whenthe
�
pt 
 qt � pair (dot) is below thes

�
p� band,thesizeof theorderis

thevertical distancebetweentheS
�
p� bandandthe

�
pt 
 qt � pair(dot). Whenthepurchaseprice is lessthan

16centperpound,weobservebothlargeandsmallorders.Whenthepurchasepriceis above18centsper

poundwe only observe smallorders. In figure5, thesizeof themarker is proportional to thesizeof the

purchase. Again oncecanseethatthemodelpredictsrelatively large purchaseswhenthepriceis low and

relatively smallpurchaseswhenthepriceis high. Third, in thedataweobserveperiodsof with high levels

of inventoriesandperiodswith low levelsof inventories.Fromthescatterplot in figure3 andthetimepath
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of inventoriesplottedin figure4 wecanseethatthemodelpredicts thatinventory levelswill varyover the

samplebetween almostzeroand2.0million pounds.

The main shortcoming of the estimation is our inability to matchthe downward trendof the price

processthatwe seein almostall of thefirm’s products. As illustrated in 2 thewholesalepricefor product

4 fell from 20 centsperpoundin 1997to about12 centsperpoundin 2002. No suchtrend is evident in

simulationssuchastheonepresentedin figures4 and5. In ourmodel,pricesarestationarythoughhighly

persistent.Consequently, ascanbeenseenin the
�
S
 s� bandsplottedin figure3 theoptimaldecision rules

imply counterfactually thatthefirm shouldmake only smallpurchases andhold low levelsof inventories

whenevertheprocurementpriceis above17centsperpound.Fromfigures1 and2 weseethat,for product

4, the firm madelarge purchasesaround18.5centsper poundin April 1998,andaround15 dollars per

hundred-weightin thelaterpartof thesample.

An oftensuggestedsolution to this trendproblemis thatwe assumethatthelog of steelprices follow

a randomwalk. For product4, if we concentrateout all the otherparameters except λ p, the criterion

surface is a steeply slopedandsmoothcupcenteredaround0.984so thesmall standarderrorassociated

with the AR(1) coefficient is not surprising. But the concentratedcriterion surfaceactually turnsdown

slightly between.995and1.01. (Themodelstill solvesnumerically for valuesof λ p slightly greater than

one.) The global minimum is still locatedat 0.984,but thereappears to be a local minimum just above

1.00.However if weassumethelog priceprocessfollowsa(truncated)randomwalk, theoptimaldecision

rulesimplies frequent small-to medium-sizeorderssuchthattheinventory level fluctuatesclosely around

a fixedtarget level. A versionof themodelwhich assumeslog
�
pt � follows a randomwalk will not imply

thelargevariation in inventory holdingsthatwe seein thedata. A secondpotential solution is to detrend

thedata.However whenwe first startedworking on this project, no onewe talkedto expected steelprice

to decline 40%in four years.To someextentwe arejust working with too shorta sampleperiod.A third

candidate solution is to addanadditionalmacroeconomic state variable. Sucha variablecouldallow for

“high price” regimesand“low price” regimes. As we discuss below, we view this third solution asthe

mostpromising.

5.4 A profit decompositionexercise

Finally, weusesimulationsof theestimatedmodelto deducetherelativeimportanceof capital gainsversus

markupsfor theoverall profitability of thefirm. By substituting thelaw of motionfor inventories(4) into
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thefirm’sobjective function, (97), thediscountedpresent valueof thefirm’sprofitscanbeexpressedby

T

∑
t $ 0

ρtπ
�
pt 
 pr

t 
 qr
t 
 qt � qo

t � �
T

∑
t $ 0

ρt � pr
t � pt � qs

t � q0p0 �
T

∑
t $ 1

ρt � pt � �
1 � r � pt & 1 � qt �

T

∑
t $ 0

ρt I
�
qo

t � K �
T

∑
t $ 0

ρtch � qt � qo
t 
 pt � (105)

Thefirst termontheright handsideof equation (105)canbeinterpreted asthediscountedpresentvalueof

themarkuppaidby thefirm’s retail customersover thecurrent wholesalepricewhile thethird termcanbe

interpretedasthediscountedpresentvalueof thecapital gainsor lossfrom holdingthesteel from period

t � 1 into periodt. Thefourth,andfifth termsarethediscountedpresent valuesof theordercostsandthe

holdingcostsincurredby thefirm over thesampleperiod.

Sincethisdecompositiondependsonthewholesalepricepathbetweenpurchases,wesimulatebetween

purchase datesvia importance sampling.Thatis, for eachinterval betweensuccessive purchase dates, we

simulate wholesale pricepathsthatareconsistentwith theestimatedlaw of motion(98) andtheobserved

purchase prices at thebeginningandendof the interval. Sinceour theoryimplies that thefirm placesan

orderanytimethequantity fallsbelow theorderthreshold,s
�
p� , wetruncatethesimulatedpriceprocessby

rejecting any pathssuchthatqt � s
�
pt � for any draw within thesimulatedpaths.Wediscussoursimulation

methodin moredetail in theappendix.

Wefirstemploy thisdecomposition to evaluatethegeneral manager’sactualperformanceoverthefour-

and-a-half yearsampleperiodfor products2 and4. For a giveninterpolated price series, we decomposed

thefirm’sprofitsusingtheactualdatafor qt , qs
t , andqo

t , ourfixedvaluefor theinterestrate, r, andourpoint

estimatesfor K, andφ. In table3 wereporttheaveragedecomposition from 100simulatedwholesale price

paths.As discussedin the introduction,theprice of steelfell steadily over thesampleperiod. Never the

less,by our accounting, thefirm made$375,000(product2) and$435,000(product 4) from themarkup

andcapital gainson eachof thesetwo productover the four-and-a-half yearperiod.9 Ignoring thefixed

ordercostandthereturnsfrom theconvenienceyield,about71percent(product2) and85percent(product

4) of theseprofitscamefrom themarkup,while theremaining29and15percentcamefrom capital gains.

We find it remarkableandevidenceof thegeneral manager’s acumenin steeltrading that thefirm made

positive capital gainsover this perioddespitethepriceof steelfalling about40 percent. While thefirm’s

successin pricespeculatingis goodfor its profits,it increasesthepotential biases from failing to account

for theendogeneity of thesamplingprocess.

9Profitsarediscountedbackto July1, 1997.
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As a diagnostic of our model,we comparethegeneral manager’s performanceto themodel’s predic-

tions. In this exercisewe take asgiven the 100 interpolatedwholesale price series, the firm’s quantity

demandedseries,andthe firm’s initial level of inventories for eachproduct. But in this case,we let the

model’soptimaldecision ruledictatewhenandhow muchto order.10 Inventoriesfollow theaccumulation

identity givenby equation (4). As reported in table3, hadthegeneralmanagercounter-factually followed

theoptimalorderstrategy implied by our model,hisdiscountedprofitsfrom themarkupwould have been

modestlysmaller:$2,000lessfor product2; $23,000lessfor product4. However, hiscapitalgainswould

havebeenconsiderably larger:$63,000morefor product2; $225,146morefor product4.

The model implies that the firm shouldaggressively price speculate. In figures6 and7 we plot the

prices andinventory holdingsfor onesimulation of themodel. In figure6 we plot boththeactualinven-

tory holdingsalongwith the implied holdingsunderthe model’s decision rules. In figure 7 we plot the

correspondingretail andwholesalepricepaths.Themodel’scounter-factual inventory pathdiffersconsid-

erably from thefirm’s actualinventory path. In thebeginning of thesample,years1997and1998,when

priceswerehigh,themodelimpliesthefirm shouldhavemadefrequentsmallpurchasesandheldrelatively

low levelsof inventories.As wasdiscussedin theintroduction,in April 1998whenthewholesalepriceof

steeldroppedfrom 20centsperpoundto 18.5centsperpound,thefirm built up its inventory of product4

substantially. In contrastthemodeldoesnot view 18.5centsasa particularly goodprice; ascanbeseen

in the
�
S
 s� bandsplottedin figure3, thetarget inventory level at18.5centsis around300,000pounds.In

April 1998,thefirm’s inventory of product 4 exceeded2,000,000pounds.

It is not until December1999whenpricesfell below 13 centsa poundthat the modelrecommends

holdingmorethan1,000,000poundsof inventory. HoweverduringDecember1999andJanuary 2000,the

generalmanagerlet his inventory of product4 fall to almostzero. The sharpcontrastbetweenmodel’s

counter-factualinventory policy andthefirm’s behavior is alsoevidentduringthesecondhalf of thesam-

ple. In this period, thefirm held relatively low levelsof inventories,whereasthemodel’s inventory was

oftenin excessof 2,000,000pounds.Theonly timeduringthesamplethatthemodel’s inventory holdings

trackedwell thefirm’s inventory holdingswasin thefirst half of 2001.Basically, themodelrecommends

thefirm’s purchasing strategy shouldhave beentheopposite of whatit did: thefirm should have heldlow

inventory levelsin 1997,1998and1999,andhigh inventory levelsin 2000,2001,andthestart of 2002.

10We placedoneadhoc restriction on our decisionrule. In mid-December2000,theG.M. hadanopportunity to buy a
limited quantity of products2 and4 for a litt le over 10 centsper pound. The G.M. boughtasmuchashe could at these
prices.Ourmodeldictatedthatheshouldhavepurchasedlargequantitiesat theseprices.For thecounter-factualexperiment
we constrainedthemodelpurchasenomoresteelthanwe actuallyobserveon thesedates.
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This counter-factualexerciseis “rigged” in themodel’s favor in onedimensionand“rigged” against

the model in another. Sincewe usedthe entiresampleperiod to both estimatethe modelandevaluate

themodel’s performance,themodel“knows” themeanandthestandard deviationsof pricesandquantity

demandedfor theentireperiod.Themodelknows,whereasthegeneral managerdid notknow, thataprice

of 18.5cents perpoundin theSpringof 1998wasanabove-averageprice for the1997-2002period. In

this way themodelhasanadvantageover themanager. However themodelis constrainedto sell at most

thequantity of steelthegeneralmanageractually sold. Themodeldoesnot gettheopportunity make any

salesthegeneral managermighthave hadtheoptionto make but decidedto turndown.

While we do not reportan out-of-samplecomparison betweenour modelandthe general manager,

if we hadestimated the model throughthe Fall of 2001,andthenusedour model to dictate purchases

for the firm for the Winter and Spring of 2002, our model would still have outperformedthe general

manager. In the Fall of 2001,the firm waspurchasing steelaround10 to 12 centsper pound. We told

thegeneral managerat thattime thatour modelrecommendedbuilding up inventoriesat theseprices. He

did not follow this advicesincehe anticipatedfurther price declines. He argued(andto be honest,we

did not disagree)thatour modeldid not take into accountthepotential slowdown in theeconomyin the

wake of the terrorist attack of September11, 2001thatheexpectedto reducedemandfor steel. He also

expectednew production capacity from the Nucor Corporation to put additional downward pressure on

prices. However, with thebankruptcy of BethlehemSteelin October2001aswell asboththeanticipation

of anincreaseandtheactual increasein steel tariffs imposedby PresidentBushin March2002,steelprice

increasedabout20 percentin the Springof 2002to the 12 to 14 centrange. In the Springof 2002,we

remindedthegeneral managerthatin thefall ourmodelrecommendedhebuild up inventories.Hesighed,

“I wish I had.”

In thiscase,ourmodel“got it right” but perhapsnotfor theright reasons.Ourmodelwaspredictingan

increasein pricessinceourmodelalwaysexpectspricesto return to thesamplemean.Ourmodeldoesnot

useinformationonwheretheeconomyis goingasacovariate for predicting steelpricesor steelsales. For

example,thereis no way for our currentmodelto updateexpectationsof steelpricesin response to news,

suchasPresident Bush’sdecision to imposesteeltariffs. Toobtainamorerealisticmodelthatmightbeable

to rationalize thegeneral manager’s apparently morecautious speculative strategy, we would needto add

macroeconomicstatevariablesx. Thenwecoulduseourmodeljointly with amacroeconomicforecasting

model to provide conditional inventory level recommendations to the firm suchas “If you expect the

economyto remainstrong,the model recommendsholding inventories in a rangefrom X to Y; if you

49



expecttheeconomyto weaken,...” Theseadditionalstate variables would enableusto capture apparently

non-stationary featuresof steel prices (suchaspersistently increasingor decreasing pricetrajectoriesover

relatively long periodsof time), andwould serve asadditionalcovariatesthatshifting the
�
S
 s� bandsup

anddown in responseto news of persistentmacroeconomicshocks,helping the model to betterfit the

observedpurchaseandinventory data.

6 Conclusion

In this paperwe develop two econometric proceduresfor estimatingan endogenously-sampledMarkov

process. Wefirst deriveaparametric partial informationmaximumlikelihood(PIML) estimatorthatsolves

theendogenoussamplingproblem. While thePIML estimator efficiently estimatestheunknown parame-

tersof aMarkov transition probability, it requiresrepeatedlycomputingnumericalapproximationsto high

dimensional integrals. Thereforeweintroduceanalternativeconsistent, lessefficient, simulatedminimum

distance(SMD) estimator. This estimationmethodis computationally simplerthanthePIML estimator,

but it still requiressolving thedynamicprogrammingproblemat eachtrial valueof theunknown param-

etervector for the endogenoussamplingrule. Using this sampling rule, the SMD estimator is able to

consistentlyestimatetheunknown parametersof theMarkov processeventhoughtheeconometricianhas

incomplete informationon theprocess.

While this research wasmotivatedby a new datasetfrom a single steel wholesaler, mostdatasets in

whichagentshavethechoiceof whetherandwhento participatein amarketactivity will beendogenously

sampled.In mostmarkets, the only pricesrecorded arethe transaction prices– econometriciansalmost

never get to observe prices offered but not transacted on. For example,econometriciansrarely get to

observe thewagesunemployedjob seekers areofferedbut refuse.11 It shouldbestraightforward to apply

theSMD estimator to othertypesof endogenoussamplingproblemsthatarise in timeseriescontexts.

11A counter-exampleis the limit orderbooks for equitiespostedon ECNssuchaswww.island.com. But specialistson the
NYSE arevery reluctantto revealany informationabouttheir limit orderbooks.
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Appendix: Simulating Price Pathswith Fixed Starting and Ending Points

WethankMichael Keanefor suggesting andexplaining thisprocedureto us.

We assumethat wholesale prices follow the AR(1) processgiven in equation(98) of the paper. To

simplify the presentation in this appendix,let pt denotethe log
�
pt � . Assumewe observe pt1 and pt2 on

datest1 andt2, but we do not observe any priceson datesin between.We wantto simulate realizationsof�
pt1 � 1 
 pt1 � 2 
��K�f�g
 pt2 & 1 	 thatareconsistentwith both pt1 andpt2 andthelaw of motion(98). Let τ � t2 � t1,

betherecurrencetime.

We write thepricesystemusingstate-spacenotation usinganonstandard orderingof thestatevector:

1
pt1
pt2

pt1 � 1

pt1 � 2
...

pt2 & 1

�

1 0 0 0 0 0 ���� 0 0
0 0 0 1 0 0 ���� 0 0
µp 0 λp 0 0 0 ���� 0 0
0 0 0 0 1 0 ���� 0 0
0 0 0 0 0 1 ���� 0 0
...

...
...

...
...

. . .
...

0 0 0 0 0 0 ���� 1 0

1
pt1 & 1

pt2 & 1

pt1
pt1 � 1

...
pt2 & 2

�

0
0

σp

0
0
...
0

wp
t2 � (106)

Werewrite thisequationusingmorecompactnotationas:

p- � Ap � Cwp- (107)

wherethep denotesthevectorof loggedpricesandtheprimedenotes thenext period’svalues.

We thencomputethevariance-covariancematrixof thepricevector:

Ω �
τ � 1

∑
j $ 0

A jCC- A- j �
We thencomputetheCholesky decomposition of the(2:τ+2,2:τ+2) elements of Ω � ϒϒ. This allows us

to write p- � µp � ϒη whereη is avectorof shocksdrawn from astandardnormaldistribution. Writing in

moreexpansivenotation yields

pt1 � µp

pt2 � µp

pt1 � 1 � µp
...

pt2 & 1 � µp

�

υ11 0 0 ����� 0
υ21 υ22 0 ����� 0
υ31 υ32 υ33 ����� 0
...

...
...

. ..
...

υτ � 11 υτ � 12 υτ � 13 ����� υτ � 1τ � 1

ηt1
ηt2

ηt1 � 1
...

ηt2 & 1

� (108)

Sincewe know pt1 andpt2 wecansolve for ηt1 andηt2 directly from

�
pt1 � µp � � υ11ηt1�
pt2 � µp � � υ21ηt1 � υ22ηt2 �
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�
ηt1 � 1 
 ηt1 � 2 
��K�f�g
 ηt2 & 1 	 arerandomdraws from a standard normaldistribution. Oncetheη vectoris con-

structed,we useequation (108)to computethesimulated pricevectorp - � ϒη � µp. Notethateachof the

simulatedpricesis a function of ηt1 andηt2.

To construct asinglesimulation for theentire timeperiod werepeatedthisprocedurefor eachinterval

betweensuccessive purchase dates.For eachinterval, we thenappliedanacceptance/rejectioncriterion.

Sinceour modelimpliesthatthefirm makesa purchase whenever currentinventoriesfall below theorder

threshold s
�
exp

�
p��� , we rejectedpathssuchthatexp

�
pt � � s& 1 � qt � for any t1 � t � t2. For eachinterval,

we repeated the procedure describedabove until we found a path that did not violate the order thresh-

old constraint. For both productsthereare intervals in the price series in which we could not find any

acceptablepaths.In thesecases,weaccepted oneof therejectedpricepaths.
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