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Abstract

This paper considers identi�cation and inference of a general latent nonlinear model
using two samples, where a covariate contains arbitrary measurement errors in both
samples, and neither sample contains an accurate measurement of the corresponding
true variable. The primary sample consists of some dependent variables, some error-free
covariates and an error-ridden covariate, where the measurement error has unknown
distribution and could be arbitrarily correlated with the latent true values. The aux-
iliary sample consists of another noisy measurement of the mismeasured covariate and
some error-free covariates. We �rst show that a general latent nonlinear model is
nonparametrically identi�ed using the two samples when both could have nonclassical
errors, with no requirement of instrumental variables nor independence between the
two samples. When the two samples are independent and the latent nonlinear model is
parameterized, we propose sieve quasi maximum likelihood estimation (MLE) for the
parameter of interest, and establish its root-n consistency and asymptotic normality
under possible misspeci�cation, and its semiparametric e¢ ciency under correct speci-
�cation. We also provide a sieve likelihood ratio model selection test to compare two
possibly misspeci�ed parametric latent models. A small Monte Carlo simulation and
an empirical example are presented.
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1 Introduction

Measurement error problems are frequently encountered by researchers conducting empirical

work in economics and other �elds in social and natural sciences. A measurement error is

called classical if it is independent of the latent true values, otherwise, is called nonclassical.

In econometrics and statistics there have been many studies on identi�cation and estimation

of linear, nonlinear and even nonparametric models with classical measurement errors. See

e.g. Fricsh (1934), Amemiya (1985), Hsiao (1989), Chesher (1991), Hausman, Ichimura,

Newey and Powell (1991), Fan (1991), Wansbeek and Meijer (2000), Newey (2001), Taupin

(2001), Li (2002), Schennach (2004a, b), Carroll et al. (2004), to name only a few. However,

as reviewed in Bound, Brown, and Mathiowetz (2001), validation studies in economic survey

data sets indicate that the errors in self-reported variables, such as earnings, are typically

correlated with the true values, and hence, nonclassical. In fact, in many survey situations a

rational agent has incentive to purposely report wrong values conditioning on his/her truth.

Ample empirical evidences of nonclassical measurement errors have drawn growing atten-

tions from theoretical research on econometric models with nonclassical measurement errors.

In the meanwhile, given that linear models with measurement errors have been studies thor-

oughly, recent research activities have been focusing on nonlinear (and/or nonparametric)

Errors-In-Variables (EIV) models. However, the identi�cation and estimation of general

nonlinear (and/or nonparametric) models with nonclassical errors are notoriously di¢ cult.

In this paper, we provide one solution to the nonlinear (and nonparametric) EIV problem

by combining a primary sample and an auxiliary sample, where each sample only contains

one measurement of the error-ridden variable, and the measurement errors in both samples

may be nonclassical. Our identi�cation strategy does not require the existence of instru-

mental variables for the nonlinear model of interest, nor does it require an auxiliary sample

containing the true values nor independence between the two samples.

It is well known that, without additional information or restrictions, a general nonlinear

model can not be identi�ed in the presence of measurement errors. When point identi�cation

is not feasible under weak assumptions, some research activities have focused on partial

identi�cation and bound analyses. See e.g., Chesher (1991), Horowitz and Manski (1995),

Manski and Tamer (2003), Molinari (2004) and others.

One approach to regain identi�cation and consistent estimation of nonlinear EIV mod-

els with classical errors is to impose parametric restrictions on error distributions; see e.g.,

Fan (1991), Buzas and Stefanski (1996), Taupin (2001), Hong and Tamer (2003) and oth-

ers. However, it might be di¢ cult to impose a correct parametric speci�cation on error

distributions for a nonlinear EIV model with nonclassical errors.
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Another popular approach to identi�cation and estimation of EIV models is to assume the

existence of Instrumental Variables (IVs). See Mahajan (2006), Lewbel (2006) and Hu (2006)

for using IV approach to obtain identi�cation and consistent estimation of nonlinear models

with misclassi�cation errors in discrete explanatory variables. There exist a large amount of

important work on using IV approach to solve linear, nonlinear and/or nonparametric EIV

models with classical errors in continuous explanatory variables. See, e.g., Amemiya (1985),

Amemiya and Fuller (1988), Carroll and Stefanski (1990), Hausman, Ichimura, Newey, and

Powell (1991), Hausman, Newey, and Powell (1995), Wang and Hsiao (1995), Li and Vuong

(1998), Newey (2001), Li (2002), Schennach (2004a, b), and Carroll, et al. (2004), to name

only a few. Most recently, Hu and Schennach (2006) establish identi�cation and estimation

of nonlinear EIV models with nonclassical errors in continuous explanatory variables using

IVs, where the IVs are excluded from the nonlinear model of interest and are independent

of the measurement errors. Although the IV approach is powerful, but it might be di¢ cult

to �nd a valid IV for a general nonlinear EIV model with nonclassical errors in applications.

The alternative popular approach to identify nonlinear EIV models with nonclassical

errors is to combine two samples. See Carroll, Ruppert and Stefanski (1995) and Ridder

and Mo¢ tt (2006) for detailed survey about this approach. The advantage of this approach

is that the primary sample could contain arbitrary measurement errors and no requirement

of existence of IVs. However, the earlier works using this approach typically assume the

existence of a true validation sample (i.e., an i.i.d. sample from the same population as the

primary sample and contains an accurate measurement of the true values). See e.g., Bound,

Brown, Duncan, and Rodgers (1989), Hausman, Ichimura, Newey, and Powell (1991), Carroll

and Wand (1991), and Lee and Sepanski (1995), to name only a few. Recent works using

the two-sample approach have relaxed the true validation sample requirement. For example,

Hu and Ridder (2006) show that the marginal distribution of the latent true values from an

independent auxiliary sample is enough to identify nonlinear EIV models with a classical

error. Chen, Hong, and Tamer (2005), Chen, Hong and Tarozzi (2005), and Ichimura and

Martinez-Sanchis (2006) identify and estimate nonlinear EIV models with nonclassical errors

using an auxiliary sample, which could be obtained as a strati�ed sample of the primary

sample. Their approach does not require the auxiliary sample to be a true validation sample

nor have the same marginal distributions as those of the primary sample. Nevertheless, they

still require that the auxiliary sample contains an accurate measurement of the true values;

such a sample might be di¢ cult to �nd in some applications.

In this paper, we provide nonparametric identi�cation of a nonlinear EIV model with

measurement errors in covariates by combining a primary sample and an auxiliary sample,

where each sample contains only one measurement of the error-ridden explanatory variable,
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and the errors in both samples may be nonclassical. Our approach di¤ers from the IV

approach in that we do not require an IV excluded from the model of interest and all

the variables in our samples may be included in the model. Our approach is closer to

the existing two-sample approach since we also require an auxiliary sample and allow for

nonclassical measurement errors in both samples. However, our identi�cation strategy di¤ers

from the existing two-sample approach because neither of our samples contains an accurate

measurement of the true values.

We assume that the primary sample consists of some dependent variables, some error-free

covariates and an error-ridden covariate, where the measurement error has unknown distri-

bution and is allowed to be arbitrarily correlated with the latent true values. The auxiliary

sample consists of some error-free covariates and another measurement of the mismeasured

covariate. Even under the assumption that the measurement error in the primary sample is

independent of other variables conditional on the latent true values, it is clear that a general

nonlinear EIV model is not identi�ed using the primary sample only, let alone using the aux-

iliary sample only. The identi�cation is made possible by combining the two samples. We

assume there are contrasting subsamples in the primary and the auxiliary samples. These

subsamples may be geographic areas, di¤erent age groups, or in general subpopulations with

di¤erent observed demographic characteristics. We use the di¤erence of the marginal distrib-

utions of the latent true values in the contrasting subsamples of both the primary sample and

the auxiliary sample to show the error distribution is identi�ed. To be speci�c, assuming that

the distributions of the common error-free covariates conditional on the latent true values

are the same in the two samples, we may identify the relationship between the measurement

error distribution in the auxiliary sample and the ratio of the marginal distribution of latent

true values in the subsamples. In fact, the ratio of the marginal distributions plays a role

of an eigenvalue of an observed linear operator, while the measurement error distribution in

the auxiliary sample is the corresponding eigenfunction. Therefore, the measurement error

distribution may be identi�ed through a diagonal decomposition of an observed linear opera-

tor under a normalization condition that the measurement error distribution in the auxiliary

sample has zero mode (or zero median or mean). The nonlinear model of interest, de�ned

here as the joint distribution of the dependent variables, all the error-free covariates and the

latent true covariate in the primary sample, may then be nonparametrically identi�ed. In

this paper, we �rst illustrate our identi�cation strategy using a nonlinear EIV model with

nonclassical errors in discrete covariates of two samples. We then focus on nonparamet-

ric identi�cation of a general latent nonlinear model with arbitrary measurement errors in

continuous covariates.

Our identi�cation result allows for fully nonparametric EIV models and allows for cor-

4



related two samples. But, in most empirical applications, the latent models of interest are

parametric nonlinear models and the two samples are regarded as independent. Within this

framework, we propose a sieve quasi maximum likelihood estimation (MLE) for the latent

nonlinear model of interest using two samples with nonclassical measurement errors. Under

possible misspeci�cation of the latent parametric model, we establish root-n consistency and

asymptotic normality of the sieve quasi MLE of the �nite dimensional parameter of inter-

est, as well as its semiparametric e¢ ciency under correct speci�cation. However, di¤erent

economic models typically imply di¤erent parametrically speci�ed structural econometric

models, and parametric nonlinear models could be all misspeci�ed. We then provide a sieve

likelihood ratio model selection test to compare two possibly misspeci�ed parametric non-

linear EIV models using two independent samples with arbitrary errors. These results are

extensions of those in White (1982) and Vuong (1989) to possibly misspeci�ed latent para-

metric nonlinear structural models, and are also applicable to other possibly misspeci�ed

semiparametric models involving unobserved heterogeneity and/or nonparametric endogene-

ity. For example, one could apply these results to derive valid inference without imposing

the correct speci�cation of the parametric structural model in the famous mixture model of

Heckman and Singer (1984).

Finally, we present a small Monte Carlo simulation and an empirical illustration. We

�rst use simulated data to estimate a probit model with di¤erent nonclassical measurement

errors. The Monte Carlo simulations show that the new two-sample sieve MLE performs well

with the simulated data. Second, we apply our new estimator to a probit model to estimate

the e¤ect of earnings on the voting behavior. It is well known that self-reported earnings

contains nonclassical errors. The primary sample is from the Current Population Survey

(CPS) in November 2004 and the auxiliary sample is from Survey of Income and Program

Participation (SIPP). We use di¤erent marital status and gender as contrasting subsamples

to identify the error distributions in the auxiliary sample. This empirical illustration shows

that our new estimator performs well with real data.

The rest of the paper is organized as follows. Section 2 establishes the nonparametric

identi�cation of a general nonlinear EIV model with (possibly) nonclassical errors using

two samples. Section 3 presents the two-sample sieve quasi MLE and the sieve likelihood

ratio model selection test under possibly misspeci�ed parametric latent models. Section 4

applies the two-sample sieve MLE to a latent probit model with simulated data and real

data. Section 5 brie�y concludes, and the Appendix contains the proofs of the large sample

properties of the sieve quasi MLEs.
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2 Nonparametric Identi�cation

2.1 The dichotomous case: an illustration

We �rst illustrate our identi�cation strategy in the special case where the key variables in the

model are 0-1 dichotomous. Suppose that we are interested in the e¤ect of the true college

education level X� on the labor supply Y with the marital status W u and the gender W v as

covariates. This e¤ect would be identi�ed if we could identify the joint density fX�;Wu;W v ;Y .

In this example, we assume X�; W u, W v are all 0-1 dichotomous. The true education level

X� is unobserved and subject to measurement errors, (W u;W v) are accurately measured and

observed in both the primary sample and the auxiliary sample, and Y is only observed in the

primary sample. The primary sample is a random sample from (X;W u;W v; Y ), where X is

a mismeasured X�. In the auxiliary sample, we observe (Xa;W
u
a ;W

v
a ), where the observed

Xa is a proxy of a latent education level X�
a , W

u
a is the marital status, and W v

a is the

gender. In this illustration subsection, we use italic letters to highlight all the assumptions

imposed for the nonparametric identi�cation of fX�;Wu;W v ;Y , while detailed discussions of

the assumptions are postponed to subsection 2.2.

We assume that the measurement error in X is independent of all other variables in

the model conditional on the true value X�, i.e., fXjX�;Wu;W v ;Y = fXjX�. In this simple

example, this assumption implies that all the people with the same education level have the

same pattern of misreporting the latent true education level, which can be relaxed if there

are more common covariates in the two samples. Under this assumption, the probability

distribution of the observables equals

fX;Wu;W v ;Y (x; u; v; y) =
X
x�=0;1

fXjX�(xjx�)fX�;Wu;W v ;Y (x
�; u; v; y) for all x; u; v; y: (2.1)

We de�ne the matrix representations of fXjX� as follows:

LXjX� =

0BB@ fXjX�(0j0) fXjX�(0j1)

fXjX�(1j0) fXjX�(1j1)

1CCA :

Notice that the matrix LXjX� contains the same information as the conditional density fXjX�.
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Equation (2.1) then implies for all u; v; y

0BB@ fX;Wu;W v ;Y (0; u; v; y)

fX;Wu;W v ;Y (1; u; v; y)

1CCA = LXjX� �

0BB@ fX�;Wu;W v ;Y (0; u; v; y)

fX�;Wu;W v ;Y (1; u; v; y)

1CCA : (2.2)

Equation (2.2) implies that the density fX�;Wu;W v ;Y would be identi�ed provided that LXjX�

would be identi�able and invertible. Moreover, equation (2.1) implies for the subsamples of

males (W v = 1) and of females (W v = 0)

fX;WujW v=j(x; u) =
X
x�=0;1

fXjX�;Wu;W v=j (xjx�; u) fWujX�;W v=j(ujx�)fX�jW v=j(x
�):

=
X
x�=0;1

fXjX� (xjx�) fWujX�;W v=j(ujx�)fX�jW v=j(x
�); (2.3)

where fX;WujW v=j(x; u) � fX;WujW v(x; ujj) and j = 0; 1. By counting the numbers of knows
and unknowns in equation (2.3), one can see that the unknown density fXjX� together with

other unknowns can not be identi�ed using the primary sample alone.

In the auxiliary sample, we assume that the measurement error in Xa satis�es the same

conditional independence assumption as that in X, i.e., fXajX�
a ;W

u
a ;W

v
a
= fXajX�

a
. Furthermore,

we link the two samples by a stable assumption that the distribution of the marital status

conditional on the true education level and gender is the same in the two samples, i.e.,

fWu
a jX�

a ;W
v
a=j(ujx�) = fWujX�;W v=j(ujx�) for all u; j; x�. Therefore, we have for the subsamples

of males (W v
a = 1) and of females (W

v
a = 0)

fXa;Wu
a jW v

a=j(x; u) =
X
x�=0;1

fXajX�
a ;W

u
a ;W

v
a=j (xjx

�; u) fWu
a jX�

a ;W
v
a=j(ujx

�)fX�
a jW v

a=j(x
�)

=
X
x�=0;1

fXajX�
a
(xjx�) fWujX�;W v=j(ujx�)fX�

a jW v
a=j(x

�): (2.4)

We de�ne the matrix representations of relevant densities for the subsamples of males
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(W v = 1) and of females (W v = 0) in the primary sample as follows: for j = 0; 1,

LX;WujW v=j =

0BB@ fX;WujW v=j(0; 0) fX;WujW v=j(0; 1)

fX;WujW v=j(1; 0) fX;WujW v=j(1; 1)

1CCA

LWujX�;W v=j =

0BB@ fWujX�;W v=j(0j0) fWujX�;W v=j(0j1)

fWujX�;W v=j(1j0) fWujX�;W v=j(1j1)

1CCA
T

LX�jW v=j =

0BB@ fX�jW v=j(0) 0

0 fX�jW v=j(1)

1CCA ;

where the superscript T stands for the transpose of a matrix. We similarly de�ne the

matrix representations LXa;Wu
a jW v

a=j, LXajX�
a
, LWu

a jX�
a ;W

v
a=j and LX�

a jW v
a=j of the corresponding

densities fXa;Wu
a jW v

a=j, fXajX�
a
, fWu

a jX�
a ;W

v
a=j and fX�

a jW v
a=j in the auxiliary sample. We note

that equation (2.3) implies for j = 0; 1;

LXjX�LX�jW v=jLWujX�;W v=j

= LXjX�

0BB@ fX�jW v=j(0) 0

0 fX�jW v=j(1)

1CCA
0BB@ fWujX�;W v=j(0j0) fWujX�;W v=j(0j1)

fWujX�;W v=j(1j0) fWujX�;W v=j(1j1)

1CCA
T

= LXjX�

0BB@ fWu;X�jW v=j(0; 0) fWu;X�jW v=j(1; 0)

fWu;X�jW v=j(0; 1) fWu;X�jW v=j(1; 1)

1CCA

=

0BB@ fXjX�(0j0) fXjX�(0j1)

fXjX�(1j0) fXjX�(1j1)

1CCA
0BB@ fWu;X�jW v=j(0; 0) fWu;X�jW v=j(1; 0)

fWu;X�jW v=j(0; 1) fWu;X�jW v=j(1; 1)

1CCA

=

0BB@ fX;WujW v=j(0; 0) fX;WujW v=j(0; 1)

fX;WujW v=j(1; 0) fX;WujW v=j(1; 1)

1CCA
= LX;WujW v=j ,
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that is

LX;WujW v=j = LXjX�LX�jW v=jLWujX�;W v=j: (2.5)

Similarly, equation (2.4) implies

LXa;Wu
a jW v

a=j = LXajX�
a
LX�

a jW v
a=jLWujX�;W v=j: (2.6)

Assuming that the observable matrices LXa;Wu
a jW v

a=j and LX;WujW v=j are invertible, that

the diagonal matrices LX�jW v=j and LX�
a jW v

a=j are invertible, and that LXajX�
a
is invertible.

Then equations (2.5) and (2.6) imply that LXjX� and LWujX�;W v=j are invertible, and we can

now eliminate LWujX�;W v=j to have for j = 0; 1

LXa;Wu
a jW v

a=jL
�1
X;WujW v=j = LXajX�

a
LX�

a jW v
a=jL

�1
X�jW v=jL

�1
XjX� :

Since this equation hold for j = 0; 1, we may then eliminate LXjX� to have

LXa;Xa �
�
LXa;Wu

a jW v
a=1L

�1
X;WujW v=1

��
LXa;Wu

a jW v
a=0L

�1
X;WujW v=0

��1
= LXajX�

a

�
LX�

a jW v
a=1L

�1
X�jW v=1LX�jW v=0L

�1
X�
a jW v

a=0

�
L�1XajX�

a

�

0BB@ fXajX�
a
(0j0) fXajX�

a
(0j1)

fXajX�
a
(1j0) fXajX�

a
(1j1)

1CCA
0BB@ kX�

a
(0) 0

0 kX�
a
(1)

1CCA� (2.7)

�

0BB@ fXajX�
a
(0j0) fXajX�

a
(0j1)

fXajX�
a
(1j0) fXajX�

a
(1j1)

1CCA
�1

:

with

kX�
a
(x�) =

fX�
a jW v

a=1 (x
�) fX�jW v=0 (x

�)

fX�jW v=1 (x�) fX�
a jW v

a=0 (x
�)
:

Notice that the matrix
�
LX�

a jW v
a=1L

�1
X�jW v=1LX�jW v=0L

�1
X�
a jW v

a=0

�
is diagonal because LX�jW v=j

and LX�
a jW v

a=j are diagonal matrices. The equation (2.7) provides an eigenvalue-eigenvector

decomposition of an observed matrix LXa;Xa on the left-hand side. If such a decomposition

is unique, then we may identify LXajX�
a
, i.e., fXajX�

a
, from the observed matrix LXa;Xa.

We assume that kX�
a
(0) 6= kX�

a
(1), i.e., the eigenvalues are distinctive. This assumption
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requires that the distributions of the latent education level of males or females in the primary

sample are di¤erent from those in the auxiliary sample, and that the distribution of the latent

education level of males is di¤erent from that of females in one of the two samples. Notice

that each eigenvector is a column in LXajX�
a
, which is a conditional density. That means each

eigenvector is automatically normalized. Therefore, for an observed LXa;Xa, we may have an

eigenvalue-eigenvector decomposition as follows:

LXa;Xa =

0BB@ fXajX�
a
(0jx�1) fXajX�

a
(0jx�2)

fXajX�
a
(1jx�1) fXajX�

a
(1jx�2)

1CCA
0BB@ kX�

a
(x�1) 0

0 kX�
a
(x�2)

1CCA� (2.8)

�

0BB@ fXajX�
a
(0jx�1) fXajX�

a
(0jx�2)

fXajX�
a
(1jx�1) fXajX�

a
(1jx�2)

1CCA
�1

:

The value in each entry on the right-hand side of equation (2.8) can be directly computed

from the observed matrix LXa;Xa. The only ambiguity left in equation (2.8) is the value of

the indices x�1 and x
�
2, or the indexing of the eigenvalues and eigenvectors. In other words,

the identi�cation of fXajX�
a
boils down to �nding a 1-to-1 mapping between the following two

sets of indices of the eigenvalues and eigenvectors:

fx�1; x�2g () f0; 1g :

Next, we make a normalization assumption that people with (or without) college education in

the auxiliary sample are more likely to report that they have (or do not have) college education,

i.e., fXajX�
a
(x�jx�) > 0:5 for x� = 0; 1. (This assumption also implies the invertibility of

LXajX�
a
.) Since the values of fXajX�

a
(0jx�1) and fXajX�

a
(1jx�1) are known in equation (2.8), this

assumption pins down the index x�1 as follows:

x�1 =

8>><>>:
0 if fXajX�

a
(0jx�1) > 0:5

1 if fXajX�
a
(1jx�1) > 0:5

:

The value of x�2 may be found in the same way. In summary, we have identi�ed LXajX�
a
, i.e.,
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fXajX�
a
; from the decomposition of the observed matrix LXa;Xa.

After identifying LXajX�
a
, we can identify LWujX�;W v=j or fWujX�;W v=j from equation (2.6)

as follows:

LX�
a jW v

a=jLWujX�;W v=j = L�1XajX�
a
LXa;Wu

a jW v
a=j;

where two matrices LX�
a jW v

a=j and LWujX�;W v=j can be identi�ed through their product on the

left-hand side. Moreover, the density fXjX� or the matrix LXjX� is identi�ed from equation

(2.5) as follows:

LXjX�LX�jW v=j = LX;WujW v=jL
�1
WujX�;W v=j;

where we may identify two matrices LXjX� and LX�jW v=j from their product on the left-hand

side. Finally, the density of interest fX�;Wu;W v ;Y is identi�ed from equation (2.2).

This simple example with dichotomous variables demonstrates that we can nonparamet-

rically identify the model of interest using the similarity of the error structures and the

di¤erence in the latent distributions between the two samples. We next show that such a

nonparametric identi�cation strategy is in fact generally applicable.

2.2 The general case

We are interested in a model containing variables X�; W; and Y . We say the model is

identi�ed if we can identify the joint probability density of X�;W; Y :

fX�;W;Y (x
�; w; y); (2.9)

where X� is an unobserved scalar covariate subject to measurement errors, W is a vector

of accurately measured covariates that are observed in both the primary sample and the

auxiliary sample, and Y is a vector of other variables, including dependent variables and

other covariates, which are observed in the primary sample only. The primary sample is a

random sample from (X;W T ; Y T ), where X is a mismeasured X�. Suppose the supports of

X;W; Y and X� are X � R, W � Rdw , Y � Rdy , and X � � R, respectively. Let fXjX� and

fX�jX denote the conditional densities of X given X� and of X� given X respectively. Let

fX and fX� denote the marginal densities of X and X� respectively. We assume that the

measurement error in X satis�es

Assumption 2.1 fXjX�;W;Y (xjx�; w; y) = fXjX�(xjx�) for all x 2 X , x� 2 X �, w 2 W, and
y 2 Y.
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Assumption 2.1 implies that the measurement error in X is independent of all other variables

in the model conditional on the true value X�. The measurement error in X may still be

correlated with the true value X� in an arbitrary way, and hence, is nonclassical. We realize

that assumption 2.1 might be restrictive in some applications. But it is reasonable to believe

that the latent true value X� is a more important factor in the reported value X than any

other variables W and Y .

Assumption 2.1 allows for a very general nonclassical error and captures the major con-

cern on misreporting errors. Under assumption 2.1, the probability density of the observed

vectors equals

fX;W;Y (x;w; y) =

Z
X �
fXjX�(xjx�)fX�;W;Y (x

�; w; y)dx� for all x;w; y: (2.10)

Let Lp (X ), 1 � p <1 denote the space of functions with
R
X jh(x)j

pdx <1, and L1 (X )
be the space of functions with supx2X jh(x)j <1. Then it is clear that for any �xed w 2 W,
y 2 Y, fX;W;Y (�; w; y) 2 Lp (X ) and fX�;W;Y (�; w; y) 2 Lp (X �) for all 1 � p � 1. Let
HX � L2 (X ) and HX� � L2 (X �) : We de�ne the integral operator LXjX� : HX� ! HX as

follows:

fLXjX�hg (x) =
Z
X �
fXjX� (xjx�)h (x�) dx� for any h 2 HX�, x 2 X .

Therefore, equation (2.10) becomes: fX;W;Y (x;w; y) = fLXjX�fX�;W;Y (�; w; y)g (x). Then
the latent density fX�;W;Y would be identi�ed from the observed density fX;W;Y provided

that the operator LXjX� would be identi�able and invertible. We will show that fXjX� can

be identi�ed by combining the information of the primary sample with an auxiliary sample.

Suppose that we observe an auxiliary sample, which is a random sample from (Xa;W
T
a ),

where Xa is a mismeasured X�
a . In order to combine the two samples they should have

something in common. We consider a series of mutually exclusive subsets V1; V2; :::; VJ � W
in the two samples. For example, the two samples may contain subpopulations with di¤erent

demographic characteristics, such as, race, gender, profession, and geographic locations.

Suppose W = (W u;W v)T and Wa = (W u
a ;W

v
a )

T , where W u and W u
a are scalar covariate

with support Wu � R, and W v and W v
a are discrete variables with the same support Wv =

fv1; v2; :::; vJg indicating the characteristics above. We will discuss the case where there exist
extra common covariates, i.e., (W u;W v) � W and (W u

a ;W
v
a ) � Wa later in Remark 2.5. We

may let Vj = fvjg. Let Xa � R denote the support of Xa. We assume

12



Assumption 2.2 (i) X�
a , W

u
a and W

v
a have the same supports as X

�, W u and W v respec-

tively; (ii) fXajX�
a ;W

u
a ;W

v
a
(xjx�; u; v) = fXajX�

a
(xjx�) for all x 2 Xa, x� 2 X �, u 2 Wu and

v 2 Wv.

Assumption 2.2 implies that the distribution of measurement error in Xa is independent of

(W u
a ;W

v
a ) conditional on the true value X

�
a . This assumption is consistent with assumption

2.1 imposed on the primary sample.

Assumption 2.3 fWu
a jX�

a ;Vj(ujx�) = fWujX�;Vj(ujx�) for all u 2 Wu � R and x� 2 X �.

Assumption 2.3 implies the conditional distribution of the scalar covariate W u given the

true value X� is the same in each subsample corresponding to Vj in the two samples. If the

conditional densities describe an unknown economic relationship between the two variables,

assumption 2.3 requires that such a relationship is stable across the two samples. If such a

common covariate does not exist in either of the two samples, there is basically no common

information to link them. A su¢ cient condition for assumption 2.3 is that fWajX�
a
= fW jX�.

In the case where Vj corresponds to each possible value ofW v, assumption 2.3 can be written

as fWu
a jX�

a ;W
v
a
= fWujX�;W v . We note that under assumption 2.3, the marginal distributions

of the true value X� and the vector of covariates W in the primary sample may still be

di¤erent from those of X�
a and Wa in the auxiliary sample.

For each subsample Vj, assumption 2.1 implies that

fX;WujVj(x; u) =

Z
fXjX�;Wu;Vj (xjx�; u) fWujX�;Vj(ujx�)fX�jVj(x

�)dx�:

=

Z
fXjX� (xjx�) fWujX�;Vj(ujx�)fX�jVj(x

�)dx�: (2.11)

in the primary sample. Similarly, assumptions 2.2 and 2.3 imply that

fXa;Wu
a jVj(x; u) =

Z
fXajX�

a ;W
u
a ;Vj (xjx

�; u) fWu
a jX�

a ;Vj(ujx
�)fX�

a jVj(x
�)dx�

=

Z
fXajX�

a
(xjx�) fWujX�;Vj(ujx�)fX�

a jVj(x
�)dx� (2.12)

in the auxiliary sample. We de�ne the following operators for the primary sample

�
LX;WujVjh

�
(x) =

Z
fX;WujVj(x; u)h (u) du;

�
LWujX;Vjh

�
(x) =

Z
fWujX;Vj(ujx)h (u) du;
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�
LWujX�;Vjh

�
(x�) =

Z
fWujX�;Vj(ujx�)h (u) du;

�
LX�jVjh

�
(x�) = fX�jVj(x

�)h (x�) :

We also de�ne the operators LXajX�
a
, LXa;Wu

a jVj , LWu
a jXa;Vj and LX�

a jVj for the auxiliary sample

in the same way as their counterparts in the primary sample. Notice that operators LX�jVj

and LX�
a jVj are diagonal operators. By equation (2.11) and the de�nition of the operators,

we have for any function h,

�
LX;WujVjh

�
(x) =

Z
fX;WujVj(x; u)h (u) du

=

Z �Z
fXjX� (xjx�) fWujX�;Vj(ujx�)fX�jVj(x

�)dx�
�
h (u) du

=

Z
fXjX� (xjx�) fX�jVj(x

�)

�Z
fWujX�;Vj(ujx�)h (u) du

�
dx�

=

Z
fXjX� (xjx�) fX�jVj(x

�)
�
LWujX�;Vjh

�
(x�) dx�

=

Z
fXjX� (xjx�)

�
LX�jVjLWujX�;Vjh

�
(x�) dx�

=
�
LXjX�LX�jVjLWujX�;Vjh

�
(x) :

This means we have the following operator equivalence

LX;WujVj = LXjX�LX�jVjLWujX�;Vj (2.13)

in the primary sample. Similarly, equation (2.12) and the de�nition of the operators imply

LXa;Wu
a jVj = LXajX�

a
LX�

a jVjLWujX�;Vj (2.14)

in the auxiliary sample. While the left-hand sides of equations (2.13) and (2.14) are observed,

the right-hand sides contain unknown operators corresponding to the error distributions

(LXjX� and LXajX�
a
), the marginal distributions of the latent true values (LX�jVj and LX�

a jVj),

and the conditional distribution of the scalar common covariate (LWujX�;Vj).

Equations (2.13) and (2.14) imply that one can not apply the identi�cation results in Hu

and Schennach (2006, the IV approach) to the primary sample (or the auxiliary sample) to

identify the error distribution fXjX� (or fXajX�
a
). Although the dependent variable in their

paper may not be a variable of interest, the IV approach still requires that, conditional on
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the latent true values, the dependent variable is independent of the mismeasured values and

the IV, and that the dependent variable has to vary with the latent true values. Intuitively,

this requirement in the IV approach implies that the dependent variable still contains in-

formation on the latent true variable even conditional on all other observed variables, and

that the dependent variable can not be generated from the observed variables by researchers.

Therefore, the indicator of subsample Vj in our approach can not play the role of dependent

variable in their IV approach because Vj is generated from the observed W (or Wa) hence in

general W u (or W u
a ) are not independent of Vj conditional on X

� (or X�
a). In other words,

the common variable W u (or W u
a ) can not play the role of their IV because it is generally

correlated with the indicator of subsample Vj.

In order to identify the unknown operators in equations (2.13) and (2.14), we assume

Assumption 2.4 LXajX�
a
: HX�

a
! HXa is injective, i.e., the set fh 2 HX�

a
: LXajX�

a
h =

0g = f0g.

Assumption 2.4 implies that the inverse of the linear operator LXajX�
a
exists. Recall that the

conditional expectation operator of X�
a given Xa, EX�

a jXa : L2 (X �)! L2 (Xa), is de�ned as

fEX�
a jXah

0g(x) =
Z
X �
fX�

a jXa (x
�jx)h0(x�)dx� = E[h0 (X�

a) jXa = x] for any h0 2 L2 (X �) , x 2 Xa.

We have fLXajX�
a
hg (x) =

R
X � fXajX�

a
(xjx�)h (x�) dx� = E

h
fXa (x)h(X

�
a)

fX�a (X
�
a)
jXa = x

i
for any h 2

HX�
a
, x 2 Xa. Assumption 2.4 is equivalent to: E

h
h (X�

a)
fXa (Xa)

fX�a (X
�
a)
jXa

i
= 0 implies h = 0.

If 0 < fX�
a
(x�) < 1 over int(X �) and 0 < fXa(x) < 1 over int(Xa) (which are very

minor restrictions), then assumption 2.4 is the same as the identi�cation condition imposed

in Newey and Powell (2003), Darolles, Florens and Renault (2005), Carrasco, Florens, and

Renault (2006) and others. Moreover, as shown in Newey and Powell (2003), this condition is

implied by the completeness of the conditional density fX�
a jXa, which is satis�ed when fX�

a jXa

belongs to an exponential family. In fact, if we are willing to assume supx�;w fX�
a ;Wa(x

�; w) �
c < 1, then a su¢ cient condition for assumption 2.4 is the bounded completeness of the
conditional density fX�

a jXa; see e.g., Blundell, Chen and Kristensen (2004) and Chernozhukov,

Imbens and Newey (2006). When Xa and X�
a are discrete, assumption 2.4 requires that the

support of Xa is not smaller than that of X�
a .

Assumption 2.5 (i) fX�jVj > 0 and fX�
a jVj > 0; (ii) LWujX;Vj is injective and fXjVj > 0;

(iii) LWu
a jXa;Vj is injective and fXajVj > 0.
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By the de�nition of LX;WujVj , we have
�
LWujX;Vjh

�
(x) = 1

fXjVj (x)

�
LX;WujVjh

�
(x). Assump-

tion 2.5(ii) then implies that LX;WujVj is invertible. Similarly, assumption 2.5(iii) implies

that LXa;Wu
a jVj is invertible. Therefore, assumptions 2.4 and 2.5 imply that all the operators

involved in equations (2.13) and (2.14) are invertible. More precisely, assumptions 2.4, 2.5(i)

and 2.5(iii) and equation (2.14) imply that the operator LWujX�;Vj is injective. Next, the

injectivity of LWujX�;Vj , assumptions 2.5(i) and 2.5(ii) and equation (2.13) imply that LXjX�

is injective.

Remark 2.1 Under equations (2.13) and (2.14) and assumption 2.5 (i), the invertibility (or
injectivity) of any three operators from LX;WujVj , LXjX�, LWujX�;Vj , LXa;Wu

a jVj and LXajX�
a
im-

plies the invertibility (or injectivity) of the remaining two operators. Therefore assumptions

2.4 and 2.5 (ii)(iii) could be replaced by alternative conditions that still imply the invertibility

of all the �ve operators. We decide to impose assumptions 2.5 (ii) and (iii) since they are

conditions on observables only and can be veri�ed from data. Nevertheless, we could replace

assumption 2.4 by the assumption that the operator LXjX� : HX� ! HX is injective. In this

paper we impose assumption 2.4 and allow the conditional distribution fXjX� in the primary

sample to be very �exible.

Under assumptions 2.4 and 2.5, for any given Vj we can eliminate LWujX�;Vj in equations

(2.13) and (2.14) to obtain

LXa;Wu
a jVjL

�1
X;WujVj = LXajX�

a
LX�

a jVjL
�1
X�jVjL

�1
XjX� : (2.15)

This equation holds for all Vi and Vj. We may then eliminate LXjX� to have

LijXa;Xa �
�
LXa;Wu

a jVjL
�1
X;WujVj

��
LXa;Wu

a jViL
�1
X;WujVi

��1
= LXajX�

a

�
LX�

a jVjL
�1
X�jVjLX�jViL

�1
X�
a jVi

�
L�1XajX�

a

� LXajX�
a
LijX�

a
L�1XajX�

a
(2.16)

The operator LijXa;Xa on the left-hand side is observed for all i and j. An important obser-

vation is that the operator LijX�
a
=
�
LX�

a jVjL
�1
X�jVjLX�jViL

�1
X�
a jVi

�
is a diagonal operator de�ned

as �
LijX�

a
h
�
(x�) = kijX�

a
(x�)h (x�) (2.17)
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with

kijX�
a
(x�) �

fX�
a jVj (x

�) fX�jVi (x
�)

fX�jVj (x
�) fX�

a jVi (x
�)
:

Equation (2.16) implies a diagonalization of an observed operator LijXa;Xa. An eigenvalue of

LijXa;Xa equals k
ij
X�
a
(x�) for a value of x�, which corresponds to an eigenfunction fXajX�

a
(�jx�).

The structure of equation (2.16) is similar to that of equation 8 in Hu and Schennach

(2006, the IV approach) in the sense that both equations provide a diagonal decomposition

of observed operators, whose eigenfunctions correspond to measurement error distributions.

Therefore, the same technique of operator diagonalization is used for the identi�cation of

fXajX�
a
. On the one hand, these results imply that the technique of operator diagonalization

is a very powerful tool in the identi�cation of nonclassical measurement error models. On the

other hand, the di¤erence between our equation (2.16) and their equation 8 also shows how

the identi�cation strategy in our paper di¤ers from the IV approach in Hu and Schennach

(2006). An eigenvalue in their IV approach is a value of the latent density of interest, while

an eigenvalue in our paper is a value of the ratio of marginal distributions of the latent true

values in di¤erent subpopulations. Moreover, the eigenvalues in our paper do not degenerate

to those in the IV approach, or vice versa. Therefore, although both papers use the operator

decomposition technique, our identi�cation strategy is very di¤erent from theirs for the IV

approach.

Remark 2.2 We may also eliminate LXajX�
a
in equation (2.15) for di¤erent Vi and Vj to

obtain

�
LXa;Wu

a jViL
�1
X;WujVi

��1 �
LXa;Wu

a jVjL
�1
X;WujVj

�
= LXjX�

�
LX�jViL

�1
X�
a jVi

LX�
a jVjL

�1
X�jVj

�
L�1XjX� :

This equation also provides a diagonalization of an observed operator on the left-hand side.

If we impose the same restriction on fXjX� as those will be introduced on fXajX�
a
, the same

identi�cation procedure of fXajX�
a
also applies to fXjX�. In this paper, we impose the restric-

tions on the error distribution fXajX�
a
in the auxiliary sample so that we may consider more

general measurement errors in the primary sample.

We now show the identi�cation of fXajX�
a
and kijX�

a
(x�). First, we require the operator

LijXa;Xa to be bounded so that the diagonal decomposition may be unique; see e.g., Dunford

and Schwartz (1971). Equation (2.16) implies that the operator LijXa;Xa has the same spec-

trum as the diagonal operator LijX�
a
. Since an operator is bounded by the largest element of

its spectrum, it is su¢ cient to assume
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Assumption 2.6 kijX�
a
(x�) <1 for all i; j 2 f1; 2; :::; Jg for all x�.

Notice that the subsets V1; V2; :::; VJ � W do not need to be collectively exhaustive. We may

only consider those subsets in W in which these assumptions are satis�ed.

Second, although it implies a diagonalization of the operator LijXa;Xa, equation (2.16) does

not guarantee distinctive eigenvalues. If there exist duplicate eigenvalues, there exist two

linearly independent eigenfunctions corresponding to the same eigenvalue. A linear combina-

tion of the two eigenfunctions is also an eigenfunction corresponding to the same eigenvalue.

Therefore, the eigenfunctions may not be identi�ed in each decomposition corresponding to

a pair of i and j. However, such an ambiguity can be eliminated by an important observation

that the observed operators LijXa;Xa for all i; j share the same eigenfunctions fXajX�
a
(�jx�). In

order to distinguish each linearly independent eigenfunction, we assume

Assumption 2.7 For any x�1 6= x�2, there exist i; j 2 f1; 2; :::; Jg such that kijX�
a
(x�1) 6=

kijX�
a
(x�2).

Assumption 2.7 implies that for any two di¤erent eigenfunctions fXajX�
a
(�jx�1) and fXajX�

a
(�jx�2),

one can always �nd two subsets Vj and Vi such that the two di¤erent eigenfunctions cor-

respond to two di¤erent eigenvalues kijX�
a
(x�1) and kijX�

a
(x�2), and therefore, are identi�ed.

Although there may exist duplicate eigenvalues in each decomposition corresponding to a

pair of i and j, this assumption guarantees that each eigenfunction fXajX�
a
(�jx�) is uniquely

determined by combining all the information from a series of decompositions of LijXa;Xa for

i; j 2 f1; 2; :::; Jg.

Remark 2.3 (1) Assumption 2.7 does not hold if fX�jVj (x
�) = fX�

a jVj (x
�) for all Vj and all

x� 2 X �. This assumption requires that the two samples are from di¤erent populations; one

can not use two subsets of a random sample as the primary sample and the auxiliary sample

for identi�cation, which is di¤erent from that in Chen, Hong and Tamer (2005). Given

assumption 2.3 and the invertibility of the operator LWujX�;Vj , one could check assumption

2.7 from the observed densities fWujVj and fWu
a jVj . In particular, if fWujVj(u) = fWu

a jVj(u) for

all Vj and all u 2 Wu, then assumption 2.7 is not satis�ed. (2) Assumption 2.7 does not
hold if fX�jVj (x

�) = fX�jVi (x
�) and fX�

a jVj (x
�) = fX�

a jVi (x
�) for all Vj 6= Vi and all x� 2 X �.

This means that the marginal distribution of X� or X�
a should be di¤erent in the subsamples

corresponding to di¤erent Vj in at least one of the two samples. For example, if X� or X�
a

are earnings and Vj corresponds to gender, then assumption 2.7 requires that the earning

distribution of males should be di¤erent from that of females in one of the sample (either

the primary or the auxiliary). Given the invertibility of the operators LXjX� and LXajX�
a
,

one could check assumption 2.7 from the observed densities fXjVj and fXajVj . In particular,
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if fXjVj (x) = fXjVi (x) for all Vj 6= Vi and all x 2 X , then assumption 2.7 requires the
existence of an auxiliary sample such that fXajVj (Xa) 6= fXajVi (Xa) with positive probability

for some Vj 6= Vi.

We now provide an example of the marginal distribution of X� to illustrate that assump-

tions 2.6 and 2.7 are easily satis�ed. Suppose that the distribution of X� in the primary

sample is the standard normal, i.e., fX�jVj (x
�) =  (x�) for j = 1; 2; 3 , where  is the

probability density function of the standard normal, and that the distribution of X�
a in the

auxiliary sample is for 0 < � < 1 and � 6= 0

fX�
a jVj (x

�) =

8>>>>>><>>>>>>:
 (x�) for j = 1

��1 (��1x�) for j = 2

 (x� � �) for j = 3

: (2.18)

It is obvious that assumption 2.6 is satis�ed with

kijX�
a
(x�) =

8>><>>:
��1 exp

�
�1���2

2
(x�)2

�
for i = 1, j = 2

 (x���)
 (x�) for i = 1; j = 3

: (2.19)

For i = 1,j = 2, any two eigenvalues k12X�
a
(x�1) and k

12
X�
a
(x�2) of L

12
Xa;Xa

may be the same if

and only if x�1 = �x�2. In other words, we can not distinguish the eigenfunctions fXajX�
a
(�jx�1)

and fXajX�
a
(�jx�2) in the decomposition of L12Xa;Xa if and only if x�1 = �x�2. Since k

ij
X�
a
(x�)

for i = 1; j = 3 is not symmetric around zero, the eigenvalues k13X�
a
(x�1) and k13X�

a
(x�2) of

L13Xa;Xa are di¤erent for any x
�
1 = �x�2. Notice that the operators L12Xa;Xa and L13Xa;Xa share

the same eigenfunctions fXajX�
a
(�jx�1) and fXajX�

a
(�jx�2). Therefore, we may distinguish the

eigenfunctions fXajX�
a
(�jx�1) and fXajX�

a
(�jx�2) with x�1 = �x�2 in the decomposition of L13Xa;Xa.

By combining the information obtained from the decompositions of L12Xa;Xa and L
13
Xa;Xa

, we

can distinguish the eigenfunctions corresponding to any two di¤erent values of x�.

Third, another ambiguity is that for a given value of x� an eigenfunction fXajX�
a
(�jx�)

times a constant is still an eigenfunction corresponding to x�. To eliminate this ambiguity, we

need to normalize each eigenfunction. Notice that fXajX�
a
(�jx�) is a conditional probability

density for each x� hence
R
fXajX�

a
(xjx�) dx = 1 for all x�. This property of conditional

density provides a perfect normalization condition.
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Fourth, in order to fully identify each eigenfunction, i.e., fXajX�
a
, we need to identify

the exact value of x� in each eigenfunction fXajX�
a
(�jx�). Notice that the eigenfunction

fXajX�
a
(�jx�) is identi�ed up to the value of x�. In other words, we have identi�ed a prob-

ability density of Xa conditional on X�
a = x� with the value of x� unknown. An intuitive

normalization assumption is that the value of x� is the mean of this identi�ed probability

density, i.e., x� =
R
xfXajX�

a
(xjx�) dx; this assumption implies that the measurement error

in the auxiliary sample has zero mean conditional on the latent true values. An alternative

normalization assumption is that the value of x� is the mode of this identi�ed probability

density, i.e., x� = argmax
x

fXajX�
a
(xjx�); this assumption implies that the error distribution

conditional on the latent true values has zero mode. The intuition of this assumption is that

people are more willing to report some values close to the latent true values than those far

away from the truth. Another normalization assumption may be that the value of x� is the

median of the identi�ed probability density, i.e., x� = inf
n
x� :

R x�
�1 fXajX�

a
(xjx�) dx � 1

2

o
;

this assumption implies that the error distribution conditional on the latent true values has

zero median, and that people have the same probability of overreporting as that of under-

reporting. Obviously the zero median condition can be generalized to the assumption that

the error distribution conditional on the latent true values has a zero quantile. In summary,

we use the following general normalizing condition to identify the exact value of x� for each

eigenfunction fXajX�
a
(�jx�).

Assumption 2.8 There exists a known functional M such that M
�
fXajX�

a
(�jx�)

�
= x� for

all x� 2 X �.

Assumption 2.8 requires that the support of Xa can not be smaller than that of X�
a . Recall

that in the dichotomous case, assumption 2.8 with zero median or zero mode also implies

the invertibility of LXajX�
a
(i.e., assumption 2.4). However, this is no longer true even in the

general discrete case. For the general discrete case, a comparable su¢ cient condition for

the invertibility of LXajX�
a
is strictly diagonal dominance (i.e., the diagonal entries of LXajX�

a

are all larger than 0.5), but, assumption 2.8 with zero mode only requires that the diagonal

entries of LXajX�
a
are the largest in each row, which can not guarantee the invertibility of

LXajX�
a
when the support of X�

a contains more than 2 values.

After fully identifying the density function fXajX�
a
, we now show that the density of

interest fX�;W;Y and fXjX� are also identi�ed. By equation (2.12), we have fXa;Wu
a jVj =

LXajX�
a
fWu

a ;X
�
a jVj . By the injectivity of operator LXajX�

a
, the joint density fWu

a ;X
�
a jVj may be

identi�ed as follows:

fWu
a ;X

�
a jVj = L�1XajX�

a
fXa;Wu

a jVj :
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Assumption 2.3 implies that fWu
a jX�

a ;Vj = fWujX�;Vj so that we may identify fWujX�;Vj through

fWujX�;Vj(ujx�) =
fWu

a ;X
�
a jVj(u; x

�)R
fWu

a ;X
�
a jVj(u; x

�)du
for all x� 2 X �.

By equation (2.13) and the injectivity of the identi�ed operator LWujX�;Vj , we have

LXjX�LX�jVj = LX;WujVjL
�1
WujX�;Vj

: (2.20)

The left-hand side of equation (2.20) equals an operator with the kernel function fX;X�jVj �
fXjX�fX�jVj . Since the right-hand side of equation (2.20) has been identi�ed, the kernel

fX;X�jVj on the left-hand side is also identi�ed. We may then identify fXjX� through

fXjX�(xjx�) =
fX;X�jVj(x; x

�)R
fX;X�jVj(x; x

�)dx
for all x� 2 X �.

Finally, assumption 2.1 and the injectivity of LXjX� imply that the density of interest fX�;W;Y

is identi�ed through

fX�;W;Y = L�1XjX�fX;W;Y :

We summarize the identi�cation result in the following theorem:

Theorem 2.4 Suppose assumptions 2.1-2.8 hold. Then, the densities fX;W;Y and fXa;Wa

uniquely determine fX�;W;Y , fXjX�, and fXajX�
a
.

Remark 2.5 (1) When there exists extra common covariates in the two samples, we may
consider more generally-de�ned W u and W u

a or relax assumptions on the error distributions

in the auxiliary sample. On the one hand, this identi�cation theorem still holds when we

replace W u and W u
a by a scalar measurable function of W and Wa respectively. For example,

let g be a known scalar measurable function. Then the identi�cation theorem is still valid

when assumptions 2.2, 2.3 and 2.5(ii-iii) hold with W u = g(W ) and W u
a = g(Wa). On

the other hand, we may relax assumptions 2.1 and 2.2(ii) to allow the error distributions to

be conditional on the true values and the extra common covariates; (2) The identi�cation
theorem does not require that the two samples are independent of each other.
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3 Sieve Quasi Likelihood Estimation and Inference

Our identi�cation result is very general and does not require the two samples to be indepen-

dent. However, for many applications it is reasonable to assume that there are two random

samples
�
Xi;W

T
i ; Y

T
i

	n
i=1

and
�
Xaj;W

T
aj

	na
j=1

that are mutually independent.

As shown in Section 2, all the densities fY jX�;W , fXjX� ; fWujX�;W v ; fX�jW v , fXajX�
a
and

fX�
a jW v

a
are nonparametrically identi�ed under assumptions 2.1-2.8. Nevertheless, in empir-

ical studies, we typically have either a semiparametric or a parametric speci�cation of the

conditional density fY jX�;W as the model of interest. In this section, we treat the other

densities fXjX� ; fWujX�;W v ; fX�jW v , fXajX�
a
and fX�

a jW v
a
as unknown nuisance functions, but

consider a parametrically speci�ed conditional density of Y given (X�;W T ):

fg(yjx�; w; �) : � 2 �g, � a compact subset of Rd� , 1 � d� <1.

De�ne

�0 � argmax
�2�

Z
[log g(yjx�; w; �)]fY jX�;W (yjx�; w)dy.

The latent parametric model is correctly speci�ed if g(yjx�; w; �0) = fY jX�;W (yjx�; w) for
almost all y; x�; wT (and �0 is called true parameter value); otherwise it is misspeci�ed (and

�0 is called pseudo-true parameter value); see e.g., White (1982).

In this section we provide a root-n consistent and asymptotically normally distributed

sieve MLE of �0 regardless if the latent parametric model g(yjx�; w; �) is correctly speci�ed or
not. When g(yjx�; w; �) is misspeci�ed, the estimator is better to be called the �sieve quasi
MLE� instead of �sieve MLE�. (In this paper we have used both terminologies since we

allow the latent model g(yjx�; w; �) to either correctly or incorrectly specify the true latent
conditional density fY jX�;W .) Under the correct speci�cation of the latent model, we show

that the sieve MLE of �0 is automatically semiparametrically e¢ cient, and provide a simple

consist estimator of its asymptotic variance. In addition, we provide sieve likelihood ratio

model selection test of two non-nested parametric speci�cations of fY jX�;W when both could

be misspeci�ed.

To simplify notation but without loss of generality, in this section we assume W T =

(W u;W v), W T
a = (W u

a ;W
v
a ) with W

v;W v
a 2 fv1; v2; :::; vJg. We de�ne Vj as the subset of

W with W v or W v
a equal to vj. Also we assume all the variables Y , W

u, X, W u
a , Xa are

scalars, and each has possibly unbounded support (i.e., each could have the whole real line

as its support).
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3.1 Sieve likelihood estimation under possible misspeci�cation

Let �0 � (�T0 ; f01; f01a; f02; f02a; f03)
T � (�T0 ; fXjX� ; fXajX�

a
; fX�jW v ; fX�

a jW v
a
; fWujX�;W v)T de-

note the true parameter value, where �0 is really �pseudo-true�when the parametric model

g(yjx�; w; �) is incorrectly speci�ed for the unknown true density fY jX�;W . We introduce a

dummy random variable S with S = 1 indicating primary sample and S = 0 indicating

auxiliary sample. Then we have a big combined sample

�
ZT
t �

�
StXt; StW

T
t ; StY

T
t ; St; (1� St)Xt; (1� St)W

T
t

�	n+na
t=1

such that fXt;W
T
t ; Y

T
t ; St = 1gnt=1 is the primary sample and fXt;W

T
t ; St = 0gn+nat=n+1 is the

auxiliary sample. Denote p � Pr(St = 1) 2 (0; 1). Then the observed joint likelihood for �0
is

n+naY
t=1

[p� f(Xt;Wt; YtjSt = 1;�0)]St [(1� p)� f(Xt;WtjSt = 0;�0)]1�St ;

where

f(Xt;Wt; YtjSt = 1;�0) � fX;W;Y (Xt;Wt; Yt; �0; f01; f02; f03)

= fW v(W v
t )

Z
f01(Xtjx�)g(Ytjx�;Wt; �0)f03(W

u
t jx�;W v

t )f02(x
�jW v

t )dx
�;

f(Xt;WtjSt = 0;�0) � fXa;Wa(Xt;Wt; f01a; f02a; f03)

= fW v
a
(W v

t )

Z
f01a(Xtjx�a)f03(W u

t jx�a;W v
t )f02a(x

�
ajW v

t )dx
�
a:

Before we present a sieve (quasi-) MLE estimator b� for �0, we need to impose some mild
smoothness restrictions on the unknown densities. The sieve method allows for unknown

functions belonging to many di¤erent function spaces such as Sobolev space, Besov space

and others; see e.g., Shen and Wong (1994), Chen and Shen (1998). But, for the sake of

concreteness and simplicity, we consider the widely used Hölder space of functions. Let

� = (�1; �2)
T 2 R2, a = (a1; a2)

T , and rah(�) � @a1+a2h(�1;�2)

@�
a1
1 @�

a2
2

denote the (a1 + a2)-th

derivative. Let k�kE denote the Euclidean norm. Let V � R2 and 
 be the largest integer
satisfying 
 > 
. The Hölder space �
(V) of order 
 > 0 is a space of functions h : V 7! R
such that the �rst 
 derivatives are continuous and bounded, and the 
-th derivative are
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Hölder continuous with the exponent 
 � 
 2 (0; 1]. The Hölder space �
(V) becomes a
Banach space under the Hölder norm:

khk�
 = max
a1+a2�


sup
�
jrah(�)j+ max

a1+a2=

sup
� 6=�0

jrah(�)�rah(�0)j
(k� � �0kE)


�
 <1:

We de�ne a Hölder ball as �
c (V) � fh 2 �
(V) : khk�
 � c <1g. Denote

F1 =
�
f1(�j�) 2 �
1c (X � X �) : f1(�jx�) > 0,

Z
X
f1(xjx�)dx = 1 for all x� 2 X �

�
;

F1a =

8>><>>:
f1a(�j�) 2 �
1ac (Xa �X �) : assumptions 2.4, 2.8 hold,

f1a(�jx�) > 0,
R
Xa f1a(xjx

�)dx = 1 for all x� 2 X �

9>>=>>; ;

F2 =

8>><>>:
f2 (�jwv) 2 �
2c (X �) : assumptions 2.6, 2.7 hold,

f2 (�jwv) > 0,
R
X � f2 (x

�jwv) dx� = 1 for all wv 2 Wv

9>>=>>; ;

F3 =

8>><>>:
f3 (�j�; wv) 2 �
3c (Wu �X �) : f3 (�jx�; wv) > 0,R

Wu f3 (w
ujx�; wv) dwu = 1 for all x� 2 X �; wv 2 Wv

9>>=>>; :

We impose the following smoothness restrictions on the densities:

Assumption 3.1 (i) all the assumptions in theorem 2.4 hold; (ii) fXjX�(�j�) 2 F1 with

1 > 1; (iii) fXajX�

a
(�j�) 2 F1a with 
1a > 1; (iv) fX�jW v (�jwv) ; fX�

a jW v
a
(�jwv) 2 F2 with


2 > 1=2 for all w
v 2 Wv; (v) fWujX�;W v (�j�; wv) 2 F3 with 
3 > 1 for all wv 2 Wv.

Denote A = � � F1 � F1a � F2 � F2 � F3 and � =
�
�T ; f1; f1a; f2; f2a; f3

�T
. Then the

log-joint likelihood for � 2 A is given by:

n+naX
t=1

fSt ln [p� f(Xt;Wt; YtjSt = 1;�)] + (1� St) ln [(1� p)� f(Xt;WtjSt = 0;�)]g

= n ln p+ na ln(1� p) +
n+naX
t=1

`(Zt;�);
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where

`(Zt;�) � St`p(Zt; �; f1; f2; f3) + (1� St)`a(Zt; f1a; f2a; f3);

ln f(Xt;Wt; YtjSt = 1;�) � `p(Zt; �; f1; f2; f3)

= ln

Z
f1(Xtjx�)g(Ytjx�;Wt; �)f3(W

u
t jx�;W v

t )f2(x
�jW v

t )dx
� + ln fW v(W v

t )

and

ln f(Xt;WtjSt = 0;�) � `a(Zt; f1a; f2a; f3)

= ln

Z
f1a(Xtjx�a)f3(W u

t jx�a;W v
t )f2a(x

�
ajW v

t )dx
�
a + ln fW v

a
(W v

t );

Let E[�] denote the expectation with respect to the underlying true data generating
process for Zt. To stress that our combined data set consisting of two samples, sometimes

we let Zpi = (Xi;W
u
i ;W

v
i ; Yi)

T denote i � th observation in the primary data set, and

Zaj = (Xaj;W
u
aj;W

v
aj)

T denote j � th observation in the auxiliary data set. Then

�0 = arg sup
�2A

E [`(Zt;�)] = arg sup
�2A

[pEf`p(Zpi; �; f1; f2; f3)g+ (1� p)Ef`a(Zaj; f1a; f2a; f3)g] :

Let An = ��Fn
1 �Fn

1a �Fn
2 �Fn

2 �Fn
3 be a sieve space for A, which is a sequence of

approximating spaces that are dense in A under some pseudo-metric. The two-sample sieve
quasi- MLE b�n = �b�T ; bf1; bf1a; bf2; bf2a; bf3�T 2 An for �0 2 A is de�ned as:

b�n = argmax
�2An

n+naX
t=1

`(Zt;�) = argmax
�2An

"
nX
i=1

`p(Zpi; �; f1; f2; f3) +
naX
j=1

`a(Zaj; f1a; f2a; f3)

#

We could apply in�nite-dimensional approximating spaces as sieves Fn
j for Fj; j =

1; 1a; 2; 3. However, in applications, we shall use �nite-dimensional sieve spaces since they

are easier to implement. For j = 1; 1a; 2; 3, let pkj;nj (�) be a kj;n � 1�vector of known basis
functions, such as power series, splines, Fourier series, etc. Then we denote the sieve space
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for F1, F1a, F2 and F3 as follows:

Fn
1 =

n
f1(xjx�) = p

k1;n
1 (x; x�)T�1 2 F1

o
; Fn

1a =
n
f1a(xajx�a) = p

k1a;n
1a (xa; x

�
a)
T�1a 2 F1a

o
;

Fn
2 =

(
f2 (x

�jwv) =
JX
j=1

I (wv = vj) p
k2;n
2 (x�)T�2j 2 F2

)
;

Fn
3 =

(
f3 (w

ujx�; wv) =
JX
j=1

I (wv = vj) p
k3;n
3 (wu; x�)T�3j 2 F3

)
:

We now present two concrete examples of sieve bases; see e.g., Newey (1997), Chen and

Shen (1998) and Chen (2006) for additional examples. For simplicity we assume X , Xa, X �,

Wu is R, then we can let pk2;n2 (�) be a k2;n� 1�vector of either Hermite polynomial bases or
wavelet spline bases on R; and for j = 1; 1a; 3, pkj;nj (�; �) can be a kj;n � 1�vector of tensor
product of either Hermite polynomial bases or wavelet spline bases on R2.
Hermite polynomials. Hermite polynomial series fHk : k = 1; 2; ::::::g is an ortho-

normal basis of L2(R; expf�x2g). It can be obtained by applying the Gram-Schmidt pro-
cedure to the polynomial series fxk�1 : k = 1; 2; ::::::g under the inner product hf; gi! =R
R f(x)g(x) expf�x

2gdx. That is, H1(x) = 1=
qR

R expf�x2gdx = ��1=4, and for all k � 2,

Hk(x) =
xk�1 �

Pk�1
j=1



xk�1; Hj

�
!
Hj(x)qR

R[x
k�1 �

Pk�1
j=1 hxk�1; Hji!Hj(x)]2 expf�x2gdx

.

Let HPol(kn) denote the space of Hermite polynomials on R of degree kn or less:

HPol(kn) =

�kn+1X
k=1

akHk(x) expf�
x2

2
g; x 2 R : ak 2 R

�
:

See e.g. Gallant and Nychka (1987) and Coppejans and Gallant (2002) for properties and

applications of the Hermite polynomial sieve.
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Cardinal B-spline wavelets. The cardinal B-spline of order r � 1 is given by

Br(x) =
1

(r � 1)!

rX
j=0

(�1)j

0BB@ r

j

1CCA [max (0; x� j)]r�1 ,

which has support [0; r], is symmetric at r=2 and is a piecewise polynomial of highest degree

r � 1. It satis�es Br(x) � 0;
P+1

k=�1Br(x � k) = 1 for all x 2 R; which is crucial to
preserve the shape of the unknown function to be approximated. Its derivative satis�es
@
@x
Br(x) = Br�1(x)�Br�1(x� 1). Let SplWav(r� 1; 2kn) denote the space of spline wavelet

bases on R:

SplWav(r � 1; 2kn) =
� 1X
j=�1

�j2
kn=2Br(2

knx� j); x 2 R : �k 2 R
�
:

See Chui (1992) and Chen et al. (1997) for properties and applications of the spline wavelet

sieve.

3.1.1 Consistency

The consistency of the two-sample sieve (quasi) MLE b�n can be established by applying
either lemma A.1 of Newey and Powell (2003) or theorem 3.1 of Chen (2006). First we

de�ne a norm on A as follows:

k�ks = k�kE + kf1k1;!1
+ kf1ak1;!1a

+ kf2k1;!2
+ kf2ak1;!2

+ kf3k1;!3

where khk1;!j
� sup� jh(�)!j (�)j with !j (�) =

�
1 + k�k2E

��&j=2, &j > 0 for j = 1; 1a; 2; 3.

We assume each of X , Xa, X �, Wu is R, and

Assumption 3.2 (i) the primary sample
�
Xi;W

T
i ; Y

T
i

	n
i=1
and the auxiliary sample

�
Xaj;W

T
aj

	na
j=1

are i.i.d and independent of each other. In addition, limn!1
n

n+na
= p 2 (0; 1); (ii)

g(yjx�; w; �) is continuous in � 2 �, and � is a compact subset of Rd� ; (iii) �0 2 � is

the unique maximizer of
R
[log g(yjx�; w; �)]fY jX�;W (yjx�; w)dy over � 2 �.
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Assumption 3.3 (i) �1 < E [`(Zt;�0)] < 1, E [`(Zt;�)] is upper semicontinuous on
A under the metric k�ks; (ii) there are a �nite � > 0 and a random variable U(Zt) with

EfU(Zt)g <1 such that sup�2An:k���0ks�� j`(Zt;�)� `(Zt;�0)j � ��U(Zt).

Assumption 3.4 (i) pk2;n2 (�) is a k2;n � 1�vector of spline wavelet basis functions on R,
and for j = 1; 1a; 3, pkj;nj (�; �) is a kj;n � 1�vector of tensor product of spline wavelet basis
functions on R2; (ii) kn � maxfk1;n; k1a;n; k2;n; k3;ng ! 1 and kn=n! 0.

Assumption 3.2(i) is a typical condition used in cross-sectional analyses with two sam-

ples; see e.g., Ridder and Mo¢ tt (2006). Assumption 3.2(ii-iii) are typical conditions for

parametric (quasi-) MLE of �0 if X� could be observed without error. Assumption 3.3(ii)

requires the log density is Hölder continuous under the metric k�ks over the sieve space. The
following consistency lemma is a direct application of lemma A.1 of Newey and Powell (2003)

or theorem 3.1 (or remark 3.1(4), remark 3.3) of Chen (2006), hence we omit its proof.

Lemma 3.1 Let b�n be the two-sample sieve MLE. Under assumptions 3.1-3.4, we have
kb�n � �0ks = op(1).

3.1.2 Convergence rate under weaker metric

Although the population criterion function E[`(Zt;�)] is continuous with respect to the

strong norm k�ks, but the reverse is not true. It is easy to check that the metric k�� �0ks
is in general not continuous with respect to the population criterion function di¤erence

E[`(Zt;�0) � `(Zt;�)]. This is the so-called ill-posed inverse problem, and hence one could

not generally obtain a fast convergence rate op
�
n�1=4

�
under the strong norm k�ks. See

e.g., Linton and Whang (2002), Newey and Powell (2003), Darolles, Florens and Renault

(2005), Hall and Horowitz (2005), Florens, Johannes and van Bellegem (2005), Carrasco

and Florens (2005), Carrasco, Florens and Renault (2006), Chen (2006), Horowitz and Lee

(2006), Gagliardini and Scaillet (2006), Bonhomme and Robin (2006), Hoderlein, Klemela

and Mammen (2006) for further discussions about the ill-posed inverse problems.

We now follow the approach in Ai and Chen (2003, 2004), and introduce a pseudo metric

k�k2 that is weaker than k�ks but is continuous with respect to the population criterion
function di¤erence E[`(Zt;�0) � `(Zt;�)], so that the convergence rate of the sieve quasi

MLE would be op
�
n�1=4

�
under the weaker pseudo metric k�k2, which is usually needed to

establish the
p
n�asymptotic normality of any semiparametric estimator of �0.

Given Lemma 3.1, we can now restrict our attention to a shrinking jj � jjs�neighborhood
around �0. Let A0s � f� 2 A : jj� � �0jjs = o(1); jj�jjs � c0 < cg and A0sn � f� 2 An :
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jj�� �0jjs = o(1); jj�jjs � c0 < cg. Then, for the purpose of establishing a convergence rate
under a pseudo metric that is weaker than jj � jjs, we can treat A0s as the new parameter
space and A0sn as its sieve space, and assume that both A0s and A0sn are convex parameter
spaces. For any �1, �2 2 A0s, we consider a continuous path f� (�) : � 2 [0; 1]g in A0s such
that � (0) = �1 and � (1) = �2. For simplicity we assume that for any �; � + v 2 A0s,
f�+ �v : � 2 [0; 1]g is a continuous path in A0s, and that `(Zt;�+ �v) is twice continuously
di¤erentiable at � = 0 for almost all Zt and any direction v 2 A0s. We de�ne the pathwise
�rst derivative as

d`(Zt;�)

d�
[v] � d`(Zt;�+ �v)

d�
j�=0 a.s. Zt;

and the pathwise second derivative as

d2`(Zt;�)

d�d�T
[v; v] � d2`(Zt;�+ �v)

d� 2
j�=0 a.s. Zt:

Following Ai and Chen (2004), for any �1; �2 2 A0s, we de�ne a pseudo metric jj � jj2 as
follows:

k�1 � �2k2 �

s
�E

�
d2`(Zt;�0)

d�d�T
[�1 � �2; �1 � �2]

�
.

We show that b�n converges to �0 at a rate faster than n�1=4 under the pseudo metric
k�k2 with the following assumptions:

Assumption 3.5 (i) &j > 
j for j = 1; 1a; 2; 3; (ii) k�
n = o([n + na]
�1=4) with 
 �

minf
1=2; 
1a=2, 
2; 
3=2g > 1=2:

Assumption 3.6 (i) A0s is convex at �0 and �0 2 int (�); (ii) `(Zt;�) is twice continuously
pathwise di¤erentiable with respect to � 2 A0s, and log g(yjx�; w; �) is twice continuously
di¤erentiable at �0.

Assumption 3.7 supe�2A0s sup�2A0sn
���d`(Zt;e�)d�

h
���0

k���0ks

i��� � U(Zt) for a random variable U(Zt)

with Ef[U(Zt)]2g <1.

Assumption 3.8 (i) supv2A0s:jjvjjs=1�E
�
d2`(Zt;�0)
d�d�T

[v; v]
�
� C < 1; (ii) uniformly overe� 2 A0s and � 2 A0sn, we have

�E
�
d2`(Zt; e�)
d�d�T

[�� �0; �� �0]

�
= k�� �0k22 � f1 + o(1)g:
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Assumption 3.5 guarantees that the sieve approximation error under the strong norm jj � jjs
goes to zero faster than [n + na]

�1=4. Assumption 3.6 makes sure that the twice pathwise

derivatives are well de�ned with respect to � 2 A0s, hence the pseudo metric k�� �0k2
is well de�ned on A0s. Assumption 3.7 impose an envelope condition. Assumption 3.8(i)
implies that k�� �0k2 �

p
C k�� �0ks for all � 2 A0s. Assumption 3.8(ii) implies that

there are positive �nite constants C1 and C2 such that for all � 2 A0sn, C1 k�� �0k22 �
E[`(Zt;�0) � `(Zt;�)] � C2 k�� �0k22, that is, k�� �0k22 is equivalent to the Kullback-
Leibler discrepancy on the local sieve space A0sn. The following convergence rate theorem
is a direct application of theorem 3.2 of Chen (2006) to the local parameter space A0s and
the local sieve space A0sn, hence we omit its proof.

Theorem 3.2 Under assumptions 3.1-3.8, we have

kb�n � �0k2 = OP

 
max

(
k�
n ;

r
kn

n+ na

)!
= OP

�
[n+ na]

�

2
+1

�
if kn = O

�
[n+ na]

1
2
+1

�
:

3.1.3 Asymptotic normality under possible misspeci�cation

Following the approach in Ai and Chen (2004), we can derive the asymptotic distribution

of the sieve quasi MLE b�n regardless whether the latent parametric model g(yjx�; w; �0) is
correctly speci�ed or not. First we de�ne an inner product corresponding to the pseudo

metric k�k2:

hv1; v2i2 � �E
�
d2`(Zt;�0)

d�d�T
[v1; v2]

�
:

LetV denote the closure of the linear span ofA�f�0g under the metric k�k2. Then
�
V; k�k2

�
is a Hilbert space and we could represent V = Rd��U with U � F1 �F1a �F2 �F2 �F3�
f(f01; f01a; f02; f02a; f03)g. Let h = (f1; f1a; f2; f2a; f3) denote all the unknown densities. Then
the pathwise �rst derivative can be written as

d`(Zt;�0)

d�
[�� �0] =

d`(Zt;�0)

d�T
(� � �0) +

d`(Z;�0)

dh
[h� h0]

=

�
d`(Zt;�0)

d�T
� d`(Z;�0)

dh
[�]

�
(� � �0);
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with h� h0 � ��� (� � �0), and where

d`(Z;�0)

dh
[h� h0] =

d`(Z; �0; h0(1� �) + �h)

d�
j�=0

=
d`(Zt;�0)

df1
[f1 � f01] +

d`(Zt;�0)

df1a
[f1a � f01a] +

d`(Zt;�0)

df2
[f2 � f02]

+
d`(Zt;�0)

df2a
[f2a � f02a] +

d`(Zt;�0)

df3
[f3 � f03] :

Note that

E

�
d2`(Zt;�0)

d�d�T
[�� �0; �� �0]

�
= (� � �0)

TE

�
d2`(Zt;�0)

d�d�T

�
(� � �0) + 2(� � �0)

TE

�
d2`(Z;�0)

d�dhT
[h� h0]

�
+E

�
d2`(Z;�0)

dhdhT
[h� h0; h� h0]

�
= (� � �0)

TE

�
d2`(Zt;�0)

d�d�T
� 2d

2`(Z;�0)

d�dhT
[�] +

d2`(Z;�0)

dhdhT
[�; �]

�
(� � �0);

with h� h0 � ��� (� � �0); and where

d2`(Z;�0)

d�dhT
[h� h0] =

d(@`(Z; �0; h0(1� �) + �h)=@�)

d�
j�=0;

d2`(Z;�0)

dhdhT
[h� h0; h� h0] =

d2`(Z; �0; h0(1� �) + �h)

d� 2
j�=0:

For each component �k (of �), k = 1; :::; d�, suppose there exists a ��k 2 U that solves:

��k : inf
�k2U

E

�
�
�
@2`(Z;�0)

@�k@�k
� 2d

2`(Z;�0)

@�kdhT
[�k] +

d2`(Z;�0)

dhdhT
[�k; �k]

��
:

Denote �� =
�
��1; ��2; :::; ��d�

�
with each ��k 2 U , and

d`(Z;�0)

dh
[��] =

�
d`(Z;�0)

dh

�
��1
�
; :::;

d`(Z;�0)

dh

�
��d�

��
;
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d2`(Z;�0)

@�dhT
[��] =

�
d2`(Z;�0)

@�dh
[��1]; :::;

d2`(Z;�0)

@�dh
[��d� ]

�
;

d2`(Z;�0)

dhdhT
[��; ��] =

0BBBBBB@
d2`(Z;�0)
dhdhT

[��1; ��1] � � � d2`(Z;�0)
dhdhT

[��1; ��d� ]

� � � � � � � � �

d2`(Z;�0)
dhdhT

[��d� ; ��1] � � � d2`(Z;�0)
dhdhT

[��d� ; ��d� ]

1CCCCCCA :

Also denote

V� � �E
�
@2`(Z;�0)

@�@�T
� 2d

2`(Z;�0)

@�dhT
[��] +

d2`(Z;�0)

dhdhT
[��; ��]

�
:

Now we consider a linear functional of �, which is �T � for any � 2 Rd� with � 6= 0. Since

sup
���0 6=0

j�T (� � �0) j2
jj�� �0jj22

= sup
� 6=�0;� 6=0

(� � �0)
T��T (� � �0)

(� � �0)TE
n
�
�
d2`(Zt;�0)

d�d�T
� 2d2`(Z;�0)

d�dhT
[�] + d2`(Z;�0)

dhdhT
[�; �]

�o
(� � �0)

= �T (V�)
�1�;

the functional �T (� � �0) is bounded if and only if the matrix V� is nonsingular.

Suppose that V� is nonsingular. For any �xed � 6= 0, denote �� � (v�� ; v�h) with

v�� � (V�)�1� and v�h � ��� � v�� . (3.1)

Then the Riesz representation theorem implies

�T (� � �0) = h��; �� �0i2 for all � 2 A. (3.2)

Following the proof of theorem 4.1 in Ai and Chen (2004), we can show that

�T
�b�n � �0

�
= h��; b�n � �0i2 =

1

n+ na

n+naX
t=1

d`(Zt;�0)

d�
[��] + op

�
1p

n+ na

�
:
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Denote

S�0 �
d`(Zt;�0)

d�T
� d`(Zt;�0)

dh
[��] and I� � E

�
ST�0S�0

�
:

Then
d`(Zt;�0)

d�
[��] =

d`(Zt;�0)

d�T
(v��) +

d`(Z;�0)

dh
[��� � v�� ] = S�0(v��);

�2� � E

(�
d`(Zt;�0)

d�
[��]

�2)
= (v��)

TE
�
ST�0S�0

�
(v��) = �T (V�)

�1I�(V�)
�1�:

Denote N0 = f� 2 A0s : k�� �0k2 = o([n + na]
�1=4)g and N0n = f� 2 A0sn :

k�� �0k2 = o([n + na]
�1=4)g. We impose the following additional conditions for asymp-

totic normality of sieve quasi MLE b�n:
Assumption 3.9 �� exists (i.e., ��k 2 U for k = 1; :::; d�), and V� is positive-de�nite.

Assumption 3.10 There is a ��n 2 An�f�0g such that jj��n���jj2 = o(1) and k��n � ��k2�
kb�n � �0k2 = oP (

1p
n+na

):

Assumption 3.11 there is a random variable U(Zt) with Ef[U(Zt)]2g < 1 and a non-

negative measurable function � with lim�!0 �(�) = 0 such that for all � 2 N0n,

sup
�2N0

����d2`(Zt;�)d�d�T
[�� �0; �

�
n]

���� � U(Zt)� �(jj�� �0jjs):

Assumption 3.12 Uniformly over � 2 N0 and � 2 N0n,

E

�
d2`(Zt;�)

d�d�T
[�� �0; �

�
n]�

d2`(Zt;�0)

d�d�T
[�� �0; �

�
n]

�
= o

�
1p

n+ na

�
:

Assumption 3.13 E

��
d`(Zt;�0)

d�
[��n � ��]

�2�
goes to zero as k��n � ��k2 goes to zero.

Assumption 3.9 is critical for obtaining the
p
n convergence of sieve quasi MLE b�n to �0

and its asymptotic normality. We notice that it is possible that �0 is uniquely identi�ed

but Assumption 3.9 is not satis�ed. If this happens, �0 can still be consistently estimated

but the best achievable convergence rate is slower than the
p
n�rate. Assumption 3.10

implies that the asymptotic bias of the Riesz representer is negligible. Assumptions 3.11

and 3.12 control the remainder term. Assumption 3.13 is automatically satis�ed when the
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latent parametric model is correctly speci�ed, since E
��

d`(Zt;�0)
d�

[��n � ��]
�2�

= k��n � ��k22
under correct speci�cation. See Ai and Chen (2004) for further discussions of these types of

assumptions.

The following asymptotic normality result is similar to theorem 4.1 in Ai and Chen (2004)

for possibly misspeci�ed models.

Theorem 3.3 Under assumptions 3.1-3.13, we have
p
n+ na

�b�n � �0

�
d! N (0; V �1

� I�V
�1
� ).

Proof. See the Appendix.

3.1.4 Semiparametric e¢ ciency under correct speci�cation

In this subsection we assume that g(yjx�; w; �0) correctly speci�es the true unknown condi-
tional density fY jX�;W (yjx�; w). We can then establish the semiparametric e¢ ciency of the
two-sample sieve MLE b�n for the parameter of interest �0. First we recall the Fisher metric
k�k on A: for any �1, �2 2 A,

k�1 � �2k2 � E

(�
d`(Zt;�0)

d�
[�1 � �2]

�2)

and the Fisher norm induced inner product:

hv1; v2i � E

��
d`(Zt;�0)

d�
[v1]

��
d`(Zt;�0)

d�
[v2]

��
:

Under correct speci�cation, g(yjx�; w; �0) = fY jX�;W (yjx�; w), it can be shown that the
two pseudo norms k�k and k�k2 become equivalent:

kvk2 � E

(�
d`(Zt;�0)

d�
[v]

�2)
= �E

�
d2`(Zt;�0)

d�d�T
[v; v]

�
� kvk22 ;

and

hv1; v2i � E

��
d`(Zt;�0)

d�
[v1]

��
d`(Zt;�0)

d�
[v2]

��
= �E

�
d2`(Zt;�0)

d�d�T
[v1; v2]

�
� hv1; v2i2 :
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Thus the space V is also the closure of the linear span of A�f�0g under the Fisher metric
k�k. For each parametric component �k of �, k = 1; 2; :::; d�, an alternative way to obtain

�� =
�
��1; ��2; :::; ��d�

�
is to compute ��k �

�
��k1 ; �

�k
1a; �

�k
2 ; �

�k
2a; �

�k
3

�T 2 U as the solution to
inf
�k2U

E

(�
d`(Zt;�0)

d�k
� d`(Zt;�0)

dh

�
�k
��2)

= inf
(�1;�1a;�2;�2a;�3)

T2U
E

8>><>>:
0BB@ d`(Zt;�0)

d�k
� d`(Zt;�0)

df1
[�1]�

d`(Zt;�0)
df1a

[�1a]

�d`(Zt;�0)
df2

[�2]�
d`(Zt;�0)
df2a

[�2a]�
d`(Zt;�0)

df3
[�3]

1CCA
29>>=>>; :

Then

S�0 �
d`(Zt;�0)

d�T
� d`(Zt;�0)

dh
[��]

becomes the semiparametric e¢ cient score for �0, and under correctly speci�cation, we have

I� � E
�
ST�0S�0

�
= V�,

which is the semiparametric information bound for �0.

Given the expression of the density function, the pathwise �rst derivative at �0 can be

written as

d`(Zt;�0)

d�
[�� �0]

= St
d`p(Zt; �0; f01; f02; f03)

d�
[�� �0] + (1� St)

d`a(Zt; f01a; f02a; f03)

d�
[�� �0] ;

see Appendix for the expressions of d`p(Zt;�0;f01;f02;f03)
d�

[�� �0] and
d`a(Zt;f01a;f02a;f03)

d�
[�� �0].

Thus

I� � E
�
ST�0S�0

�
= pI�p + (1� p)I�a

with

I�p = E

2664
�
d`p(Zt;�0;f01;f02;f03)

d�T
�
P3

j=1
d`p(Zt;�0;f01;f02;f03)

dfj

�
��j
��T

�
d`p(Zt;�0;f01;f02;f03)

d�T
�
P3

j=1
d`p(Zt;�0;f01;f02;f03)

dfj

�
��j
��

3775 ;
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I�a = E

2664
�P2

j=1
d`a(Zt;f01a;f02a;f03)

dfja

�
��ja
�
+ d`a(Zt;f01a;f02a;f03)

df3
[��3]
�T

�P2
j=1

d`a(Zt;f01a;f02a;f03)
dfja

�
��ja
�
+ d`a(Zt;f01a;f02a;f03)

df3
[��3]
�
3775 :

Therefore, the in�uence function representation of our two-sample sieve MLE is:

�T
�b�n � �0

�
=

1

n+ na

(
nX
i=1

d`p(Zpi; �0; f01; f02; f03)

d�
[��] +

naX
j=1

d`a(Zaj; f01a; f02a; f03)

d�
[��]

)
+ op

�
1p

n+ na

�
;

and the asymptotic distribution of
p
n+ na

�b�n � �0

�
is N (0; I�1� ). Combining our theorem

3.3 and theorem 4 of Shen (1997), we immediately obtain

Theorem 3.4 Suppose that g(yjx�; w; �0) = fY jX�;W (yjx�; w) for almost all y; x�; w, that I�
is positive de�nite, and that assumptions 3.1-3.12 hold. Then the two-sample sieve MLE b�n
is semiparametrically e¢ cient, and

p
n
�b�n � �0

�
d! N

�
0; [I�p +

1�p
p
I�a]

�1
�
= N (0; pI�1� ).

Following Ai and Chen (2003, 2004), the asymptotic e¢ cient variance, I�1� , of the sieve

MLE b�n (under correct speci�cation) can be consistently estimated by bI�1� , with
bI� = 1

n+ na

n+naX
t=1

�
d`(Zt; b�)
d�T

� d`(Zt; b�)
dh

[b��]�T �d`(Zt; b�)
d�T

� d`(Zt; b�)
dh

[b��]� ;

where b�� = �b��1; b��2; :::; b��d�� and b��k � �b��k1 ; b��k1a; b��k2 ; b��k2a; b��k3 �T solves the following sieve
minimization problem: for k = 1; 2; :::; d�;

min
�k2Fn

n+naX
t=1

0BB@ d`(Zt;b�)
d�k

� d`(Zt;b�)
df1

�
�k1
�
� d`(Zt;b�)

df1a

�
�k1a
�

�d`(Zt;b�)
df2

�
�k2
�
� d`(Zt;b�)

df2a

�
�k2a
�
� d`(Zt;b�)

df3

�
�k3
�
1CCA
2

;
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where Fn � Fn
1 �Fn

1a �Fn
2 �Fn

2 �Fn
3 . Denote

d`(Zt; b�)
dh

hb��ki � d`(Zt; b�)
df1

hb��k1 i+ d`(Zt; b�)
df1a

hb��k1ai+ d`(Zt; b�)
df2

hb��k2 i
+
d`(Zt; b�)
df2a

hb��k2ai+ d`(Zt; b�)
df3

hb��k3 i ;
and

d`(Zt; b�)
dh

[b��] = �d`(Zt; b�)
dh

�b��1� ; :::; d`(Zt; b�)
dh

hb��d�i� :
3.2 Sieve likelihood ratio model selection test

In many empirical applications, researchers often estimate di¤erent parametrically speci�ed

structure models in order to select one that �ts the data the �best�. We shall consider two

non-nested possibly misspeci�ed parametric latent structure models fg1(yjx�; w; �1) : �2 2
�1g and fg2(yjx�; w; �2) : �2 2 �2g. IfX� were observed without error in the primary sample,

researchers could apply Vuong�s (1989) likelihood ratio test to select a �best� parametric

model that is closest to the true underlying conditional density fY jX�;W (yjx�; w) according
to the KLIC. In this subsection, we shall extend Vuong�s result to the caseX� is not observed

in either samples.

Consider two parametric families of models fgj(yjx�; w; �j) : �j 2 �jg, �j a compact
subset of Rd�j , j = 1; 2 for the latent true conditional density fY jX�;W . De�ne

�0j � arg max
�j2�j

Z
[log gj(yjx�; w; �j)]fY jX�;W (yjx�; w)dy.

According to Vuong (1989), we say the two models are nested if g1(yjx�; w; �01) = g2(yjx�; w; �02)
for almost all y 2 Y ; x� 2 X �; w 2 W; the two models are non-nested if g1(Y jX�;W ; �01) 6=
g2(Y jX�;W ; �02) with positive probability.

For j = 1; 2; denote �0j = (�
T
0j; f01; f01a; f02; f02a; f03)

T 2 Aj with Aj = �j �F1 �F1a �
F2�F2�F3, and let `j(Zt;�0j) denote the log-likelihood according to model j evaluated at
data Zt. Following Vuong (1989), we select model 1 if H0 holds, where

H0 : E f`2(Zt;�02)� `1(Zt;�01)g � 0;
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and select model 2 if H1 holds, where

H1 : E f`2(Zt;�02)� `1(Zt;�01)g > 0:

For j = 1; 2; denote Aj;n = �j � Fn
1 � Fn

1a � Fn
2 � Fn

2 � Fn
3 and de�ne the sieve quasi

MLE for �0j 2 Aj as

b�j = argmax
�j2Aj;n

n+naX
t=1

`j(Zt;�j) = argmax
�j2Aj;n

"
nX
t=1

`j;p(Zpt; �j; f1; f2; f3) +

naX
t=1

`j;a(Zat; f1a; f2a; f3)

#
:

In the following we denote �2 � V ar (`2(Zt;�02)� `1(Zt;�01)) and

�̂2 =
1

n+ na

n+naX
t=1

"
f`2(Zt; b�2)� `1(Zt; b�1)g � 1

n+ na

n+naX
s=1

f`2(Zs; b�2)� `1(Zs; b�1)g#2 :
Theorem 3.5 Suppose both models 1 and 2 satisfy assumptions 3.1-3.8, and �2 <1. Then

1p
n+ na

n+naX
t=1

(f`2(Zt; b�2)� `1(Zt; b�1)g � Ef`2(Zt;�02)� `1(Zt;�01)g)

=
1p

n+ na

n+naX
t=1

(f`2(Zt;�02)� `1(Zt;�01)g � Ef`2(Zt;�02)� `1(Zt;�01)g) + oP (1)

d! N
�
0; �2

�
:

Suppose models 1 and 2 are non-nested, then

1

�̂
p
n+ na

n+naX
t=1

(f`2(Zt; b�2)� `1(Zt; b�1)g � Ef`2(Zt;�02)� `1(Zt;�01)g)
d! N (0; 1) :

Proof. See the Appendix.
Therefore under the least favorable null hypothesis of E f`2(Zt;�02)� `1(Zt;�01)g = 0,

we have: 1
�̂
p
n+na

Pn+na
t=1 f`2(Zt; b�2)� `1(Zt; b�1)g d! N (0; 1), which can be used to provide a

sieve likelihood ratio model selection test of H0 against H1.
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4 Simulation and Empirical Illustration.

In this section we present a simulation study and an empirical example to illustrate the �nite

sample performance of the two-sample sieve MLE.

4.1 Simulation

Suppose the true parametric model for fY jX�;W (yjX�;W ) is a probit model:

g(yjX�;W ; �) = [�(�1X
� + �2W

u + �3W
v)]y [1� �(�1X� + �2W

u + �3W
v)]1�y ;

where � = (�1; �2; �3)
T , � is the normal distribution and W v 2 f�1; 0; 1g. We have

two independent random samples fYi; Xi;Wigni=1 and fXaj;Wajgnaj=1 with n = 1500 and

na = 1000. In the primary sample, we let �0 = (1; 1; 1)T , X�jW v � N(0; 1), Pr(W v =

1) = Pr(W v = 0) = 1=3 with W u independent of W v. The unknown true conditional

density fWujX�;W v(wujx�; wv) is  (wu � x�), where  is the normal density function. The

mismeasured value X equals

X = 0:5X� + C
�
e�0:5X

� � 1
�
+ e�0:1X

�
" with " � N(0; �2").

In the Monte Carlo study we consider di¤erent cases with C = �0:2, 0, 0:2, and �" = 0:4,
0:5, 0:6. In the auxiliary sample, we generate Wa = (W

u
a ;W

v
a ) in the same way as W in the

primary sample. We set the unknown true conditional density fX�
a jVj = fX�

a jW v
a
to be of the

form:

fX�
a jW v

a
(x�ajwva) =

8>>>>>><>>>>>>:
 (x�a) for wva = �1

0:25 (0:25x�a) for wva = 0

 (x�a � 0:5) for wva = 1

:

The mismeasured value Xa equals

Xa = X�
a + �(X�

a)�; �(X�
a) = 0:5 exp(�X�

a) with � � N(0; 1),

which implies that x�a is the mode of the conditional density fXajX�
a
(�jx�a).
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We use the simple sieve expression pk1;n1 (x1; x2)
T�1 =

PJn
j=0

PKn

k=0 
jkpj (x1 � x2) qk (x2)

to approximate the conditional densities fXjX�(x1jx2) and fXajX�
a
(x1jx2), with k1;n = (Jn +

1)(Kn + 1); p
k3;n
3 (wu; x�)T�3(v) =

PJn
j=0

PKn

k=0 
jk(v)pj (w
u � x�) qk (x

�) to approximate the

conditional density fWujX�;Vj=v(w
ujx�), with k3;n = (Jn + 1)(Kn + 1) and Vj = �1; 0; 1;

and pk2;n2 (x�)T�2(v) =
Pk2;n

k=1 
k(v)qk (x
�) to approximate the conditional densities fX�jVj=v,

fX�
a jVj=v with Vj = �1; 0; 1. The bases fpj(�)g and fqk(�)g are Hermite polynomials bases.
The simulation repetition times is 400. The simulation results shown in Tables 1 and

2 include three estimators. The �rst estimator is to use the primary sample alone as if it

were accurate; this estimator is inconsistent and its bias should dominate the squared root

of mean square error (root MSE). The second estimator is the standard probit MLE using

accurate data fYi; X�
i ;Wigni=1. This estimator is consistent, asymptotic normal and most

e¢ cient, however, we call it �infeasible MLE� since X�
i is not observed in practice. The

third estimator is the two-sample sieve MLE developed in this paper, where the number of

sieve terms are chosen to be Jn = 3; Kn = 3 (i.e., k1;n = 16) for bfXjX�, bfXajX�
a
; Jn = 3; Kn = 3

(i.e., k3;n = 16) for bfWujX�;W v , and k2;n = 6 for bfX�jW v , bfX�
a jW v

a
. Table 1 shows three cases

with C = �0:2, 0, 0:2 and �" = 0:6. Table 2 presents three cases with C = 0:2 and �" = 0:4,
0:5, 0:6. The simulation results show that the 2-sample sieve MLE has a smaller bias than the

estimator ignoring measurement error at the expense of a larger standard error. Moreover,

the 2-sample sieve MLE has a smaller total root MSE than the �rst estimator. In summary,

our 2-sample sieve MLE performs well in this Monte Carlo simulation.

4.2 An empirical illustration

Next, we apply the 2 sample sieve MLE to estimate the e¤ect of earnings on the voting

behavior. The population we consider consists of all the individuals with jobs who were

eligible to vote in the presidential election on Tuesday, November 2, 2004. The dependent

variable is a dichotomous variable equals 1 if an individual voted, equals 0 otherwise. We use

the probit model to estimate the e¤ect of earnings with covariates such as years of schooling,

age, gender, and marital status. We use a random sample from the Current Population Sur-

vey (CPS) in November 2004. The major concern with this sample is that the self-reported

earnings may have nonclassical measurement errors. If we simply ignore the measurement

error, the maximum likelihood estimator is inconsistent. In order to consistently estimate

the model using our new estimator, we use an auxiliary random sample from the Survey of

Income and Program Participation (SIPP). The questionnaire of SIPP have more income-

related questions than that of CPS. In the probit model, we use log earnings rather than the

original ones so that the errors are more likely to have a distribution satisfying assumption

40



2.8. We consider four subpopulations: single females, married females, single males, and

married males.

Suppose the true parametric model for fY jX�;W1;W2(yjX�;W1;W2) is a probit model:

g(yjx�; w1; w2; �) =
�
�(�1x

� + wT1 �2 + wT2 �3)
�y �
1� �(�1x� + wT1 �2 + wT2 �3)

�1�y
where Y stands for the voting behavior, X� denotes the latent true log earning, W1 contains

education and age variables, and W2 includes gender and marital status. Let W u denote the

predicted log earning using W1 and W2 (hence a measurable function of W = (W1;W2)).

De�ne W v as a scalar index containing the same information as in W2. Then

fY jX�;Wu;W v = fY;W1;W2jX�;Wu;W v

= fY jX�;W1;W2;Wu;W vfW1jX�;W2;Wu;W vfW2jX�;Wu;W v

= g(yjx�; w1; w2; �0)fW1jX�;W2;Wu

where fW1jX�;W2;Wu is an extra nuisance function. Notice that the identi�cation of fY jX�;Wu;W v

follows from that of fXjX� and Theorem 2.4, g(yjx�; w1; w2; �0) is the parametric probit model,
hence fW1jX�;W2;Wu is also identi�ed.

We consider four subpopulations, i.e., single males, married males, single females, and

married females. The descriptive statistics of the four subsamples, including mean, standard

deviation, and quantiles, of the two samples is in Tables 3 and 4. The CPS sample contains

6689 individuals who have jobs and are eligible to vote. In this sample, 54% of the individuals

are married and 56% are male. The average education level in each subsample is a little

higher than the high school level. The average age of married males is about 2 year higher

than that of married females, while the average age of single males is 2 year lower than

that of single females. The CPS sample also shows that married people are more likely to

vote then unmarried ones and females are more likely to vote than males. In both sample,

married individuals have a higher average earning than those unmarried and males have a

higher average earning than females. In the SIPP sample, there are 11683 individuals, 30.4%

of whom are married males, 18.1% are single males, and 23.4% are married females. The

average ages of single males or females are about the same as those in the CPS sample. The

married males or females in the SIPP sample are younger on average than those in the CPS

sample. The average earnings are higher in the SIPP sample than in the CPS sample except

in the subsample of single males. The average education levels are very similar in the four
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subsamples of the SIPP sample and in the CPS sample.

We consider two estimators. The �rst one ignores the measurement error (i.e., we treat

X as X�) and is the standard probit estimator using the CPS sample only; the results in

Table 5 shows that every variable had a signi�cant impact on the voting behavior if the

CPS data were accurate. The second estimator is our proposed 2-sample sieve MLE using

the two samples from CPS and SIPP. The results in Table 5 show that the signs of the

coe¢ cients remain the same while the standard deviations increase signi�cantly due to the

nonparametric part of the sieve MLE.1 In particular, according to the consistent 2-sample

sieve MLE, the earnings, schooling and marriage still have signi�cant positive impacts on

the voting behavior; the e¤ect of age is positive but no longer signi�cant. Moreover, females

have a signi�cantly stronger preference to vote than males.

In summary, this empirical illustration shows that our new 2-sample MLE performs

sensibly with real data.

5 Conclusion

This paper considers nonparametric identi�cation and semiparametric estimation of a general

nonlinear model using two random samples, where an explanatory variable contains nonclas-

sical measurement errors in both samples. The primary sample consists of some dependent

variables, some error-free covariates and an error-ridden covariate, where the measurement

error has unknown distribution and is allowed to be arbitrarily correlated with the latent true

values. The secondary sample consists of some error-free covariates and another measure-

ment of the mismeasured covariate. Such a secondary sample is easier to obtain in empirical

work than to collect either a secondary validation sample containing the true values or an

additional measurement in the primary sample. In this paper, we provide reasonable condi-

tions so that the latent nonlinear model is nonparametrically identi�ed using the two samples

when the measurement errors in both samples could be nonclassical. The advantage of our

identi�cation strategy is that, in addition to allow for nonclassical measurement errors in

both samples, neither sample is required to contain an accurate measurement of the latent

true covariate, and only one measurement of the error-ridden covariate is assumed in each

sample. Moreover, our identi�cation result does not require that the primary sample contains

an IV excluded from the nonlinear model of interest, nor need the independence between the

two samples.

1The sieve basis functions and the number of sieve terms are chosen in the same ways as those in the
simulation study.
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Although the identi�cation result is very general, but, from the practical point of view,

we consider semiparametric estimation when the two samples are independent and when

the latent nonlinear model is parametrically speci�ed. We propose a sieve quasi MLE for

latent model of interest using two samples with nonclassical measurement errors. We show

that the sieve quasi MLE of the latent model parameters are root-n consistent and asymp-

totically normal regardless whether the latent model is correctly speci�ed, and that they

are semiparametrically e¢ cient when the model is correctly speci�ed. We also provide a

sieve likelihood ratio model selection test to compare two possibly misspeci�ed parametric

nonlinear EIV models using two independent samples with arbitrary errors.

Since the latent nonlinear model is nonparametric identi�ed without imposing two inde-

pendent samples, we could estimate the latent nonlinear model nonparametrically via two

potentially correlated samples, provided that we impose some structure on the correlation of

the two samples. In particular, the panel data structure in Horowitz and Markatou (1996)

and the group data structure in Linton and Whang (2002) could be borrowed to model cor-

related two samples. We shall investigate these issues in future research. Finally, although

we have focused on nonparametric identi�cation and estimation of nonlinear models with

nonclassical measurement errors, the problems are closely related to the identi�cation and

estimation of nonseparable models with endogeneity and/or latent heterogeneity; see e.g.,

Chesher (2003), Matzkin (2003), Cunha, Heckman and Navarro (2005), and Holderlein and

Mammen (2006). We shall investigate the relations to these alternative models in another

paper.
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Appendix: Mathematical Proofs
Proof. (Theorem 3.3) The proof is a simpli�ed version of that for theorem 4.1 in Ai and
Chen (2004). Recall the neighborhoods N0n = f� 2 A0sn : k�� �0k2 = o([n+na]

�1=4)g and
N0 = f� 2 A0s : k�� �0k2 = o([n+ na]

�1=4)g. For any � 2 N0n, de�ne

r[Zt;�; �0] � `(Zt;�)� `(Zt;�0)�
d`(Zt;�0)

d�
[�� �0]:

Denote the centered empirical process indexed by any measurable function h as

�n (h(Zt)) �
1

n+ na

n+naX
t=1

fh(Zt)� E[h(Zt)]g:

Let "n > 0 be at the order of o([n + na]
�1=2). By de�nition of the two-sample sieve quasi

MLE b�n, we have
0 � 1

n+ na

n+naX
t=1

[`(Zt; b�)� `(Zt; b�� "n�
�
n)]

= �n (`(Zt; b�)� `(Zt; b�� "n�
�
n)) + E (`(Zt; b�)� `(Zt; b�� "n�

�
n))

= �"n �
1

n+ na

n+naX
t=1

d`(Zt;�0)

d�
[��n] + �n (r[Zt; b�; �0]� r[Zt; b�� "n�

�
n; �0])

+E (r[Zt; b�; �0]� r[Zt; b�� "n�
�
n; �0]) :

In the following we will show that:

(A.1)
1

n+ na

n+naX
t=1

d`(Zt;�0)

d�
[��n � ��] = oP (

1p
n+ na

);

(A.2) E (r[Zt; b�; �0]� r[Zt; b�� "n�
�
n; �0]) = �"n � hb�� �0; �

�i2 + "n � oP (
1p

n+ na
);

(A.3) �n (r[Zt; b�; �0]� r[Zt; b�� "n�
�
n; �0]) = "n � oP (

1p
n+ na

):

Notice that assumptions 3.1, 3.2(ii)(iii) and 3.6 imply E
�
d`(Zt;�0)

d�
[��]
�
= 0. Under (A.1) -
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(A.3) we have:

0 � 1

n+ na

n+naX
t=1

[`(Zt; b�)� `(Zt; b�� "n�
�
n)]

= �"n � �n

�
d`(Zt;�0)

d�
[��]

�
� "n � hb�� �0; �

�i2 + "n � oP (
1p

n+ na
):

Hence

p
n+ na hb�� �0; �

�i2 =
p
n+ na�n

�
d`(Zt;�0)

d�
[��]

�
+ oP (1)) N

�
0; �2�

�
;

with

�2� � E

(�
d`(Zt;�0)

d�
[��]

�2)
= (v��)

TE
�
ST�0S�0

�
(v��) = �T (V�)

�1I�(V�)
�1�:

This, assumptions 3.2(i), 3.7 and 3.9 together imply that �2� <1 and

p
n+ na�

T (b�n � �0) =
p
n+ na hb�� �0; �

�i2 + oP (1)) N
�
0; �2�

�
.

To complete the proof, it remains to establish (A.1) - (A.3). Notice that (A.1) is implied by
the Chebyshev inequality, i.i.d. data, Assumptions 3.10 and 3.13. For (A.2) and (A.3) we
notice that

r[Zt; b�; �0]� r[Zt; b�� "n�
�
n; �0]

= `(Zt; b�)� `(Zt; b�� "n�
�
n)�

d`(Zt;�0)

d�
[�"n��n]

= �"n �
�
d`(Zt; e�)

d�
[��n]�

d`(Zt;�0)

d�
[��n]

�
= �"n �

�
d2`(Zt;�)

d�d�T
[e�� �0; �

�
n]

�

where e� 2 N0n is in between b�; b� � "n�
�
n, and � 2 N0 is in between e� 2 N0n and �0.
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Therefore for (A.2), by the de�nition of inner product h�; �i2 we have:

E (r[Zt; b�; �0]� r[Zt; b�� "n�
�
n; �0])

= �"n � E

�
d2`(Zt;�)

d�d�T
[e�� �0; �

�
n]

�
= �"n � he�� �0; �

�
ni2 � "n � E

�
d2`(Zt;�)

d�d�T
[e�� �0; �

�
n]�

d2`(Zt;�0)

d�d�T
[e�� �0; �

�
n]

�
= �"n � hb�� �0; �

�
ni2 � "n � he�� b�; ��ni2 + oP (

"np
n+ na

)

= �"n � hb�� �0; �
�i2 +OP ("

2
n) + oP (

"np
n+ na

)

where the last two equalities hold due to the de�nition of e�, assumptions 3.10 and 3.12, and
hb�� �0; �

�
n � ��i2 = oP (

1p
n+ na

) and jj��njj22 ! jj��jj22 <1.

Hence (A.2) is satis�ed. For (A.3), we notice

�n (r[Zt; b�; �0]� r[Zt; b�� "n�
�
n; �0]) = �"n � �n

�
d`(Zt; e�)

d�
[��n]�

d`(Zt;�0)

d�
[��n]

�

where e� 2 N0n is in between b�; b�� "n��n. Since the class nd`(Zt;e�)d�
[��n] : e� 2 A0so is Donsker

under assumptions 3.1, 3.2, 3.6 and 3.7, and since

E

(�
d`(Zt; e�)

d�
[��n]�

d`(Zt;�0)

d�
[��n]

�2)
= E

(�
d2`(Zt;�)

d�d�T
[e�� �0; �

�
n]

�2)

goes to zero as jje�� �0jjs goes to zero under assumption 3.11, we have (A.3) holds.

For the sake of completeness, we write down the expressions of d`p(Z;�0;f01;f02;f03)
d�

[�� �0]

and d`a(Z;f01a;f02a;f03)
d�

[�� �0] that are needed in the calculation of the Riesz representer and
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the asymptotic e¢ cient variance of the sieve MLE b� in subsection 3.1.4:
fX;Wu;Y jW v(X;W u; Y jW v; �0; f01; f02; f03)�

d`p(Z; �0; f01; f02; f03)

d�
[�� �0]

=

Z
X �
f01(Xjx�)

dg(Y jx�;W ; �0)
d�T

f03(W
ujx�;W v)f02(x

�jW v)dx� [� � �0]

+

Z
X �
[f1(Xjx�)� f01(Xjx�)] g(Y jx�;W ; �0)f03(W ujx�;W v)f02(x

�jW v)dx�

+

Z
X �
f01(Xjx�)g(Y jx�;W ; �0)f03(W ujx�;W v) [f2(x

�jW v)� f02(x
�jW v)] dx�

+

Z
X �
f01(Xjx�)g(Y jx�;W ; �0) [f3(W ujx�;W v)� f03(W

ujx�;W v)] f02(x
�jW v)dx�;

and

fXa;Wu
a jW v

a
(Xa;W

u
a jW v

a ; f01a; f02a; f03)�
d`a(Z; f01a; f02a; f03)

d�
[�� �0]

=

Z
X �
[f1a(Xjx�)� f01a(Xjx�)] f03(W ujx�;W v)f02a(x

�jW v
a )dx

�

+

Z
X �
f01a(Xjx�)f03(W ujx�;W v) [f2a(x

�jW v
a )� f02a(x

�jW v
a )] dx

�

+

Z
X �
f01a(Xjx�) [f3(W ujx�;W v)� f03(W

ujx�;W v)] f02a(x
�jW v

a )dx
�:

Proof. (Theorem 3.5) Under stated assumptions, all the conditions of theorem 3 in Chen
and Shen (1998) holds, and we have for model j = 1; 2;

1p
n+ na

n+naX
t=1

(f`j(Zt; b�j)� `j(Zt;�0j)g � Ef`j(Zt; b�j)� `j(Zt;�0j)g) = oP (1);

and

Ef`j(Zt; b�j)� `j(Zt;�0j)g � jjb�j � �0jjj22 = oP

�
1p

n+ na

�
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thus

1p
n+ na

n+naX
t=1

(f`j(Zt; b�j)� E[`j(Zt;�0j)]g)

=
1p

n+ na

n+naX
t=1

(f`j(Zt; b�j)� `j(Zt;�0j)g � Ef`j(Zt; b�j)� `j(Zt;�0j)g)

+
1p

n+ na

n+naX
t=1

f`j(Zt;�0j)� E[`j(Zt;�0j)]g+
p
n+ naEf`j(Zt; b�j)� `j(Zt;�0j)g

=
1p

n+ na

n+naX
t=1

f`j(Zt;�0j)� E[`j(Zt;�0j)]g+ oP (1):

Under stated conditions, it is obvious that �̂2 = �2 + oP (1). Suppose models 1 and 2 are
non-nested, then � > 0. Thus

1

�̂
p
n+ na

n+naX
t=1

(f`2(Zt; b�2)� `1(Zt; b�1)g � Ef`2(Zt;�02)� `1(Zt;�01)g)
d! N (0; 1) :
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Table 1: simulation results. (n = 1500; na = 1000; reps = 400)

�1 = 1 �2 = 1 �3 = 1
�" = 0:6 bias sd rmse bias sd rmse bias sd rmse
Case 1: C = �0:2
ignoring meas. error -0.520 0.064 0.524 0.159 0.060 0.170 -0.131 0.068 0.147
infeasible MLE 0.005 0.086 0.086 0.007 0.066 0.067 0.006 0.077 0.077
2-sample sieve MLE 0.075 0.327 0.336 0.039 0.100 0.107 -0.024 0.109 0.112
Case 2: C = 0
ignoring meas. error -0.563 0.067 0.567 0.177 0.060 0.186 -0.144 0.067 0.159
infeasible MLE 0.005 0.086 0.086 0.007 0.066 0.067 0.006 0.077 0.077
2-sample sieve MLE -0.013 0.326 0.326 0.072 0.098 0.121 -0.046 0.110 0.119
Case 3: C = 0:2
ignoring meas. error -0.625 0.069 0.629 0.194 0.059 0.203 -0.156 0.067 0.170
infeasible MLE 0.005 0.086 0.086 0.007 0.066 0.067 0.006 0.077 0.077
2-sample sieve MLE -0.116 0.381 0.398 0.128 0.123 0.178 -0.027 0.164 0.166
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Table 2: simulation results. (n = 1500; na = 1000; reps = 400)

�1 = 1 �2 = 1 �3 = 1
C = 0:2 bias sd rmse bias sd rmse bias sd rmse
Case 1: �" = 0:4
ignoring meas. error -0.291 0.097 0.306 0.163 0.060 0.174 -0.133 0.068 0.149
infeasible MLE 0.005 0.086 0.086 0.007 0.066 0.067 0.006 0.077 0.077
2-sample sieve MLE -0.101 0.190 0.216 0.130 0.066 0.146 -0.089 0.083 0.122
Case 2: �" = 0:5
ignoring meas. error -0.494 0.081 0.501 0.182 0.059 0.191 -0.147 0.067 0.162
infeasible MLE 0.005 0.086 0.086 0.007 0.066 0.067 0.006 0.077 0.077
2-sample sieve MLE 0.079 0.355 0.364 1.077 0.110 0.135 -0.039 0.139 0.144
Case 3: �" = 0:6
ignoring meas. error -0.625 0.069 0.629 0.194 0.059 0.203 -0.156 0.067 0.170
infeasible MLE 0.005 0.086 0.086 0.007 0.066 0.067 0.006 0.077 0.077
2-sample sieve MLE -0.116 0.381 0.398 0.128 0.123 0.178 -0.027 0.164 0.166

55



Table 3: descriptive statistics of the primary sample (CPS, Nov. 2004)

mean std.dev Q1 median Q3

married male (n=2393)

weekly earning 989.6 610.5 576.9 851.6 1250.0
log weekly earning 6.693 0.715 6.358 6.747 7.131
years of schooling 13.99 2.708 12 13 16
age 45.6 11.37 37 45 54
voted 0.790 0.407

single male (n=1317)

weekly earning 801.2 536.8 448.0 675.0 1000.0
log weekly earning 6.456 0.750 6.105 6.515 6.908
years of schooling 13.61 2.561 12 13 16
age 39.46 12.61 29 39 49
voted 0.644 0.479

mean std.dev Q1 median Q3

married female (n=1217)

weekly earning 636.9 448.8 325.0 520.0 846.0
log weekly earning 6.202 0.787 5.783 6.254 6.741
years of schooling 14.01 2.438 12 13 16
age 43.30 10.87 35 43 52
voted 0.809 0.394

single female (n=1762)

weekly earning 607.1 421.6 320.0 502.9 807.0
log weekly earning 6.161 0.776 5.768 6.220 6.693
years of schooling 13.76 2.266 12 13 16
age 42.05 13.41 31 42 52
voted 0.732 0.443

56



Table 4: descriptive statistics of the auxilliary sample (SIPP, Nov. 2004, wave 1)

mean std.dev Q1 median Q3

married male (n=3555)

weekly earning 1046.6 1060.4 519.5 837 1254.3
log weekly earning 6.649 0.823 6.253 6.730 7.134
years of schooling 13.75 3.067 12 13 16
age 43.80 11.70 35 43 52

single male (n=2117)

weekly earning 795.2 718.7 389.8 627.8 1028.8
log weekly earning 6.369 0.875 5.966 6.442 6.936
years of schooling 13.43 2.650 12 13 16
age 39.32 12.48 29 39 48

mean std.dev Q1 median Q3

married female (n=2737)

weekly earning 643.3 560.9 300.0 528.0 836.3
log weekly earning 6.130 0.946 5.704 6.269 6.729
years of schooling 13.95 2.480 12 13 16
age 42.53 10.81 35 42 50

single female (n=3274)

weekly earning 615.0 525.3 299.0 500.0 800.0
log weekly earning 6.105 0.912 5.700 6.215 6.685
years of schooling 13.54 2.546 12 13 16
age 42.22 13.68 31 42 52
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Table 5: empirical estimation results.

MLE ignoring m. error 2-sample sieve MLE
voted mean std.dev mean std.dev

log weekly earning 0.063 0.0264 0.087 0.0294
years of schooling 0.164 0.0078 0.151 0.0486
age 0.020 0.0015 0.011 0.0149
male -0.175 0.0379 -0.229 0.1297
married 0.256 0.0366 0.343 0.1035
constant 0.724 0.0315 0.793 0.0845
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