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Abstract

We consider a robust version of the classic problem of optimal monopoly pricing

with incomplete information. In the robust version of the problem the seller only knows

that demand will be in a neighborhood of a given model distribution.

We characterize the optimal pricing policy under two distinct, but related, decision

criteria with multiple priors: (i) maximin expected utility and (ii) minimax expected

regret. While the classic monopoly policy and the maximin criterion yield a single deter-

ministic price, minimax regret always prescribes a random pricing policy, or equivalently,

a multi-item menu policy. The resulting optimal pricing policy under either criterion

is robust to the model uncertainty. Finally we derive distinct implications of how a

monopolist responds to an increase in ambiguity under each criterion.
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1 Introduction

In the past decade, the theory of mechanism design has found increasingly widespread

applications in the real world, favored partly by the growth of the electronic marketplace

and trading on the internet. Many trading platforms, such as auctions and exchanges

implement key insights of the theoretical literature. Naturally, with an increase in the use

of optimal design models, the robustness of these mechanisms with respect to the model

speci�cation becomes an important issue. In this paper, we investigate a robust version

of the classic monopoly problem of selling a product under incomplete information. The

optimal pricing policy is the most elementary instance of a revenue maximizing problem.

We investigate the robustness of the optimal selling policy by enriching the standard

model to account for model ambiguity. Instead of assuming a given demand distribution

from which the buyer is drawn, the seller is only assumed to believe that the demand

distribution will be in the neighborhood of a given model distribution. The enlargement of

the set of possible distributions represents the model ambiguity.

The objective of this paper is to demonstrate that we can relax the rigid Bayesian

model by considering robust decision making. We maintain a formal approach by building

on axiomatic decision theory and obtain interesting new insights for monopoly pricing. The

methodological insight is that robustness is generated by considering decision making under

multiple priors. We then present rich comparative statics results in terms of the response

of prices to an increase in ambiguity and uncover a novel role for menu pricing. Thus, the

analysis of the robust pricing problem leads to testable hypotheses regarding the behavior

of the seller.

Currently, there are two leading approaches to incorporate multiple priors into axiomatic

decision making: maximin utility and minimax regret. The maximin utility approach with

multiple priors is due to Gilboa & Schmeidler (1989). Here the decision maker evaluates

each action by its minimum expected utility across all priors. The decision maker selects

the action that maximizes the minimum expected utility. The minimax regret approach was

�rst suggested by Savage (1951) and axiomatized by Milnor (1954). The minimax regret

criterion was recently adapted to multiple priors by Hayashi (2006) and by Stoye (2006).

Here the decision maker takes the maximum of the expected regret as the prior varies and

chooses an action that minimizes the maximum expected regret.

In this paper, we shall analyze the optimal pricing policy under both criteria. We analyze

the optimal policies when the ambiguity is represented by a neighborhood around a given

model distribution. We de�ne the notion of a neighborhood through the usual metric of
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weak convergence, the Prohorov metric. In the Prohorov metric two distributions are close

to each other if they permit with large probability small changes in the valuations and with

small probability large changes in the valuations. The analysis of the policies under the

two decision criteria will reveal that either criterion leads to a robust policy in the following

sense. We say that a candidate policy is robust if for any demand su¢ ciently close to the

model distribution the di¤erence between the expected pro�t under the optimal policy for

this demand and the expected pro�t under the candidate policy is arbitrarily small.

While the optimal policies under maximin utility and minimax regret share the robust-

ness property, the response to ambiguity leads to distinct qualitative features. The pricing

policy of the seller is obtained as the equilibrium strategy of a zero-sum game between the

seller and adverserial nature. The strategy by nature selects the least favorable demand

distribution to the objective of the seller. When the decision maker is maximizing the min-

imum expect utility among the class of priors, the least favorable demand is always given

by the distribution which puts maximal weight on the lowest quantiles subject to the re-

striction that the selected distribution is in the neighborhood of the model distribution. As

the objective of nature is to minimize the revenue of the seller, the least favorable demand

is the one which minimizes the potential revenue at any possible price level. In particular

as we increase the ambiguity represented by an increase in the size of the neighborhood,

the least favorable demand increases the weight on the lower quantiles of the distribution.

In consequence the best response of the seller always consists in lowering her price deter-

ministically.

When we analyze the behavior under regret minimization, the optimal pricing policy is

still determined by a zero-sum game between the seller and nature. The notion of regret

modi�es the trade-o¤ for seller and nature. The regret of the seller is the di¤erence between

the actual valuation of a buyer for the object and the actual revenue obtained by the seller.

The regret of the seller can therefore be positive for two reasons: (i) a buyer has a low

valuation relative to the price and hence does not purchase the object, or (ii) he has a high

valuation relative to the price and hence the seller could have obtained a higher revenue. In

the equilibrium of the zero-sum game, the optimal pricing policy for the seller has to resolve

the con�ict between the regret which arises with low prices against the regret associated

with high prices. If the seller o¤ers a low price, nature can cause regret with a distribution

which puts substantial probability on high valuation buyers. On the other hand, if the

seller o¤ers a high price, nature can cause regret with a distribution which puts substantial

probability at valuations just below the o¤ered price. It then becomes evident that a single
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price will always expose the seller to substantial regret. Consequently, the seller can decrease

her exposure by o¤ering many prices. This can either be achieved by a probabilistic price

or, alternatively, by a menu of prices. With a probabilistic price, the seller diminishes the

likelihood that the nature will be able to cause large regret. Equivalently, the seller can o¤er

a menu of prices and quantities. The quantity element in the menu can either represent a

true quantity in the case of a divisible object or a probability of obtaining the indivisible

object.

The intuition regarding the price policy with regret is easy to establish in comparison

to the revenue maximizing policy for a given distribution. An optimal policy for a given

distribution of valuations is always to o¤er the entire object at a �xed price (a classic result

by Harris & Raviv (1981) and Riley & Zeckhauser (1983)). In contrast, here the policy will

o¤er many prices (with varying quantities). With a single price, the risk of missing a trade

at a valuation just below the given price is substantial. On the other hand, if the seller

were simply to lower the price, she would miss the chance of extracting revenue from higher

valuation customers. She resolves this con�ict by o¤ering smaller trades at lower prices to

the low valuation customers. The size of the trade is simply the probability by which a trade

is o¤ered or the quantity o¤ered at a given price. In the game against nature, the seller will

have to be indi¤erent between o¤ering small and large trades. In terms of the virtual utility,

the key notion in optimal mechanisms, this requires that the seller will receive zero virtual

utility over a range of valuations. The resulting conditions on the distribution of valuations

determine the least favorable demand. Importantly, an increase in ambiguity may now lead

to an increase in the expected price. In the special case of linear model distribution we �nd

that expected price increases if the optimal price under the model is low and decreases if

the optimal price under the model is high.

From an axiomatic perspective, the maximin and minimax criteria represent di¤erent

departures from the standard model of Anscome & Aumann (1963). The maximin de-

cision criterion emerges by replacing the independence axiom with the weaker certainty

independence axiom and adding a convexity axiom. Certainty independence requires that

preferences between two given acts remain unchanged when mixing both with some con-

stant act. The minimax regret criterion emerges by maintaining the independence axiom

but relaxing the axiom of independence of irrelevant alternatives. It is postulated that the

most preferred choice does not change when a new act is added as long as the additional act

does not change the best outcome that can be achieved in each state. The weaker version

holds vacuously in perfect information environment, i.e. when the state is known before
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the choice. The convexity axiom and a variation of the betweenness axiom completes the

characterization. Either approach allows to consider sets of distributions. Both maximin

utility and minimax regret criteria do not contradict subjective expected utility theory, and

we may interpret them as alternative axiomatic systems for selecting subjective priors.1

It should be pointed out that while the regret criterion seems to relate to foregone

opportunities when the information is revealed ex post, this particular interpretation is

solely an additional feature of the minimax regret model. Neither the axioms refer to

foregone opportunities nor is it important whether or not ex post additional information

becomes available. As in the case of maximin criterion of Gilboa & Schmeidler (1989), the

minimax regret criterion in Hayashi (2006) and Stoye (2006) is completely characterized by

a set of axioms.2

We conclude the introduction with a brief discussion of the directly related literature.

The basic ideas of robust decision making (see De�nition 1) were �rst formalized in the

context of statistical inference, in particular with respect to the classic Neyman-Pearson

hypothesis testing. The statistical problem is to distinguish on the basis of a sample be-

tween two known alternative distributions. The model misspeci�cation and consequent

concern of robustness comes from the fact that each one of the two distributions might

be misspeci�ed. Huber (1964), (1965) �rst formalized robust estimation as the solution to

a minimax problem and an associated zero-sum game. In the economic context, a recent

article by Prasad (2003) shows that the standard optimal pricing policy is not robust to

small model misspeci�cations.

A recent paper by Bose, Ozdenoren & Pape (2006) determines the optimal auction in

the presence of an ambiguity averse seller and ambiguity averse bidders. As we consider

the optimal pricing problem the ambiguity aversion of the buyers is immaterial as there

is no strategic interaction across buyers. Lopomo, Rigotti & Shannon (2006) consider a

general mechanism design setting when the agents, but not the principal, have incom-

plete preferences due to Knightian uncertainty. The notion of regret was investigated in

mechanism design by Linhart & Radner (1989) in the context of bilateral trade as well

1Klibano¤, M.Marinacci & Mukerji (2005) propose a related and smooth model of ambiguity aversion by

enriching the multiple prior model with a belief � over distributions and with an increasing transformation

representing ambiguity aversion. The additional elements, belief � and ambiguity index , render the

analysis of multiple priors richer but also substantially more complex. In addition, the one dimensional

representation of ambiguity in terms of the size of the neighborhood is not available anymore.
2 In particular, the axiomatic approach to minimax regret is distinct from the ex-post measure of regret

due to Hannan (1957) in the context of repeated games or to the more behavioral approaches to regret

o¤ered by Bell (1982) and Loomes & Sugden (1982).
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as by Engelbrecht-Wiggans (1989) and Selten (1989) in the context of auctions. Linhart

& Radner (1989) analyze minimax regret strategies in a bilateral bargaining framework.

In contrast to the incomplete information environment here, the bulk of the analysis in

Linhart & Radner (1989) is concerned with bilateral trade under complete information. In

Engelbrecht-Wiggans (1989) and Selten (1989) the �rst and second price sealed bid auc-

tions are analyzed incorporate regret for the bidders. Recently, Engelbrecht-Wiggans &

Katok (2007) and Filiz & Ozbay (2006) present experimental evidence for regret in �rst

price auctions.

The reminder of the paper is organized as follows. In Section 2 we present the model,

the notion of robustness and the neighborhoods. In Section 3 we characterize the pricing

policy under the maximin criterion. In Section 4 we characterize the pricing policy under

the minimax criterion. We show that the resulting policies are robust under either criterion.

Section 5 concludes with a discussion of some open issues. The appendix collects auxiliary

results and the proofs.

2 Model

2.1 Monopoly

A seller o¤er an object for sale to an unknown demand. The demand is either generated

by a single large buyer or by many small buyers. In the paper we focus on the case of a

single large buyer and later show how the results generalize naturally to the case of many

small buyers. Accordingly, the seller faces a single potential buyer with value v for a unit

of the object. The value v of the object is private information of the buyer and unknown to

the seller. The valuation v of the buyer is an element of the unit interval, v 2 [0; 1].3 The
marginal cost of production is constant and normalized to zero. The buyer wishes to buy

at most one unit of the object.

The seller sets a price p; the pro�t of selling the object at price p if the valuation of the

buyer is v is:

� (p; v) , pIfv�pg;

where Ifv�pg is the indicator function specifying:

Ifv�pg =

(
0; if v < p;

1; if v � p:
3More generally, we assume that the value of the buyer is (known by the seller) contained in some closed

interval which we normalize without loss of generality to [0; 1].
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In the standard monopoly problem with incomplete information, the seller maximizes the

expected pro�t for a given prior F over valuations. The expected pro�t given a distribution

F is:

� (p; F ) ,
Z
� (p; v) dF (v) .

By extension, if the seller chooses a random pricing policy � 2 �R+, then the expected
pro�t is:

� (�; F ) ,
Z Z

� (p; v) d� (p) dF (v) .

We denote the probabilistic price that maximizes the pro�t for given distribution F by

�� (F ) so

�� (F ) 2 argmax
�2�R+

� (�; F ) .

A well-known result by Riley & Zeckhauser (1983) states that for every distribution F there

exists a deterministic price p� that maximizes pro�ts, so:

� (p� (F ) ; F ) = max
�2�R+

� (�; F ) .

2.2 Ambiguity

In contrast to the standard model of monopoly pricing in which the seller acts as if the

valuation of the buyer is drawn from a (subjective) distribution F , we assume that the

seller faces ambiguity in the sense of Ellsberg (1961). The ambiguity is represented by

a set of possible distributions, where the set is described by a model distribution F0 and

includes all distributions in a neighborhood of size " of the model distribution F0. The

magnitude of the ambiguity is thus quanti�ed by the size of the neighborhood around the

model distribution.4

Given the model distribution F0 we denote by p0 = p� (F0) a pro�t maximizing price

at F0. For the remainder of the paper we shall assume that (i) p0 is the unique maximizer

of the pro�t function for the model distribution, (ii) the pro�t function, � (p; F0) at the

model distribution F0 is strictly concave near p0 and (iii) the density f0 is continuously

4This model of ambiguity permits at least two di¤erent interpretations. First, the " neighborhood around

the model distribution F0 can be understood as a model with multiple priors. Second, the " neighborhood

can be viewed as an " perturbation of the original model distribution F0. By considering, the larger set of

possible distributions the decision maker is protecting herself against measurment error and/or additional

information which may slightly change the original model. We adopt throughout the �rst perspective, but

it related to second perspective, prominent in statistical decision theory.
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di¤erentiable near p0. These regularity assumptions enable us the implicit function theorem

for the local analysis.

We consider two di¤erent decision criteria that allow for multiple priors: maximin utility

and minimax regret. In either approach, the unknown state of the world is identi�ed with

the value v of the buyer.

Neighborhoods We describe " neighborhoods of the model distribution F0 (v) by the

Prohorov neighborhood, denoted by P" (F0), and associated metric:

P" (F0) = fF jF (A) � F0 (A") + "; 8A � [0; 1]g , (1)

where the set A" denotes the closed " neighborhood of any Borel measurable set A. Formally,

the set A" is given by

A" =

�
v 2 [0; 1]

���� infy2A
d (x; y) � "

�
;

where d (x; y) = jx� yj is the distance on the real line. The Prohorov metric has evidently
two components. The additive term " in (1) allows for a small probability of large changes

in the valuations relative to the model distribution whereas the larger set A" permits large

probabilities of small changes in the valuations. The Prohorov metric is a metric for weak

convergence of probability measures.5

Maximin Pro�t The seller maximizes the minimum pro�t by solving

�m 2 argmax
�2�R+

inf
F2P"(F0)

� (p; F ) :

Accordingly, we say that �m attains maximin pro�t. We refer to Fm as a least favorable

demand given � if

Fm 2 argmin
F2P"(F0)

� (�; F )

so the least favorable demand Fm minimizes pro�t under the policy �:

Minimax Regret The regret of the monopolist at a given price p and valuation v of a

buyer is de�ned as:

r (p; v) , v � pIfv�pg = v � � (p; v) ; (2)

5The Prohorov metric applies to discrete and continuous distributions. In contrast, the Kullback-Leibler

distance only de�nes neighborhoods for continuous distributions. A related model is the contamination

�neighborhood�N" (F0): N" (F0) = fF jF = (1� ")F0 + "H for some H 2 �R+ g : Yet the contamination
�neighborhood�is not a neighborhood in the sense of the weak topology.
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The regret of the monopolist charging price p facing a buyer with value v is the di¤erence

between (i) the pro�t the monopolist could make if she were to know the value v of the

buyer before setting her price and (ii) the pro�t she makes without this information. The

regret is non-negative and can only vanish if p = v. The regret of the monopolist is strictly

positive in either of two cases: (i) the value v exceeds the price p, the indicator function

is then Ifv�pg = 1; or (ii) the value v is below the price p, the indicator function is then

Ifv�pg = 0.
The expected regret with a random pricing policy � when facing a distribution F is

given by:

r (�; F ) ,
Z
r (p; v) d� (p) dF (v) =

Z
vdF (v)�

Z
� (p; F ) d� (p) . (3)

Thus, the probabilistic price � is pro�t maximizing at F if and only if � minimizes (ex-

pected) regret when facing F: The pricing policy �r 2 �R+ attains minimax regret if it
minimizes the maximum regret over all distributions F in the neighborhood of a model

distribution F0:6

�r 2 argmin
�2�R+

sup
F2P"(F0)

r (�; F ) :

We refer to Fr as a least favorable demand given the pricing policy � if Fr maximizes regret

under the pricing policy �r:

Fr 2 argmax
F2P"(F0)

r (�r; F ) :

The notion of regret naturally extends to the case of many buyers as follows. The

regret of the seller facing n buyers is equal to the sum of the regret accrued over n buyers

and n, possibly distinct, prices. While the seller is thus allowed to o¤er a di¤erent price

to each buyer, the additivity of the regret implies that we can con�ne attention to price

(distributions) which are identical across buyers.7

6The fact that buyer value is contained in some known bounded set provides an upper bound on regret.

If the support of F 2 P" (F0) would not be uniformly bounded then regret would be unbounded on P" (F0)
even if the support of F0 is contained in [0; 1]. The neighborhood of the model F0 puts restrictions on

the support. Imposing upper bounds on the willingness to pay are natural once one thinks about realistic

applications.
7Alternatively we could restrict the seller to o¤er the same price to all buyers. The present analysis of

the single buyer then generalizes after imposing only that the marginal distribution of each buyer belongs

to P" (F0) : The least favorable demand will then involve all buyers realizing the same valuation.
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2.3 Robust Pricing Policy

For a given model distribution F0 we identify a price policy as a class of probabilistic prices

f�"g dependent on the size of the neighborhood ".

De�nition 1 (Robust Pricing Policy)

A pricing policy f�"g is called robust if for each  > 0 there is " > 0 such that:

F 2 P" (F0) ) � (�� (F ) ; F )� � (�"; F ) < :

The above notion presents a formal criterion of robust decision making in the spirit of

the statistical decision literature pioneered by Huber (1964). The robust policy is allowed

to depend on the size " of the neighborhood.8 In contrast to minimax regret where pro�ts

are compared to best choices ex-post, robustness involves comparing expected pro�ts to

those attainable ex-ante when the valuation is drawn from a known distribution.

In the context of optimal monopoly pricing Prasad (2003) shows that the optimal policy

is not robust if F0 is a Dirac distribution. For a given model distribution F0, there are

potentially many robust pricing rules. Our objective is to select among these rules by

considering decision making under multiple priors and then to show that the resulting

pricing rules are robust in the above sense of statistical decision making.

3 Maximin Pro�t

We consider the problem of the monopolist who wishes to maximize the minimum pro�t for

all distribution in the neighborhood of the model distribution F0. Following Neumann &

Morgenstern (1953), the maximin pricing rule and the least favorable demand can be viewed

as the equilibrium strategies of a game between the seller and adverserial nature (provided

such an equilibrium exists). The seller chooses a probabilistic price � and nature chooses

a demand distribution F from the set P" (F0). In this game the payo¤ of the seller is the
expected pro�t while the payo¤ of nature is the negative if the expected pro�t. Formally,

a Nash equilibrium of this zero-sum game can be characterized as a solution to the saddle

point problem of �nding (�m; Fm) that satisfy:

� (�; Fm) � � (�m; Fm) � � (�m; F ) ; 8� 2 �R+, 8F 2 P" (F0) . (SPm)

8The recent literature on robust decision making in macroeconomics, see Hansen & Sargent (2004) for a

survey, uses the same notion of robustness for maximizing the minimum utility in intertemporal decision-

making.
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In other words, at (�m; Fm) the probabilistic price �m is pro�t maximizing at Fm and Fm

is a least favorable demand given �m.

The objective of adverserial nature is to lower the expected revenue of the seller. For

a given price p o¤ered by the seller, the least favorable demand is achieved by increasing

the cumulative probability of valuations strictly below v as much as possible given the

neighborhood. The least favorable demand then minimizes the probability of sale by the

seller. Given the model distribution F0 and the size " of the neighborhood the resulting

distribution is uniquely determined for every p. The equilibrium analysis is now simpli�ed

by the fact that the least favorable demand does not depend on the probabilistic price of

the seller. The least favorable demand is thus achieved by shifting the probabilities as far

down as possible.

The construction of a least favorable distribution in the Prohorov metric is rather trans-

parent. Given a model demand F0 and a neighborhood size ", we shift for every v the

cumulative probability of the model distribution F0 at the point v+ " downwards to be the

cumulative probability at the point v. In addition, we transfer the very highest valuations

with probability " to the lowest valuation, namely v = 0: This results in the distribution

Fm that is within the " neighborhood of F0 with Fm given by:

Fm (v) , min fF0 (v + ") + "; 1g : (4)

The �rst shift represents the possibility that small changes in valuations may occur with

large probability, whereas the second shift represents the idea of large changes with a small

probability.

Given that the demand Fm that minimizes pro�ts does not depend on the o¤ered prices,

the monopolist acts as if the demand given by Fm. In consequence, the seller maximizes

pro�ts at Fm by choosing a deterministic price pm where pm = p� (Fm).

Proposition 1 (Maximin Pro�t)

For every " > 0; there exists a pair (pm; Fm) such that pm attains maximin pro�t and Fm

is a least favorable demand.

It is then natural to ask how the optimal price will change with an increase in ambiguity.

The rate of the change in the price depends on the curvature of the pro�t function at the

model distribution. By the earlier assumption of concavity, we know that the curvature is

negative and given by:

@2� (p0; F0)

@p2
= �2f0 (p0)� p0f 00 (p0) < 0:
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We can directly apply the implicit function theorem to the optimal price p0 at the model

distribution F0 and have the following comparative static result.

Proposition 2 (Pricing under Maximin Pro�t)

The price pm responds to an increase in ambiguity at " = 0 by:

d

d"
pm

����
"=0

= �1 + 1� f0 (p0)
@�2 (p0; F0) =@p2

< �1
2
:

Accordingly, the maximin price responds to an increase in ambiguity with a lower price.

Marginally this response is equal to �1 if the objective function is in�nitely concave. As
the pro�t function becomes less concave, the rate of the price change increases as the pro�t

function of the seller becomes less sensitive to a (downward) change in price and a more

aggressive response of the seller diminishes the impact that the least favorable demand has

on sales of the monopolist.

Consider now the pro�ts attained by the maximin price pm when facing some distribution

F within the neighborhood of the model F0. These pro�ts will be at least as high as those

obtained when facing the least favorable demand Fm as the least favorable demand involves

maximally decreasing all values within the neighborhood of the model. As we show that

optimal pro�ts when facing a known distribution are continuous in this distribution this

means that pro�ts achieved by pm when facing F are close to those achieved by p� (F ) when

facing F: The maximin pricing rule thus quali�es as robust pricing rule.

Proposition 3

The pricing policy fp"mg consisting of the maximin prices is a robust policy.

4 Minimax Regret

4.1 Probabilistic Pricing

Next we consider the minimax regret problem of the seller. Analogous to case of maximin

above, the minimax regret strategy �r and the least favorable demand Fr are the equilibrium

policies of a zero-sum game (provided such an equilibrium exists). In this zero-sum game

the payo¤ of the seller is the negative of the regret while the payo¤ to nature is regret itself.

That is, (�r; Fr) can be characterized as a solution to the saddle point problem of �nding

(�r; Fr) that satisfy:

r (�r; F ) � r (�r; Fr) � r (�; Fr) ; 8� 2 �R+, 8F 2 P" (F0) . (SPr)
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The saddlepoint result permits us to link minimax regret behavior to payo¤maximizing

behavior under a prior as follows. When minimax regret is derived from the equilibrium

characterization in (SPr) then any price chosen by a monopolist who minimizes maximal

regret, is at the same time a price which maximizes expected pro�t against a particular

demand, namely the least favorable demand. In fact, the saddle point condition requires

that �r is a probabilistic price that maximizes pro�ts given Fr and Fr is a least favorable

demand given �r:

In the equilibrium of the zero-sum game, the probabilistic price has to resolve the con�ict

between the regret which arises with low prices against the regret associated with high prices.

The regret of the seller depends critically on the price o¤ered by the seller. If she o¤ers

a low price, nature can cause regret with a distribution which puts substantial probability

on high valuation buyers. On the other hand, if she o¤ers a high price, nature can cause

regret with a distribution which puts substantial probability at valuations just below the

o¤ered price. It now becomes evident that a single price will always expose the seller to

substantial regret. Conversely, the least favorable demand will now typically depend on the

price o¤ered by the seller. In fact, the seller can decrease her exposure by o¤ering many

prices in form of a probabilistic price. In contrast to the maximin pro�t, the least favorable

demand is the result of an equilibrium argument and cannot be constructed independently

of the strategy of the seller. We shall prove the existence of a solution to the saddlepoint

problem (SPr) and thus existence of a probabilistic price attaining minimax regret using

results from Reny (1999).

Proposition 4 (Existence of Minimax Regret)

A solution (�r; Fr) to the saddlepoint condition (SPr) exists.

The minimax regret probabilistic price of the seller has to respond to a set of possible

distributions. With an adversarial nature, the minimax regret policy of the seller is to o¤er

many prices. We might guess intuitively that even the lowest price o¤ered by the seller is

not very far away from p0, the optimal price for the model distribution. In consequence,

the price might not be low enough to dissuade nature from �undercutting� by placing

probability just below the lowest price o¤ered by the seller. This in turn might suggest

that an equilibrium of the minimax regret pricing game fails to exist, however contradicting

Proposition 4 above. Equilibrium strategies will be established by using the constraints on

the least favorable demand. Naturally, the seller will price close to the optimal price without

ambiguity. A mass point in the pricing strategy of the seller will be placed precisely at the
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point where nature is constrained by the neighborhood to shift any additional probability

from above to just below the mass point of the seller. The seller then places the remaining

mass in a neighborhood [a; c] of this mass point b to protect against an increase in regret

through local increases in values near to this mass point.

Proposition 5 (Minimax Regret)

1. If " is su¢ ciently small and f0 (0) > 0, then a minimax regret probabilistic price �r

is given by:

�r (p) =

8>>>>><>>>>>:
0 if 0 � p < a

ln pa if a � p < b

1� ln cp if b � p � c

1 if c < p � 1

.

2. The boundary points a; b and c satisfy 0 < a < b < c < 1 and a < p0 < c:

3. The boundary points a; b and c respond to an increase in ambiguity at " = 0 as follows:

(a) lim"!0 a0 (") = �1;

(b) lim"!0 b0 (") 2
�
�1; 12

�
and,

(c) lim"!0 c0 (") =1:

We construct the minimax regret probabilistic price by means of the implicit function

theorem, for which we need the di¤erentiability of the density function near p0. The least

favorable demand makes the seller indi¤erent among all prices p 2 [a; c]. To protect against
nature either undercutting or moving mass to highest possible prices the interval over which

the seller randomizes increases substantially as ambiguity increases. On the other hand,

the mass point remains close as ambiguity increases.

We now illustrate the equilibrium behavior with the uniform model distribution:

F0 (v) = v;

where the pro�t maximizing price p0 under the model distribution is given by p0 = 1
2 : We

graphically represent the optimal behavior of the seller and nature for a small neighborhood.

Insert Figure 1: Minimax Pricing and Worst Case Demand
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The interior curve in the above graph identi�es the model distribution. Constraints

induced by small changes in values cause the distribution function of Fr to be within an "

bandwidth of the model distribution. The large changes of values, occurring with probability

of at most " move the smallest valuation to the largest valuation, namely 1. The strategy of

nature is then to place as little probability as necessary below the range of the prices o¤ered

by the seller and to shift values above the range as high as possible. Inside the range of

prices o¤ered by the seller, nature uses a density function which maintains the virtual utility

of the seller at 0. In turn, the seller sets the density to make nature indi¤erent between all

values above the mass point and all values below the mass point. Given the mass point set

by the seller, nature shifts as much mass as possible below this point. We observe that even

with the small neighborhood of " = 0:04, the impact of the ambiguity on the probabilistic

price is rather large and leads to a wide spread in the prices o¤ered by the seller.

It remains to describe the comparative static of the probabilistic price and the regret

of the seller as a function of the size of the neighborhood. The behavior of regret and the

expected price to a marginal increase in ambiguity can be explained by the �rst order e¤ects.

For a small level of ambiguity, we may represent the regret through a linear approximation

r� = r0 + "
@r�

@"
,

where r0 is the regret at the model distribution. For a small level of ambiguity, the marginal

change in regret can then be computed by holding the probabilistic price of the seller at

the optimal price p0 without ambiguity. Suppose then for the moment that p0 � 1
2 : If the

ambiguity increases marginally, the constraints on the choice of a least favorable demand

are relaxed. What precisely then can nature do given the speci�cation of neighborhood.

First nature can place the density f0 (p0) slightly below p0 to marginally increase regret

by p0f0 (p0), then nature can shift each value up by " to marginally increase regret by 1

and �nally shift mass from 0 to 1 to marginally increase regret by 1 � p0: The �rst two
changes correspond to small changes in valuation with large probability, the third to large

changes in the valuation with small probability. So the overall marginal e¤ect on regret of

an increase in " near " = 0 is:

p0f0 (p0) + 1 + (1� p0) :

If instead the optimal price without ambiguity would be p0 > 1
2 , then the only modi�cation

would a¤ect the third element as nature would move mass from 0 to just below p0, so that

the marginal increase would be

p0f0 (p0) + 1 + p0.
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The optimal response of the seller to an increase in ambiguity is now to �nd a probabilistic

price which minimizes the additional regret

"
@r�

@"

coming from the increase in ambiguity. Of course, the cost of adjusting the price to minimize

the marginal regret is that it changes the regret relative to the model distribution F0.

Locally, the cost of moving the price away from the optimum is given by the second derivative

of the objective function. With small ambiguity, the curvature of the regret is identical to

the curvature of the pro�t function. The rate at which the minimax regret price responses

to an increase in ambiguity is then simply the ratio of the response of the marginal regret

to a change in price divided by the curvature of the pro�t function, or

@E
@"
[pr] =

@
@p

�
@r�

@"

�
@2

(@p)2
� (p0; F0)

.

The next proposition shows that the above intuition can be made precise and shows its

implication for the net utility of the buyer.

Proposition 6 (Comparative Statics with Minimax Regret)

The expected price E [pr] responds to an increase in ambiguity at " = 0 by:

@

@"
E [pr]j"=0 =

8<: �1� f0(p0)+1
@�2(p0;F0)=@p2

� �1 if p0 � 1
2

�1� f0(p0)�1
@�2(p0;F0)=@p2

� �1
2 if p0 >

1
2

. (5)

We observe that for p0 > 1
2 , the response of the expected price E [pr] to an increase in

ambiguity is identical under regret minimization and pro�t maximization. The di¤erence

arises at a low level of p0 at which the seller is less aggressive in lowering her price due to

an increase in ambiguity. As an implication from Proposition 6, we �nd that in the class

of linear densities the change in expected price as well as the change in the mass point is

strictly positive if and only if the density is strictly decreasing. This has to be contrasted

with the maximin behavior where any increase in size of the ambiguity has a downward

e¤ect on prices for all model distributions.

4.2 Menu Pricing

So far, our analysis assumed that the seller can only o¤er an indivisible object at some price

p. We now extend the instruments of the seller and allow her to o¤er a menu of items. The
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equilibrium policies with menus rather than single prices can be directly derived from the

random pricing policies studied earlier and thus little new analysis will be necessary. The

equilibrium use of menus allows us to understand the selling policies from a di¤erent and

perhaps more intuitive point of view. The optimality of menus also emphasizes the role

of robustness concerns in the optimal selling policies as menus would never be used in the

standard setting for a given demand distribution.

If the allocative decision regards an indivisible object, or x 2 f0; 1g, then a speci�c item
on the menu assigns a probability of receiving the object at a corresponding price. If on the

other hand, the allocative decision regards a continuous variable, or x 2 [0; 1], then a menu
o¤ers a variety of quantities at di¤erent prices. We observe that with the multiplicative

utility v � x used here, the notions of probability and quantity are mathematically inter-
changeable. In a direct mechanism, a menu is a pair (x (v) ; p (v)) which maps a reported

type v into a quantity x (v) and price p (v). We transform an equilibrium probabilistic price

into a menu policy by de�ning the quantity assigned in the direct mechanism through:

xr (v) , ��r (v) ; (6)

and the corresponding nonlinear prices as:

pr (v) ,
Z v

0
yd�r (y) : (7)

By standard arguments recorded in Lemma 2 in the appendix this assignment of quantities

to values de�nes an incentive compatible mechanism.

Form the point of view of menus, the minimax regret menu o¤ered by seller then has

three important characteristics. These properties can be described with reference to the

mass point b: (i) low volume o¤ers are made for buyers with low valuations, or v < b,

(ii) a much higher o¤er is made for all buyers with valuation v = b, and (iii) even higher

volume o¤ers are made to buyers with large values v > b. We may think of a standard o¤er

given by the quantity o¤ered at v = b, and given by x� (b). In addition, the seller o¤ers

low volume downgrades and high volume upgrades. The expanded menu relative to the

optimal single item menu for the model distribution seeks to minimize the exposure of the

seller. Obviously, the seller looses pro�ts on the high value buyers from making o¤ers to

the low value buyers by granting the high value buyers a larger information rent. The size

of the information rent is kept small by o¤ering menu items to the low value buyers only

of substantially lower volume. This is the source of the gap in the quantities o¤ered in the

menu.
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A natural comparison to a minimax regret decision maker is a risk averse decision

maker. In particular, we could ask how the behavior of a risk averse seller would di¤er

from the behavior of a minimax regret seller. Clearly, a risk averse seller would never �nd

a probabilistic price optimal. However, if she can o¤er lotteries or if the good is divisible

then a risk averse seller might indeed o¤er a menu. The menu would consist of a set of

possible quantity and price combinations. The di¤erence with respect to the minimax regret

seller would then be in the shape of the menu. In particular, if a risk averse seller were

to face a continuous demand function (as expressed by F0), then the optimal menu can be

shown to be continuous. Yet, with a minimax regret seller, we saw that the optimal menu is

discontinuous (at a single jump point) and essentially o¤ers two (or three) classes of distinct

service.

The minimax regret problems with ambiguity then o¤ers an interesting and novel reason

for menus. Despite the prevalence of menus, the literature currently o¤ers only two leading

explanations for menus in the standard monopoly setting: menus can be optimal if the

marginal willingness to pay changes with the quantity o¤ered as in Deneckere & McAfee

(1996) or if the buyers are budget constrained as in Che & Gale (2000).

The minimax regret response of the seller to an increase in ambiguity is perhaps even

more informative when we consider menus. In a menu, the seller is o¤ering many di¤erent

choices to the buyers. An immediate question therefore is how the choice set for the buyers

changes with an increase in the ambiguity. We de�ne the size of the menu simply as the

range of quantities o¤ered by the seller (and accepted by some buyers) in equilibrium.

Proposition 7 (Menus and Ambiguity)

For small ambiguity:

1. The size of the menu is increasing in ":

2. The price per unit p�r (v) =x
�
r (v) is decreasing in ".

As the ambiguity increases, the seller seeks to minimize her exposure by o¤ering more

choices to the buyers and hence increasing the probability of a sale, even if the sale is not

�big� in terms of the sold quantity. For every given valuation v, the seller also increases

the size of the deal o¤ered. As larger deals are o¤ered to buyers with lower valuations, it

follows that the seller is willing to concede a larger information rent to buyers with higher

valuations. In consequence, the average price per unit is decreasing as well. Jointly, these

three properties imply that the seller is o¤ering her products more aggressively and to a
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larger number of buyers with an increase in ambiguity. We observe that the monotonicity

in the unit price holds even as the previous proposition showed that the expected price may

be increasing. The resolution of this apparent con�ict comes from the fact that the seller

is o¤ering larger quantities in response to an increase an ambiguity.

4.3 Robustness

We conclude this section by showing that the solution to the minimax regret problem also

generates a robust policy in the sense of De�nition 1.

Proposition 8 (Robustness)

If �r attains minimax regret at F0 for all su¢ ciently small " then f�"rg is robust at F0:

5 Conclusion

In this paper we analyzed robust pricing policies by a monopolist. We introduced robustness

by allowing for multiple priors in the neighborhood of a model distribution. We analyzed

the optimal pricing of a monopolist under two distinct, but related decision criteria with

multiple priors: maximin pro�t and minimax regret. We showed that the solution under

either criterion yields a robust solution in the statistical sense. The expected revenue under

either pricing rule is arbitrarily close to the optimal price for any distribution in a su¢ ciently

small neighborhood of the model distribution. Despite the common robustness property,

the prices respond di¤erently to the ambiguity. The maximin policy uniformly maintains

a deterministic price policy and uniformly lowers the price by an increase in ambiguity. In

contrast, the minimax policy balances the downside versus the upside when responding to

the ambiguity. Here the trade-o¤ is optimally resolved by a probabilistic price. Importantly,

the expected price does not necessarily decrease with an increase in ambiguity. Interestingly,

an equivalent policy to the probabilistic price is achieved by a menu. The menu o¤ers a

variety of quantities, ranging from small to large quantities to the buyer. By o¤ering a

menu, the seller can guarantee himself small deals on the downside and large deals on the

upside. In consequence, the seller hedges to reduce maximal regret by o¤ering multiple

choices through a menu.

The problem of optimal monopoly pricing is in many respects the most elementary

mechanism design problem. It would be of interest to extend the insights and apply the

techniques developed here to a wide class of design problems, such as the discriminating

monopolist (as in Mussa & Rosen (1978) and Maskin & Riley (1984)) and optimal auctions.
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The monopoly setting has the simplifying feature that the buyers have complete information

about their payo¤ environment. Given their known valuation and known price, each buyer

simply had to make a decision as to whether or not to purchase the object. With the

complete information by the buyer, there was no need to look for a robust purchasing rules.

A substantial task would consequently arise by considering multi-agent design problems with

incomplete information such as auctions, where it becomes desirable to �robustify�both the

decisions of the buyers and the seller. The recent result by Segal (2003) and Chung & Ely

(2003) regarding the su¢ cient conditions for the existence of dominant strategies for the

bidders in optimal auctions might o¤er a �rst step in this direction. The complete solution

of these problems poses a rich �eld for future research.
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6 Appendix

The appendix contains some auxiliary results and the proofs for the results in the main

body of the text.

Proof of Proposition 1. As shown in the text, if Fm is such that

Fm (v) = min fF0 (v + ") + "; 1g ,

then � (p; Fm) � � (p; F ) for all F 2 P" (F0) : On the other hand, if pm = p� (Fm) then

� (pm; Fm) � � (p; Fm) holds for all p by de�nition of pm: Together this implies that (pm; Fm)
is a saddle point as described in (SPm) and thus pm attains maximin payo¤ and Fm is a

least favorable demand given pm. �

Proof of Proposition 2. For su¢ ciently small " our assumptions on F0 imply that Fm is

di¤erentiable near pm: Since pm is optimal given demand Fm we �nd that pm satis�es the

associated �rst order conditions

d

dp
(p (1� Fm (p))) jp=pm = 0:

The earlier concavity assumptions on F0 imply that we can apply the implicit function

theorem at " = 0 and this yields the statement to be proven. �

Proof of Proposition 3. We show that for any  > 0 there exists " > 0 such that

F 2 P" (F0) implies � (p� (F ) ; F ) � � (pm; F ) < : Note that � (pm; F ) � � (pm; Fm) and

thus

� (p� (F ) ; F )� � (pm; F ) � � (p� (F ) ; F )� � (pm; Fm) :

Since pm = p� (Fm) the proof is complete once we show that � (p� (F ) ; F ) is a continuous

function of F with respect to the Prohorov neighborhood. Consider F; bFv such that bFv 2
P" (F ) : Using the fact that bFv (p) � F (p+ ") + ";
we obtain

�
�
p�
� bFv� ; bFv� � �

�
p� (F )� "; bFv� = (p� (F )� ")�1� bFv (p� (F )� ")�

� (p� (F )� ") (1� F (p� (F ))� ") � � (p� (F ) ; F )� 2":

Since the Prohorov norm is symmetric and thus F 2 P"
� bFv�, it follows that

� (p� (F ) ; F ) + 2" � �
�
p�
� bFv� ; bFv� � � (p� (F ) ; F )� 2";
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and hence we have proven that � (p� (F ) ; F ) is continuous in F . �

Proof of Proposition 4. We apply Corollary 5.2 in Reny (1999) to show that a saddle

point exists. For this we need to verify that the zero-sum game between the seller and

nature is a compact Hausdor¤ game for which the mixed extension is both reciprocally

upper semi continuous and payo¤ secure.

Clearly we have a compact Hausdor¤ game. Reciprocal upper semi continuity follows

directly as we are investigating a zero-sum game. So all we have to ensure is payo¤ security.

Payo¤ security for the monopolist means that we have to show for each (Fr;�r) with

Fr 2 P" (F0) and for every � > 0 that there exists  > 0 and F such that F 2 P (Fr)
implies r

�
�; F

�
� r (�r; Fr) + �:

Let  , �=4 and let � be such that � (p) , �r (p+ ) : Then using the fact that

F (v) � Fr (v � )�  we obtainZ 1

0
vdF (v) � 2 +

Z 1

0
vdFr (v) :

Using the fact that F (v) � Fr (v + ) +  we obtain

�
�
�; F

�
� � (�r (p+ ) ;min fFr (v + ) + ; 1g) � � (�r; Fr)� 2

and hence

r
�
�; F

�
� r (�r; Fr) + �:

To show payo¤ security for nature we have to show for each (�r; Fr) with Fr 2 P" (F0) and
for every � > 0 that there exists  > 0 and F 2 P" (F0) such that � 2 P (�r) implies
r
�
�; F

�
� r (�r; Fr)� �:

Here we set F , Fr: Given  > 0 consider any � 2 P (�r). All we have to show is that
� (�; Fr) � � (�r; Fr) + � for su¢ ciently small : Note that � (p) � �r (p+ ) +  implies

� (�; Fr) �  +

Z
(p+ )

�Z 1

p
dFr (v)

�
d�r (p+ ) =  +

Z
p

�Z 1

p�
dFr (v)

�
d�r (p)

=  + � (�r; Fr) +

Z
p

 Z
[p�;p)

dFr (v)

!
d�r (p)

�  + � (�r; Fr) +

Z Z
[p�;p)

dFr (v) d�r (p) :

Given continuity of Z Z
[p�;p)

dFr (v) d�r (p)
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in  the claim is established. �

In order to derive the equilibrium policies in the case of small ambiguity we present a

characterization of the Prohorov distance in Lemma 1 that builds on the following result of

Strassen (1965).

Theorem (Strassen (1965)).

F and G have Prohorov distance less than or equal to " if and only if there exist random vari-

ables X and Y such that X has distribution F; Y has distribution G and Pr (jY �Xj � ") �
1� ".

The two cumulative distributions F;G are close if and only if they are associated to two

random variables that realize similar values with high probability. Our characterization

describes the Prohorov distance in terms of cumulative distribution functions only. In order

to stay within " distance of a given distribution function G one may �rst alter any value

by at most ", this creates a probability measure F1, and then move at most " mass of the

values. The new locations are described by a measure F2 while locations from where mass

has been taken is described by a measure F3.

Lemma 1 (Decomposition)

Consider " > 0 and probability measures F and G. F 2 P" (G) if and only if there exists a
probability measure F1 and positive additive measures F2 and F3 such that:

G (x� ") � F1 (x) � G (x+ ") ; F2; F3 � ";

and

F � F1 + F2 � F3:

Proof. (() Suppose F can be decomposed into F1; F2 and F3. We want to show that
F (A) � G (A")+ ". To this purpose, it is clearly su¢ cient su¢ cient to consider only closed
sets A.

(a) We �rst prove the claim for A = [x; y] with 0 � x � y � 1: Given a probability

measure H let H� (bv) , limv"bvH (v) : Then
F1 ([x; y]) = F1 (y)� F�1 (x) � G (y + ")�G� (x� ") = G ([x; y]

") :

Since F2 ([x; y]) � " and F3 ([x; y]) � 0 we obtain:

F ([x; y]) = F1 ([x; y]) + F2 ([x; y])� F3 ([x; y]) � G ([x; y]") + ":
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(b) Next we consider A = [x1; y1] [ [x2; y2] with y1 + 2" < x2 which implies that

[x1; y1]
" \ [x2; y2]" = ;:

Using part (a) together with the fact that A" = [x1; y1]
"[ [x2; y2]" holds for the [�]" operator,

it follows that:

F1 (A) = F1 ([x1; y1]) + F1 ([x2; y2]) � G ([x1; y1]") +G ([x2; y2]") = G (A") :

Since F2 (A) � " and F3 (A) � 0, the claim is proven.

(c) The arguments in part (b) are easily generalized for any set A that can be decomposed

into a �nite union of disjoint closed intervals of distance greater than 2" so A = [mk=1 [xk; yk]
with xk � yk < xk+1 + 2" for k � m� 1:

(d) Finally we show that we do not have to prove the statement for more general sets A.

Notice that if A"1 = A
"
2; A1 � A2 and F (A2) � G (A"2) + " then F (A1) � G (A"1) + ": So we

can restrict attention to proving the claim for closed sets A such that A" = A"1 and A � A1
implies A = A1: Consider x; y 2 A such that x < y � x+ 2": Then fA [ [x; y]g" = A" and
hence [x; y] � A: It follows that A belongs to the class of sets investigated in part (c).

()) Consider probability measures F and G with kF �Gk � ": We extend G to

[�"; 1 + "] such that G (x) = 0 for �" � x < 0 and G (x) = 1 for 1 < x � 1 + ":

Given the result of Strassen (1965), there exist random variables X and Y such that X has

distribution F; Y has distribution G and Pr (jY �Xj � ") � 1� ".
Let Z1 be the random variable with cdf F1 such that Z1 , X if jY �Xj � " and Z1 , Y

if jY �Xj > ". Let "0 , Pr (jY �Xj > ") so "0 � ": Then G (x� ") � F1 (x) � G (x+ ") :
Let Z2 be the random variable with cdf bF2 such that Z2 , 0 if jY �Xj � " and Z2 , X if

jY �Xj > ": Let Z3 be the random variable with cdf bF3 such that Z3 , 0 if jY �Xj � "
and Z3 , Y if jY �Xj > ": Then X = Z1 + Z2 � Z3 and bF2 (0) ; bF3 (0) � 1 � "0: Let
Fi , bFi�(1� "0) for i = 2; 3: Then F2 and F3 are positive additive measures with F2; F3 � "0
and the proof is complete.

Proof of Proposition 5. We start by assuming p0 > 1
2 : The proof proceeds in three steps.

First we show the existence of the parameters a; b and c and use these to construct the least

favorable demand Fr: Second, we decompose the least favorable demand by using Lemma

1 to show that it is close to F0: Third we use this decomposition to verify that we have a

saddle point.

Step 1. We start by showing that for su¢ ciently small " there exist parameters a; b; c
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such that a < b < c and a < p0 < c such that

F0 (a� ")� " = 1� b
2f0 (b+ ")

a
; (8)

F0 (b+ ") = 1� b
2f0 (b+ ")

b
; (9)

F0 (c� ") = 1� b
2f0 (b+ ")

c
: (10)

With respect to the existence of b; note that b = p0 solves (9) if " = 0. As

d

db
(1� F0 (b+ ")� bf0 (b+ ")) j"=0 = �2f (p0)� p0 (f0)0 (p0) < 0;

due to the strict concavity of pro�ts at p0, the implicit function theorem implies that a

solution b = b (") to (9) (with b > 0) exists for " in a neighborhood of 0. To prove existence

of c; de�ne

h (v) , 1� b
2f0 (b+ ")

v
� F0 (v � ") for v > 0:

Then h (b) = F0 (b+ ")� F0 (b� ") with

h0 (b) = f0 (b+ ")� f0 (b� ") ;

and

h00 (b) = �2f0 (b+ ")
b

� (f0)0 (b� ") � �
2f0 (p0) + p0 (f0)

0 (p0)

p0
< 0:

We note that h (b) > 0 by our earlier concavity assumptions on F0: Looking at the Taylor

approximation of h near v = b for small " we obtain that there exists c > b such that

h (c) = 0 with c! p0 as "! 0: As for the existence of a; analogous calculations for h (v)+"

show that there exists a < b such that h (a) + " = 0 with a! p0 as "! 0:

We can describe the local behavior of the parameters a; b and c by appealing to the

implicit function theorem. Since 2f0 (p0) + p0 (f0)
0 (p0) > 0 we know that b is di¤erentiable

and by implicitly di¤erentiating (9) we obtain:

b0 (0) = � f0 (p0) + p0 (f0)
0 (p0)

2f0 (p0) + p0 (f0)
0 (p0)

= �1 + f0 (p0)

2f0 (p0) + p0 (f0)
0 (p0)

(11)

where �1 � b0 (0) � �1=2: Next we show that a is di¤erentiable. Since

b2f0 (b+ ")� a2f0 (a� ")
b� a = (b+ a) f0 (b+ ") + a

2 f0 (b+ ")� f0 (a� ")
b� a

� 2p0f0 (p0) + (p0)
2 (f0)

0 (p0) ;
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we �nd that b2f0 (b+ ") > a2f0 (a� ") near " = 0. Hence we can implicitly di¤erentiate (8)
to obtain

a0 (") = �aa+ af0 (a� ") + bf0 (b+ ")
b2f0 (b+ ")� a2f0 (a� ")

; (12)

so

lim
"!0

b� a
a
a0 (") = � 1 + 2f0 (p0)

2f0 (p0) + p0 (f0)
0 (p0)

:

In particular we obtain that

lim
"!0

a0 (") = �1: (13)

Similarly for c, we �nd that:

c0 (") = �c cf0 (c� ") + bf0 (b+ ")
b2f0 (b+ ")� c2f0 (c� ")

; (14)

and hence

lim
"!0

�
c� b
c
c0 (")

�
=

2f0 (p0)

2f0 (p0) + p0 (f0)
0 (p0)

;

and in particular,

lim
"!0

c0 (") =1: (15)

It now follows from (13) and (15) that a < p0 < c.

Step 2. We now construct the least favorable demand on the basis of a; b and c.

Consider Fr given by

Fr (v) ,

8>>>>><>>>>>:
max f0; F0 (v � ")� "g , if v 2 [0; a]

1� b2f0(b+")
v , if v 2 (a; c)

F0 (v � ") , if v 2 [c; 1)
1 if v = 1

,

where the de�nitions of a and c imply that Fr is continuous at a and c. It follows that Fr

is a probability measure.

Next we show that Fr 2 P" (F0) by using Lemma 1. Consider F1 de�ned by

F1 (v) ,

8>><>>:
F0 (v � ") , if v 2 [0; a]

max fFr (v) ; F0 (v � ")g , if v 2 (a; b)
Fr (v) ; if v 2 [b; 1]

.

Then F1 is a probability measure with F0 (v � ") � F1 (v) : By de�nition of b we obtain

Fr (b) = F0 (b+ ") and F 0r (b) =
d
dvF0 (v + ") jv=b: Moreover, given F

00
r (v) = �

2b2f0(b+")
v3

and
d2

dv2
F0 (v + ") = (f0)

0 (v + "), strict concavity of pro�ts near p0 implies that F 000 (v) < F
00
r (v)
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for v 2 [a; c] and " su¢ ciently small. Thus, for su¢ ciently small "; as a and c are close to
p0; we obtain F1 (v) � F0 (v + ") with equality if v = b: So F0 (v � ") � F1 (v) � F0 (v + ").

Consider F2 de�ned by:

F2 (v) ,

8>><>>:
0, if v 2 [0; a]

"�max fF0 (v � ")� Fr (v) ; 0g , if v 2 (a; b]
"; if v 2 (b; 1]

.

Then
d

dv
(Fr (v)� F0 (v + ")) =

b2f0 (b+ ")

v2
� f0 (v + ") � 0 for v � b;

as
d

dv

�
v2f0 (v + ")

�
= v2 (f0)

0 (v + ") + 2vf0 (v + ") > 0;

holds for " su¢ ciently small and hence F2 is weakly increasing with F2 (1) = ": Since F2 is

also right continuous we obtain that F2 is an additive probability measure.

Let F3 be de�ned by

F3 (v) , min fF0 (v � ") ; "g ; if v 2 [0; 1] ;

so F3 (v) is an additive probability measure and F3 (1) = ": Since Fr = F1 + F2 � F3 we
obtain from Lemma 1 that Fr 2 P" (F0) :

Step 3. Next we show that (Gr; Fr) is a saddle point. For the monopolist we verify

easily that � (p; Fr) = b2f0 (b+ ") for p 2 [a; c] : Similar to the calculations following the
de�nition of F1 it is easily shown that there exists � > 0 such that 1� b2f0(b+")

v < Fr (v) holds

for all v 2 [p0 � �; p0 + �] n [a; c] and all su¢ ciently small ": Thus, for su¢ ciently small "
we obtain [a; c] = argmaxp2[p0��;p0+�] � (p; Fr) and together with the upperhemicontinuity

of pro�ts that [a; c] � argmaxp � (p; Fr).
Consider now the incentives of nature. Note that

r (Gr; Fr) = r (Gr; F1) + r (Gr; F2)� r (Gr; F3) ; (16)

where we choose F2 and F3 such that F2 (1) = F3 (1) = ": In the following we show that

each term in (16) is maximized separately: If nature could put all mass on a single value

v, by construction of Fr nature would be indi¤erent over v 2 [a; b) and over v 2 [b; c] :

Since r (Gr; v) is monotone increasing on [0; a] and [c; 1] it follows that argmaxv r (Gr; v) �
[a; b) [ f1g : For su¢ ciently small "; r (Gr; a) � p0 while r (Gr; 1) � 1 � p0 and thus given
p0 >

1
2 we obtain [a; b) = argmaxv r (Gr; v) :
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Concerning F3 let v = inf fv : F0 (v � ") � "g :We have to show that r (Gr; ev) � r (Gr; bv)
for ev � v � bv: Given the above it is su¢ cient to consider only ev = v and bv = c where

r (Gr; c) = c� E (pr) : Let  , 2 supv>0 v
F0(v)

. For v su¢ ciently small,  � v
F0(v)

and hence

r (Gr; ev) = ev � " + F0 (ev � ") = " (1 + ) : On the other hand, we showed in Step 1 that
@
@"cj"=0 = 1 and in the proof of Proposition 6 based only on arguments in Step 1 that
@
@"E (pr) j"=0 < 1 so @

@"r (Gr; c) j"=0 = 1. Hence, r (Gr; ev) < r (Gr; c) for " su¢ ciently

small.

Finally, consider F1:More mass cannot be allocated to regret maximizing values [a; b) as

F1 (b) = F0 (b+ ") ; weight on values below a and above c are shifted up as far as possible as

Fv (v) = F0 (v � ") for v < a and c < v < 1 and allocation of F1 for F1 2 (F1 (b) ; F0 (c� "))
will not in�uence regret as r (Gr; v) is constant on [b; c] :

The case of p0 � 1
2 proceeds in an analogous manner. It is easily shown that there exist

parameters a; b; c such that a < b < c and a < p0 < c such that

F0 (a� ")� " = 1� b
2f0 (b+ ")

a
;

F0 (b+ ") = 1� b
2f0 (b+ ")

b
+ "; (17)

F0 (c� ")� " = 1� b
2f0 (b+ ")

c
;

where

b0 (0) = �f0 (0) + p0f
0
0 (0)� 1

2f0 (0) + p0f 00 (0)
= �1 + f0 (0) + 1

2f0 (0) + p0f 00 (0)
:

The least favorable demand Fr is now given by:

Fr (v) ,

8>>>>><>>>>>:
max f0; F0 (v � ")� "g , if v 2 [0; a]

1� b2f0(b+")
v , if v 2 (a; c)

max f0; F0 (v � ")� "g , if v 2 [c; 1)
1 if v = 1

,

decomposed as Fr = F1 + F2 � F3 where

F1 (v) ,

8>>>>><>>>>>:
F0 (v � ") , if v 2 [0; a]

1� b2f0(b+")
v + ", if v 2 (a; c)

F0 (v � ") ; if v 2 [c; 1)
1 if v = 1

,

F2 (v) ,
(
0, if v 2 [0; 1)
", if v = 1

,
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F3 (v) , min fF0 (v � ") ; "g ; if v 2 [0; 1] :

Lemma 1 can be applied to show that Fr 2 P" (F0) : In contrast to the previous case of
p0 >

1
2 , now v = 1 maximizes r (Gr; v) so that F2 puts all mass at v = 1: For the case

of p0 = 1
2 Proposition 6 can be used to show that r (Gr; 1) = 1 � E [pr] > r (Gr; a) = a.

As in the case where p0 > 1
2 ; F1 (v) � F0 (v + ") with tangency only at v = b so F1 again

maximizes weight on [a; b). [a; b) is now only a local maximum of r (Gr; v) but nevertheless

it still follows easily that F1 maximizes regret (use the fact that F0 (b+ ") < F0 (c� ")). �

Proof of Proposition 6. We obtain that

E [pr] =
Z c

a
p
1

p
dp+ b

�
1�

Z c

a

1

p
dp

�
= c� a+ b

�
1� ln c

a

�
:

As a; b; and c are di¤erentiable as shown in Step 1 of Proposition 5, we have:

@

@"
E [pr] =

b� a
a
a0 (") +

c� b
c
c0 (") +

�
1� ln c

a

�
b0 (") :

Inserting the value for a0 (") ; b0 (") and c0 (") from (11), (12) and (14) respectively, we obtain

for p0 > 1
2 :

@

@"
E [pr] j"=0 = �1 +

f0 (p0)� 1
2f0 (p0) + p0 (f0)

0 (p0)
:

The same operations yield the result for p0 < 1
2 . �

Proof of Proposition 7. Following Proposition 5, lim"!0 a0 (") = �1 and lim"!0 c0 (") =

1 and therefore the size of menu is increasing in " for " su¢ ciently small which proves (1).

Next we verify (2). Assume a < v < b. Then x� (v) = ln va and p
� (v) =

R v
a y

1
ydy = v � a so

given a0 < 0 for " small we obtain @
@"x

� (v) > 0; @
@"p

� (v) > 0 and

@

@"

p� (v)

x� (v)
=
(v � a) 1a � ln

v
a�

ln va
�2 a0 (") < 0

as d
dv

�
(v � a) 1a � ln

v
a

�
= 1

a �
1
v > 0. Thus, x

� (v) v � p� (v) is strictly increasing in ":
Assume b < v < c. Then x� (v) = 1� ln cv and p

� (v) = v�a+
�
1� ln ca

�
b = E [pr]+v�c

so @
@"x

� (v) < 0; @
@"p

� (v) < 0 and

@

@"

p� (v)

x� (v)
=

@
@"E [pr]
1� ln cv

+
1
c (E [pr] + v � c)�

�
1� ln cv

��
1� ln cv

�2 c0 (") < 0
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where we use the fact that c0 (") is large and d
dv

�
1
c (E [pr] + v � c)�

�
1� ln cv

��
= 1

c �
1
v < 0

for " small.

We obtain

@

@"
u (v) =

�
v � p� (v)

x� (v)

�
@

@"
x� (v)� x� (v) @

@"

p� (v)

x� (v)
=
c� v
c
c0 (")� @

@"
E [pr] :

Since incentive compatibility implies that x� (v) v � p� (v) is continuous in v and since x�

has an upwards jump at v = b we obtain

p� (b)

x� (b)
> lim
v!b�

p� (v)

x� (v)
:

Clearly, p
�(v)
x�(v) >

p�(b)
x�(b) for v > b holds from above using right continuity of x�.�

The following lemma shows how probabilistic prices can be transformed into menus and

vice versa.

Lemma 2 (Equivalence)

1. For any mixed pricing policy � (v) the menu (x (v) ; p (v)) is incentive compatible.

2. If (x (v) ; p (v)) is incentive compatible, then there exists a mixed pricing policy � such

that � (�; v) � p (v) for all v 2 [0; 1] :

Proof. First we show that if g : [0; 1]! [0; 1] is non decreasing then

vg (v)�
Z v

0
sdg (s)�

Z v

0
g (s) ds � 0:

Let h be the left hand side of this equation. Clearly, h (0) = 0. Since g is non decreasing and

bounded, h is di¤erentiable almost everywhere which implies that h0 = 0 almost everywhere.

Consider some v 2 [0; 1] : If g is continuous at v then so is h: Assume that g is not continuous
at v: Then

vg (v)�
Z v

0
sdg (s) = lim

v"v
vg (v)+v

�
g (v)� lim

v"v
g (v)

�
�lim
v"v

Z v

0
sdg (s)�v

�
g (v)� lim

v<!v
g (v)

�
so h is continuous at v and thus h � 0.

For the rest of the proof we can use a standard result on incentive compatibility, see

Proposition 23.D.2 in Mas-Collel, Whinston & Green (1995). Part (1) follows immediately

from the fact that Fp is nondecreasing and that v� (v) � � (�; v) =
R v
0 � (s) ds given our

calculations above.
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For part (2), notice that x (v) 2 [0; 1] and that incentive compatibility implies that

x (v) is non decreasing and vx (v) � p (v) =
R v
0 x (s) ds. Moreover, we can limit attention

to menus where x is right continuous as otherwise there exists a right continuous incentive

compatible menu (bx (v) ; bp (v))v2[0;1] such that bp (v) � p (v) for all v: As we consider x that
is right continuous, � such that � (v) , x (v) for all v is a well de�ned mixed pricing

policy and we obtain p (v) = vx (v) �
R v
0 x (s) ds. Our calculations above then imply that

� (�; v) = p (v) :

Proof of Proposition 8. Assume that bp attains minimax regret but is not robust. So
there exists  > 0 such that for all " > 0 there exists F" such that F" 2 P" (F0) but

� (p� (F") ; F")� � (bp (F0; ") ; F") � : (18)

Assume that (bp (F0; ") ; G") is a saddle point of the regret problem (SPr) given " > 0. Then

r (bp (F0; ") ; G") = sup
F2P"(F0)

r (bp (F0; ") ; F ) ;
and hence bp (F0; ") = p� (G") :
We can rewrite the left hand side of (18) as follows:

� (p� (F") ; F")� � (bp (F0; ") ; F") (19)

= � (p� (F") ; F")� � (p� (G") ; G") + � (p� (G") ; G")� � (p� (G") ; F") :

Using (SPr) we also obtain

0 � r (p� (G") ; G")�r (p� (G") ; F") =
Z
vdG" (v)�

Z
vdF" (v)+� (p

� (G") ; F")�� (p� (G") ; G")

so that:

� (p� (G") ; G")� � (p� (G") ; F") �
Z
vdG" (v)�

Z
vdF" (v) :

Entering this into (19) we obtain from (18) that:

� (p� (F") ; F")� � (p� (G") ; G") +
Z
vdG" (v)�

Z
vdF" (v) � : (20)

Since F"; G" 2 P" (F0) and since h (v) = v is a continuous function and the Prohorov norm
metricizes the weak� topology we obtain thatZ

vdG" (v)�
Z
vdF" (v) < =2; (21)
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if " is su¢ ciently small.

In the proof of Proposition 3 we showed that � (p� (F ) ; F ) as a function of F is contin-

uous with respect to the Prohorov neighborhood. Hence

� (p� (F") ; F")� � (p� (G") ; G") < =2 (22)

if " is su¢ ciently small. Comparing (20) to (21) and (22) yields the desired contradiction.�
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Figure 1. Optimal Pricing and Worst Case Demand with Uniform Model Density 
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