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Abstract

An asymptotic theory is developed for the kernel density estimate of a random walk and the
kernel regression estimator of a nonstationary first order autoregression. The kernel density
estimator provides a consistent estimate of the local time spent by the random walk in the
spatial vicinity of a point that is determined in part by the argument of the density and in
part by initial conditions. The kernel regression estimator is shown to be consistent and to
have a mixed normal limit theory. The limit distribution has a mixing variate that is given by
the reciprocal of the local time of a standard Brownian motion. The permissible range for the
bandwidth parameter h,, includes rates which may increase as well as decrease with the sample
size n, in contrast to the case of a stationary autoregression. However, the convergence rate
of the kernel regression estimator is at most n'/4, and this is slower than that of a stationary
kernel autoregression, in contrast to the parametric case. In spite of these differences in the
limit theory and the rates of convergence between the stationary and nonstationary cases, it
is shown that the usual formulae for confidence intervals for the regression function still apply
when h,, — 0.
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1 Introduction

The asymptotic behavior of parametric autoregression has been extensively researched in time
series models that include both stationary and nonstationary (unit root) cases. The properties of
nonparametric kernel methods in time series applications have also been studied, but attention
has so far been limited to the case of stationary models. Convergence results for kernel regression
estimators are particularly well developed for dependent data under weak dependence conditions,
following work by Robinson (1983), Collomb (1985a), and Bierens (1983). The asymptotic results
are analogous to those with independent and identically distributed data and include consistency
and asymptotic normality of the kernel regression estimator under standard regularity conditions
that involve a shrinking bandwidth as the sample size (n) tends to infinity. An optimal data-
driven bandwidth selector is also available for kernel regression with stationary time series using
cross validation methods (Hardle and Vieu, 1992). The literature is reviewed in Collomb (1985b),
Bierens (1987), Hardle (1990), and Hardle and Linton (1995), and these methods are now used
extensively in empirical econometric research.

As yet, there appear to be no asymptotic results for kernel regression estimators in models
with unit roots or integrated processes. The random walk model is an important special case that
is uncovered by existing theory and yet is empirically relevant in econometric work. The goal of
the present paper is to begin the study of nonparametric estimation of nonstationary regressions
by developing an asymptotic theory of kernel density estimation and kernel regression in the spe-
cial case of a random walk. Although this model is very simple, it serves to illustrate the methods
that are needed for an asymptotic theory in this class of problem and yields some interesting
results on convergence rates that are indicative of the effects of nonstationarity on kernel regres-
sion. The methods and results of this paper should be useful for nonparametric inference about
nonstationary time series and are also likely to be useful in the field of nonparametric estimation
of nonlinear diffusion processes (A.i.t Sahalia, 1996 & 1997, and Jiang and Knight, 1997).

Specifically, this paper considers the case of a bivariate times series (y;, u;) on a probability
space (2, F, P) adapted to a filtration F; and satisfying the unit root autoregression

yo=m(y—1) +ue, mye—1) = g1 as. (E=1, .., n) (1)

with & = 1 and u; = iid(0,02). The observed process y; is initialized at ¢ = 0 and we will allow
for various possibilities regarding the stochastic properties of the initial value 3. The regression
function in (1) is given by the conditional mean function m(x) = E(y|y;—1 = x) at x and our
primary interest is in the asymptotic properties of the Nadaraya—Watson kernel estimate of m(x)
given by

o) = S K@ — o 1)/ S Kol — i 1), 2)

where K,,(-) = h;'K(-/hy,), hy, is the bandwidth parameter and K(-) is the kernel function.
We are also interested in the quantity

Fulw) = (nha) ;K (=), ®)

a scaled version of the denominator of (2), which is the usual kernel estimate of what would be

the probability density of y; at = if y, were strictly stationary (i.e. if |a| < 1, and y 4 Yo 4

N (0,02/(1 = a?))). It will be shown that the quantity v/nf,(z) still has a meaning as a type of
density estimate even in the nonstationary case. In fact, in the nonstationary case, \/n f(z) tells
us how dense the process is about a particular spatial point, and in this sense can be interpreted



as a form of ‘density’ estimate. The point where this density is being measured turns out to
depend in part on initial conditions. Such estimates and the asymptotic theory associated with
them will be useful in assessing the spatial characteristics of nonstationary time series like stock
prices, interest rates and exchange rates.

It is further shown that the kernel estimator of the conditional mean function my,(z) is a
consistent estimator of m(x), as in the case of a stationary autoregression. However, unlike the
stationary case (Ja| < 1), the limit distribution of the kernel estimator in the unit root case
turns out to be mixed normal, rather than normal, and the mixture variate can be expressed in
terms of the local time of a Brownian motion in the neighborhood of the origin. Also, the rate of
convergence to this limit distribution is shown to be slower than that of the kernel estimator in the
stationary case. These latter two results are very different from the corresponding asymptotics
for parametric autoregressions in the stationary and nonstationary cases.

2 Some Preliminary Theory

Our development relies on the local time of a Brownian motion. Using the Tanaka formula and
following Revuz and Yor (1991, pp. 207-216), we define local time as follows and make specific
some of the properties that are needed in our development.

2.1 Definition For a continuous local martingale M, there exists an increasing process Lyy(-,s)
called the local time of M at s such that

|M(r)—s| = |M(0)—s| + '/O.T sgn(M(t)—s)dM(t) + Lps(r,s)

(M(r)—s)" = (M(0)—s)" + ./0‘7’ (M (t) > s)dM(t) + (1/2)Lpy(r, s)

(M) =)™ = (M) =5)" = [ 1001(2) £ )dM0) + (1/2)Lasr.)
where sgn(z) =1, =1 if x > 0, x <0, and 1(A) is the indicator of A.

2.2. Lemma (Continuity of Martingale local times) For any continuous local martingale M,
there exists a version of the local time such that (r,s) — Lp(r,s) is a.s. continuous in both r
and s. Moreover, it can be chosen so that s +— Ly (r,s) is Holder continuous of order k for every
k < 1/2 uniformly in v on every compact interval.

2.3. Lemma (Occupation times formula) Let M be a continuous local martingale with quadratic
variation process [M), and let Lps(+,s) be its local time at s. Then

[ s, o, = [~ as [ st rarate, "

for every Borel function f. When f has only a single argument we have the simpler formula

[ rarenann. = [~ s e 5



Setting f to be the indicator function f(M) = 1(|M(r)—p| < ) in formula (5), we deduce that

L

Las(t,p) = lim — / (M (r)—p| < 2)d[M]), | (6)
e—0 2¢ 0

a representation which explains why Lj(t,p) is called the local time of M at the point p. For

standard Brownian motion W we have

1 [t
Lup(t,p) = lim / LW (r)—p| < e)dr |
e—0 26 Jo

which we denote by L(t,p). The local time of standard Brownian motion at the origin will be
denoted simply by L(t). If B = oW is Brownian motion with variance o2, then by a simple
calculation we have Lp(t,p) = oL(t, p/o), and so Lp(t) = oL(t). As is clear from formula
(6), local time is measured in units of the quadratic variation process, which we can think of as
information units because they reflect the amount of information that is being accumulated about
the process. In the case of the Brownian motion B, this is simply a scaled version of chronological
time since d [B], = o2dr.
We define the chronological local time of B directly as

it
Lo(tp) = lim o= [ 10B0)=p) < edr = o~ La(t.p). (7
e—0 2¢e Jo

This measures the local time that B spends at p in the chronological units dr (as distinct from
information units measured in d[B], = o%dr). For reasons that will become apparent later on,
the chronological local time of Brownian motion plays an important role in kernel regression
asymptotics.

We make the following assumptions about the kernel function K(-), the bandwidth h,, the
initial condition yo and the errors u; in (1).

2.4. Assumption. The kernel K(-) is a symmetric and nonnegative density with integrable
characteristic function g and satisfies the following conditions for some r > 2:

/ K(s) =1, / K(s)%ds < oo, / s K (s)ds < oo, sup K (s) < oo;

2.5. Assumption.
(a) n'=%h2 — oo, and hy,/n1=912 0 for some § > 0.
(b) n'=%h: — oo, and hy, /01912 = 0 for some § > 0.

2.6. Assumption. The initial conditions of (1) are set at t =0 and yo has the following general

form
[ns]

yozu—}—Zu_j, for some k>0 (8)
=0

where u is an Ogs.(1) random variable with E(|ulP) < oo for some p > 2.

2.7. Assumption. The errors {u;}52 ., in (1) and (8) are iid(0,02) with E(|ujP) < oo, for
some p > 2.

2.8. Remarks



(i) Condition 2.4 is analogous to conditions that are commonly made in kernel density and
kernel regression asymptotics for stationary processes. The moment condition implies that the
kernel has tail behaviour of the form K(z) = o(|z|2") as |z| — oco. In the proof of Theorem 3.1
below and some later results, it will be convenient to place stronger conditions on the moment
exponent r than r > 2. These stronger conditions are made explicit as we need them.

(ii) Condition 2.5 allows for bandwidth parameters of the form h, = cn*, —1/24+6 < k <
1/12 — 6 for some constant ¢ and some 6 > 0 in case (a), and —1/4+ 6 < k < 1/12 — 6 in case
(b). Thus, the bandwidth h,, may increase, as well as decrease, as n — co. However, it should
not decrease too fast nor increase too fast with n. More specific bandwidth rates will be given in
our asymptotic development.

(iii) Assumption 2.6 permits the initial value yg to be zero, a constant, a fixed random variable
(all of these are obtained by setting x = 0 and by making the appropriate assumption about u), or
a random variable that is dependent on the sample size and the parameter k. The latter condition
allows for the variance of yy to grow with n, so that the behaviour of 3y more closely resembles
that of the sample data.

The following results are useful in our main development.

2.9. Lemma (Limit theory for functionals of Brownian motion) Let B(s) be a Brownian motion

with variance o2.

(a) If f(-) is a piecewise continuous and integrable function with f = [0 f(z)dx # 0, then
as A — 00

1/2/ f(B ds—>f0 2LB()

(b) Suppose f(-) is piecewise continuous and integrable with f =0, and [%_ 2 f(x)dx < oco.
Then, as A — oo

At
>\—1/4/0 F(B(s)ds -5 {2(f, Y2 0720 (L (b)),

where (f, f) = — [*2 [%0 e —y|f(x) f(y)dady is the ‘energy’ of f and U is a standard Brownian
motion independent ofB
(c) Let (s1,...,s%) be real numbers with s; # sj, Vi # j, and let a > 0. Then, as A — oo

|:>\1/2 {LB(ta s; + (1,/)\) - LB(ta SZ)} 7i = 17 EREp) k:| i) |:20'1/2Ui (LB(ta SZ)) 7i = 17 7k )

where Lg(t,s) is the local time at t of B at s, and {U;,i =1,....,k} are independent standard
Brownian motions that are independent of B.

(d) Let r be a fized real number and treat {Lp(t,r + %) — Lg(t,r)} as a double indexed sto-
chastic process in the arguments (t,s). Then, as A — oo

9-1)1/2 {LB(t,r+ i) Ly(t, r)} Q(Ly(t,r),s),
where Q(t,s) is a standard Brownian sheet.

2.10. Lemma (Limit theory for kernel integrals of local time) If B(s) is a Brownian motion with
variance o2, and K(s) is a kernel function satisfying Assumption 2.4, then as A — oo



A1 /‘OO K(s)Lu(\, s)ds % Ly(t), ()
AL/ /oo sK(s)Lp(\t, s)ds % o2U(L (1)), (10)
A2 /Oo sK(s)Lp(t,r + ;)ds < MU (Lg(t,r)), (11)

where Lg(t) and Lg(t,r) are the local times at t of B at the origin and at r, respectively, U is a
standard Brownian motion independent of B, and p = —2 [fooo ]fooo |a — blabK (a) K (b)dadb.

3 Main Results

We start with a construction that enables us to deal in a convenient way with sample moments of
kernel functions of the data. In the form given here, the construction uses an expanded probability
space in which the data can be represented almost surely and up to a negligible error in terms
of a Brownian motion that is defined on the same space. This argument relies on an almost sure
invariance principle and an embedding argument like that used in Phillips and Ploberger (1996).

More specifically, define the partial sum process S = Z;?:l uj for k > 1, and Sp = 0, for k = 0.
Since u; has finite moments of order p > 2, we can expand the probability space as necessary to
set up a partial sum process that is distributionally equivalent to B,: and a Brownian motion

B(-) with variance o2 on the same space for which

sup |Sg—B(k)| = 04.5(n?). (12)
0<k<n

As p becomes large, the error in this approximation becomes smaller and it becomes bounded,
or Og.4(1), when S is Gaussian. Almost sure invariance principles or strong approximations of
the type (12) have been proved by many authors using a variety of techniques, a popular recent
approach being the Hungarian construction, e.g. see Shorack and Wellner (1986) and Csorgo, M.
and L. Horvath (1993). Setting By, = n’l/QEé?:luj, we can write this approximation in the form

Bnk—Bé)':oa_s( ! )

1
n2

sup
0<k<n

Let [nr] be the integer part of nr. Then, by adjusting the space as needed, we have

nr 1
n_1/2 Yt = n_l/Qy[nT’] = n_1/2y0 +B <%> + 0q.s ( >

for (t — 1) /n <r < t/n. Further, by the local Hélder continuity of Brownian motion B <M) =

n

B(r) + 04.5 <n_%+5) for 6 > 0, so we have

1
nil/Qyt = nil/Qy[n'r] = nfl/zyo +B (7") + Oa.s (—> (13)



In a similar way, when Assumption 2.6 applies to the initialization at yg, we can expand the
probability space as needed to apply the strong approximation and use Holder continuity of the
Brownian motion to write

nkKk — 1
n_1/2y0 =n Y2y + n_l/QEE-:(])u,j =n Y2+ By(k) + 0q.s ( > ; (14)

1 1
n2 p
where By is a Brownian motion (independent of B) with variance o2.

In what follows, we will proceed as if the probability space and variates on them have all been
adjusted so that relations (13) and (14) hold for the original data. As usual, the results imply
distributional convergence in place of almost sure convergence in the original random coordinates.

Using these strong approximations, we can establish the following asymptotic result for the

density estimate fy,(z) in (3).

3.1. Theorem Let Assumptions 2.4, 2.5(a), 2.6 and 2.7 hold. Define ¢,, = \/n/hy. Then, for
some y € (1/2,1) and ¢ > 0, as n — oo

1 < T —Yt—1
K g7 -
()

e, /01 K <cn {x\;go - B(r)}) 1 (x \—/%}0 —C% < B(r) <” ?/%’0 +C%) dr
- oo (o) (15)

For © = xy + y/na, with g and a fixed, we have

n

\/ﬁﬁ@( ) \/7%2[(<w_yt 1> a.s. LB ’ (16)

where Ly;" = Lp(1,a— Bo(k)), and L is the chronological local time of the Brownian motion B.

2. Remarks R
(i) As remarked in the introduction, the quantity f,(z) = (nh,) 'K (x Yt 1) is the usual

kernel estimate of what would be the density of y;—1 at x if the process y;—j were strlctly stationary.
Theorem 3.1 shows that the quantity \/nf,(x) still has a meaning as a type of density estimate
even in the nonstationary case where a = 1 in (1). In effect, \/nf,(z) estimates the local time,
Lp(1,a+ By(k)), that ;1 spends in the immediate vicinity of a point that is determined by the
value of x and the initial value of the process. Thus, even in the nonstationary case, \/n fy,(z) still
tells us how dense the process is about a particular point, and in this sense can be interpreted as
a form of ‘density’ estimate for a nonstationary time series.

(ii) The limit behaviour in (16) of Theorem 3.1 depends on the precise assumptions about x
and the initial condition. The cases given are probably the most important in practice. Thus,
when a = 0 and the density ordinate x = g is fixed, the limit behaviour of the density estimate
fn(x) is essentially determined by the local time of the underlying Brownian motion process at
the origin. In effect, since y; is of order O,(v/1), the data tend to drift away from a fixed point like
Ty, and, in consequence, the corresponding estimate is of the density or local time at the origin.
But, when = = /na, /nf,(x) estimates the local time spent by the process y; at the point a.



In a similar way, when the initial conditions are fixed or bounded, then they do not influence
the asymptotic behaviour of fn(x) But, when the initial observation is of order Op(y/n), then
\/ﬁﬁl(x) estimates the local time spent by the process at a point which is, in part, determined
by the initial conditions.

(iii) We see from Theorem 3.1 that for the random walk {y;}

- x
>ox(
t=1

in contrast to the case of a stationary autoregression, where

n T —

S (T ) = 0yfum)
t=1 e

Thus, the order of magnitude of the density estimate ]?n(x) in the integrated case is smaller than
in the stationary case when n — oo. This is explained by the fact that an integrated process like
y: eventually (as ¢ — oo) has a bigger probability of being away from a given point = than a
stationary process and the kernel function K(-) assigns smaller values to the more distant points.
This has important implications for kernel regression with nonstationary time series. In effect,
the use of the kernel function in a kernel regression on (1) reduces the strength of the signal in
the lagged regressor 3; 1. This, in turn, reduces the rate of convergence of the kernel estimate of
the regression function.

(iv) Akonom (1993) proved a result like (15) in the case of a uniform kernel and with a zero
initialization. Our derivations in the Appendix (for Lemmas 5.5 and 5.7) draw substantially on
the line of argument developed in his paper.

%) = 0,(ik)

3.3. Lemma Let Assumptions 2.4 - 2.6 hold. Then, as n — co we have the following limits:
(a) For x = xg fized and yo = u (i.e. a=0, k=0 )

T —Yi—1 as. 00
m Z ( )ytl - mOLB ) (17)

(b) For x = x9++/na, and yp = u + ZE@(])U_]' with a #0, k>0

1 — — _
o ZK (73} hyt 1) yi1 % aly", (18)

where Ty is defined in Theorem 3.1.

3.4. Lemma Let Assumptions 2.4, 2.5(b), 2.6 and 2.7 hold. Define ¢, = \/n/hy. Then, for

x = xo + /na, with xy and a fixed, and for yo = u + Z[n 0U—j, with u = Oq5.(1), we have, as
n — 0o

T — Y1 d _ —a,K
S K (L e =) 4 0 (), (19

t=1

where U is a standard Brownian motion independent of B, f%’ﬁ is defined in Theorem 3.1, and

©==2[%_[%_la—blabK(a)K (b)dadb.



3.5. Lemma Under the conditions of Lemma 3.4 as n — oo
1
/nh?

where V' is a standard Brownian motion independent of B, and ko = ffooo K (s)%ds.

S (T et ()Y ) = (e Ty )
t=1 "

We are now in a position to develop asymptotics for the kernel estimator m,,(x) in (2). First,
we give conditions for the consistency of m,,(z), and then give its limiting distribution.
3.6. Theorem Under the conditions of Lemma 3.4 as n — oo,

mp(z) Lx  forz = x9= fived

n Yy (z) La  forz = x4+ na.

3.7. Theorem Let the conditions of Lemma 3.4 hold and let x = xo++/na, with xo and a fized.
The asymptotic distribution of the kernel estimate m,(x) as n — oo is as follows.

(i) if Iy — 0
1/2
/nh(my,(z)—x) 4, {I%QTU:} V(1)= MN (0, kQUQIgﬁfl) (20)
B

(ii) if hyp, = h = constant

Yr(ma(z)—2) {%}mvm ¥ {,f%—i;}l/gvu) (1)

= MN (0, (hpo=2 + h‘lkg(;?)ffg”*l) (22)

(iii) if hp — 00

2

oN1/2
4 ﬁ _ d & — —_o7a,x—1
- (mn(2) ) {zgﬁ } U(1) = MN (0, wo~ 2L ) (23)

n

where MN(0,-) signifies a mized normal distribution. In the above formulae, U and V are inde-
pendent standard Brownian motions that are independent of B, and kg = ffooo K (s)%ds.

3.8. Remarks

(a) Theorem 3.6 shows that the kernel estimator m,(x) is consistent, as in the standard
case of stationary autoregression. However, consistency holds for increasing as well as decreasing
bandwidths.

(b) Theorem 3.7 shows that the asymptotic distribution of m,,(x) is mixed normal. The mixing
parameter depends on the chronological local time of the Brownian motion B in which the time
series is embedded. When z is fixed, the local time is measured at the origin. When z = \/na,
the local time is measured at a.



(¢) The form of the limit distribution depends on the bandwidth expansion or contraction
rate. When h,, — 0, there is no ‘bias’ term in the limit, i.e. the component

T S K () e~ )
T T K (5)

(see (47)) does not contribute to the limiting distribution. In fact, the limit has a mixed normal
form with a mixing parameter that is given by the expression ngQEEH_l. This limiting ‘variance’
is the analogue in the unit root case of the expression for the variance of the kernel estimator that
applies in stationary kernel regression, viz. koo?f(x)~!, where f(x) is the probability density of
the stationary process at x. For the nonstationary case, the probability density in this expression
is replaced by the chronological local time of the process. Note that this correspondence implies
that confidence interval formulae for the regression function m(x) are the same for the two cases,

viz. » 1o
~92 -~2
() £1.96 { —27__ = | (2) £ 1.96 { 27
A /nh%L%R nhp, fr ()

Thus, in spite of the major differences in the limit theory and the rates of convergence between
the two cases, the usual formulae for confidence intervals for the regression function still apply,
at least when h,, — 0.

(d) Theorem 3.7 shows that the maximum achievable rate of convergence in the case of a
unit root autoregression for the kernel estimator of the regression function is n'/%. This rate is
achieved when the bandwidth parameter is a constant as n — oo. The limit distribution in this
case depends on the limit of the bias term - the first component of (21). Since this component
is also mixed normal in form, the asymptotic distribution is still mixed normal but the mixing
parameter is now more complex.

(e) Unlike stationary kernel regression, the kernel estimator my,(z) is consistent even when
the bandwidth h,, — oo, provided that hn/nl_éf‘s — 0, for some § > 0. In this event, the rate
of convergence is slower and the limit distribution is dominated by the effects of the bias term.
Again, note that the bias term effects are random in the limit in the nonstationary case.

4 Conclusion

The asymptotic theory for the first order unit root autoregression given in this paper shows
that kernel estimation of this nonstationary autoregression is consistent, has a slower rate of
convergence than that for stationary autoregressions, and the limit theory is mixture normal rather
than normal. However, the usual formulae for confidence intervals for the regression function still
apply provided the bandwidth h,, — 0.

The methods involve the use of kernel density estimates for nonstationary time series and show
that there is an interesting interpretation to such density estimates in terms of the local time of
the Brownian motion that is the weak limit process of the standardised time series ﬁy[nr]. Such
density estimates can be used in empirical work to quantify the amount of time that a nonsta-
tionary process like a random walk spends in the vicinity of a certain point. Such quantification
can be expected to be useful in studying the empirical properties of trajectories of economic time
series like exchange rates and interest rates.
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The methods in this paper will also be useful in extending the regression theory to more
complex nonstationary time series models, including nonlinear models of integrated processes.
They can further be used in analysing the nonparametric estimation of nonlinear diffusion mod-
els. Some extensions of the methods of the paper along these lines are being conducted and will
be reported by the authors in later work.

5 Proofs

5.1 Proof of Lemma 2.2
See Corollary 1.8, p. 211 of Revuz and Yor (1991).

5.2 Proof of Lemma 2.3

See exercise 1.15, p. 216 of Revuz and Yor (1991).

5.3 Proof of Lemma 2.9

Theorem 4.4, p.146-147 of Tkeda and Watanabe (1989), gives the corresponding formulae for
parts (a) and (b) of the lemma for standard Brownian motion. Note that Ikeda and Watanabe
define the local time of standard Brownian motion as (1/2)L(t,p), and their formulae are adjusted
accordingly in what follows. Also, Tkeda and Watanabe assume that f(-) is continuous and has
compact support. The results given here continue to hold because under the stated conditions,

= ffoo f(s)ds has compact support and G(x fo s)ds is bounded. Together with

piecewise continuity of f(-), these two conditions are sufﬁc:lent for Tkeda and Watanabe’s theorem
to hold.

Using the formulae for standard Brownian motion and rescaling delivers the stated results.

Thus, defining f5(-) = f(o-), we have fo(W(s)) = f(cW(s)) = f(B(s)), and then

A—1/2 / F(B(s))ds £ A~1/2 / £ (W(s))ds -2 T L(t) = Fo'L(t) £ Fo2L(t)

as required for part (a). In the same way, we find for part(b), where f = f, =0,

a [ g ds 2 [T g ) ds 120 )0 040)
= {2077 ff}”g (1) £ {<f,f>}1/2a*2U<LB<t>>,

giving the stated result (b).
For part (c), we use the following result for standard Brownian motion from Revuz and Yor
(1991, exercise 2.14, p. 486).

[5—1/2 (L(t,s;+€) — L(t,s))} i =1, k| % 205 (L(t, 1)) i = 1, .., k] as e — 0,
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where U; are standard Brownian motions that are independent of L. From this result, we obtain
N {Lp(t s+ a/N) = Lp(t,s0)} i =1,
4 [Al/% {L(t,07 (s + a/N) = L{t, o7 s) b i =1, .., k}

- [571/%1/%1/2 (L(t,si)o +¢) — L(t,s; /o) i =1, ..., k:}

4 [Q(Ua)l/zUi (L(t, 5:/0)) i = 11@ 4 [Qal/QUi (Lp(t,s:)),i = 11@ ,

as A — 00, giving the required result.

For part (d), we use the following result for standard Brownian motion from Revuz and Yor

(1991, exercise 2.12, p. 486).

S

9-1)1/2 {L(t,r +3) - L(t,r)} QL ), s),

where (@ is a standard Brownian sheet. It follows that
9-1)1/2 {LB(t,r + i) - LB(t,r)} L 9o I\V26 {L(t,07 (r + 5/N) — Lp(t,0~ ')}

d d d

— 0Q(L(t,r/0),s/0) = Q(oL(t,r/0),s) = Q(Ls(t,7),s),
as required. The penultimate distributional equivalence in the above argument uses the fact that
abQ(t, s) 4 Q(a%t,,b%s) - e.g Revuz and Yor (1991, exercise 3.11 p.37)-and sets a = b = o1/2.

5.4 Proof of Lemma 2.10

To prove (9), we use the occupation formula (5) of Lemma 2.3 to write the integral in the form

o0 AL
L2 / K(s)Lp(M, s)ds =\~ 1/202 / K(B(s))ds
J o JO

as a continuous additive linear functional of the Brownian motion B. Then, applying Lemma
2.9(a) gives

At /0 " K (B(s))ds & o | /‘OO K(s)dso2Ly(t) = Lp(t),

as required. Result (10) is proved in a similar way, using the occupation formula (5) to write

00 At
—1/4 sK(s s)ds = _1/402 S s))ds
A / K(s)Lg(Xt,s)ds =\ /0 B(s)K(B(s))d

—00

Now use Lemma 2.9(b), giving

A~ V4? ./O.M B(s)K(B(s))ds = ¢/U(Lg(t)),
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as required for (10).

To prove (11) we proceed as follows. First let )1 and @2 be two independent standard
Brownian sheets and define Q(t,s) = Q1(t,s)1(s > 0) + Qa(t, —s)1(s < 0). Next, from Lemma
2.9(d) we deduce that as A — oo

2‘1A1/2{L3(t,r+i) Lp(t, r)} Q(Lp(t,7),s),

where @ is independent of Lg. It now follows by the continuous mapping theorem that

)\1/2/ SK(S)LB(t,T—l—;)dS = /

— 00

o0

K(s)\1/2 {LB(t,r + i) - LB(t,r)} ds
4y /OO SK($)Q(Ly(t,r), 5)ds
L o{Lp(t,r)}/? /_ " SK(s)Q(1, 5)ds.

Next let F(t) = ] s)ds. Direct calculation shows that [ F(s)?ds = ¢/4, and that as
t — oo, F(t ) (1,t) — 0 a.s. . Then, integration by parts yields
/ K (5)Q(1, 8)ds = — / Fs)dQ(1,s) £ N (o, / F(S)st> ,

from which the stated result follows immediately.

5.5 Lemma

Let Mp(a+kh,a+(k+1)h;z) =377 exp (—% {a—S;}) La+kh <S; <a+ (k+1)h] for some
integer k > 0 and h > 0, and where S; = Y7_, us. Let v > 1 be any positive integer. Then, for
anya € R, h > Ln, and any positive integer k, there exists a constant C such that

E|My(a,a+ h; 2) — My(a + kh,a + (k+1)h; 2)|*"

h\" r
< C’(%> [1+kh2logn]

uniformly in z € R.

5.6 Proof
The result follows from Akonom (1993, Lemma 1). Note that

My(a,a+ h;z) — My(a+ kh,a+ (k+1)h; 2)
= Yo (-Fla-s})Us) (24)
j=1

where

U(S)=1la<S;<a+hl—1[a+kh<Sj<a+(k+1)h].
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Akonom (1993, Lemma 1) proved the stated result for

Nu(a,a+h) — Nu(a+kh,a+ (k+1)h) =Y "U(S)), (25)
j=1
where Ny (a,a+h) =3 1[a < S; < a+ h]is the number of visits of S; to the interval [a,a + h] .

=1
Now

|M,,(a,a+ h; 2) — My(a + kh,a+ (k+1)h; 2)[?

n

= S ew (< s- ) Us)T s,

Ji=1

The factor exp (—% {S — Sj}) in this expression has modulus unity, and does not affect the
bound on the r’th moment of the expression which can be calculated in the same manner as in
Akonom (1993) for (25). Thus, the bound is the same as for the 2r'th moment of (25) and this

bound holds uniformly in z.

5.7 Lemma

Let a € R, let hy, be a sequence of positive numbers satisfying hy, > ﬁ, and let k,, be be a sequence
of positive integers with k, < mn. Then, for all e >0

1
My (a,a+ hp;z) — k—]V[n(a + hp,a + (kyp + 1)hy; 2)

1 1
— Ous. <h,% (14 knhi2)? n%ﬁ&‘) , (26)

uniformly in z as n — oo.

5.8 Proof
The result follows as in Akonom (1993, Proposition 1). Let 5 > 0, and define the events

|Mn(a,a+ hns 2) = Mn(a+ kb, a + (k + 1)hn; 2)]
1
> Bh3 (1+kh2)2 pite ’

An,k(ﬁ) = {

A | Ma(0,0+ hos 2) = 5 Mo (@ + oy 0+ (i + 1)l 2)|
n = 1 1

> Bh3 (1 + kyh2)2 nite
and note that A, (8) C Ug<g, Anx(5). Using the Markov inequality of order 2r, Lemma 5.5, and
the fact that A, () C Up<k, Ank(B3), we obtain

C (logn)"

P A < ki

uniformly in z. Since k,, < n, the result then follows from the Borel-Cantelli lemma by suitable
choices of r and a sequence 3, for which G, — 0 and

oo

26;27‘”1727‘6 (log n)r < 0.

n=1



14

5.9 Proof of Theorem 3.1

Let v € (1/2,1). Using the strong approximation to the partial sum process Sy = Zle u; given
in (13) we have the representation

Yi—1 = B (t - 1) + Yo + Oq.s. (nl/p): \/EB(T) + Yo + Oa.s.(nl/p)a

for (t —2)/n <r < (t—1)/n, t > 1. Write the scaled density estimate as follows:

1 - T— Y1 _ n 1< T —1yo— Si1

1 " m_yO_SZ—l x_yO_Sz—l 1
= < —
o oK o (TR 1 [ <
I T —yo— Si—1 r —yo— Si—1 1
e S fo T )1 [ o
1 . m_yO_Szfl x_yO_Szfl 1
— < —
nZK({ el I B 1
+0q.5(cp 2 =), (27)

since K (z) = o |x|72r> as |x| — 0o. The second term of (27) is negligible when 1—2r (1 — ) < 0,
which will be assumed in what follows.

The next part of the proof follows a line of argument developed in Akonom (1993, Theorem
2) that applies for the case of a uniform kernel. The idea is to show that the first part of (27) can
be replaced with a corresponding integral expression that involves the Brownian motion B. The
final part of the argument then makes use of the occupation formula.

Let k, be an integer for which 1 < k;,/c;, < v/n/log(n). The role of k, is to widen the bands
in the formulae below so that the embedding of S;_1 in the Brownian motion B can be used. We
seek to majorize the difference

I x—yo — Si—1 r—y 1 _Sic1 _x—yo 1
_ - JF T — =< < =
néglféh{ v }>1< Vi A Va S

_ /(;1K Gn{m;ﬁyo —B(r)}) 1 (x\_/go —c% < B(r) <~ \_/go +C%
< Al(n)+ﬁA2(n)+A3(n),

Cn

using the terms
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As(n) = cp|=

Take each of these in turn in what follows. Let ¢ (z) be the characteristic function of the density
K (-). Because ¢ is absolutely integrable, we have

< % O;’SOK( )\% gew%{w\/%oi\%} [1(”\_/%/0 _C% < 5}/—51 < \—/go +Q%>
- k—lnl NG %” < Sj/‘ﬁl < +§T">} dz.
By Lemma 5.7

uniformly in z, thereby giving the order of magnitude of A;(n) as

en 1 i 117 1/4+e
Al (n) = Oq.s. ;07—/2 1 + g n . (28)

To bound As(n) we set up intervals I}, C I, C I}) defined as

I — -w_yo_ﬁl’_yo_'_k_n
" Vi oo v e |’

I [FTY n'Pz —yo k nl/p]

_ _|_ -
Vn C% N Vvn
I// T —Yo kn nl/p T — Yo kn nl/p]

n Jn a  m vn gt
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and let G, be the event

oo {[ e {57 m s

S’i—l
NG “”)

NG

INA
S|
W'Mz
KN

/36\
—N

)

8 |
| <
(]

|
W

L
H,—/
~_

[
A~

INA
SEES
[]=

=

/36\
—
8
|
N
S
BN
12
|
——

[ {5 o] )

In view of the strong approximation (12), S; 1/+/n is almost surely of distance less than n'/?/\/n
from B(r) uniformly over (i —1)/n < r < i/n as i,n — oo. Also, the kernel function K (-) is
nonnegative and bounded. It follows that the event G,, holds eventually as n — oo, so that

P (lim inf Gn) —1.

n—oo

Hence

P <limnsggo {Ag(n) > e ‘/0‘1 K <cn {“\;T_fo _ B(T)D Lp— 1t [B(r)] dr}) 0.

Using the occcupation formula (5) we have the equivalence

[ x o {22 - 00 1 lmOlde = o [ (o { T <0} ) gl 20
= /1;:—1; "k <Cn {x\;ﬁyo _p}) L, p)dp.

whose modulus is bounded by a constant multiple of

/ L(1,p)dp = O i/
1, = UVa.s. -
-1, Py vn

It follows that Aa(n) = Og.s. (cnnl/p/\/ﬁ) , and

cnnl/p

k_lnAQ(n) = Oa.s. <m> - (29)

To find the order of magnitude of Az(n), we can use alternate versions of Lemmas 5.5 and 5.7
in which the partial sum process Sy is replaced by the Brownian motion y/nB(r) - see Akonom
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(1993, p. 73) - and then the derivation of the order of magnitude follows in the same way as that
of Aj(n).
We deduce from (27) (28) and (29) that

—Yi—1
s ()
Cn ; Cn NG r N \/ﬁ g )dr
en 1 kn 1Y% cont/P
— o _n [4+e nc 1—-27r(1—)
Og.s. ( n@%/Q |:1 + 07%7:| n + Oa.s. k’n\/’ﬁ ~+ Oq. s( )
a.s. nC%/Q a.s. kn\/ﬁ a.s

nehlJFV/Q ne Lo
_ n r(1-7)
Og.s. (n1/4n7/4 +Oa.s. (n’yh}l27> + Oq. s( )

when £k, is chosen in such a way that k, = O(c%v), p is sufficiently large that 1/p < e and r is
large enough that the term oa,s(alfmn(l*v))
can be arranged by modifying Assumption 2.4 as needed. By Assumption 2.6 n

By, /n1=9)/12 () for some § > 0, so that

nah}jV/Q o ne

n(1=9) (1+’y/2)/12> (nan(l—?y)(l—é)ﬂ)
+ 0q.s.

is negligible in relation to the other two terms, which

1=6p2 o0, and

n1/4n7/4 nYy

nEn(147/2)/12 nEn(1-27)/2
= Og.s. n1/4n’Y/4 —+ Og.s. T
- OG.S (

nE
%7 2 > o (W>
n6
) o ()

5

1
at
145,
nitai?

—1y
67

= a.s. 1 T
<n1+€75>

which gives the required result (15).
To prove (16) we need to show that

Cn /;K (cn {x\;q_j/o - B(r)}> 1 (”3_—\/%/0 —C% < B(r) <* \_/go +Ci> dr S TE, (30

for then

Vifa(@) = J:LT%ZK <%>
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' T — Yo r—yo 1 r—yo 1
= Cn K (cp - B 1 - <B < ~
el m e
1
Toas. (W>
BT (31)
To show (30), note from the occupation times formula that the left side of (30) can be written as
= T — Yo T—yo 1 r—yo 1)+
| K e —pl)1 o <p< =) Tp(1,p)d 32
o | w (o p}> (\/ﬁ c%_p_ﬁwj s(Lp)dp  (32)

as in (27) above. However, according to (14)

“\;7_30 “% a4 — By(k) (33)

and, since ¢, = \/n/h,, — 0o as n — oo, Lg(1,p) is continuous in p, and ]_OOOO K(s)ds = 1, we

have -
o /—oo K (Cn {m_—\/ﬁyo _p}) ZB(]-ap)dp —a.s. zB (].,Cl - BO(K)) = z‘;”7

as required for (30), and (31) then follows.

5.10 Proof of Lemma 3.3

Start by considering the case where a # 0 and k > 0. Let v € (1/2,1). Then, following the same
line of argument as in the first part of the proof of Theorem 3.1, we find

o (e = e ()%

- rfe {5 o)) o

1
T0q.s. <W> (34)

1
+0q.s. <W> .

Since yT —a.s. Bo(k), and in view of (33) and the continuity of pLg(1,p), we obtain

1 « =y - =
S K (T Y s s T (L Bule) = T
(22477 —1 n

as required for (18).



19

When a = 0, and k = 0, we proceed in the same manner, but use the normalization 1/4/nh2,

rather than 1/nh, in (34) and let v € (1/2,1). Then, following the same approach, we have

AR () = o [ KL o)) o

nl/p
+0q4.s. A o< | - (35)

For large enough p the remainder in (35) is negligible and we are left with

Cn ./:K G;n {L\/ﬁyo - B@-)}) {VnB(r) +yo} dr
= cn/z (vnp +yo) {K (%f_y[v fB(Lp)}dp

_ /Z {(z— hps} K ()T (1,55\;%/0 - é) ds

= w/z K(s)Lp (1, x\;go - é) ds — hy, /Z sK (s)Lp <1, m\;ﬁy‘) - %) ds  (36)

Now, since x = ¢, the first term in (36) is

vn Cn

which gives the required limit (17) in this case. The second term in (36) is negligible, as we now
show. First, [ sK(s)dsLp (1,71’1/2(3: — o)) = 0 by virtue of the fact that [%_sK(s) =0 by
the symmetry condition in Assumption 2.4. We may therefore write

o [ KT <1, T i) ds ®3 2T(1,0) = 2oL%, (37)

ha, /OO sK(s)Lp(1, n=V2(z — yo) — s/cy)ds

= hy, / sK(s) {EB (1, n 2z —yo) — s/cn) —Lp <1,n71/2(x - yo)) } ds
h 1/2-n roo
< const. hy, (\/—%> /_OO |s]>/277 K (s)|ds, a.s. (38)

for any n> 0, due to the Holder continuity of Lp(1,-). The right side (38) tends to zero by
virtue of Assumption 2.4(a) provided n1/ Qh%[w/ (=2m) _, 0, which holds whenever h, = cn¥

and k < 1/6 — 6, since n can be arbitrarily small. Thus, from (36), (37), and (38) we get the
convergence

o — x — s as =
/_Oo {z — hps} K(s)Lg <1, \/7_30 - a) ds = xOL%’O

for the same range of bandwidths h,,. This proves the stated result (17) for x = z¢ fixed and
Yo = u.
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5.11 Proof of Lemma 3.4
Let v € (1/2,1) and following the same line of argument as in the proof of Theorem 3.1, we find

PR

t=1

3/2 - T —Yt—1 Y—-1—T
- () ()

1 T —yo— Si_ T —1yo— Si_ T —1yg— Si_ 1

_ 3/221 Yo i—1 Yo i—1 Yo i1 oL
vyl B ) [ <
1 — T —yg — S;— T — Yo — Si_ T —1yy— S 1

3/2 4 Yo i—1 Yo i—1 Yo i—1 L
k) ) [

1« T — Yy — Si— T — 1Yy — S;— T —1yg— Si_ 1

_ 3/21 Yo i—1 Yo i—1 Yo i—1 1
k{2 ) ) [ A

+0g.5 (32 A=N=2r(1=7))

and the error is arbitrarily small as n — oo provided r > 3 —l— 4(1 5 , which can be arranged by
suitable restriction of the kernel function by modifying Assumptlon 2.4 and this is assumed in
what follows.

Proceeding as in first part of the proof of Theorem 3.1, we have

Observe that

07%—37 . na—irte B ns—ivte
2 gy g
and let v =1 — ¢ for 6 > 0 small. Then
n%*%7+5 n%6+5
B3 2 T 1plrad

Since ¢ is arbitrarily small and § can be chosen arbitrarily small, we deduce that

36+e

4

n—1+6 o(1)
iptts
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provided h,, is not too small, in particular for

for some arbirtrarily small g > 0. It follows that (39) holds with a negligible error as n — co.
From the occupation formula we deduce that

o) o e
= /ZK <cn {x\;ﬁyo —p}) (Cn {w\;ﬁyo —p})fs(lap)dp,

and transforming p — s = ¢, [(x — yo) /v/n — p], this expression becomes

el /Z K (5) T (1, [“\;T_ifo _ éD ds. (40)

Since [ sK (s)ds =0, (40) equals

_/_Z K (s)cl/? [IB (17 [x\;ﬁyo - %D ~Ls <1m_—\/ﬁyo>] &

4 _ 0_14,01/2U (ZB (1,a — Bo(m))) , (41)

a.s

in view of (11) of Lemma 2.10 and the fact that n=%/2(z —y0) “> @ — Bo(k). In the limit (41), ¢
is defined by ¢ = =2 %7 [* |a — blabK (a)K (b)dadb, and U(:) is a standard Brownian motion
independent of B. We deduce that

S K () () - U (1) £ e 0 (),
n t=

as required for (19).

5.12 Proof of Lemma 3.5

Following the line of argument used in the first part of the proof of Theorem 3.1, we find

s ()

1 < T —yo — Si— T —yg — Si— 1
A2 ZKG {M 1|22 Y0 Z izt - 21
" Vn Vn Tl
I T —yo— Si—1 x—yo — Si—1 1

+cl/2—ZK Cpd —F— V)1 || —T—F——"—| > = | w;

PS i i 7 a

1 & T — 1Yy — S;— T —yg— S;_ 1

_ 1/2_~ Yo i—1 Yo i—1 < =
ol 75 2K { Vi }H Nz —c%]“f

+0, (c%/ 26711—%(1—7))
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1 & x— Yo — Si— T — Yo — Si— 1
— A2 Nk LYo~ o1 ) (|2 TY0 Z 2y 2
o Z @“ { Vi }> Vi |t al”
+0p (0711/2071;27"(177» . (43)
Now ¢ (1) = 0(1) as n — oo, for r > 3/4(1 — ), which is hereby assumed, and then the last

term of (43) can be neglected. The first term is a martingale with quadratic variation
r —yo— Si—1

|

As in the proof of Theorem 3.1 we can determine the asymptotic behaviour of this conditional
variance function using the strong approximation. In particular, we have
T —Yo — S’L 1

SN -
- rof w{o})a [-el=ge
Lo A
_ / K (s)21[|s] < b ’Y]LB< x_—\/ﬁyo—i)dwoa,&u)

N (/;OOK(S)st> Lg (1,a— By(k))
— kaL%(1), )

p' ﬂ L (1,p) dp+ 00, (1)

where L% (r) = Ly(r,a — By(k)) and ko = [*°_ K (s)*ds.

It now follows from the generalized martingale central limit theorem (e.g Hall and Heyde,
1980, p.58) that the first term of (43) has a mixed normal limit distribution with conditional
variance (44). Hence,

\/_ Z <x — Y- 1> w —g MN (0, ks LE5(1))

or, equivalently,
T — Yt—1 a,
,_nh% Z ( ) Ut —d V (kQLBR(].)) ,

where V' is a Brownian motion that is independent of B. This gives the stated result.

Proof of Theorem 3.6 Write
S (e SR ()
S K (=) T K (=)

my(x) =
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From Theorem 3.1 and Lemma 3.3, we deduce that

T—Yt—1

_07
)y’f Vs aLy”

7 S K (7

: - — = ——=1 forx = fived, (46)
T S K () Lo
and
1 n T=Yt—1 —
iy 2=t I ( ) Y1 aly”
i =B — 4 forx=+/na.

x*yt—l) ZGB”

1
N Yia K ( on

Moreover, from Lemma 3.4 it follows that

1 i T — Y1 p { fized
K|l————Juy — 0 forx=
\/nh? ; < I, > ¢ Vna

We deduce that
my(x) = @ for x = fized,
and )
%mn(w) Loa  for x =+/na,

as required.

Proof of Theorem 3.7 Start with the case where z is fixed. From (45) we have

{/nh2 {my(x) — x} = ﬁZ?:lK(x 3 1) (ve-1 — ) N \/WZL‘ 1 (x:;yl)w |

\/%T%Z?:Jf(m_ifl) \/nh_QZtl ( Fon )

In view of Lemma 3.4, the first term on the right side of (47) is

(47)

fz (W—:*) Ve

when h,, — 0. On the other hand, the second term of (47) has the following limit by virtue of
Theorem 3.1 and Lemma 3.5

R S LR G S
T S K () Iy

Thus, when h,, — 0 we have

{@H/E%“}m V().

k2 {ma(z) — 2} S {kQUQ/L%”}l/ “va).

which proves (20).
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When h,, — oo the first term in (47) dominates and we have using (17) of Lemma 3.3 and

(19) of Lemma 3.4

ﬁ{mn(a&)—x} _ nhg Zt 1 n( ;1>(yt1—$)+ WZt 1 (m ii) Ut(48)
" ) T Y K ()

T—Yt—1

ﬁ Zt:lK < hn

= WZHZ (w<m Zt(lf)l )+O <h12> (49)
\/? t=1 " hn
(oI} )
Ty

which completes the proof of (23).
When h,, = h = constant, both terms of (47) affect the limit distribution and we get

) o - ) o T K () w

= {po2my} o),

Ven {mp(z) — x} = \/nh—QZIt : n< T—yi1 1 n T—yi—1
mztzlf(( ) g L1 K (=)

u h{ E_Om}l/Q () X p-1 {kQUQ_I;),:}l/Q v
%" o

—h {W—Q/E%“}l/g U1)+h {@&/E@;“}”Q V),

leading to (22).

The case where x = y/na is proved in the same way and the limits involve L%’R rather than
0,k
Lg .
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