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Abstract

This paper determines coverage probability errors of both delta method and para-
metric bootstrap confidence intervals (CIs) for the covariance parameters of station-
ary long-memory Gaussian time series. Cls for the long-memory parameter dy are
included. The results establish that the bootstrap provides higher-order improve-
ments over the delta method. Analogous results are given for tests. The CIs and
tests are based on one or other of two approximate maximum likelihood estimators.
The first estimator solves the first-order conditions with respect to the covariance
parameters of a “plug-in” log-likelihood function that has the unknown mean re-
placed by the sample mean. The second estimator does likewise for a plug-in Whittle
log-likelihood.

The magnitudes of the coverage probability errors for one-sided bootstrap Cls for
covariance parameters for long-memory time series are shown to be essentially the
same as they are with iid data. This occurs even though the mean of the time series
cannot be estimated at the usual n!/2 rate.

Keywords: Asymptotics, confidence intervals, delta method, Edgeworth
expansion, Gaussian process, long memory, maximum likelihood estima-
tor, parametric bootstrap, t statistic, Whittle likelihood.

JEL Classification Numbers: C12, C13, C15.



1 Introduction

This paper considers statistical inference for a stationary long-memory Gaussian
time series with unknown mean p; and spectral density fp, that lies in a parametric
family {fp : € © C RY¥™®}. For this situation, Dahlhaus (1989) establishes the
consistency and asymptotic normality of a plug-in maximum likelihood estimator of
0o, which maximizes the likelihood function with the unknown mean iy replaced by
a preliminary consistent estimator, such as the sample mean. Dahlhaus showed that
this estimator is asymptotically efficient. His results allow one to construct delta
method confidence intervals (CIs) and tests for elements of 6y, including the long-
memory parameter, dp, using an asymptotic normal approximation. Fox and Taqqu
(1986) provide similar results for the Whittle maximum likelihood estimator of 6.

In this paper, we establish the asymptotic order of magnitude of coverage prob-
ability errors and null rejection rate errors of delta method Cls and tests concerning
elements of 6g. We consider Cls and tests that are based on plug-in maximum like-
lihood estimators that are defined in terms of the first-order conditions (FOCs) of
a plug-in log-likelihood (PLL) function or a plug-in Whittle log-likelihood (PWLL)
function. We refer to these estimators as PML and PWML estimators. The PLL and
PWLL functions are the Gaussian log-likelihood and Gaussian Whittle log-likelihood,
respectively, with the sample mean plugged-in in place of the unknown mean.

In addition, we introduce parametric bootstrap Cls and tests for elements of 6y
based on PML and PWML estimators and establish bounds on the asymptotic order
of magnitude of the coverage probability errors and null rejection rate errors of these
procedures. We show that the bootstrap yields higher-order improvements over the
delta method in certain cases. To our knowledge there are no other results in the
literature, even first-order results, concerning the asymptotic properties of bootstrap
methods for long-memory processes.

The results of the paper cover two- and one-sided delta method Cls and ¢ tests.
They cover symmetric two-sided and one-sided parametric bootstrap Cls and tests.
Both null-restricted and non-null-restricted parametric bootstrap tests are consid-
ered. The former are preferred on theoretical grounds.

The coverage probability errors of two- and one-sided delta method Cls for ele-
ments of y are shown to be O(n~1) and O(n~/2), respectively, where n is the sample
size. These errors are the same as for Cls in models for independent and identically
distributed (iid) observations. This occurs even though the mean 1, cannot be esti-
mated at the typical n'/? rate. Results for null rejection rate errors of delta method
t tests are analogous.

The coverage probability errors of symmetric two-sided and one-sided parametric
bootstrap Cls are shown to be O(n~3/21n(n)), and O(n~!1n(n)), respectively. Apart
from the In(n) term, latter error is the same as for iid data. The error for symmetric
two-sided CIs is not as small as the error O(n~?2) that has been established for many
CIs in iid contexts, see Hall (1988, 1992). This may be because our bound on the
error is not sharp.

The results show that symmetric two-sided and one-sided bootstrap Cls exhibit
higher-order improvements in terms of coverage probabilities over their delta method



counterparts of magnitude at least n~/21n(n).

All of the bootstrap results just stated hold under a certain condition on the
variance of the normalized vector of PLL or PWLL derivatives denoted Condition
NSs(iv) below. This condition holds quite generally for PWLL derivatives, but less
generally for PLL derivatives. For example, it holds for all stationary Gaussian
ARFIMA(p,d,q) processes for PWLL derivatives, but only for ARFIMA(0,d, q)
processes for PLL derivatives. If this condition does not hold, then the bounds ob-
tained on the delta method and bootstrap CI coverage probability errors are larger.

We provide some Monte Carlo simulation results for ARFIMA(0,d,0) processes
with unknown variance o2. The simulations show that the errors in coverage probabil-
ities of bootstrap Cls tend to be smaller than those of delta method Cls. For example,
for nominal 95% Cls, the average over five values of d of the absolute deviations of
the true coverage probability from the nominal coverage probability is .016 and .010
for delta method and bootstrap Cls, respectively, based on the PML estimator. For
CIs based on the PWML estimator, the corresponding average absolute deviations
are .054 and .012. Hence, we conclude that the theoretical asymptotic results of the
paper regarding the advantages of the parametric bootstrap over the delta method
are reflected in finite samples at least in the limited number of cases considered.

We now outline the method of obtaining the asymptotic results described above.
First, we obtain a valid Edgeworth expansion for the normalized vector of PLL or
PWLL derivatives. For the PLL case, we do this by extending the results of Lieber-
man, Rousseau, and Zucker (2003) (LRZ), who consider the long-memory Gaussian
case with known mean. In particular, we verify the conditions of Durbin’s (1980)
Theorem 1, which gives a general result for the validity of an Edgeworth expansion
for the density of a normalized random vector that holds uniformly over parameter
values in a compact set. Durbin’s result is a generalization of an Edgeworth ex-
pansion for the density of a normalized sum of iid random variables given by Feller
(1971). We convert the Edgeworth expansion for the density of the PLL derivatives
into an Edgeworth expansion for their distribution function using a result of Skov-
gaard (1986, Cor. 3.3). For the PWLL case, we use the Edgeworth expansion derived
in Andrews and Lieberman (2002).

Next, we show that ¢ statistics based on the PML and PWML estimators can be
approximated arbitrarily closely by a smooth function of a vector of PLL and PWLL
derivatives of sufficiently high order. The argument follows that of Bhattacharya and
Ghosh (1978, Thm. 3(b)). These results are combined to give Edgeworth expansions
for the distributions of the t statistics that hold uniformly over parameter values
in a compact set. These Edgeworth expansions are used to determine the coverage
probability errors of delta method Cls and analogous results for delta method tests.

We then show that the uniform Edgeworth expansions for the ¢ statistics yield
Edgeworth expansions for the bootstrap t statistics because the bootstrap generating
(BG) estimator lies in a neighborhood of the true value with probability that goes
to one at a sufficiently fast rate as n — oco. The coefficients of the Edgeworth expan-
sions of the bootstrap t statistics depend on the BG estimator, whereas those of the
t statistics depend on the true parameter. We show that the coefficients of the Edge-



worth expansions differ by O(n~/21n(n)) with probability that goes to one quickly.
This implies that the difference between the Edgeworth expansions equals the or-
der of the second term, viz., n~ /2, times O(n~'/21n(n)), which gives a difference of
O(n~'In(n)), on a set with probability that goes to one quickly. This result is used
to show that the coverage probability error of the one-sided parametric bootstrap CI
is O(n~!In(n)).

Results for symmetric two-sided bootstrap Cls are obtained by a similar argument.
The primary difference is that the second terms in the Edgeworth expansions are order
n~! terms, because the n=/2 terms drop out due to symmetry. In consequence, the
two Edgeworth expansions differ by O(n~3/21n(n)), rather than O(n !ln(n)), and
the coverage probability errors are similarly reduced in magnitude.

One drawback of the results of the paper is that the PML and PWML estimators
considered are required to satisfy a condition called Condition Cgs, which implies
consistency of the estimators. We show that there exists a sequence of PML and
PWML estimators that satisfies Condition C;. But, we do not show that all PML
and PWML estimators satisfy Condition Cg or that PML and PWML estimators
that maximize the PLL or PWLL function necessarily satisfy Condition Cs. The
same drawback occurs in the results of Bhattacharya and Ghosh (1978) concerning
Edgeworth expansions of PML estimators. If there is a unique solution to the FOCs,
then this is not a problem. Or, if one can show that all solutions to the FOCs satisfy
Condition Cg for a given parametric specification of the spectral density function,
then this is not a problem. Otherwise, one can utilize conservative bootstrap Cls,
defined below, that have the property that the probability of under-coverage is less
than that of delta method Cls.

Another drawback of the results is their use of the assumption of Gaussianity.
If the PML or PWML estimator is n'/?-asymptotically normal for non-Gaussian
processes, then the delta method and parametric bootstrap Cls considered in the
paper are asymptotically correct to first order. For linear non-Gaussian processes, the
asymptotic normality of the PWML estimator is established by Giraitis and Surgaillis
(1990). However, the asymptotic normality of the PML estimator has not been
established for non-Gaussian processes. Since the PWML estimator is an approximate
maximum likelihood estimator, the result of Giraitis and Surgaillis (1990) suggests
that PML estimators also may be asymptotically normal for linear non-Gaussian
processes. But, this may be difficult to prove. On the other hand, Giraitis and
Tagqu (1999) show that the PWML estimator is not necessarily n'/2-asymptotically
normal for nonlinear non-Gaussian long memory processes. In any event, except
in special cases, one would not expect the Gaussian parametric bootstrap to yield
higher-order improvements over the delta method for non-Gaussian processes.

We conjecture that all of the results of this paper based on the PLL function
extend to the case where (i) the mean p of X; is replaced by a linear regression
function Z!f3, with regressor vector Z;, (ii) no conditions are placed on the regressors
except that they are non-stochastic and their number is independent of n, and (iii) the
PLL function utilizes the least squares estimator of 3, rather than the sample mean.
This extension would allow for deterministic time trends and/or seasonal dummies,



among other regressor variables. We have been able to show that all of the PLL-based
results of the paper go through in the regression case, except Lemma 5(c). The latter
needs to hold with e, replaced by an arbitrary unit n-vector. We conjecture that it
does so, but have not been able to prove it to date.

In addition to the references given above, the results of this paper are related to
the parametric bootstrap results of Andrews (2001) for weakly dependent Markov
processes. The results also are related to the extensive literature on block boot-
straps for weakly dependent time series. For brevity, we do not provide references.
Davidson (2001) considers a residual-based bootstrap for testing for cointegration
with fractionally integrated processes. He analyzes the properties of this procedure
by Monte Carlo, but does not provide any results regarding its first-order or higher-
order asymptotic properties.

To our knowledge, the only papers in the literature that consider Edgeworth ex-
pansions for statistics based on long-memory processes, other than LRZ and Andrews
and Lieberman (2002), are Lieberman, Rousseau, and Zucker (2000) and Giraitis and
Robinson (2001). The former provides an Edgeworth expansion for the joint distribu-
tion of sample autocorrelations. The latter provides an Edgeworth expansion for the
semiparametric local Whittle estimator. Taniguchi (1986, 1991) establishes Edge-
worth expansions for (weakly dependent) Gaussian autoregressive-moving average
processes.

The remainder of the paper is organized as follows. Section 2 introduces the basic
model, the PML and PWML estimators, ¢ statistics based on the PML and PWML
estimators, and delta method Cls and tests. Section 3 describes the parametric
bootstrap and defines the bootstrap Cls and tests that are considered in the paper.
Section 4 states the assumptions. Section 5 establishes sharp bounds on the coverage
probability errors of one- and two-sided delta method Cls and analogous results for
delta method tests. Section 6 provides bounds on the coverage probability errors
of bootstrap CIs and analogous results for bootstrap tests. These results establish
the higher-order improvements of the bootstrap. Section 7 provides the Monte Carlo
results. An Appendix contains proofs of the results given in Sections 5 and 6.

2 Model

We consider a discrete-time stationary Gaussian long-memory process {X; :
i > 1} with mean gy € R and spectral density fg,(A\) for A € (—m, 7). Both g,
and 0y are unknown parameters. The true spectral density fp,(\) is assumed to
lie in a parametric family {fs(\) : § € O}, where © C RI™® is the parame-
ter space for 6. The first element of 6 is the long-memory parameter d. That is,
0= (91, 92, "'79dim(9))/ = (d, 92, cony gdim(e))/' The true value of d is denoted do. The
long-memory feature of the spectral densities in the parametric family is captured by
the following basic assumption:? for all § € O,

fo(A) = O(A7%¥%) as |A| | 0, V& > 0 and
d e (0,1/2). (2.1)



The spectral density fg(\) is unbounded at the origin, but fp(A) is integrable
and the process is covariance stationary, because d is restricted to (0,1/2). A process
whose spectral density satisfies (2.1) exhibits long memory. An example of such a
process is the ARFIMA (p,d, q) process. Additional assumptions on the parametric
spectral densities fy(\) are given in Section 4 below.

The observed sample of size n is

X = (X1, ..., Xn). (2.2)

The n x n (Toeplitz) covariance matrix corresponding to fp(A) is denoted T, (fp)
and has (j, k) element defined by

™

Tl = [ €0y (2.3)

The log-likelihood function is

1

La(6,10) = =3 In(27) — 5 In(det(Ta(fo))) 5

(X - Nln),Tn_l(fG)(X — ply), (2.4)
where 1,, is an n-vector of ones.
The Whittle log-likelihood function is

Lin(6, ) = ~3 1n(2m) - 1= [ Wn(fo(3)an

5 (X = L) Ta((2m) £ ) (X — ). (2.5)

The Whittle log-likelihood is an approximation to the log-likelihood based on the fact
that (i) n'ln(det(T.(fs))) — (2m) ' [T In(fo(A\)d\ as n — oo and
(ii) Tn((2m)2f, 1) approximates the inverse of T}, (fy) for large n in the sense that
Too(fo) Too(27) 72 £, 1) = I, see Beran (1994, pp. 109-110) for details.

Let X,, = n 1 > X; denote the sample mean. We refer to L,(0,X,) and
Lwn(0,X5) as the plug-in log-likelihood (PLL) and plug-in Whittle log-likelihood
(PWLL) functions respectively. Like most papers in the literature, we utilize the
PLL and PWLL functions rather than log-likelihood functions that depend on both
0 and p. There are three reasons why we do so. First, results of Dahlhaus (1989) and
Fox and Taqqu (1986) imply that any consistent solution to the FOCs for the PLL or
PWLL function is asymptotically efficient.> Second, computation using the PLL or
PWLL function is simpler than with the full log-likelihood or Whittle log-likelihood
because its argument is of lower dimension. Third, the asymptotic information matrix
for the parameter vector (0, i)' is singular in the long-memory case (when the Hessian
is normalized by n~!). This creates a problem when trying to obtain an Edgeworth
expansion for the maximum likelihood or Whittle maximum likelihood estimator of
(0, )’ This problem does not arise with estimators based on the PLL or PWLL
function, because the asymptotic information matrix for € alone is nonsingular.

Let I, denote the n by n identity matrix. Let 1,, denote the n vector of ones.



The PLL and PWLL functions can be written as
— 1 1
Ln(0,X,) = —gln(27r) — 5 In(det(Tu(fo))) = 5X'MaT, " (fo) Mo X, where
M, = I, — P,, P, =ene.., e, =n"Y?1,, and

n’

Lin(0, %) = ~3 1n(2m) - 1= [ n(fo(3)an

1 o
— = X' M, T ((27) 2 f D) M, X,

2
= ~Din(em) - - _ﬁ (In(fo(\) + f5 "N L) }dA, where
2
B = |50 e G - (2.6

Equation (2.6) shows that the PWLL function can be written as a quadratic form in
X or as a function of the periodogram I, (\).

Let ©,, denote the set of solutions to the FOCs of the PLL (or PWLL) function.
(For notational simplicity, we do not distinguish between estimators based on the
PLL and PWLL functions.) That is,

0 3T — 0 3T —

%Ln( ny Xn) =0 (or %LVV,n( ny Xn) =0) (2.7)
for all gn € (:)n. If no solution to the FOCs exists, then for specificity @n is defined
to contain values that maximize the PLL (or PWLL) function (or maximize it up to
some arbitrarily small constant ¢ > 0). We show below that at least one solution
to the FOCs exists with probability that goes to one (at a fast rate) as n — oo.
(In consequence, for the asymptotic results given below, it does not matter how
one defines Qn when no solution to the FOCs exists.) Let #,, denote an element of
©,. We call 6,, a FOCs plug-in maximum likelihood (PML) estimator (or a PWML
estimator). R

A complete definition of ©,, requires the specification of the set of parameter
values 6 from which one selects solutions to the FOCs. We allow for two cases. In
the first case, this set is the parameter space ©, which contains the true value 6
and which only contains values 6 that generate stationary long-memory processes
{X; :i>1}. Thus, © contains parameter values ¢ for which d € (0,1/2). In this case,
we refer to ©,, as the set of stationarity-restricted PML (SR-PML) (or SR-PWML)
estimators.

In the second case, the set of parameter values from which one selects solutions
to the FOCs is a set ©T that is larger than the parameter space ©. The set ©F may
be chosen to relax the restriction that d € (0,1/2) and allow d to take values in the
non-stationary region (d > 1/2), the weak dependence region (d = 0), and/or the
intermediate dependence region (d < 0). In this case, we refer to ©,, as the set of
unrestricted PML (UR-PML) (or UR-PWML) estimators. The reason for considering
UR-PML and UR-PWML estimators is to cover the case where the researcher does



not know a priori that the true value of d lies in (0,1/2) and hence constructs Cls
that do not impose this constraint. (But, the asymptotic results of this paper only
apply to the case where the true value of d is in (0,1/2).)

Dahlhaus (1989) and Fox and Taqqu (1986) show that consistent SR-PML, UR-
PML, SR-PWML, and UR-PWML estimators are asymptotically normal and asymp-
totically efficient provided the true parameter 6 lies in the interior of ©. They also
show that the estimator that maximizes the PLL or PWLL function over © is con-
sistent and, hence, is an PML or PWML estimator (provided the true parameter lies
in the interior of ©). R

The asymptotic covariance matrix of a consistent PML or PWML estimator 6,
is 3(0p), where

T -1
5(6) = (g [ 55U o) (2.9

Provided fp()) is smooth with respect to 6, a consistent estimator of 3(6y) is 2(0,,).
Let 0 denote some element of ©. Let 0, 0, and 0y, » denote the r-th elements

of 0g, Og, and gn, respectively. Let X, @n) denote the (r,r)-th element of Z(@n)
The ¢ statistic for testing the null hypothesis Hy : 8o, = 0, is

tn(Orr) = 0% (Ony — Op1,) /S (0r). (2.9)

Let z, denote the 1 — o quantile of the standard normal distribution.
The two-sided delta method CI for 0y, with (approximate) confidence level 100(1—

@)% based on the PML estimator 6, is
ACL(05) = Oy — 20j2 582 00) /012, Ony + 200812 (02) /0. (2.10)
The upper one-sided delta method 100(1 — )% CI for 6, is
ACLp(07) = Oy — 232 (0) /02, 0). (2.11)

Correspondingly, the two-sided delta method t test of Hy : 6o, = 0p, versus

1: 0o # Oy with significance level « rejects Hy if [tn(0mr)| > 24/2. The one-

sided delta method t test of Hy : 0y, < g, versus Hy : 6, > 0p, with significance
level a rejects Hy if tn (0 r) > 2a-

3 Parametric Bootstrap

Parametric bootstrap samples are generated using an estimator 0, of O that is
referred to as the bootstrap generating (BG) estimator. We allow the BG estimator
0, to differ from the PML or PWML estimator 9 that is used to construct CIs and
test statistics because for bootstrap tests we want to allow the BG estimator to be a
null-restricted estimator, as explained below.

By definition, given a BG estimator 6,,, the parametric bootstrap sample X* =
(X7, ..., X) has conditional distribution given X that is the same as the distribu-
tion of the original sample except that the true parameters are (En,yn) rather than



(60, 110). That is, X* consists of stationary Gaussian random variables with mean X,
and spectral density f; (M) conditional on the original sample X.

The bootstrap PLL and PWLL functions, L (6, X,,) and L}, (6, X,,), are defined
in the same way as the PLL and PWLL functions are defined, but with X* and

*

X, =n 13" X! in place of X and X, respectively. Let ©* denote the set of
solutions in © or ©F (depending on whether O, is defined using solutions in © or
©1) to the FOCs for the bootstrap PLL or PWLL function. We define the bootstrap
estimator % to be the element in ©* that is closest to 6,,.%

The bootstrap t statistic is defined such that its distribution mimics the null
distribution of the t statistic even when the sample is generated by a parameter in
the alternative hypothesis. This is done by centering the statistic at gn,r. We define

the bootstrap t statistic to be
t(Onr) = M6}, = Onr) [SHE(63), (3.1)

where 0y, , denotes the r-th element of 6y,

Let 2, , and 2}, denote the 1 — o quantiles of |t (5nr)| and t}; (5%7‘) respectively.

To be precise, we define 2%  to be a value that minimizes |P*(|t}; (6,,,)| < z)—(1—a)|

%
[t],cx
over z € R. (This definition allows for discreteness in the distribution of |t7’;(5nr)|
Although the distribution of the absolute value of the parametric bootstrap t statistic
undoubtedly is absolutely continuous, it is simpler to allow for discreteness than to
prove absolute continuity.) The precise definition of 27, is analogous.

The symmetric two-sided bootstrap CI for 6y, with (approximate) confidence
level 100(1 — )% based on 8, is

Claym(On) = [Onr — 2y o 2107 0n) /012, Oy + 205y JSV2(00) /012, (3.2)
The upper one-sided bootstrap 100(1 — a))% CI for 6g, is
Clup(On) = [Ony — 2o ZY2(0,) /02, o0). (3.3)

Correspondingly, the symmetric two-sided bootstrap ¢ test of Hqy : 0o, = 0y,
versus Hy : 0y, # Ou, with significance level « rejects Hy if |t (0 ,)| > z‘“;"a. The
one-sided bootstrap t test of Hy : 0o, < 0p, versus Hy : 0p, > 0, with significance
level o rejects Ho if ¢ (0nr) > 2{ -

For bootstrap Cls, the BG estimator typically is taken to be the PML or PWML
estimator upon which the CI is constructed. When constructing bootstrap tests,
the bootstrap is used to generate critical values that reflect the null behavior of the
test statistic whether or not the null is true. In consequence, one has two types of
estimator that can be used as the BG estimator. First, one can take the BG estimator
to be an estimator that does not impose the null hypothesis restriction that the r-th
element of 6 equals 0f7,. The PML and PWML estimators discussed in the previous
section are examples of such estimators. In this case, the centering of the bootstrap ¢
statistic around 0,, ., rather than 0 ,, ensures that the distribution of the bootstrap
test statistic mimics its null distribution.



Alternatively, when considering a bootstrap test, one can take the BG estimator to
be an estimator that imposes the null hypothesis restriction that the r-th element of
0 equals 0. In this case, the PML or PWML estimator ¢,, that is used to construct
the t test statistic is necessarily different from the BG estimator 5n, because the
former does not impose the null hypothesis. We refer to the resulting bootstrap test
as a null-restricted parametric bootstrap test. Examples of null-restricted estimators
are PML or PWML estimators that solve the FOCs given in (2.7) with the r-th
equation deleted and with the r-th element of the estimator equal to 0 ,. We refer
to such estimators as NR-PML or NR-PWML estimators. When a null-restricted BG
estimator is employed, one centers the bootstrap ¢ statistic at 0 ,, which equals 0, ,
by definition of the BG estimator.

For carrying out a bootstrap test, it is preferable to use a null-restricted BG
estimator. Such an estimator guarantees that the distribution of the bootstrap sample
is a null hypothesis distribution. Furthermore, results of Davidson and MacKinnon
(1999) indicate that the error in test rejection probability under the null hypothesis
for one-sided tests is smaller asymptotically when using a null-restricted BG estimator
than when using a BG estimator that is not null-restricted (although their results are
not for long-memory cases). The results given below do not demonstrate this, but
it may be true. The results given below for null-restricted bootstrap tests are not
necessarily sharp.

Finally, we note that for bootstrap ClIs the choice between null-restricted and non-
null-restricted BG estimators does not arise because there is no null hypothesis upon
which to base a null-restricted BG estimator. For CIs one uses a non-null-restricted
BG estimator.®

4 Assumptions

In this section, we state the assumptions. The assumptions are different, though
similar, for the PML and PWML estimators. In consequence, we give the assumptions
in two separate sections below. We also specify the parameter values for which the
results hold. For example, with an ARFIMA (p,d, q) model, our results do not hold
if the parameter value is one for which there are common roots to the autoregressive
and moving average components of the model.

4.1 PML Assumptions

The assumptions stated below for the PML estimator are essentially those of
LRZ (with their a(6) equal to our 2d). The assumptions are strengthened versions
of Dahlhaus’ (1989) Assumptions AO, A2, A3, and A7-A9, which Dahlhaus used to
establish the asymptotic normality of the PML estimator. Most of these assumptions
control the behavior of the spectral density and its derivatives in a neighborhood of
the origin. The strengthening of Dahlhaus’ assumptions is necessary because Edge-
worth expansions require higher-order spectral density derivatives than are necessary
for asymptotic normality.



Assumptions II-VI below depend on a positive integer s > 3 that indexes the
order of the PLL derivatives that are used in the Edgeworth expansions employed in
the proofs of the CI coverage probability results.

Assumption I. The parameter space © is a subset of RI™(®) with non-empty
interior.

Assumption II. For some integer s > 3, fy(A) is s + 1 times continuously differen-
tiable with respect to #, and all of its derivatives are continuous in (), ) for A # 0.
In addition, f,'()\) is continuous in (), @) for all A € [0,7] and 6 € ©.

Assumption III. The derivatives (9/9\)f, *(\) and (9?/0X?)f, () are continuous
in (A, 0) for A # 0. In addition, there exists ¢;(6, ) < co such that

ak
ONF
for k=0,1,2 and all § > 0, where 0 = (d, 02, ..., O4im(s))’ and d € (0,1/2).

felw' < e1(0, 8) A5

Assumption IV. There exist ¢2(6,0) < oo and ¢3(0,0) < oo such that for all 6 > 0
and A € (0,m) :

(a) 1fo(N)] < 2(6,8) A% and

(b) for all (j1, ..., Jx) with & < s+ 1, with duplication among the j; allowed,

ak:

—1 < 2d—6

Assumption V. For any compact subset O. of O, there exists a constant C(O,,d) <
oo such that ¢;(6,0), c2(6,0), and ¢3(0,0) in Assumptions III and IV are bounded by
C(O,0) for all € O,.

Assumption VI. (a) There exists a function () that is integrable over (0, 7) and
a constant c¢4(0) < oo such that for all (ji, ..., jx) with & < s+ 1, with duplication
among the j; allowed,

e

mfe()\)' < ea(0)Q2N)

for A € (0, 7). For any compact subset O, of ©, there exists a constant C(6,.) < oo
such that ¢4(#) < C(O,) for all § € O,.

(b) When computing derivatives of the form (0%/00;,...00;, )vy(u) for k < s + 1
and u = 0,1, ..., the derivatives may be taken inside the integral sign of (2.3), where
Yo(u) = Eg(X; — o) (Xigu — o) and Ep denotes expectation when the true parameter
is 0.

See LRZ for a discussion of Assumptions I-VI.

As noted in LRZ, Assumptions I-VI hold for ARFIMA (p,d, q) processes for all
s> 3.
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4.2 PWDML Assumptions

The assumptions stated below for the PWML estimator are those of Andrews and
Lieberman (2002) (with their a(#) equal to our 2d). The assumptions are strength-
ened versions of Fox and Taqqu’s (1986) Assumptions A.1-A.5, which Fox and Taqqu
used to establish the asymptotic normality of the PWML estimator. As with the
PML assumptions, most of these assumptions control the behavior of the spectral
density and its derivatives in a neighborhood of the origin.

The assumptions below depend on a positive integer s > 3 that indexes the order
of the PWLL derivatives that are used in the Edgeworth expansions employed in the
proofs of the CI coverage probability results.

Assumption W1. The parameter space © is a subset of R1™®) with non-empty
interior.

Assumption W2. ¢(0) = [" log fy(\)drand h(0) = [7 fa I,(A\)d\ can
be differentiated s + 1 times under the 1ntegral sign.

Assumption W3. fp()) is continuous at all (),0) for which A # 0, £, (\) is
continuous at all (A, 0), and Vo > 0 Je; (0, ) < oo such that

[fo (V] < e1 (6,8) [A 7

for all A in a neighborhood Ns of the origin, where 6 = (d, 0, ..., Gdim(g))’ and d €
(0,1/2)

Assumption W4. For all (ji,...,j%) with k¥ < s+ 1 and j; € {1,...,dp},
(0% /(08;, ---00;,)) f;*(N) is continuous at all (A,6) and V8§ > 0 Jez (6,8) < oo such

that
9 fy ' (V)

20 <6y (6.6) I WA € N
89]189]k —02(7 )’ ’ ] E o

Assumption W5. (9/0X)fg()) is continuous at all (A, 6) for which A # Oand
Vo > 0 Jeq (6,0) < oo such that

'%AW' < g (0,8) |\ 210 VA e Ng.

Assumption W6. For all (ji,...,j5%) with k¥ < s+ 1 and j; € {1,...,dp},
(0% /(0X00), - -- 90;,)) £, 1 (N) is continuous at all (A, 6) for which A # 0 and V6 > 0
Jes (0, 6) < oo such that

I f, )

T Jo N 1 (9,6) AP v € N
anaa, a0, | = 6 » VACANS
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Assumption W7. For any compact subset © of © there exists a constant
C (6, 5_) < oo such that the constants ¢; (#,6) for i = 1,...,6 and c3(¢) are bounded
by C (©,4) V6 € ©, V4 > 0.

See Andrews and Lieberman (2002) for a discussion of Assumptions W1-W7.
Note that Assumptions W1-W7 are satisfied for Gaussian ARFIMA (p, d, ¢) mod-
els.

4.3 Parameter Values

We now specify the parameter values 6 for which we establish higher-order im-
provements of the parametric bootstrap.

We only obtain such results for parameter values that are in the interior of © and
for which the asymptotic covariance matrix, X(6), of the PML or PWML estimator is
nonsingular. This is not surprising because, for parameter values that do not satisfy
these conditions, the PML or PWML estimator is not asymptotically normal. Thus,
in an ARFIMA (p,d, q) model, parameter values # for which there are common roots
of the autoregressive and moving average characteristic equations are not parameter
values for which we establish higher-order improvements. Rather than excluding
such parameter values from the parameter space ©, which would be unnatural and
artificial, we allow the parameter space O to include such values, but we exclude them
from the set of parameter values for which we establish higher-order improvements.

Next, we introduce some additional notation. Let Z,(#) denote 2n times the
vector of all LLDs, D, L,(6), or WLLDs, D, LY (6), up to order s — 1. (See (8.1) and
(8.2) of the Appendix for the form of these partial derivatives for the PLL case. See
(8.3) and (8.4) of the Appendix for the PWLL case.) Let D,,(6) denote the covariance
matrix of n~ /27, (#) when the true parameter is 6. The (j, k) element of D, (6) is

D (6),, = %tr{Man,yj(e)MnTn (4) My By (0) MaTy (fs)}, where
By, (0) = (=1/2)D,,T,, *(fs) for the LLDs,
By, (0) = (=1/2)D,,Tn((2m) 2 f; ) for the WLLDs, (4.1)

and D,,; denotes partial differentiation with respect to some indices, such as
(0Nt=+ia /90, ---00;,). By Lemma 4 in the Appendix for LLDs and by Andrews
and Lieberman (2002, eqn. (9)) for WLLDs, the asymptotic covariance matrix D(6)
(= limy, o0 Dy (0)) of n=Y/2Z,,(8) exists and its (4, k) element is

D(0); = %/_ﬂ {Du, f5H (NHDu, Sy HV}F () dA. (4.2)

Given any sub-vector Z,(6) of Z,,(6), let D,,() and D(6) denote the finite-sample
and asymptotic covariance matrices of n~%/ 2Z,(9), respectively, when the true para-
meter is 6.

We establish higher-order improvements for the parametric bootstrap that hold
uniformly over compact sets that lie in any set © C O that satisfies the following
“nonsingularity” condition:
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Condition NS,. (i) © is an open subset of ©.
(ii) 2(0) is nonsingular for all 8 € ©.

(iii) For some sub-vector Z, () of Z,,(f), the asymptotic covariance matrix D(6) of
n~127,(0) is nonsingular for all # € © and the asymptotic covariance matrix
of any sub-vector of n=1/2Z,,(6) that strictly contains n~'/2Z,(#) is singular
for all § € ©.

(iv) For n sufficiently large, the finite-sample covariance matrix of any sub-vector
of n=1/2Z,,(0) that strictly contains n~1/27,(6) is singular for all § € ©.

Condition NS, depends on s because Z,,(6) includes all LLDs or WLLDs up to
order s — 1. Conditions NS,(i) and NS,(ii) restrict consideration to parameter values
for which the PML or PWML estimator is asymptotically normal.

Condition NS,(iii) requires that the same LLDs or WLLDs are linearly indepen-
dent asymptotically for all parameter values in ©. This is not very restrictive because
our results hold for different choices of the set © and there is a finite number of
different sub-vectors Z,(6) of Z,(6) that might be the Z,(0) vector that arises in
Condition NS,(iii).

Condition NSg(iv) requires certain finite-sample covariance matrices of LLDs or
WLLDs to be singular whenever the corresponding asymptotic covariance matrix is
singular. For WLLDs, this always occurs because the finite-sample covariance matrix
of the WLLDs closely mirrors the asymptotic covariance matrix, see Andrews and
Lieberman (2002) for details. Hence, for WLLDs, Condition NS,(iv) always holds.

On the other hand, for LLDs, Condition NS,(iv) does not always hold and the
condition can be restrictive. For example, in an ARFIMA (p, d, q) models with p > 1,
Condition NSs(iv) generally fails whenever s > 4. This occurs because the third-
order derivative of the reciprocal of the spectral density with respect to the lag-one
autoregressive parameter is zero, which causes the asymptotic covariance matrix of
any set of LLDs that includes this one to be singular, but the finite-sample covariance
matrix is not singular. In consequence, the results given below only hold for s = 3 in
ARFIMA(p, d, q) models with p > 1. This yields weaker higher-order improvement
results for the PML-based parametric bootstrap than are available for models that
satisfy Condition NSg(iv), such as ARFIMA(0,d,q) models. The results are also
weaker than those that are obtained for the PWML-based parametric bootstrap for
ARFIMA(p, d, q) models with any values (p,d, q).

Let

Wa(0) = n~Y2(Z, (0) — EgZy, (9)), (4.3)

where Z,(0) is as in Condition NSs. The higher-order improvement results for the
parametric bootstrap are based on an Edgeworth expansion for the vector W,,(0) of
normalized LLD’s or WLD’s. Denote the dimension of Z,,(6) and W,,(0) by d.

13



5 Coverage Probability Errors of Delta Method Cls

In this section, we establish bounds on the coverage probability errors of one- and
two-sided delta method CIs based on PML and PWML estimators. These results
immediately provide bounds on the errors in the null rejection rates of one- and
two-sided delta method t tests.

We say that a sequence of estimators {0, : n > 1} satisfies Condition Cj if for all
€ > 0 and all compact subsets O, of O,

sup Py, (][0, — 00| > n~?1In(n)e) = o(n==2/2) as n — oo. (5.1)
0o€O,
Condition C, implies that 6,, is consistent. The following Lemma shows that a se-
quence of PML estimators that satisfies Condition Cy exists.

In the following Lemma and elsewhere below, we make statements like “Suppose
Assumptions I-VI or W1-W7 hold. Then, PML or PWML estimators satisfy ... .”
By this we mean, if Assumptions I-VI hold, then PML estimators satisfy ... or if
Assumptions W1-W7 hold, then PWML estimators satisfy ... .

Lemma 1 Suppose Assumptions 1-VI or W1-WT hold for some s > 3 and the true
parameter Oy lies in the interior of ©. Then, there exists a sequence of PML or
PWML estimators {6, € O, : n > 1} that satisfies Condition Cs. (This holds
whether ©,, is defined to be the set of solutions to the FOCs in © or ©T.)

The main result of this section is the following.

Theorem 1 Suppose Assumptions 1-VI or W1-WT7 hold, {@n €0, :n> 1} are
PML or PWML estimators that satisfy Condition Cs, and O is any set that satisfies
Condition NSs with s as specified below. Let O be any compact subset of o. Then,
(a) supg,co, [Po, (0 € ACL(0,)) — (1 = a)| = O(n™!) for s =4,

(b) supg, o, |Pa, (o € ACL(6,)) — (1 — a)| = O(n=/?) for s = 3, and

~

| =
(c) SUPg,co, | Py (00 € ACLyp(6r)) — (1 — )| = O(n’1/2) for s = 3.

Comments 1. The errors in coverage probability of delta method Cls in the case of
iid data typically are O(n~1) and O(n='/?) for two- and one-sided CIs, respectively,
e.g., see Hall (1988, 1992). Hence, parts (a) and (c¢) the Theorem show that delta
method CIs in the long memory case have coverage probability errors with the same
order of magnitude asymptotically as in the iid case. Note, however, that this is only
true for Cls for autocorrelation and variance parameters. It is not true for Cls for
the mean parameter in the long-memory case.

2. The error in part (a) of the Theorem is sharp except in the special case
where the coefficient on the n=! term of the Edgeworth expansion of [t, (0| is
zero. Similarly, the error in part (c) is sharp except when the coefficient on the n—1/2
term of the Edgeworth expansion of t,,(6o,) is zero. In such cases, sharp errors are
determined by the first non-zero terms in the Edgeworth expansions of |¢, (6, )| and
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tn(0o,) given in Lemma 9(a) in the Appendix. The error in part (b) may not be
sharp.

3. If there exists a unique solution to the FOCs of the PLL or PWLL function with
probability 1— o(n=(=2/2) then ACI5(6,) and ACIUP(E ) are uniquely defined and
9 satisfies Condition Cy by Lemma 1. If all solutions to the FOCs satisfy Condition
Cs, then all CIs ACIQ(H ) and ACIup(H ) for 0, € ©, have coverage probability
errors as in Theorem 1. If it is not the case that solutions to the FOCs are unique
with probability 1 — o(n~(*=2/2) and it is not possible to verify Condition Cy for all
solutions to the FOCs, then one can consider conservative delta method Cls. Let

ACL = | ) ACL(6,) and ACL, = | ) ACLy(0). (5.2)
0,6, 0,6,
Combining Lemma 1 and Theorem 1, we have

eolngP(;O(Qo €EACL)>1—a+0(Mn™"), (5.3)
provided Assumptions I-VI or W1-W7 and Condition NS, hold with s = 4. Hence,
the coverage probability of ACIs is less than 1 — a by at most O(n~!). Similarly,
the coverage probability of ACI,;, is less than 1 — a by at most O(n_l/ 2). If the
only solution to the limit as n — oo of the FOCs of the PLL or PWLL is 6y, then
all estimators gn € (:)n are consistent and asymptotically normal. In this case, the
coverage probabilities of ACI; and ACI,, are greater than 1 — a by O(1) or less.

6 Higher-order Improvements of the Bootstrap

The main result of this paper is the following Theorem. The Theorem estab-
lishes bounds on the asymptotic orders of magnitude of coverage probability errors
of bootstrap CIs based on PML or PWML estimators.

Theorem 2 Suppose Assumptions 1-VI or W1-W7 hold, the PML or PWML esti-
mators {/H\n € @n :n > 1} satisfy Condition Cs, the BG estimators {En :n > 1}
satisfy Condition Cg, and © is any set that satisfies Condition NSy with s as specified
below. Let ©. be any compact subset of o. Then,

(a) uPg, o, |Pao (60 € CLiy (B) — (1 — )] = o(n=*/21In(n)) for s = 5,

(b) supy,co, |Ps, (0o € C’Iup(/én)) —(1—a)| =o(ntIn(n)) for s =4, and

(c) the errors in parts (a) and (b) are o(n~Y?) for s = 3.

Comments 1. Theorem 2 provides results for bootstrap tests based on the ¢ statistic
tn(0m,) as well as for CIs. For parameter values 6y for which 6y, = 65 ,, we have
Py (B0, € Clyym(82)) = Poy(|tn(911,)| < 2f,) and likewise for upper Cls and tests.
Hence, for parameter values 6 in the null hypothesis, parts (a) and (b) of the Theorem
give bounds on the error in rejection rates of symmetric two-sided and upper one-sided
bootstrap tests respectively. For these results to hold, the estimators 6,, and 6,, only
need to satisfy Condition Cg for parameter values g that satisfy the null hypothesis.
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That is, ©, can be restricted to parameters that satisfy the null hypothesis. In
consequence, the results cover tests based on null-restricted BG estimators, which
are consistent only for parameters 6 that satisfy the null hypothesis (and hence do
not satisfy Condition Cs for all compact sets ©, C 0), as well as non-null-restricted
BG estimators.

The results of the Theorem do not provide information regarding the rejec-
tion rates of parametric bootstrap tests when the null hypothesis is false, because
Pyo(bor € Clsym(0n)) # Poo([tn(Omr)| < z;ia) for such parameter values. However,
it can be shown that the bootstrap critical values ZFt|,a and z, equal z,/2 + o(1) and
za + 0(1), respectively, where z, is the 1 — a standard normal quantile, whether or
not the null hypothesis is true, under fairly general conditions on the BG estimator.
In consequence, bootstrap tests have power against non-null parameter values 6.

2. Comparison of the results of Theorems 1 and 2 show that the bootstrap Cls
Clsym(0y,) and CI,,(0,) have smaller coverage probability errors than the two- and
one-sided delta method CTs, respectively, by the multiplicative factor o(n~1/21n(n))
(provided the Assumptions and Conditions C; and NS, hold for s = 5 and 4,
respectively).

3. For upper CIs, the bootstrap improvements are almost the same as those
that have been established for parametric and non-parametric bootstrap Cls in iid
scenarios, which are O(n~1/2) typically, e.g., see Hall (1988, 1992). In fact, the slight
difference (by a In(n) factor) is undoubtedly due to the method of proof. Hence, for
upper Cls, the parametric bootstrap for long memory time series performs essentially
as well asymptotically as for iid sequences of random variables.

For symmetric two-sided Cls, the higher-order improvements of the Theorem are
not as large as those that have been obtained for iid sequences. It may be the case
that the errors in Theorem 2(a) are actually O(n~2) due to an argument analogous to
that of Hall (1988, 1992) for the iid case. It seems difficult to establish such a result
rigorously in the long-memory case, however, and we leave such results to future
research.

4. If the Assumptions and Conditions Cys and NS only hold with s = 3, then
part (d) of Theorem 2 shows that the parametric bootstrap improves the CI coverage
probability error O(n~1/2) given in Theorem 1(b) and (c) to o(n~1/2). This occurs
with CIs based on the PML estimator in ARFIMA (p, d, ¢) models with p > 1. Note,
however, the results in Theorem 1(b) and Theorem 2(c) may not be sharp.

If the Assumptions and Conditions Cg and NS only hold with s =4, not s =5,
then the error in part (a) of the Theorem is o(n™!). In this case, we see that the
parametric bootstrap improves the error O(n~1) of the delta method to o(n~!).6

5. If the n~/2 term in the Edgeworth expansion of t,,(fp ) (given in Lemma 9 of
the Appendix) does not depend on 6y and the Assumptions and Conditions Cs and
NS, hold with s = 5, then the error in Theorem 2(b) is reduced by the factor n=1/2
to o(n~3/%1In(n)). In this case, the improvement of the parametric bootstrap upper
CT over the delta method upper CI is of order n=!In(n) (provided the first term in
the expansion is not identically zero?). (This holds by the same proof as for Theorem
2(b), but with four terms in the Edgeworth expansions instead of three, the second
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equation of (8.18) for i = 1 replaced by m1(8, kpa(0n))®(2) = 71 (8, kn.a(00))P(2)
for all z because 71 (8, n.4(fo)) does not depend on fy, and n~! replaced by n=3/2
throughout.)

The situation just described occurs in the Gaussian ARFIMA (0, d, 0) model using
the PML estimator. Lieberman and Phillips (2001) show that the n=/2 term of the
Edgeworth expansion of the PML estimator does not depend on d. Their results are
for a zero mean process. The results given in the Appendix show that the n=1/2
term of the Edgeworth expansion of the PML estimator is the same whether one
uses the sample mean or the true mean in the log-likelihood function. Furthermore,
the variance of the PML estimator does not depend on d, so the t statistic ¢,(0)
is proportional to the normalized PML estimator, n'/2 @n,r — 0o,r), and, hence, has
an Edgeworth expansion in which the =2 term does not depend on d. Finally,
Assumptions I-VI and Conditions Cs; and NS, hold for s = 4 in this case. So, we
conclude that in the Gaussian ARFIMA(0, d,0) model with unknown mean C1,, (6,)
has coverage probability error of magnitude o(n~3/21n(n)). In contrast, the one-sided
delta method CI has error that is O(n=/?).

Similarly, if the n ! term in the Edgeworth expansion of |t, (6o, )| does not depend
on Ay and the Assumptions and Conditions Cg; and NS; hold with s = 5, then the
error in Theorem 2(a) is reduced by n~1/2 to o(n~21n(n)).

6. If there exists a unique solution in © and/or ©F to the FOCs of the PLL
or PWLL function with probability 1 — o(n~(*~2/2) then Clsym(0y) is uniquely
defined, @n and En satisfy Condition Cg by Lemma 1, and Clsym(gn) obtains higher-
order improvements over the delta method. If all solutions in © and/or ©F to the
FOCs satisfy Condition Cs, then all CIs C'lsym (6,,) obtain higher-order improvements
over the delta method. If it is not the case that solutions to the FOCs are unique
with probability 1 — o(n~(*=2)/2) and it is not possible to verify Condition Cy for all
solutions to the FOCs, then one can consider conservative bootstrap Cls that are
higher-order accurate. Let

Clym = |J CLym(0n) and ClL, = | ] CL,(0y). (6.1)
0,€0, 0,€0,
Combining Lemma 1 and Theorem 2, we have
Anf Py (00 € Cloym) > 1—a+ o(n=3/?1n(n)), (6.2)
0€0¢
provided Assumptions I-VI or W1-W7 and Condition NS, hold with s = 5. Hence,
the coverage probability of Clgy, is less than 1 — a by at most o(n3/2In(n)). In
contrast, the coverage probability of the symmetric two-sided delta method CI is less

than 1 — a by at most O(n~!). A result analogous to that in (6.2) holds for C1,,
with n73/2 and s = 5 replaced by n~! and s = 4, respectively.

7 Monte Carlo Simulations

In this section we compare the coverage probabilities of delta method and para-
metric bootstrap two-sided Cls for some ARFIMA (p,d, q) processes. We take the
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number of bootstrap repetitions to be 999 and the number of simulation repetitions
to be 1,000. This requires solving roughly one million nonlinear estimation problems
for each parameter combination. In consequence, for computational ease, we take
p = q = 0 and we consider ARFIMA(0, d,0) processes with unknown long-memory
parameter d and unknown variance 2.

The values of d considered are 0, .1, .2, .3, and .4. The value of 02 is one. The
sample size n is 100. Again for computational ease, we approximate the integrals in
the definition of the PWML estimator by a finite grid with grid size .0628 (= 27/n).
This allows us to use the fast Fourier transform.

Coverage probabilities for nominal 95%, 99%, and 90% confidence levels are re-
ported in Table I. The last column of Table I reports the average absolute deviation
of the true coverage probabilities from the nominal coverage probability, where the
average is over the five values of d. This column gives a good summary of the relative
performances of the different Cls.

Table T shows that the delta method Cls tend to under cover. This is especially
true for the PWML-based CI. For example, the latter has an average coverage prob-
ability over the five values of d of .896 when the nominal coverage probability is
.95. In consequence, the delta method CI based on the PML estimator outperforms
that based on the PWML estimator. The bootstrap Cls sometimes under cover and
sometimes over cover.

The absolute deviation of the bootstrap CI coverage probability from the nominal
confidence level is less than that of the corresponding delta method CI in 24 out
of 30 cases. For nominal level 95%, the bootstrap reduces the average absolute
deviation from .016 to .010 for the PML-based ClIs and from .054 to .012 for the
PWML-based CIs. In consequence, the results of Table I indicate that the bootstrap
CIs outperform the delta method CIs. This is especially true for the Cls based on
the PWML estimator. Table I also shows that the relative performance of the two
bootstrap Cls is about equal.

We conclude that the theoretical asymptotic advantages of the bootstrap over the
delta method derived above are reflected in the finite sample cases considered here.
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8 Appendix of Proofs

8.1 Edgeworth Expansion for the Log-likelihood Derivatives

We begin by establishing an Edgeworth expansion for the ds-vector of centered
and normalized PLL derivatives (LLDs), Wy, (), defined in (4.3), that holds uniformly
for @ in compact subsets ©. of (:), where O satisfies Condition NS,. The order of
the Edgeworth expansion can be arbitrarily large because moments of all orders of
W,,(0) exist. The Edgeworth expansion of the LLDs is a key ingredient in the proofs
of Theorems 1 and 2 given below for the case of the PML estimator.

Let v = (r1,...,7¢)" denote a g-vector of positive integers each less than or equal
to dim(6). We write the real-valued ¢-th order partial derivative of the PLL objective

function specified by v as

Ly, (0) = D,L,(0,X,,)
o L,(6,X
= 90,09, n(0, X7)

= F,,(0) + X' M,B,,,(0)M,X, (8.1)

where

Fuu(6) = 3D, n(det(T, (1)

b Pk
= axtr| [T (fo)Tulgo.5)| and
k=1 Jj=1

1

Bn,u(e) = _§DVTr71(ft9)

b Pk
= ax| [1 7 (f)Tlg0,.5) | T (fo) (8.2)
k=1 \j=1

for some fixed constants b, a, and py that depend on v and with gg 1 ; being certain
partial derivatives of the spectral density with respect to the components of 6 of
order g or less. The quantities ag, pg, b, and gg ; are of the same form, but are
not identical, in F, () and B, (). For notational simplicity, we do not make a
distinction.

In the first equation of (8.2), the second equality holds by application of the
facts that if A = A(«) is a nonsingular n x n matrix that depends on a scalar «, then
(0/0a) In(det(A)) =tr(A~1(0/da) A), e.g., see Dhrymes (2000, Cor. 5.6, p. 159), and
(0/0a)A~t = —A71((0/0a)A) AL, e.g., see Dhrymes (2000, Cor. 15.14, p. 167). In
the second equation of (8.2), the second inequality holds by repeated application of
the second result just stated. See Taniguchi (1986, eqns. (4.4) and (4.5)) for exact
expressions for the LLDs Ly, , () of orders one, two, and three.

Let Gp(u,6) for u € R% be the density of W,(#) when the true parameter is
0. Let G}, %(u,0) be the formal Edgeworth expansion of W, () of order 7 — 2. For
brevity, we do not specify the precise form of G7~2(u,6). See LRZ for details.
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Theorem 3 Suppose Assumptions I-VI hold and &) satisfies Condition NSy for some
integer s > 3. Then, for all compact sets O, C O and all T > 3,

(8) SUDgce, SUPye s (G, ) — G2(u, 80)| = o(n~(27%) and

(b) Pyy(Wr(bo) € C) = | G 2(u, 00)du+o(n~"D/2) uniformly over all Borel sets
C and all 0y € O..

Comments 1. When Theorem 3 is employed in the proofs of Theorems 1 and 2, we
take 7 = s.

2. Theorem 3(a) is proved in Section 8.3 by verifying the conditions of Theorem 1
of Durbin (1980), which provides an Edgeworth expansion for the density of W, (6p).
Theorem 3(b) converts the result of part (a) into an Edgeworth expansion for the
distribution function of W, (6p) using Corollary 3.3 of Skovgaard (1986).

8.2 Edgeworth Expansion for the Whittle
Log-likelihood Derivatives

In this section, we state an Edgeworth expansion for the vector of centered and
normalized PWLL derivatives (WLLDs), W,,(6), defined in (4.3), that is established
in Andrews and Lieberman (2002). The Edgeworth expansion is used in the proof of
Theorems 1 and 2 for the case of the PWML estimator.

We write the real-valued ¢-th order partial derivative of the PWLL objective
function specified by v as

LW,n,I/(e) == DI/LVV,’H/(QJY’H/)
= Fnj,,(H) + X’Man,,,(H)MnX, (8.3)

where

Fasl®) = —1- /'7r Dy In(f5(A))d and
Ban(6) = —5 DUTu((2m) ;). (8.4)

As above, let Gp(u,6) for u € R% be the density of W, (0) when the true pa-
rameter is 6. Let G7~2(u, ) be the formal Edgeworth expansion of W,,(6) of order

7 — 2. We do not specify the precise form of (N?;_2(u, 6). See Andrews and Lieberman
(2002) for details.

Proposition 1 Suppose Assumptions W1-W7 hold and 5) satisfies Condition NS
for some integer s > 3. Then, for all compact sets ©. C O and all T > 3,

(a) SUPgyco, SUPyc Rrds |G (u, 0o) — 6272(%90)’ = o(n*(772)/2) and

(b) Py (Wn(bo) € C) = |, G2 (u, 00)du+o(n~"D/2) uniformly over all Borel sets
C and all 6y € O..
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8.3 Proof of Validity of the Edgeworth Expansion
for the Log-likelihood Derivatives

In this section, we prove Theorem 3. The proof uses the following three Lemmas.

As specified in Condition NS, (iii), Z,(#) denotes the ds-vector of non-redundant
LLDs Ly, (#) or WLLDs L7, (0) up to order s — 1. For LLDs, we can write Z, () =
(Linw(1)(0); s Ly y(a.) (), where each vector v(j) is of the same form as v defined
above (8.1) for some ¢ < dy for j = 1,...,ds. For WLLDs, Z,(0) can be written
analogously.

Let ¢,,(w, ) = Eg exp(iw'Z,(6)) denote the characteristic function of Z,,(#) when
0 is the true value, where w € R%. Let n = (1, ..., 1) be a g-vector of non-negative
integers each of which is less than or equal to d,. Define D,y = 07/(0wy, - - - wy, ).
Let Kns(0), denote the 1 cumulant of Z,(f) when @ is the true value. Note that
Kn,s(0)y 1s a cumulant of order ¢. By definition, £y, s(6)y, = i%Dy, » In(p, (w, 0))|w=o,
where ¢ = \/—1. The vector y s(6) is composed of elements k, s(6), for vectors n of
dimension g < s.

The following Lemma holds for both the PLL and PWLL cases.

Lemma 2 Suppose Assumptions I-VI or W1-W7 hold for some integer s > 3. Then,
(a) @n(wv 9) = eXp(i Z;lszl Wj Fn,u(j)(e)) det_1/2 (I’n — 2 2318:1 Wy Man,l/(j) (Q)Mn
XTn(fe)), where F, ,;)(0) and By, ,(;)(0) have the form given in (8.2) or (8.4) with
different constants and spectral density derivatives for each j,

(b) n cumulants of order one satisfy:

bin,s(0)y = Fro () (0) + tr (M By, ) (0) My T (fo))

where Fy, ) (0) and By, ) (0) are of the form given in (8.2) or (8.4) and n is an
integer between one and dg,
(¢) n cumulants of order q > 2 satisfy:

q
Fons(0) = thr<H(Man,,,(,7T)(Q)MnTn( fg))>

r=1

for some constant Cy < oo, where By, ., y(0) is of the form given in (8.2) or (8.4)
with different constants and different spectral density derivatives for each n,.

We now establish some results for the case where Z,(0) is based on the PLL
function (not the PWLL function).

Let [|A|| = (tr(A*A))'/? denote the Euclidean norm of A.

Let Z2(f) denote the same vector of LLDs as Z,(f), but with L, (0)
(= DyLn(0, X)) replaced by Dy Ly (6, 1y), where p is the true mean. Let 5 ,(6)
denote the same vector of cumulants as kns(0), but for Z2(6) rather than Z,(6).
Note that & ;(6), equals the same expressions as given for £y s(6), in Lemma 2(b)
and (c), but with M, deleted. We show that supgeg, ||kn,s(0) — &5 ((0)|| = O(n?)
for all § > 0. LRZ show that supgeg_||s5 4(0)|| = O(n). These results combine to
give supycg, ||kn,s(0)|| = O(n), which is needed for application of Durbin’s (1980)
Theorem 1.
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Lemma 3 Suppose Assumptions 1-VI hold and &) satisfies Condition NSg for some
integer s > 3. Let O, be any compact subset of o. Then, for the cumulants /{278 (9)
and kn,s(0) based on the log-likelihood and PLL functions, respectively, we have

(a) suppee, ||k s (9)]] = O(n),

(b) supgeo, ||kn,s(0) — /{275(9)|| =0 for all 6 > 0, and

(¢) supgee, ||Fn,s(0)|] = O(n).

Next, we show that the variance of n=1/2Z,(6), denoted D, (6), converges to a
matrix D(6) as n — oo uniformly over 6 € O.. The proof relies on Theorem 2 of LRZ,
which extends Theorem 5.1 of Dahlhaus (1989), on the limiting behavior of traces of
products of certain n x n Toeplitz matrices.

Lemma 4 Suppose Assumptions 1-VI hold (md@ satisfies Condition NSs for some
integer s > 3. Let O, be any compact subset of ©. Then, for D, (0) and D(0) based
on the PLL function, we have

lim sup |Dy(8) — D(0)| =0,

n—o0geo,
where the (i,0) element of D(0) has the form

b;

be
DO =33 ala? /

u=1 v=1 (—ﬂ',ﬂ')

Pu ) Pv
FoN)~ @I LTT 98, OHTT 952N A,
m=1 r=1

bi, b, all ), ag), Pu, Puv, are constants, and ggzn()\) and gée()\) are partial derivatives

with respect to @ of fg(N\) of order s or less, as in (8.2), fori, 0 =1,...,ds.

Proof of Theorem 3

To prove part (a) we verify the conditions of Theorem 1 of Durbin (1980), which
establishes the validity of an Edgeworth expansion for the density of a sequence of
random vectors. Durbin’s Theorem 1 relies on his Assumptions 2-4 plus the assump-
tions given in his paragraph containing (28) that (i) W, () has a density with respect
to Lebesgue measure for n large and (ii) the variance of W,,(0), viz., D,,(6), converges
to a nonsingular matrix D(6y) as n — oo and 6 — 6 jointly.

Condition (i) holds because (a) Z,(#) is a vector of partial derivatives of L, (0, X,,)
up to order s — 1, (b) by (8.1), each of these partial derivatives is a quadratic
form in the multivariate normal random vector X, and (c) the covariance matrix
of n1/2Z,(6) converges uniformly over § € O, as n — 0o to a nonsingular matrix
D(#) by Lemma 4 and Condition NS,(iii). Condition (ii) holds by Lemma 4.

Durbin’s Assumption 4 requires that the cumulants of Z,(0) are O(n) uniformly
over 6 € O.. This holds by Lemma 3(c).

LRZ show that a modified version of Durbin’s Assumption 3 can be used in place of
his Assumption 3. In verifying Durbin’s Assumptions 2 and the modified Assumption
3, the only difference between the present case and the known mean case (which is
considered by LRZ) is that terms of the form tr(I[)_, (MnB,, () (0) M T (fg))) reduce
to tr(JTj— (Bn,u(e) (0)Tu(fs))) in the known mean case. By the proof of Lemma 3(b),
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the difference between these two expressions is negligible (specifically, it is O(n®) for
all § > 0) compared to the magnitude of the second expression (which is O(n)). In
consequence, LRZ’s verification of Assumption 2 and the modified Assumption 3 go
through in the present case.

Given part (a), part (b) follows by applying Corollary 3.3 of Skovgaard (1986),
which converts an Edgeworth expansion of a density to one of a distribution function.
O

Proof of Lemma 2

To prove part (a), we use the fact that if A and V' are symmetric n xn matrices, V
is positive definite, and Y ~ N(0, V), then E exp(iY’AY) = det~Y/2(I,, —2iAV). This
holds by straightforward calculations, e.g., see Searle (1971, eqn. (42) with u =0, p.
55). Let U = X — pgly, where g is the true mean. Then, U ~ N(0,T5,(fg)), when
0 is the true value. Note that M, X = M,U, because M, projects onto the space
orthogonal to 1,. Using these results and (8.1) gives the result of part (a):

Egexp(iw'Z,(0))
ds
= Epexp|i Y wj(Fp,,()(0) + X' MyBy, ) (0) Mn X)
j=1
ds ds
= exp|i Y wiFnu() ()| Boexp (iU’ | Y wjMuBy, u5(0) My |U
j=1 j=1

ds ds
= exp|? Z Wan,u(j) @ det™1/2 I, — 2 Z WjMan,u(j) (0) M, T5(fo)
j=1 j=1

(8.5)

Next, we prove part (b). First order cumulants are first-order moments. Hence, for
n equal to an integer, kns(0); = Fn,m(0) + EgX'MyBy ,0)(0)M,X and
E¢X'M,By, ,(0) M, X = EgU’' My, B, ,(0) MU =tr(M, B, (0) MyTn(fp)).

To prove part (c), we use the definition of kns(6),, ie., Kns(0)y
=i 9D, In(¢,(w, 0))|w=0. For n cumulants of order ¢ > 2,

ds
DyyIn(@,(w,0)) = DyyIn | det™ (I, = 20> " w;My By ) (0) Mo Ty (fo)
j=1
(8.6)
The right-hand side (rhs) partial derivative can be calculated using the facts stated
in the paragraph following (8.2) that (9/0«a)In(det(4)) = tr(A=1(0/0a)A) and
(0/0a)A™Y = —A7Y((9/0c)A)A™L. Since det(l, — 2i Y7 w;MyBy ;) (0) M,
XTn(fo))|lw=o = 1, the rhs of (8.6) evaluated at w = 0 is of the form stated in
part (c). For more details, see Searle (1971, Thm. 2.5.1, p. 55). O

We use the following notation below. Let B(#,¢) denote an open ball of radius
€ > 0 centered at 6. Let C denote the set of complex numbers. For z € C, let z*
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denote the conjugate transpose of z and let ||z|| = (2*2)Y/? denote the Euclidean
norm of z. Let ||A||sp = suszCmHzH:l(Z*A*Az)1/2 denote the spectral norm of an
n xn matrix A. (Note that the spectral norm of a symmetric matrix equals its largest
absolute eigenvalue by diagonalization.) Well-known inequalities are ||A||sp < [|4]],
|21 Az| <|[21]]-[|z2]]-||Allsp for 21, 22 € C", and [|AB|sp < ||Al|sp||B||sp, for example,
see Dahlhaus (1989, p. 1754).

The proof of Lemma 3 uses the following Lemma.

Lemma 5 Suppose Assumptions 1-VI hold and 5) satisfies Condition NSy for some
integer s > 3. Then, for all compact subsets O, of é,

(a) supgeo, ||Tn /2(f9) 1/2(99) lsp = O(n?) for all § > 0, where go(\) is any partial
derivative of fo(\) with respect to 0 of order s or less,

(b) SUDGe (.6 e, Tn(fz)en < K3 for all 0 € O, and all e > 0 sufficiently small,
for some constant K. < o0,

(c) SUDGe p(p.c) e T (fe)en < K.n~20 for all @ € O, and all € > 0 sufficiently
small, for some constant K. < oo, and

(d) supgee, (e Tn(fo)en - e'//zT'l;l(fG)en) = 0(n%) for all § >0,

where d is the first element of 6 in parts (b) and (c) and e, = n~1?1,,.

Proof of Lemma 3

Part (a) of the Lemma is proved in Sec. 7.3.2 of LRZ using their Theorem 2.

Part (c) is implied by parts (a) and (b).

Part (b) is proved by showing that supgeg_ |#n,s(0)y — ki s (0)n] = O(n?) for each
n of order ¢ < s. Since k9 ((f), is the same as iy 4(0), (given in Lemma 2(b) and
(c)), but with M,, deleted, it suffices to show that

tr(H (My By, 5,1 (0) M T (fo)) )—tr(f[ By (fg))>|

r=1

sup
0O,

= O(nd) (8.7)

for all 6 > 0 and ¢ < s.

For notational simplicity, let M = M,, P = Py, I = I,, e = en, Br = B, (),
and T = T,,(fp). The product [[!{_;(MB,MT) = [[!_,((I — P)B,(I — P)T) can be
written as the sum of [[Z_; (B,T) and 227 — 1 additional terms each of which has the

form
q

+ [[(P*") B, P")T), (8.8)
r=1
where a(r) and b(r) equal zero or one, P’ = I by definition, and the number of
matrices P that appears in the product, denoted num(P), is at least one and less
than or equal to 2¢g. Hence, it suffices to show that

q
tr (H(P“(T)BTPI’(T)T)>

r=1

=0(n%). (8.9)

sup
0cO,
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Because P = e€/, the trace in (8.9) is the product of num(P) terms of the form

L L L—1
(i) ¢ J[(Br,T)e, (i) €T ] (B, T)e, and (iii) e [ [ (Bx,T)Br,e (8.10)
=1 =1 =1

for 0 < L < g. The matrix T" appears in the product in (8.9) ¢ times and the number
of matrices B, in the product is ¢. In consequence, the number of type (ii) and (iii)
terms in the product must be equal.
By (8.2), each product B, T is a finite linear combination of products of the form
?T (T7'T, ), where Ty, ; = Ty, (go ;) and gy j is a spectral density partial derivative
of order s or less. Hence, the type (i) terms in (8.10) are finite linear combinations of
type (i') terms, the type (ii) terms are finite linear combinations of type (ii’) terms,
and the type (iii) terms are finite linear combinations of type (iii’) terms, where terms

of type are (i')-(iii’) defined by

J
/ -1
¢ [1 (17T

Jj=1

J
T7'T,;)e, and (i’ e'H T, e, (8.11)
7=1

IIE&

respectively, for J > 0.
Now, the absolute value of the type (i) term can be written as

J
_ 1/2 1/24—
T 1/21—[( 1/2T/ Tg,é- T 1/2))T1/2e
7=1

_ — 1/2 1/247—
2 T (12232 T ) )T, (.12
j=1

using the inequalities |2’ Ay| < ||z||-||y||-||Al|sp and ||AB||sp < ||Al|sp||B||sp- Similarly,
the absolute values of the type (i) and (iii’) terms are bounded by

J
_ 1/2 1/2
eTe [T (1T 212 oy - LT 72) |y Jand
=1

J
T e [T (I Ty ey IS5 T sp) (8.13)
j=1
respectively.

By Lemma 5(a), supycg, ||T_1/2Tglé-2||5p = O(n7) for all v > 0. This result, (8.12),
(8.13), the fact that the trace in (8.9)7is the product of num(P) < 2¢ terms of types
(1)-(iii), and the fact that the number of terms in this product of type (ii) equals that
of type (iii) imply that

(ﬁ(Pa(T)B phr >T)>

r=1

sup
0€O,

2
< Kn” sup ((e'T_le)l/Q(e'Te)l/Q) ! (8.14)
€O,
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for some constant K < oo and all v > 0. The rhs is O(n®) for all ¢ > 0 by Lemma
5(d), which establishes the desired result. [J

Proof of Lemma 5

Part (a) of the Lemma holds by Lemma 5.3 of Dahlhaus (1989), using Assump-
tions IV(a) and V to provide the requisite bound on |fg(A)| and using the fact that
190.j(N)| < C5|A|724+° for all A € (0,7), 6 € O, and § > 0 for some constant Cs < oo
that does not depend on € by Assumptions IV and V. Uniformity of the result of part
(a) over 8 € O, follows easily from Dahlhaus’ proof given that Cs does not depend
on 6 and supycg, c2(#,0) < oo for all § > 0 by Assumption V.

We prove part (b) using a technique employed in the proof of Lemma 5.3 of
Dahlhaus (1989). Let P, denote the set of probability densities on (—m, ) that are
bounded by n. Define ho(\) = n™!| > i1 e“*|2. Note that ho(\) € P,. Using (2.3),
we have: for all ¢ > 0 sufficiently small,

el T(fo)en] = | / T3OYel R gy (0

T =1 k=1
< calbo™ [ 1Py
J =T ]:1
< ca0,) sup [ RO
hePn J—n

'1/(2n)
= 262(9,6)/ nA 24 Ed\
Jo

g2dte 2+
= m@(&a)n , (815)
where the first inequality uses Assumption IV (a), the second inequality holds because
ho(X) € Py, and the second equality holds because the supremum over h € Py, is
attained by the function h,(\) = n1(|A| < 1/(2n)) € P,. Combining (8.15) with
SUDGe (6.0) 0c0, c2(0,9) < oo by Assumption V, and d < d+ ¢ for all 0 € B(0,¢),

where 6 = (d, 02, ..., 04im(p))’, give the result of part (b).
Part (c) holds by the combination of Theorems 4.1 and 5.1 of Adenstedt (1974).
The result of part (d) is proved using parts (b) and (c) of the Lemma. The
compact set O, can be covered by a finite number, J., of balls B(#;,¢) of radius
€ > 0 centered at §; € ©. for j =1, ..., J.. We have

Je
sup (¢'Tn(fo)e - €T, (fo)e) < sup  (¢'Tu(fo)e - €T, (fo)e)
0cO. j=1 9€B(9j,€)
< JEK3n72d+3€n2d+€ — O(né) (816)

for all 6 > 4e > 0, where the second inequality holds by parts (b) and (c) of the
Lemma. [
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Proof of Lemma 4

By Lemma 2(c), [Dn(0)]ie = 20" tr(MnBy, ) (0) MpTn(fo) MnB,, o) (0) My
xTy(fo)) for i,0 = 1,...,ds. By Lemma 3(b), [Dy,(6)]iy = 2n*1tr(3n”)( )T (fo)
X By, 1(0)(0)Tn(fo)) +0(1), where o(1) holds uniformly over § € ©.. This expression is
a sum of traces of products of certain n xn Toephtz matrices, because By, ,;)(0)Tn(fo)

has the form Zu:l au ( bu_ T fo)T, (99 m)) and similarly for B,, ,¢)(0)Tn(fo) by
(8.2). The stated result now follows from Theorem 2 of LRZ. O

8.4 Lemmas Used in the Proofs of Theorems 1 and 2

Next, we state several lemmas that are used in the proofs of Theorems 1 and 2.
Fach of the lemmas holds with O, being any compact subset of @ where O satisfies
Condition NS; for some s > 3. The first of these lemmas is similar to numerous
results that have appeared in the literature.

Lemma 6 Let {A,(00) : n > 1} be a sequence of dim(A) x 1 random vectors with
Edgeworth expansions for each 0y € O, with coefficients of order O(1) and remain-
ders of order o(n=*=2/2) both uniformly over 6y € ©.. Specifically, there exist
polynomials {my,i(z,00) :i=1,...,5 —2,n > 1} in z whose coefficients are O(1) um—
formly over 6y € O, such that supy,co, SUDBEB,; 1) |Pyo (An(bo) € B) — [,(14+ >3
n=2m, (2, 00))bs.,,00)(2)dz| = o(n==2/2) where Ps,.(00)(2) is the density functwn
of a N(0,%,(00)) random wvariable, ¥,,(0y) has eigenvalues that are bounded away
from zero and infinity as n — oo uniformly over 6 € ©. and Baym(a) denotes the
class of all convex sets in RI™A) | Let {£,(0g) € R™A) . n > 1} be a sequence of
random vectors with supg,co, Pay (|, (00)|] > wn) = o(n=(=2/2) for some constants
Wy = o(n==2/2) Then,

sup  sup [Py, (An(00) +€,(00) € B) — Py, (An(Bo) € B)| = o(n~=2)/2),
00€O, BGBdim(A)

Let n=1Z(6y) denote the vector n=1Z,,(0g) of normalized LLDs or WLLDs aug-
mented to include the vector of expected values of all partial derivatives with respect
to 6 of order s of n™ L, (09, Xp) or n ™ Ly (00, Xr).

The following lemma is an extension of Theorem 3(b) of Bhattacharya and Ghosh
(1978). The lemma shows that the normalized PML or PWML estimator and the ¢
statistic t,,(0o,») can be approximated by smooth functions of n1Z+(6).

Lemma 7 Suppose Assumptions 1-VI or W1-WT7 hold, the PML or PWML esti-
mators {9 :m > 1} satisfy Condition Cg, and 5) satisfies Condition NSy for some
integer s > 3. Let A, (0g) denote n1/2(9 —0p) ortn,(bo,). Let dim(A) denote the di-
mension of Ay, (0o). For each definition of A, (6p), there is an infinitely differentiable
function G(-) that does not depend on 6y that satisfies G(n = Ey,Z;7(0)) = 0 for all
n large and all 6y € O, and

sup  sup | Py, (An(00) € B) — Py, (n'2G(ntZF (6p)) € B)| = o(n=72)/2),
00€O, BeBdim(A)
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_ For some 6 >0, let ©f = {# € R4m(9) : dist(h,©.) < 6} be a compact subset of
© that is slightly larger than ©, (where dist(0,©.) = inf{||0 — 6.|| : 0. € O.}). Let
B(6,¢) denote an open ball of radius € > 0 centered at 6.

The results of Theorem 2 hold uniformly for the true parameter lying in a compact
subset O, of ©. To obtain the results of Theorem 2, we need to establish Edgeworth
expansions (and other results) that hold uniformly for the true parameter lying in
the larger set @j. The reason is that the parametric bootstrap uses 6,, as the true
parameter and 6,, € ©F with probability that goes to one (at a sufficiently fast rate)
when the true parameter is in 6,.. The next Lemma is a simple, but key, result that
allows one to do so. It is used in the proof of Lemma 9(b) below. The condition of
the Lemma on 6,, is an implication of Condition Cs.

Lemma 8 Suppose supy o, Fa, (0 & B(0o,0)) = o(n==2/2) where O, is a com-
pact subset of © and § is as in the definition of ©F, and {\,(0) : n > 1} is a sequence

of (non-random) real functions on ©f that satisfies supyegt [An(0)] = o(n—(5-2)/2),
Then, for all e > 0,

sup P@g(‘An(én)‘ > n_(s_2)/25) = O(n_(s_Q)/Q)_
00€ec

The next Lemma provides Edgeworth expansions for the t statistic, ¢, (o, ), and
the bootstrap t statistic, t:(gnr) The Edgeworth expansion for the t statistic is
established by utilizing the Edgeworth expansion for the LLDs or WLLDs, given in
Theorem 3 or Proposition 1, plus the approximation of the t statistic by a smooth
function of the LLDs or WLLDs, given in Lemma 7. The Edgeworth expansion for
the bootstrap t statistic is established by utilizing the Edgeworth expansion for the
t statistic, given in part (a) of the following Lemma, and Lemma 8.

We now define the components of the Edgeworth expansion of t,(6y,) as well
as its bootstrap analogue t:(gnr) Let ®(-) denote the distribution function of a
standard normal random variable. Let Ry () = kns(f)/n. By Lemma 3(c), the
elements of &, 5(6) are O(1). Let m;(0,%,,5(f)) be a polynomial in § = 0/0z whose
coefficients are polynomials in the elements of &, 5(¢) and for which 7;(6, %, s(0))P(2)
is an even function of z when ¢ is odd and an odd function of z when ¢ is even for
i=1,...,5s — 2. The Edgeworth expansion of ¢,(fy,) depends on m;(0, %y s(00)). The

Edgeworth expansion of ¢} (6, ,) depends on 7;(0, %y s(0r)).

Lemma 9 §uppose Assumptions 1-VI or W1-W7 hold, the PML or PWML estima-
tors {0, € On :n > 1} and the BG estimators {0, : n > 1} satisfy Condition Cs,
and © satisfies Condition NSg for some s > 3.

(a) Then,
sup sup [Py, (tn(6o.r) < 2)
0p€O. zER
s—2
1+ Y (8, Ron s (60)))(2)| = o(n=CD/2).
=1
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(b) Then, for alle >0,

sup P, (sup P2 (8 (Bnr) < 2)
0pEO, zER i

s—2
[+ 0 (6, Fon s (0))] 0 (2)] > n(32)/25> = o(n~(572)/2),

i=1

The final lemma shows that the coefficients of the Edgeworth expansions of ¢,,(6¢ )
and t(0,,,) differ by at most n='/2In(n) except on a set whose probability goes to

zero quickly. It is this property that leads to higher-order improvements of bootstrap
ClIs.

Lemma 10 Suppose Assumptions 1-VI or W1-W7 hold, the BG estimators {gn :
n > 1} satisfy Condition Cs, and O satisfies Condition NSg for some integer s > 3.
Then, for all € > 0,

Sup P (0"/?|[Rn,s(0n) = Fon,s(00)|] > In(n)e) = o(n™~2/2),
0€0c

where Ry s(0) denotes the vector of cumulants of the PLL or PWLL function.

8.5 Proofs of Theorems 1 and 2

Proof of Theorem 1 R

We establish part (c) first. Note that Py, (60 € ACLy(0r)) = Py, (tn(0o,r) <
Zo). In consequence, part (c) follows immediately from Lemma 9(a) with s = 3 by
replacing z by zq, since ®(z,) =1 — .

Next, we prove part (a). We have Py, (6 € ACIL(6,)) = Poy([tn(0or)| < 2a)2)-
By Lemma 9(a) with s = 4, we have

Sup | Pag ([t (Bo.)| < 2ay2) = [1 410 728, Fon 4(00))](P(2a2) — ®(—24/2))| = o(n 1)
o (8.17)

because the evenness of 71 (0, % 4(00))®(2) in 2 implies that m1(d,%n 4(00))(P(20/2) —
®(—2q/2)) = 0. Since ®(2,/2) — ®(—24/2) = 1 — @, this establishes part (a).

To prove part (b), we apply Lemma 9(a) with s = 3 to obtain (8.17) with
n1ma(8, Fn.a(0o) deleted and o(n~!) replaced by o(n~'/2). This yields part (b). O

Proof of Theorem 2 R

We establish part (b) first. Note that Py, (0o, € Clup(0n)) = P, (tn(Oor) < 27 4)-
We show that the latter equals 1 — a + o(n~!In(n)) uniformly over 6y € ©.. By
Lemmas 9(b), 10, and 9(a), respectively, each with s = 4, we have: for all ¢ > 0,

sup P, (sup P2 (85 (Bnr) < 2)
0pcO, zER i

2
-1+ Znii/27ri(5,En,4(én))]©(z>| > nlg;-) =o(n 1),
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sup Py, <sup [Wi(5,ﬁn74(5n))
0p€O, z2€ER

—7i(8, R (60))]®(2)| > n~1/2 ln(n)s) =o(n7!) fori=1,2, and

sup sup | Py, (tn(fo,) < 2) +Zn V274(8, Fna(00))]®(2)] = o(n™Y).  (8.18)
00€O. zER

The three results of (8.18) combine to give

031615 Py, (31€1p |7 ( (Hnj) < 2) — Py (tn(fo,) < 2)| >n tn(n)e) = o(n™t). (8.19)

If ¢ (Hn ) is absolutely continuous, then P (t* (Hn r) < 274) = 1 —a. Whether or

not t;(Hn,T) is absolutely continuous, the Edgeworth expansion of Lemma 9(b) with
s = 4 implies that

esgg Pgo(\P* (tr (97”) <zi,) — (=) > n~le) = o(n™h) (8.20)

for all € > 0. This holds because the continuity in z of the Edgeworth expansion in
Lemma 9(b) implies that there exists a value 27, for which the Edgeworth expansion
at z = 2{%, equals 1 — a and, by definition of 2}, ]Pgn (t;;(@nj) < 2f,) — (1 —a)
< ’Pgn(t;:(an,r) < Z?,Z) —(1=a)l.

Taking 2z = 2}, in (8.19) and combining it with (8.20) gives

sup P, (|1 —a — Ppy(tn (o) < 27,)] > n~!n(n)e) = o(n™1). (8.21)
0pEO,

The expression inside the absolute value sign is non-random. Hence, for n large,
[1—a— Py, (tn(fo,) < z1,)| < n~tIn(n)e, which establishes part (b) of the Theorem.
Next, we prove part (a). We have Py, (0, € C’Isym(gn)) = Py ([tn(0o)] < 2{4)-

We show that the latter equals 1 — a + o(n~%/21n(n)) uniformly over 6y € ©.. By
Lemmas 9(b), 10, and 9(a), respectively, each with s = 5, we have: for all ¢ > 0,

sup P, (sup|P* (16| < 2)
0pcO, z€ER

-1+ ”717?2(&%71,5(971))}(@('2) —®(=2))| > n73/25> = O(n73/2),

sup P, <sup (728, Fons ()
0pcO, zER

—73(8, Fon5(00)))(2(2) — ©(—2))| > n~/? ln(n)a) = o(n™*/?), and

sup sup [Py (f0r)| < 2) = (140" ma(6, R (00)))(@(2) = B(=2))] = o),
- (8.22)
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using the evenness of 7;(8, %Ky 5(0,))P(2) and 7;(0, % 5(600))P(2) in z for j = 1,3 in
the first and third results respectively.
The three results of (8.22) combine to give

sup. Py, (sup P2 ([t (Bnr)] < 2) — Pay(Ita(B0,)] < 2)| >0~/ In(n)e) = o(n~*/2).

00O, z€ER
(8.23)

Given (8.23), the remainder of the proof of part (a) is analogous to that of part
(b) above.

Part (c) holds by the same proofs as for parts (a) and (b) but in the proof of
part (a) n~3/2 is replaced by n~'/2? throughout, the terms n~'7o(d, %, 5(6,)) and
n 17m9(8,%n5(00)) are deleted in (8.22), and In(n) is deleted in (8.23) and in the
proof of part (b) n~! is replaced by n~1/2 throughout, the sum over ¢ from 1 to 2
is replaced by the summand for ¢ = 1 alone in (8.18), and In(n) is deleted in (8.19),

(8.21), and the sentence following (8.21). O

8.6 Proofs of Lemmas 1 and 6-10

Proof of Lemma 1 The proof for PML estimators is analogous to that of Theorem
4(a) of LRZ using Lemma 3(b). For PWML estimators, the result holds by Theorem
6(a) of Andrews and Lieberman (2002). O

Proof of Lemma 6
For any convex set B € R4 and any 7 > 0, let Bt = {z € RI™A) .+ ||z —y|| <
7 for some y € B}. We have

sup (Foo (An(0o) + £,(60) € B) — Fpy (An(bo) € B))
90€®C7B€Bdim(A)

= sup (Pao (An(00) + &, (00) € B, [[£,,(60)|| < wn) — Pyy(An(bo) € B)
GOGQCaBGBdim(A)

+B5,(An(00) + &, (60) € B, [|€,(00)l| > wn))

S s (P(Aal60) € BS) - Puy(Aa(00) € B))
GOGQCaBGBdim(A)
+ sup Py (|€,(00)]] > wn). (8.24)
0pcO,

The second term on the right-hand side is o(n_(s_Q)/ 2) by assumption.
Given that A, () has an Edgeworth expansion with remainder o(n~(*~2)/2) uni-
formly over 6y € O, the first term on the rhs of (8.24) is bounded by

[s—2]

sup /B (1+ Z n_i/27rn,i(z, 00)) s, (00) (2)dz

GOGQC,BGBdim(A) . ‘j_n i=1

[s—2]
- /(1 + Z ”_i/Qﬂn,i(Z’90))¢2n00)(2)d2 +o(n~=2/%). (8.25)
JB P

31



The expression in (8.25) is O(wy) = o(n~(~2)/2) because ?53,00)(2) and its derivatives
of all orders are bounded over z € R¥™(4) given the assumptions on X,(fp) and the
polynomials {7, ;(2,00) : i = 1,...,s — 2} have coefficients that are O(1) uniformly
over Ay € O.. Hence, the left-hand side of (8.24) is less than or equal to o(n=(5=2)/2),

Let B ={xz € B :||lz—y|| > 7 for all y € B¢}, where B¢ denotes the complement
of B. We have

Byo(An(bo) +&,(60) € B) = Pyo(An(bo) € By, [1€,(00)]] < wn)- (8.26)
Using this, an analogous argument to that of (8.24) and (8.25) shows that

sup  (Ppy(An(6o) € B) = Py (An(00) +£,(60) € B)) < o(n~72)/%), (8.27)
GUEGCJBEBdim(A)

which completes the proof. [

Proof of Lemma 7

Let p,(0) = n71L,(0,X,) or n= L, (0,X,). Suppose A,(fy) = nl/Q(/H\n —
0o). By Conditions Cs and NS,(i), which implies that 6y lies in the interior of O,
we have infy co. Py, (/H\n is in the interior of ©) = 1 — o(n=(*=2/2) and infy,ceo,
Py, ((8/00)p,,(6)) = 0) = 1 — o(n~(5=2)/2)_ Element by element Taylor expansions of

o~

(0/00)p,,(0r) about y of order s — 1 give

o - B 21 9
_ - = ~ni= h h

1 .0 . .
—l—mED 1%;),1(90)(9” — 00, ..., 0, — 60) + (1,,(00) + €9, (00), where
Conb0) = —— (012 (0) = DL (00)) (B — o, .., B — o)
1m\Y0) — (8—1)' aepn n 89,0n 0 n 0y -y Un 0),
Conl0) = —— (0L (00) — ED L4 (00)) B — B0, s B — 60)
wn\V0) — (5—1)' 89[)” 0 89[)” 0 n 0y -y Un 0/,

(8.28)

07 lies between 6, and 6y, and D?(0/90)p,(00)(6n — 0o, ....,0n — 6;) denotes
D¥(8/90)p,(0o) as a j-linear map, whose coefficients are partial derivatives of
(0/00)p,,(0p) of order j, applied to the j-tuple (0, — 6q,...,0, — 6p). Note that
n~1Z+ (o) is the column vector whose elements are the non-redundant components of
(0/90)p,,(00), D*(0/00)p,,(00), ..., D"%/98)p,(fo) plus the components of
ED*~1(8/90)p,,(00). Let en(00) = ((¢1,,(00) +C2n(00))’, 0, ..., 0)" be conformable with
Z¥ (o). The first equation in (8.28) can be written as v(n=1Z; (6y)+e,,(60), 0, —00) =
0, where v(+, ) is an infinitely differentiable function that satisfies v(n = Eg, Z; (6y), 0)
= 0foralln > 1, and (0/0z)v(n~ Eg, Z;F (00), ) |s=0 = n~ 1 Ep, (0 /0000 L, (00, X 1,)
is negative definite for n large because it converges to —X~1() as n — oo, using the
information matrix equality, and the latter is negative definite by Condition NS,(ii).
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The same is true in the PWLL case. Hence, the implicit function theorem can be
applied to v(-,-) at the point (n=tEp, Z;" (6y),0) to obtain

,inf Py, (B — 00 = An " Z (60) + en(60))) = 1 — o(n~(=2/2), (8.29)

0€0c

where A is a function that does not depend on n or 6y, is infinitely differentiable in

a neighborhood of n~1Ey, Z:7(0) for all n large, and satisfies A(n~1Ep, Z;7 (00)) = 0.
We apply Lemma 6 "with An(0o) = n'?A(n~'ZF(6)) and fn(ﬁg) =

n2(A(n1ZH(0g) +en(Bo)) — A(n~1Z}(6y))) to obtain

sup | Py, (nl/QA(n_lZ;f(Ho) +e,(6)) € B)
GOGGC,BGBdim(Q)

Py, (n2A(nrZF(6)) € B)| = o(n~72/2). (8.30)

Lemma 6 applies because (i) Py, (]|£,,(60)|] > wn) < Pa,(Cn'/?|len(60)|| > wn) by a
mean value expansion, (ii) ||e(00)|| = ||C1,(00)|] + ||C2n(60)]], (iil) gjn(eo) satisfies
infgyco, Poo(]|C;n(00)]] < C)|0n — o||*) = 1= o(n==2/2) for j = 1,2, (iv) wy, which
is defined to equal n'/27%/21n%(n), is o(n==2/2), (v) supy,co, Po,(n'/?||en(60)|| >
wn) < $uPgoce, Pao(CnV2|[Bn — Bol|* > wn) +o(n~(2/2) = ofn~(~2/2) by Con-
dition Cj, and (vi) An(8) = nY/2A(n1Z;} () has an Edgeworth expansion (with
remainder o(n~(*=2/2) uniformly over fy € ©.) by the proof of Lemma 9(a) below.
Property (iii) for 7 = 1 uses the assumption that fy(A) is s + 1 times partially dif-
ferentiable with respect to 6. Property (iii) holds for j = 2 because it can be shown
that D*~1(0/90)p,,(00) — ED*"1(8/00)p,(00) = Op(n~1/?) using a large deviation
inequality.

Equations (8.29) and (8.30) yield part (a) of the Lemma with G(-) = A(-).

Next, suppose A, (6p) equals t,(0p ). The t statistic A, (6p) is a function of 6,,.
We take a Taylor expansion of A,,(6p)/ n'/2 about §n = 0 to order s — 1, where the
highest-order term involves the expectation of the partial derivatives rather than the
partial derivatives themselves (as in (8.28)), to obtain

An(0o) = n' (A1 Z} (00), 0 — 00) + C,,(00)), (8.31)

where A is an infinitely differentiable function that does not depend on 6y,
A(n='Ep, Z;}(0),0) = 0 for n large, (,(f) is the remainder term in the Tay-
lor expansion, and ||C,,(80)]| = O(|[6, — 6o||). Combining (8.29) with (8.31) gives
An(B0) = nV2(A(n 1 Z (0), Aln 125 (B) + en(05))) +Cn(60)). We apply Lemma
6 again, using the result above for ||¢,,(Ao)|], to obtain an analogue of (8.30) with
An(0) = nY2A(1ZF(00), A(n 1ZF(00))). We can write G(n 1ZF(6p))
= An _1Z+(90) A(n _1Z+(90))), where G(-) is infinitely differentiable and
G(n ' Eg, Z,f (00)) = A(n~'Eg, Z (60), A(n " Ey, Z;f (60))) = MnEy, Z;f (60),0) =

0 for all n large. Combining thls the analogue of (8 30), and (8.31) gives the result
of the Lemma for A, (6g) equal to t,(0o,). O

Proof of Lemma 8
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We have

sup Ppy (| An(0)] > n=(72)/%)
0pcO,

< sup Py, (|A(0y)| > n==2/2%¢ 0, € B(6o,6)) + sup Py, (0, ¢ B(bo,0))
0pcO, 0pcO,

< sup Py (sup [A ()] > n~ 672 2) 4 o(n==2/2)
00€O:  geol

— 1(0(71_(5_2)/2) > n—(s—2)/2€) + O(TL_(S_Q)/Q)
on™™) (3.32)

where the second inequality uses the fact that when 0, € B (0p,0) and 6y € ©, one
has 6, € ©F. O

Proof of Lemma 9

We establish part (a) first. By Lemma 7, it suffices to show that the result of part
(a) holds with t, (o) replaced by n'/2G(n='Z;}(fy)). That is, it suffices to show that
n'/2G(n1Z;}(0)) possesses the Edgeworth expansion given in part (a) of the present
Lemma with remainder o(n~(5=2)/2) uniformly over 6y € ©.. Theorem 3 for the
PLL case and Proposition 1 for the PWLL case establish Edgeworth expansions for
Wi (6o) = n'/2(n"1Z,(09) — n 1 Eg, Zn(00)) for each 6y € O.. An Edgeworth expan-
sion for n'/2G(n='Z; (6y)) is obtained from that of n'/2(n=12,(80) —n="Ey, Zn(00))
by the argument in Bhattacharya (1985, Pf. of Thm. 1) or Bhattacharya and Ghosh
(1978, Pf. of Thm. 2) using the smoothness of G(-), G(n~1Ey,Z;} (0y)) = 0 for all
n > 1 and all 6y € ©,, and Condition NS,(ii).

Part (b) follows from Lemma 8 with

An(bo) = ilelg\Pe (5 (6o,r) < 2) 1+Zn (8, Rn,s(00))]2(2)]

= sup | Py, (tn(00.) < 2) 1+Zni (8, Fon,s(00))]®(2)].

z€ER

(8.33)

The first condition of Lemma 8 holds by Condition C, and the second condition of
Lemma 8 holds by part (a) of the present Lemma with ©, replaced by the compact
set ©F. The second equality of (8.33) holds because the distribution of the bootstrap
t statistic, ¢} (6o ), when the bootstrap sample is generated by 6y is the same as the
distribution of the original sample ¢ statistic, ¢,(fo), when the original sample is
generated by 6, because t%(0p,) and t,(6p ) are invariant with respect to X, and
the true mean p respectively. U

Proof of Lemma 10

Let ®y,s(0), denote an element of %, ,(#). By a mean-value expansion, for all
0y € ©. and all 6 € OF such that ||§ —60y|| < § (where § is as in the definition of ©]),

|Fn,s(0)y — Fons(00)n| < Knll@ — 00|, where

34



K, = sup |(0/00;)Fn,s(6)y]. (8.34)
0cOf i=1,...,dim(6)
We show below that K, is a constant that satisfies limsup,,_, ., K, < oo.

Let v > 0 satisfy 7 < ¢/(dim/?(%)limsup,, ., K,), where dim(%) denotes the
dimension of %, ¢(#). Then, we have

sup Ppy(n'/?|[Fp.s(0n) — Fon,s(00)|| > In(n)e)

0pEO,

< esug Py, (n1/2||En,8(5n) - En,S(QO)H > In(n)e, n1/2||§n — 0o|| < In(n)y)
Oe c

+ sup Py, (n/?[|6,, — 6o]] > In(n)y)
NECH

< sup Py, (dim'/?(R)K,n'"?||0,, — 6o|| > In(n)e, n'/?||6,, — 6ol < In(n)~)
0p€O,

+o(n~(=2/2)
= o(n~ (=22, (8.35)

where the second inequality uses (8.34) and Condition Cs.
We have limsup,,_, ., K, < oo provided

sup [(0/00;)kn,s(0)y| = O(n) for all i < dim(h), (8.36)
0cO.
for any compact set ©, C © (since O} is a compact subset in ©).
First, consider the case of cumulants of the PLL function. Suppose &y s(#), is a
cumulant of order two or greater. By Lemma 2(c) and the chain rule, (0/060;)kn (),
is a finite sum of terms of the form

q

C,fcr(H(MnFrMnTT) :
r=1

where B, equals either B, ,(, (0) or (9/90;)B,, ., y(0) and T, equals either T,,(f)

or (9/90;)Tn(fo) = Tn(go,i)-
Note that (9/90;)B,, ., )(9) has the same form as B, ,, y(f) because it is a

partial derivative of —(1/2)T,;!(fp), just as B, ,(, (0) is, see (8.2). Hence, B, has
the same form as By, ,(, y(0). Also, B, T, has the same form as B, ,, y(0)T,(fp). If
T, equals T,,(fp), this follows from the previous result. If T, equals T;,(gg;), then

B, T, is of the same form as

Bn,l/(nT ge i Z ag H T g9 /C,j) (fe) (96 1) (837)

using (8.2), and the rhs is of the same form as B,, ., y(0)T.(fo)-
Now, because B, T, has the same form as B, , m)( )T0(fo), (0/00;)kn s(0)y has

the same form as ky, 5(6), itself given in Lemma 2(c). In consequence, the proof of
Lemma 3(a) and (b) shows that (8.36) holds.

35



Next, suppose Ky, s(0)y is a camulant of order one. Then, the second summand in
its expression given in Lemma 2(b) is of the same form as cumulants of order two or
greater and, hence, is dealt with by the argument above. The first summand in the
expression in Lemma 2(b), viz., F, ,,;)(¢), has partial derivative (9/00;)F, () (0)
that is the same form as F;, ,(,)(0) itself given in (8.2) by inspection. Hence, again
the proof of Lemma 3(a) and (b) shows that (8.36) holds.

Lastly, consider cumulants of the PWLL function. By (8.1)-(8.4), the cumulants of
the PWLL function are the same as those of the PLL function except that F,, , () and
By, (0) are defined differently. Nevertheless, for both the PLL and PWLL functions,
(0/00;)F, ,(0) and (0/00;)By, ,(0) have the same form as F,,(f) and B, ,(f). In
consequence, the argument given above for the PLL function also holds for the PWLL
function. O
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Footnotes

1 The authors thank Vadim Marmer for carrying out the Monte Carlo simulations.
The first author gratefully acknowledges the research support of the National Science
Foundation via grant numbers SBR-9730277 and SES-0001706.

2 The condition (2.1) on fp()\) is satisfied if fo(\) = O(JA|729) as || | 0. The
latter condition often appears in the literature. It is slightly stronger than (2.1), but
is simpler. On the other hand, some of this simplicity is lost when one considers
derivatives of fy(A) with respect to d, because a log(|A|) term arises. Condition (2.1)
has the advantage of including cases where fy(A\) = |A|72%go()\) and gg()) is slowly
varying at A = 0.

3 In fact, this is true with X,, replaced by any estimator fi,, of j, for which
W20 G, — p1g) = O,(1).

4 If the closest element is not unique, then any of the closest elements can be
used.

5 Strictly speaking, this is not true. One could use a null-restricted BG estimator
to construct t tests for Hg : 0o, = 0p, for a range of values of 0p, and invert the
tests to obtain a CIL. That is, take the CI for 6y, to be the set of all values 0 ,
for which the null-restricted parametric bootstrap ¢ test of Hy : 0y, = 0, fails to
reject the null hypothesis. Such a CI has the same higher-order properties as the
null-restricted tests upon which it is based. This bootstrap CI has the disadvantage,
however, that it may be difficult to compute. To compute the CI, one has to compute
null-restricted ¢ tests for a range of values of 0 .

6 The stated result holds by the same proof as for part (a) with n=3/2 replaced
by n~! throughout and with In(n) deleted in (8.23).

7 If the n=1/2 term in the Edgeworth expansion of tn(fo,) is identically zero,
not just independent of g, then the error for the delta method upper CI is given in
Comment 3 following Theorem 1, rather than in Theorem 1(c).
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Table I

Coverage Probabilities of Delta Method and Parametric Bootstrap Confidence
Intervals for the Long-memory Parameter d Based on Plug-in ML and Plug-in Whittle
ML Estimators for ARFIMA(0, d,0) Processes

d
0 1 2 3 4 Avg Abs Dev

(a) Nominal 95% Confidence Interval

Delta Method PML 928 .930 .935 .954 .970 .016
Bootstrap PML 944 960 .948 .958 .972 .010
Delta Method PWML  .886 .890 .883 .895 .928 .054
Bootstrap PWML 950 942 924 940 .964 .012
(b) Nominal 99% Confidence Interval

Delta Method PML 978 988 977 .988 .996 .007
Bootstrap PML 992 990 992 995 .999 .004
Delta Method PWML  .966 .954 .956 .971 .970 027
Bootstrap PWML 991 1989  .990 .990 .990 .000
(c) Nominal 90% Confidence Interval

Delta Method PML 869 .872 .882 .913 .940 .026
Bootstrap PML .890 .886 .876 .880 .937 .021
Delta method PWML 816 .821 .810 .831 .891 .066
Bootstrap PWML 894  .889 .888 .873 .938 .019

40



