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Abstract

The bootstrap of the maximum likelihood estimator of the mean of a sample
of iid normal random variables with mean p and variance one is not asymptot-
ically correct to first order when the mean is restricted to be nonnegative. The
problem occurs when the true value of the mean p equals zero. This counterex-
ample to the bootstrap generalizes to a wide variety of estimation problems in
which the true parameter may be on the boundary of the parameter space. We
provide some alternatives to the bootstrap that are asymptotically correct to
first order.

We consider two types of bootstrap percentile confidence intervals in the
above example. We find that they both have asymptotic coverage probability
that exceeds the nominal asymptotic level when the true value of the mean pu
equals zero.

1 The Counterexample

The literature contains a number of examples in which the bootstrap of Efron
(1979) does not consistently estimate the true distribution of a statistic correctly to
first order. The examples in the literature are all nonstandard in some way or other.
Here we provide an example that is very simple and quite close to being standard.
Furthermore, straightforward generalizations of this example are of importance in
many applications.

We consider the maximum likelihood estimator of the mean of a sample of iid
normal random variables with mean p and variance one (denoted N(u,1)) when the
mean is restricted to be nonnegative. The maximum likelihood estimator in this case
is just the maximum of the sample mean and zero. When the true mean is zero, the
bootstrap is not asymptotically correct to first order.

Let {X; : i > 1} be a sequence of independent identically distributed (iid) N (p,1)
random variables. Suppose the parameter space for pu is RT := {y : y > 0}. The
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maximum likelihood estimator of x in this case is 7i,, := max(X,,0), where X,, :=
1 > i=1..nXi- It is easy to see that

~ a | Z if >0

n2 (5, — p) S { max(Z, 0) ifzz o s8N oo, where Z ~ N(0,1). (1)

Let {X} : i < n} be iid with X} ~ F,, where Fj,(z) := 13, 1(X; < ). The

bootstrap maximum likelihood estimator 7, is defined by ¥ := max(X,,,0), where
7;’; = % Zi:l,...,n X’z*

Suppose = 0. Let A, := {liminf, nl/?X,, < —c} for 0 < ¢ < co. By the law
of the iterated logarithm, P(A.) = 1. For w € A., consider a subsequence {ny : k > 1}
of {n:n > 1} such that n,lc/QYnk (w) < —c for all k. Then,

ny2 (75, — Ty, (@)

= max(n,* (X, = Xno @) + 1 * X, (),0) — max(ny/ * X, (), 0)
1/2 ~7*

max(n, (X, — X, (W) —¢,0)

<
<, max(Z — ¢,0) as k — oo conditional on {F}, : n > 1}
< max(Z,0), (2)

where the last inequality is strict with positive probability and the convergence in

distribution holds by a triangular array central limit theorem. So, along the subse-

quence {ny}, n,i/Q (T, — T, (W) 4 max(Z,0) as k — oo conditional on {F\nk ck>1}.

Hence, n'/2(i¥ — fi,,(w)) <4 max(Z,0) as n — oo conditional on {F, : n > 1}. This
is true for all w € A.. We conclude that with probability one (with respect to the
randomness in {F, : n > 1}), the bootstrap distribution is not consistent.

Note that the bootstrap also is not correct when p = 0 for sample paths w € B,
:= {limsup,,_,, n'/?X,, > ¢} for any 0 < ¢ < co and sample sizes {n,, : m > 1} for

which n,IT{QYnm (w) > c for all m. In this case, we have

) (B, = Fin, (@)

max(ny2(X, — X, (@), —n42 X, (W)
n%nQ(Ynm - Yﬂm (w))a _C)

< max(
<, max(Z, —c) as m — oo conditional on {F, : n > 1}
< max(Z,0), (3)

where the last inequality is strict with positive probability. Note that P(B.) =1 for
all 0 < ¢ < co. Thus, the bootstrap is incorrect both when n!/ 2X,,(w) is negative
for n large and when nl/QYn(w) is positive for n large. In both cases, the bootstrap
distribution is too small (i.e., has too much mass to the left) when p = 0.

One can see why the bootstrap fails when ;o = 0 by inspecting equations (2) and
(3) and utilizing the fact that n'/2(X, — X,(w)) and n'/?(X, — p) have the same
N(0,1) distribution asymptotically. When X, (w) = —c for ¢ > 0, then n'/2(fi} —
T (w)) = 0 whenever X, —X,,(w) < ¢, whereas n'/2(fi,,— ) = 0 whenever X,,—u < 0.
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Because ¢ > 0, n'/2(5i¥ — i, (w)) has a higher probability of equalling zero than does
n'/2(fi,, — p). Alternatively, when X, (w) = ¢ for ¢ > 0, then n'/2(i} — 7, (w)) =
max(n'/2(X, — X, (w)), —c), whereas n/%(fi,, — 1) = max(n*/?(X,, — u),0). Because
—c < 0, the distribution of n!/2(ik, — fi,,(w)) is to the left of that of n'/2(f,, — p).

This counterexample to the bootstrap generalizes to a wide variety of estimation
problems that have considerable relevance in applications. For example, in models
with random coefficients, it is often the case that the estimated variances of some
of the random coefficients are small and, hence, the true variances of some of these
coefficients may be zero. If any of the coefficient variances are zero, then the true
parameter is on the boundary of the parameter space and the bootstrap is not con-
sistent by an analogous argument to that given above. For brevity, we do not provide
the details. See Andrews (1997) for some general results providing the asymptotic
distribution of extremum estimators, including maximum likelihood estimators, min-
imum distance estimators, etc., when the true parameter is on the boundary of the
parameter space. These results cover random coefficient models. Such results are
needed to demonstrate the inconsistency of the bootstrap in more general cases than
the simple example provided above.

Bickel and Freedman (1981, Sec. 6) list three conditions for the bootstrap distri-
bution of a statistic to be consistent in iid contexts. The first is weak convergence
of the statistic when X; ~ G for all distributions G in a neighborhood of the true
distribution F. The second is uniform weak convergence over distributions G in a
neighborhood of the true distribution F. The third is continuity of the mapping from
the underlying distribution G to the asymptotic distribution of the statistic. Bickel
and Freedman provide two counterexamples to the bootstrap that violate the sec-
ond condition, viz., uniformity. The counterexample given above violates the third
condition, viz., continuity.

Bickel and Freedman’s first counterexample to the bootstrap is a U-statistic of de-
gree two in which the kernel w(z, z) does not satisfy the condition [ w?(z,z)dF(x) <
oo, where F' denotes the true distribution of the data. Their second example is
the largest order statistic from an iid sample of uniform (0,6) random variables.
This example is extended in Bickel, Gotze, and van Zwet (1997, Example 3). Other
counterexamples to the bootstrap include: extrema for unbounded distributions (see
Athreya and Fukuchi (1994) and Deheuvels, Mason, and Shorack (1993)); the sam-
ple mean in the case of infinite variance random variables (see Babu (1984) and
Artheya (1987)); Hodges’ superefficient estimator (see Beran (1984)); degenerate U
and V statistics (see Bretagnolle (1983)); nondifferentiable functions of the empirical
distribution function (see Beran and Srivastava (1985) and Diimbgen (1993)); and
the nonparametric kernel estimator of the mode of a smooth unimodal density when
the smoothing parameter (for both the estimator and the bootstrap) is chosen to be
optimal for the estimation problem (see Romano (1988)).

The counterexample to the bootstrap introduced above, based on a parameter
being on the boundary of the parameter space, seems simpler and more relevant to
many applications than most of the counterexamples just listed.



2 Alternatives to the Bootstrap

We now suggest three methods for obtaining consistent estimators of the asymp-
totic distribution of the normalized maximum likelihood estimator, n'/2(f,, — p), in
the iid N(,1) counterexample given above. These methods are designed to be con-
sistent whether or not the true parameter is on the boundary. The methods generalize
to the problem of an arbitrary extremum estimator when the true parameter may be
on the boundary of the parameter space; see Andrews (1997).

The first method is as follows. Let {n,, : n > 1} be a sequence of positive random
variables (possibly constants) that satisfies

P(lim n,, =0 and lim inf nn(n/(2lnlnn))1/2 >1)=1. (4)

n—ao n—oo
If 1, < 7, then we estimate the asymptotic distribution of n/2(fi, — i) to be
max(Z,0). Otherwise, we estimate the asymptotic distribution to be Z. (Note that
the n,, ’s could be chosen to be the critical values for a sequence of one-sided tests of
Hy : o =0 versus Hy : o > 0 whose significance levels converge to zero as n — oo at
a rate such that (4) holds.)
This estimator of the asymptotic distribution is strongly consistent, because

P <nm sup (7, — 1) < 0)

n—oo

= P (lim sup (max((2nlnlnn)1/2§n:Xi,O) - nn(n/(21nlnn))1/2> < O)

_ 0 if w>0
a { 1 if u=0 (5)

by the law of the iterated logarithm. Equation (5) also holds with the limsup,, .
replaced by liminf, .« -

This method of estimating the asymptotic distribution can be generalized to the
case of an arbitrary extremum estimator with a parameter space that is defined by
linear or nonlinear inequality constraints by specifying a criterion for each inequality
constraint to assess whether it is binding or not. The method can be applied when
the data are iid, as well as when the data exhibit temporal dependence, including
stochastic and deterministic time trends. See Andrews (1997) for details.

The second method is a subsample method introduced by Wu (1990) and extended
by Politis and Romano (1994) to cover cases where the statistic of interest has some
asymptotic distribution, not necessarily normal, such as that which arises when the
true parameter is on the boundary of the parameter space. Also see Bickel, Gétze,
and van Zwet (1997). The method is applicable in iid contexts, as well as in stationary
time series contexts; see Politis and Romano (1994). A random subsampling variant
of the procedure is also available; see Politis and Romano (1994, Sec. 2.2).

The third method is a variant of the bootstrap in which bootstrap samples of
size ng (< m), rather than n, are employed. This method has been used previously
as a means of fixing the bootstrap in the U-statistic counterexample of Bickel and



Freedman (1981) by Bretagnolle (1983) and in the sample mean with infinite variance
random variables counterexample of Babu (1984); see Arcones (1990), who attributes
the idea to an unpublished paper of Athreya. See Bickel, Gotze, and van Zwet (1997)
for further applications and analysis of this method.

/2(/7;0 — I,,) to estimate the
0. Koy = S, XE, and
{X} i <np} are iid with X} ~ ﬁ'n This variant of the bootstrap is consistent with
probability one if ng — oo and ng(lnlnn)/n — 0 as n — co. The reason is that

The idea is to use the bootstrap distribution of n(l)

%
ng?

distribution of n/2(fi,, — p), where i, := max(X

1/2(/\* -~ )

g :uno — M
= max(ng*(Xp, = Xo) + 1 (X = 1), =ng/*0) = ng/* (7, = )
= max(ny* (X, — Xn) +0(1), —ng* 1) + (1)
d | Z it u>0 . ~
n >
{ max(Z,0) if u—0 7 00 conditional on {Fy:n > 1}, (6)

where the second equality holds with probability one by the law of the iterated
logarithm and the convergence in distribution holds by the central limit theorem for
triangular arrays of row-wise iid random variables.

3 Confidence Intervals

Here we consider the behavior of standard bootstrap confidence intervals for p in
the N(u,1) example discussed above. Because the variance is assumed to be known,
there is no need to studentize the maximum likelihood estimator i,, in this example.
In any event, studentizing pi,, would not affect the first order asymptotic properties
obtained here.

We consider two types of bootstrap percentile confidence intervals for p, denoted
CI, and CIy. The first is based on percentiles of n'/?(ji% — fi,,) and the second is
based on percentiles of fiy,. The first is what Hall (1992) refers to as the bootstrap
percentile confidence interval and the second is what Efron and Tibshirani (1993)
refer to as the bootstrap percentile confidence interval (and what Hall (1992) refers
to as the “other” bootstrap percentile confidence interval).

The first bootstrap percentile confidence interval is

CIl = [ﬁn - %\1041 /77,1/2, :an + %\2042 /nl/ﬂ’ (7)

where 114, is the (1 — a;)-th quantile of n'/2(3¥ — 7i,,) and taq, is minus the as-th
quantile of n/2(if, — fi,). We assume that a; + as = « and that a,a, and «
are in [0,1/2). An equal-tailed confidence interval is obtained by taking a; = a; a
one-sided confidence interval is obtained by taking a; = 0 or ap = 0 (in which case
tAlal := 00 Or %\QQZ := oo respectively); and a symmetric confidence interval is obtained
by taking a1 and a9 such that tAlal = tAQOQ.

The coverage probability of C'I} when p =0 is

P(—tza, < n'?, <Hay). (8)



To determine the limit of this probability as n — oo, we separately consider the cases
where X,, > 0 and X,, < 0. All probabilities below refer to the case where w=0.

Let Z, denote the ath quantile of nt/2(X — X,,) conditional on F},. We have
Za — Zo @8 m — 00 with probability one, where z, denotes the ath quantile of a
standard normal distribution. Because a1 and ay are each less than 1/2, z1_4, > 0
and z,, < 0 for n large with probability one.

When X,, > 0, we have fi,, = X, > 0, nl/z(un i) = max(n'/?(X,
X.), —nl/ X)), tia, = max(2]_q,, /2X ), and —toq, = max(Z,,, —n'/?X,,).
Thus, —tga < nl/z,u for n large with probablhty one because z,, < 0 and n2n, <
ta, iff nl/zX < Z o When X,, < 0, we have 7, 0, nl/Q(un i) =
max(n'/2X, 0) > 0, t1o, > 0, and —?2012 = max(Za, + nl/zyn,()) 0, where
the last equahty holds for n large with probability one because z,, < 0. Hence,
—t2a2 <n, < tlal always holds when X, <0.

We conclude that the coverage probability of C'I; when p = 0 satisfies

P(~tz0, < 1'%, <ay) = P(n'/?X; > max(21-a4,0)) — a1 (9)

The confidence interval C'I; never misses to the left. If as > 0, then its asymptotic
coverage probability exceeds its nominal level 1 — a when @ = 0.

Next, we consider the second bootstrap percentile confidence interval. It is defined
to be

CIQ = [QZNQLOQL (10)

where ¢ is the ath quantile of the distribution of fi;, conditional on F,,. Because
iy, > 0, we have q{_aZ > 0 and the confidence interval CI; never misses the true
value p = 0 to the left. Hence, C'Iy covers the true value p = 0 unless ¢, > 0. We
have g3, > 0 iff P(7i;, < 0[F,) < a1 iff P(X, < 0]F,) < an iff P(n!/2(X;, = X,) <
1/2X |Fy) < ay iff —nY/?X,, < Z,,, where P(-|F},) denotes probability conditional
on F,. A central limit theorem gives P(—n'/?X,, < Z4,) — 1. Thus, we conclude
that the asymptotic coverage probability of CI5 is a1, the same as for C'I;. If as > 0,
then the asymptotic coverage probability of C'I5 exceeds its nominal level 1 —« when

w=0.
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