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Abstract

Band spectral regression with deterministic and stochastic trends is consid-
ered. It is shown that conventional trend removal by regression in the time
domain prior to band spectral regression leads to biased and inconsistent esti-
mates of the parameters in a model with frequency dependent coefficients. Time
domain and frequency domain procedures for dealing with this problem are ex-
amined. Trend removal in the frequency domain produces unbiased estimates
and is recommended. An asymptotic theory is developed and the two cases of sta-
tionary data and cointegrated nonstationary data are compared. Efficient band
spectral regression estimators and associated inferential methods are provided for
models with deterministic and stochastic trends. Some supporting Monte Carlo
evidence is presented. An empirical application to the present value model of
stock prices is discussed. After removing trends in the frequency domain, we
show that, while stock prices and dividends have significant coherence at low
frequencies, transitory fluctuations in dividends (i.e. less than 3 years) do not
have significant coherence with stock price movements.

1 Introduction

Hannan’s (1963) band-spectrum regression procedure is a useful regression device
that has been used in applied econometric work, like Engle (1974), where there are
latent variables (like permanent and transitory income) that are frequency dependent

*An early version of some of the results in Sections 2 and 3 of the paper were obtained in the
summer of 1994. The paper was partly written while Phillips was visiting the University of Auckland
over the period 1 January — 1 July 1997. Computations were performed by the authors in GAUSS,
and the paper was typed by the authors in Scientific Word 2.5. Phillips thanks the NSF for research
support under Grant Number SBR 94-22922.



and where there is reason to expect that relationship between variables may depend
on frequency. This paper studies some properties of Hannan regression in the pres-
ence of both deterministic and stochastic trends, a common feature in economic time
series applications. In such cases, there is an issue regarding the manner of deter-
ministic trend removal. In particular, should the deterministic trends be eliminated
by regression in the time domain prior to the use of the frequency domain regression
or not? Since spectral regression procedures were originally developed for stationary
time series and since the removal of deterministic trends by least squares regression
is well known to be asymptotically efficient (Grenander and Rosenblatt, 1957), it
may seem natural to perform the trend removal in the time domain prior to the use
of spectral methods. Indeed, this is recommended in Hannan (1963, p. 30), even
though the development of spectral regression there and in Hannan (1970) allows
for regressors like deterministic trends that are susceptible to a generalized harmonic
analysis, satisfying the so-called Grenander conditions (Grenander and Rosenblatt,
1957, p. 233). Of course, when there is only an intercept in the regression, removal
of the zero frequency in the computation of discrete Fourier transforms is equivalent
to demeaning the data, and this is a convenient and frequently used procedure in
practice. But, when there are higher order trends and/or trend breaks in the regres-
sion, this procedure would appear to be incomplete because there are more trend
coefficients to estimate.

In time domain regression, the Frisch—-Waugh (1933) theorem assures invariance
of the regression coefficients to prior trend removal or to the inclusion of trends in the
regression itself. We examine the validity of the Frisch—-Waugh theorem for trend elim-
ination in band spectrum regressions and show that trend elimination invariance does
not always apply for band-spectrum regression when one switches from time domain
to frequency domain regressions. In particular, detrending by removing deterministic
components in the time domain and then applying band-spectrum regression is not
equivalent to detrending in the frequency domain and then applying band-spectrum
regression. This seemingly innocuous matter can have important consequences in
practice. In particular, detrending in the time domain yields estimates which can be
severely biased in finite samples, and, in the case of nonstationary data, inconsistent.
Our results suggest that the appropriate procedure is to detrend in the frequency
domain, which is most simply accomplished by including the transformed determin-
istic variables explicitly in the frequency domain regression. Doing so restores the
validity of the Frisch-Waugh theorem (because the results are then the same as those
from a frequency domain regression with variables that have already been detrended
by regression using discrete Fourier transforms of the trends) and yields unbiased
estimates of the coefficients. The paper provides an asymptotic analysis for the two
cases of stationary and cointegrated nonstationary data, considers efficient methods
for models with deterministic and stochastic trends, and gives some analytical and
Monte-Carlo evidence in support of the bias findings.

These ideas on trend removal are applied to the present value model of stock prices
studied by Campbell and Shiller (1987). In particular, when trends are removed in
the frequency domain we show that, while there is significant coherence between stock



prices and dividends in the long run, transitory fluctuations in dividends (i.e. less
than 3 years) have insignificant coherence with stock price movements.This prediction
is consistent with the present value model of stock prices for certain nonstationary
driving processes of dividends which appear in the data.

The paper is organised as follows. The model and estimation preliminaries in-
cluding bias results are laid out in Section 2. Section 3 outlines an unbiased estimator
based on frequency domain trend removal and gives an equivalent time domain esti-
mator. An asymptotic theory is developed in Section 4, covering both stationary and
nonstationay regressor cases. Efficient regression is studied in Section 5. Some Monte
Carlo evidence is presented in Section 6. The empircial application is discussed in
Section 7. Section 8 concludes and proofs are given in the Appendix.

Most of our notation is standard: [a] signifies the largest integer not exceeding a,
> signifies positive definiteness when applied to matrices, a* is the complex conjugate
transpose of the matrix a, a~ is the Moore Penrose inverse of a, P, = a(a*a)”a* is
the orthogonal projector onto the range of a, Lz [0, 1] is the space of square integrable

functions on [0, 1] , & signifies is ‘asymptotically distributed as’ and 2 and & are used
to denote weak convergence of the associated probability measures and convergence
in probabilty, respectively, as the sample size, n — oo; I(1) signifies an integrated
process of order one, and BM (€2) denotes a vector Brownian motion with covariance
matrix Q and we write integrals like [y B(r)dr as [, B, or simply [ B if there is no
ambiguity over limits. M N (0,G) signifies a mixed normal distribution with matrix
mixing variate G.

2 Model and Estimation Preliminaries
Let y¢ and x¢ (t =1, ...,n) be generated by:
ytZW{Zt + Uz, thHIQZt+ft7 (1)

where z; is a p-dimensional deterministic sequence and ¥; and T; are zero mean time
series that are 1 and k-dimensional, respectively. The observed series y; and x; are
therefore driven by a deterministic sequence, z;, and have stochastic components ¥
and T;.

In developing the asymptotic theory of Section 4 it is convenient to allow for
both stationary and nonstationary variables. Accordingly, we make the following
alternative assumptions on the stochastic components. Part (b) in each of these
assumptions is a high level central limit theorem assumption. Explicit conditions
under which these central limit results hold are readily available (e.g., Phillips and
Solo, 1992), so we do not trouble to go into details here. The mechanism linking the
variables will be made explicit later.

Assumption 1

(a) ¢ = (G, @) is a jointly stationary and ergodic time series with zero mean,
finite second moments and continuous spectral density matriz foc(X), partitioned



conformably with ¢ as

_ | ) fue(N)

and fzz(A) >0 VA.
(b) Partial sums of <; satisfy the central limit theorem n~Y/2 3" | ¢ 4, N(0,27fec (0)).

Assumption 2

(a) ¢ = (T, @) is an 1(1) process satisfying Ag; = vy, initialized at t = 0 by
any Op(1) random variable. The shocks v, are partitioned conformably with y
and = as vy = (vye,v),) and satisfy Assumption 1 with spectral density fou(-),
partitioned conformably with vs.

(b) n*1/2§[n.] satisfies an invariance principle, so that as n — oo, n*1/2g[n_] 4,
B(-) = BM(Q), a vector Brownian motion of dimension (k-+1) with covariance
matriz ) = 27 f,,(0), where The vector process B and matriz §2 are partitioned
conformably with ¢ as B = (By, B.)' and

_ ny Qyw
0= [me Q]

where Qg >0, so that Ty is a full rank 1(1) processes, whereas §y, :QWQ;;QW,
so that y: and Xy are cointegrated.

We make the following assumptions concerning the deterministic sequence z;.
Suppose z = (1, t2, ..., t°)', 0 < 51 < s3 < s3 < s, for some real numbers
si (1 =1,...,p). Note that s; may be zero, so we allow for the presence of an intercept
in the data generation process for y; and x;. Let §,, = diag(n®,n®2,...,n°?), and
define d; = 6,,* 2. Then

re), (2)
uniformly in r € [0, 1]. The limit functions w(r) are linearly independent in L3[0, 1]
and n=1 (30, did]) — fol uw’ > 0. We could similarly allow for trend breaks in z; and
in the corresponding limit function (7). This type of extension is straightforward and
the results that follow, except where indicated, continue to apply if the data z; and
limit function u(r) are so modified. Let Z (respectively, D) be the n x p observation
matrix of the non-stochastic regressors (respectively, standardised regressors), Pz be
the projector onto the range of Z, and @, = I,, — Pz be the residual projection matrix
(respectively, Pp and I — Pp).

The type of model we have in mind for the stochastic component of the data can
be formulated in the frequency domain as:

Wi =WXpw)+We (3)

d[n'r] = 6;12[nr] - u(r) = (T317T827 D)

where
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n x k matrix of observations of the exogenous regressors Z;, purged of their
deterministic components as in (1).

W = the n x n Fourier matrix: e[i(%ﬂ)ﬁ’]/\/ﬁ, where 7/ = [0, 1, ..., n—1]. Note
that W*W = I,,, and WX is simply the vector of discrete Fourier trans-
forms of Ty , wx(As) = n~V23 " Fest at the fundamental frequencies
As =2ms/n, (s =0,1,...,n—1).

B(w) = k-vector of parameter coefficients for the variables Z; relevant to the fre-
quency w.

€ = n x 1 vector of errors, &;, satisfying the same assumptions as those given
for ¢; in Assumption 1 above. The errors &; are assumed to be independent
of the regressors x4 Vs, t.

Of course, (3) only describes the connection between the observed data. This will
be sufficient for studying the finite sample bias. But we can imagine a stochastic
model that is the analogue of (3) in which the processes that are linked at different
frequencies are the orthogonal processes in the generalized Cramér representations of
the data. Thus, writing

U= [T ™A (w)dZ, (W), Tr = [T €™ Ay (w)dZ, (W), & = [T e™dZ.(w) (4)

—T —T —T

the stochastic version of (3) would take the form
Ayp(w)dZy(w) = B(w) Ast(w)dZy(w) + dZ:(w). (5)

This model actually allows for integrated data because in (4) we can set

Ay(w) = Agy(w) = (1 - e—iw) (6)

in the formulae for y; and ;. The model therefore extends the usual notion of a
cointegrated system in Engle and Granger (1987) because the coefficient in the coin-
tegrating equation is allowed to be frequency dependent and (4) allows for more
general forms of nonstationarity than integrated processes. When fB(w) = 3 is con-
stant across frequency, then (4), (5) and (6) simplify to a conventional cointegrated
equation, viz.

U =BT + &, (7)
directly linking the I(1) variables g; and Z; in the time domain.

Equations (3) and (5) imply that the true parameter on X may vary with fre-
quency in the interval [0,27] or equivalently [—7, 7]. While we do not normally expect
to have to estimate a continuous functional dependence like 3(w), it is often conve-
nient to examine frequency bands and allow the coefficient to vary over a discrete set
of bands. This is precisely the modelling environment that band spectrum regression
was designed to address. To this end, we adopt a simpler, prototypical mechanism
by postulating dual bands By = [—wo,wo], and BG = [—7, 7] — [—wo,wp] and set

| B4 for w € B = [—wo,wo
ﬁ(w)_{ﬂAc for w ¢ By '



Then N
AWY = AWXS3, + AWE (8)
AWY = AWX B pe + AWE (9)

where

A = the n x n selector matrix which zeroes out frequencies in WX that are not
relevant to the primary band of interest, say B4. Then, AW = [I — A|]W
extracts the residual frequencies over B%. Note that A°A = AA° = 0.

B4 = k x 1 matrix of parameter values on the stochastic variables over the band
Ba.

B e = kx1 matrix of parameter values on the stochastic variables over the resid-
ual band BY.

U = W*AW = a non-stochastic n x n matrix, and ¥¢=W*AW =1 — V.

Equations (8) and (9) allow for a variable parameter (across a subset of the
frequencies) on the stochastic component of the integrated variables. It is instructive
to examine the model for the data that these equations imply in the time domain.
When the variables are purged of their deterministic components, the model for the
stochastic components of the data can be written as

Wj = WXB(w) +WE=(A+ A ) WXB(w) + WE
= AWX B, + AWXS e + WE,

so that
J=UXB,+(I—-0)XBye +2
= UX[B, 4+ VX[, +E. (10)

Note that (8) and (9) are recovered from (10) by taking discrete Fourier transforms
and premultiplying by the selector matrices A and A€. In terms of the observed data,
(10) can be written as

y = Zm, + VX[ + (I —U)XB, +&
= Zm, + V(X — ZIo) B ge + (I — V) (X — ZT1) B, + &
= Z((ﬂ'l — HQﬁA) + \DCZHQ(/gA _/8Ac) +X6A — \I/CX(ﬁA _/8Ac) +g, (11)

or, equivalently,
y=2(m, —aBye) + VZILo (Bye — Ba) + XBpe — VX (Bge — Ba) +5,
or as
y=VZ(r, —yB,) + VZ(m, — ol 4c) + VX[, + VX [B e +E. (12)

These formulations make it clear that detrending the data in the time domain is not



a simple matter of applying the projection matrix (),. In fact, correct trend removal
is accomplished by the use of the operator Qy = I — Py, where V = [Z, V7]
or, equivalently, in view of (12) V = [VZ, ¥°Z]. Methods that rely on prefiltering
by means of @), do not fully remove the trends and this leads to some important
consequences, like biased estimates.

Hannan’s (1963) inefficient band-spectrum regression estimator is an example.
This estimator can be constructed for the band B4 and then has the form:

By =(X'Q.9Q.X) 1 (X'Q.¥Q.y), (13)

with a corresponding formula for B Ac, the estimator over the band BY. In forming
B 4 and B e, the data are filtered by a trend removal regression via the projection @,
before performing the band-spectrum regression. This procedure follows Hannan’s
(1963) recommendation for dealing with deterministic trends. Using (11) and (13)
we find

By= 04+ {X’QZ\IIQZX}J{X’QZ\I/QZ[\IICZHQ (Ba—Bac) — VX (B — Bae) +E]}
= ﬁA - {)E/Qz\sz)E}_l{i(/Qz\I}Qz[\I}C{E (ﬁA_ﬁAC) - a} (14)
= 84— {X'Q.9Q.X} {X'Q.VQ.[VX (8,—P4:) — &}

The corresponding formula for B Ac 18
Bac = Bae — {(X'QUQ.X} HXQUQ. [UX (B4e — B4) —E[}. (1)

Thus, E(B4) # B4, and E(B4e) # [ 4, in general, and band-spectrum regression
will yield biased estimates of 34 when 34 # (3 4.. Formally, we have:

Theorem 1 If E(|X) = 0, then the bias in the band spectrum regression estimator
B is

E(BA’X) - ﬁA = - {X/QZ\IJQZX}il {X,QZ\I}QZ\I}CX (6/1 - 6/10)}' (16)

Remarks

(a) The bias in 3 4 depends on the extent of the difference 3,4 — B34 between
the coefficients in the dual frequency bands. Note also that if A = A° = I, then
V€=U =1I,,and E(4) = Ba = B 4e-

(b) The problem with the estimator (34 is that it suffers from omitted variable
bias. When the model has coefficients that change across two or more frequency
bands, the data satisfy an expanded linear system in which both the deterministic
trends and the stochastic variables are augmented by data relevant to the extra bands
as is clear from (11) and (12). Conventional detrending methods fail to take account
of the expanded set of deterministic regressors, and consequently do not fully detrend
the system. Use of the detrending filter vy correctly removes the expanded set of
deterministic trends and, as seen in Theorem 2 below, this leads to estimators of 34
and 4. that are unbiased.



(c) To some extent the problem with B 4 1s a finite sample one. To see this, consider
the regression equation (11), where the deterministic trend matrix Z is augmented
by the additional variables ¥¢Z = W* AW Z. When z; in (1) is the polynomial trend

= (1,t, 2, ...,tpfl) , the discrete Fourier transform of d; = &, 1% has the form

L e e _ Vo 5s=0
= \/ﬁ;Ztén e = n_1/2f1/n8 S#O (17)

for certain vectors fons, fins = O(1), as n — oo, and where \; = 27s/n (s =

0,1,...,n— 1) are the fundamental frequencies. Suppose A\; — X as n — oco. Then
we will set
fo= g fon = lin 07> iy fi(N) = litn fios = lin 3 e (18)
t=1 t=1

When the selector matrix A€ eliminates the zero frequency, ¥¢Z has elements of
O(n_l/ 2) and, consequently, it might be surmised that neglecting the additional
variables U¢Z in (11) has no effect asymptotically. However, these variables can
have an effect asymptotically in some cases, as shown below in Section 4.

Note that when z; = 1, d; = 1 and we have directly

L& e Jyn os=0
_\/ﬁge _{o s#A0

In this case, fo = 1 and f; (A) = 0. Thus, eliminating the zero frequency will de-
mean the data and leave the model unchanged for A; # 0. In this case of simple
data demeaning, ¥°Z = 0 and so ¥Q,¥° = WU — UP,¥¢ = 0. It follows that
X'Q.vQ,¥°X =0 in (16) and therefore ﬁ 4 1s unbiased in this case. Note that since
VeZ = 0 we have Q; = Qv and, in consequence, B 4 1s equivalent to the estimator
B4 shown below in (20) in the special case of mean extraction.

If zz = t, and d; = t/n, then with some calculation we find

w Ztez)\s _ 27::{/12 s =0 (19)
d — zz\_g .
M) n3/2 n1/2 T_oirs ° #0

Thus, when 2/ = (1,t), we get fJ = (1,1/2), and fi(N) = (0,e*/(e?* — 1)). In
this case, fi(\) # 0, a fact that will be particularly important for some of the bias
formulae derived in Section 4.

In general, for a deterministic trend 2; for which dp,,j = 6, lz[m] — u(r) asin (2),
we get the limit fy = fol u at the zero frequency in (17) and (18).

In place of the Hannan estimator (13), we now consider
Ba= (X'QuIQvX)H(X'QviQyy), (20)

where the data are first detrended using the projector @y = I — Py,. Note that since
V =[0Z,0°Z] and UU° = 0, we have Py = Pyz + Pyez. In view of (12), we have

AWQvy = AWQvIYX B4+ AWQy¥°X (4 + AWQVE, (21)



and
AWQV\I/C = AWP,U° = AW (Pq;Z + P\pcz) Pe = 0,

since AW Pyez =0 and Pyz¥¢ = 0. Thus, (21) is equivalent to
AWQyy = AWQyY X3, + AWQvE,
and over the band BY we have the corresponding system
AWQyy = AWQy Y XB e + A WQyE.

It follows that N
Ba =B84+ X' QuvIQvX) (X' QuIQy?)

and, thus, BA is an unbiased estimator of 3 4. Likewise BAC = (X'QyIQyX) ! x
(X'Qv¥°Qyy) is an unbiased estimator of 3 4.. Formally stated we have the following:

Theorem 2 If E(Z|X) =0, then E(8,4]X) = B4, and E(B4¢|X) = Be.

Thus, correctly removing the expanded set of deterministic trends in (12) by
means of the detrending filter QQy leads to unbiased band spectral regression estimates
of 34 and (B 4.. The following section gives some alternate approaches to unbiased
estimation.

3 Unbiased Estimation

The problem of the omitted variable bias can be dealt with either in the frequency
domain or in the time domain. In the frequency domain, one alternative is to leave
any detrending until the regression is performed in the frequency domain. In effect,
this procedure is implicitly suggested in Hannan (1963, 1970) because the regressors
there are allowed to be harmonisable processes that satisfy the so-called Grenan-
der conditions (Hannan, 1970, p. 77), which includes deterministic trends like time
polynomials.

To do frequency domain detrending, we simply apply the discrete Fourier trans-
form operator W to (11) and then perform the band spectrum regression. The
transformed model is

Wy = WZ(r, —IoB,) + WU ZTTy (B4 —Bae) + WX B, — WUX (B,—B0) + WE
= WZ(r, —TaB,) + AW ZTILy (B —Bac) + WXB4 — AWX (84— Bae) + WE

The resulting band spectral estimator for the band B4 is equivalent to a regression

on
AWy = AW Z(rr, —1o3,4) + AWX 3, + AWE, (22)

since AA°¢ = 0, and therefore this estimator has the form:

~f N B .
Ba = (X'W*AQaw z AW X)) H(X'W* AQ s AWY)
= Ba+ (X'W*AQaw zAWX) H(X'W* AQ aw z AWE).



Clearly, E(B£|X ) = B4, and the estimator is unbiased. A similar result holds for the

corresponding estimator BQC of B 4. Formally, we have:

Theorem 3 If E(¢|X) = 0, then band spectrum regression with detrending in the
frequency domain produces unbiased estimators, BQ and BQC of B4 and B ge-

Remarks
(a) In this frequency domain approach, the so called Frisch—Waugh (1933) theorem

holds: viz. the regression coefficient BQ on the variable AW X in (22) is invariant to
whether the regressor AW Z is included in the regression or whether all the data is
previously detrended in the frequency domain by regression on AW Z.

(b) By contrast, if a switch between time domain detrending and frequency do-
main regression is made, then the Frisch—-Waugh invariance theorem can fail when
the model has coefficients that change over frequency bands and conventional de-
trending is performed. In effect, a conventional time domain detrending regression is
accomplished by application of )., and this filters the data prior to taking discrete
Fourier transforms. In the subsequent band spectrum regression, only a subset of
frequencies are included in the regression (e.g., those corresponding to the band 54)
and this partial data set satisfies the following system

AWsz = AWQZ\I/C(ZHQ - X)(BA - BAC) + AWQzXﬁA + AWng
= AWQ. VX (Bye — B4) + AWQ.X B4 + AWQ.E (23)

Since X'Q.W*AWQ,U°X = X'Q.¥Q.¥°X # 0, in general, (that is, the regressor
matrices in (23) are not orthogonal) the band spectral regression estimator 5, will
suffer from omitted variable bias whenever 34 # B4c. The Frisch—-Waugh theorem
invariance breaks down because (23) and (22) are not equivalent regression models.

(c) It follows that, under the maintained hypothesis that the model has coefficients
that change over frequency bands, there will be omitted variable mispecification in the
time domain unless the model is modified to appropriately augment the deterministic
trends and the regressors for variable changes across bands. This misspecification
affects time domain detrending. The simplification that occurs if detrending is done
in the frequency domain is that augmentation of the regressors is unnecessary: the
correct variables are automatically included in the system upon application of the
selector matrix that determines the relevant bands for inclusion in the band spectrum
regression, as (22) makes clear. As shown below, a similar simplification occurs in
the time domain provided the correct detrending filter is applied.

(d) When detrending in the frequency domain, it is important to use a singu-
lar value decomposition (SVD) routine to invert the appropriate matrices, since for
certain Z matrices AW Z and AW Z will often have columns with elements that
are zero or that converge to zero, (for instance, AWZ = 0 when Z = a vector of
ones), resulting in a singular moment matrix. In the absence of collinearity in the
stochastic regressors, such singularity, where it occurs, will be confined to the deter-
minisitic regressors. Also, the deterministic regressors have zero coherence with the

10



stochastic regressors over non-zero frequencies. Thus, the coefficients and standard
error calculations for the stochastic regressors will not be affected since the relevant
moment matrices will be block diagonal asymptotically.

(e) Lastly, detrending in the frequency domain also has the practical advantage
of removing any determinisitic leakage that arises when vectors and matrices with
deterministic components are padded to the nearest power of 2 to accommodate
the requirements of standard fast-Fourier transform (FFT) routines. This leakage
is deterministic in nature, and is purely a function of the deterministic variables.
It is therefore captured precisely by the padded discrete Fourier transform of the
deterministic components. Any deterministic leakage is then removed entirely from
the stochastic regressors when they are detrended in the frequency domain.

Next we turn to consider the time domain solution to the omitted variable bias.
Here the solution appears to be straightforward, but there are several alternatives
that are worth examining. Equation (12) gives the model for y in terms of the full set
of deterministic and stochastic regressors [¥Z, ¥¢Z, WX UX|. Linear regression on
(12) then yields unbiased estimates of both 34 and (3 4c, at least when the regressors
and errors are orthogonal. The model is similar in form to a linear regression with
a structural change in the coefficient vector, which can be rewritten in terms of the
original regressors and coefficients augmented by a regressor relevant to the change
period (here, the frequency band where the change occurs) with a new coefficient
measuring the change that occurs.

Now, note that the regressors [PX, U¢X] in (12) are orthogonal, so we can expect
that there will be no omitted variable bias from the change in the coefficient across
frequency bands in this system when we neglect one of these regressors. Further, as
we have seen in Theorem 2, we may detrend the data prior to regression using the
filter @y and then apply band spectrum regression as in (20) . This procedure leads
to the same estimators of 3, and 4. In other words, the Frisch—Waugh theorem
holds again: here the regression coefficients on the variables ¥X and WX in (12)
are invariant to whether the regressor V' is included in the regression or whether the
raw data are prefiltered using Qy .

Further inspection of (12) reveals that to estimate 34 it is sufficient to detrend
by means of the partial filter Qyz. To see this, note that upon the use of the filter
Qwz (12) becomes

Quzy = QuzVZ(m, — 2B ) + QuzVX By + Quz VX B e + QuzE. (24)

Next, observe that X' U*Qyz¥¢ = X'UQy, V¢ = 0, so that the regressor Qyz VX
is orthogonal to the regressors QuzV°Z and QyzV°X. It follows that we may omit
these latter regressors in (24), leading to the estimate

EA: (X'0QuzPX) H(X'UQyzy)

of B 4. Alternatively, we may first detrend the raw data (y, X) using Quz and then
apply band spectral regression, yielding

EA: (X'QuzYQuzX) H X' QuzPQuzy).

11



A simple calculation gives the following equivalence.

Theorem 4 EA:EA: By = BQ

Thus, correct detrending in the time domain by any of the alternatives discussed
above leads to estimates of the coefficients 34 and 3 4. that are identical to those ob-
tained from a band spectral regression where the detrending is done in the frequency
domain.

4 Asymptotic Theory

This section considers what happens to the bias in Theorem 1 as n — oo, and derives
a limit distribution theory for the detrended band spectral regression estimates.

Let ng = #{\s € Ba} and n, = #{\s € Bac} be the number of fundamental
frequencies in the bands By and Bye. It is convenient to subdivide [—7, 7] into sub-
bands B; of equal width (say, 7/J) that centre on frequencies {w; = 7j/J : j =
—J+1,..., J —1}. Let m = #(X\s € B;) and suppose that J, of these bands lie in
B4. Then n = 2mJ and n, = 2mJ,, approximately. The following condition will be
useful in the development of the asymptotics and will be taken to hold throughout
the remainder of the paper.

Assumption 3

(a) ng/n — 0, and ne/n — 1 —0 for some fixred number 6 € [0,1] as n — oo.
(b) m,J — oo, and m/n,J/n — 0 as n — oo.

For the bias in B 4 to vanish asymptotically, the deviation that depends on the
term

(X'Q.VQ. X} {X'Q.9Q.V°X (8,4 — Bc)}

in (14) needs to disappear as n — oco. We will distinguish the two cases of station-
ary and nonstationary (integrated) Z; corresponding to Assumptions 1 and 2 in the
following discussion.

For the stationary case, the bias in B 4 will disappear when

<X'QZWZX>‘1<X’QZ\DQZ\PCX> g

(25)

n n

A similar requirement, obtained by interchanging ¥ and W€ in (25), holds for the
bias in 3 4.. We have the following results for the stationary case.

Theorem 5 If x; and €; are zero mean, stationary and ergodic, uncorrelated time
series satisfying the conditions of Assumption 1, band spectml regression followmg
detrending in the time domain is consistent. In particular, ﬁA 2 B4, and ﬁAc 2 B pe-

The limit distribution of the band spectral regression estimates are as follows.

12



Theorem 6 IfZ; and g, satisfy the conditions of Theorem 5, we have \/E(BA—BA) A
N (0,V,), where

Vo ([, o)) (2n [ fitots)( [ fuias) . @)

with an analogous result for 3 .. Further, \/E(BQ —B4) <4 N (0,Va), again with an

analogous result for Bic.

Remarks

(a) According to theorem 5, the bias in band spectral regression arising from
detrending in the time domain prior to frequency domain regression disappears as
n — oo. Thus, the bias reported in theorem 1 is just a finite sample problem when
the stochastic components of the data are stationary.

(b) Note that there is no difference between the two bands B4 and B in this
respect, so it is irrelevant whether the main focus of interest is high or low frequency
regression.

(c) It is apparent from Theorems 5 and 6 that, in the stationary case, the as-
ymptotic behaviour of the time domain detrended band spectral regression estimator
is equivalent to that of the frequency domain detrended estimator and, in addition,
to that of the usual band spectral estimator when no detrending is required. The
estimators are consistent and they have the same limit distribution as in the case of
no detrending. Thus, the bias problem of Section 2 is purely a finite sample problem
in the stationary case.

(d) The form of the asymptotic covariance matrix Vj is a band spectral version of
the familiar formula, (X'X)~}(X'VX)(X'X)~!, for the robust covariance matrix in
least squares regression. V, can be estimated by replacing the spectra in the above
formula with corresponding consistent estimates and averaging over the band B 4. For
the full band case where B4 = [—m, 7] the matrix V; is the well known formula for
the asymptotic covariance matrix of the least squares regression estimator in a time
series regression (c.f. Hannan, 1970, p. 426).

Next, we develop the corresponding asymptotics when Z; is an I(1) process. Here
it will be important to distinguish the two cases of estimating over the bands B4
and B§. Over By, which includes the zero frequency, the estimator is known to be n-
consistent when (3, = 34 (see Phillips, 1991). In that case, the regression equation
is a conventional cointegrating relation as in (7) above. When (3,4 # (34, the same
result continues to hold over the band B4, as we show in theorem 8 below. In this
case, the bias in (14) disappears when

X'Q, Q. X\ Y X'Q,0Q,V°X
(XOwaxy (xQuQw ) 1, o

n n?

Note that in (27) the moment matrices are standardised by n?, because the data
nonstationarity is manifest in bands like B4 that include the zero frequency. On the
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other hand, over frequency bands like B} that exclude the zero frequency the rate
of convergence of the moment matrices is slower and the bias in (3 4. will disappear
when

, c -1 l c Y
(X Q. QZX> (X Q:¥°Q. X ) 2, (28)

n n

The following lemma comes from Phillips and Ouliaris (1997) and gives some
useful limit theory for periodogram averages in the I(1) case.

Lemma 7 (Phillips and Ouliaris, 1997) Let Ty be an 1(1) process satisfying Assump-

tion 2. Define &'y, = ¥/ — d/(D'D) Y (D'X) and let wyq(N\) be the discrete Fourier
transform of T.q¢. Then, as n — oo

(2) 72 Yy em, wi(As)wz(Ae)* % i BoBL,
(b) n=3/2 YoreeB, Wy(As)wa(As)* 4 fo B, fo fol By fo,
() n72 5, 8, Wad(As)wea(Ns)* % f3 BouBlu,

_ x d el
(d) n 12 ZASeBg wz(As)wa(As) H—%B (1) ch LD d>‘

1—eir
(©) 1 S, 05wz A)” & fis | ) + b Ba (DB (1) | o
(5) 07 ey, weaMs)waa(Ns)* 5 fig [ fos (@) + (2m) 7 g(w)g(w)*] dov,
(&) n 125 e we.a(As)wa(As)* 5 — Jge 9(w) fiw)*dw,

(h) Xox,epe wa(As)wa(As)* — o Jge, fi(w) fi(w)*dw,
(i) n 7t Ya.en, wa(As)wa(As)* — fofo,

where By (r) = Bg(r) — (fol Bzu/> (fol UU'>_1 u(r), fez(w) = |1— €M|_2 fopv, (@)

and )
ezw

9 B) = = Bal() + (3 Bo) (Jhu) fi(w)

The main result on asymptotic bias in the I(1) case is as follows:

Theorem 8 Suppose €; is a zero mean, stationary and ergodic time series satisfying
the conditions of Assumption 1, and Ty is an I(1) process satisfying Assumption 2.
Then:

(1) Ba = Ba-

(i) Bac 5 Bac + (B4 — Bac)E7€
where

—
—
—

Vc[%fm( @) + 9w Br)g(w, Br) ] |
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and

f=[</pg@a3mfmwrdw>(%uu0 U%u34.
A
Remarks

(a) Theorem 8 reveals that, when the regressors are nonstationary integrated
processes, band spectral regression is inconsistent in frequency bands that exclude
the origin when detrending is performed in the time domain prior to frequency domain
regression. Further, the inconsistency is random, and depends on the limit process of
the standardised regressor — in the case above, this is the Brownian motion process
B,.

(b) Note the important role played by the limit function fi(w) of the discrete
Fourier transform of the standardized deterministic process d; = 6,, 2. In the leading
case of a simple time trend z; = ¢, the limit function is fi(w) = e“ /(1 — ™), and so
we have the simplification

g(w,B,) = e (1 —e™)! [Bw(l) + (fé Bwr) ( (1)7°2>_1} .

When fi(w) = 0, as for simple mean removal, observe that £ = 0, so that there
is no asymptotic bias in the estimator B 4c in this case. In fact, demeaning the
data in the time domain does not produce any bias in subsequent band spectrum
regression, because the discrete Fourier transform in this case satisfies wg(\s) = 0,
for any Ay € B from (17). Hence, U¢Z = W* AW Z = 0 from which it follows that
VR,V = UV = 0 and the bias term in (28) is annihilated.

(c) The theorem also shows that band spectral regression is consistent in frequency
bands that include the origin. In this case, the slow moving component dominates
the regression, as in a simple cointegrating regression (c.f. Phillips, 1991). However,
in regression over low frequency bands, there is a second order bias that becomes
manifest in the limit distribution of the band spectral estimator, as the following
result reveals.

Theorem 9 Under the conditions of Theorem 8

n(By— B4) 4, G 1F(Bye — Ba) + [f(l) BZ.’ILB;/(:.U} o [f(l) Bm.udBe] ;

where
P (1) (1) o= 0 (1)

Remarks

(a) Here, the second order bias is G~'F(84. — 3,4) and it depends on the change
(6 4¢ — 34) in the coefficient across frequency bands. It is also a random quantity, de-
pending on the the limit Brownian motion process, B, of the standardised regressor.

Note that . / .
L= fof (Jouu') =1, = (Jou) (Jou) (Jouu')
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so that in the case of simple demeaning of the data we have p = 1 and

I—- (féu)(féu)l(féuu’)il =0.

In this case, of course, there is no second order bias in the limit distribution of
n(B4 —B4)- This is as expected, in view of the fact that 5,4 = 54 in the simple mean
extraction case. R

(b) The presence of the bias term in the limit distribution of n(84 — 54) when
p > 1 means that there is no easy basis for asymptotic inference using the estimator
B 4, even though it is consistent.

-1
(¢) The unbiased component [ fol Bx,uBé.u] [ fol Bw,udBE} in the limit distribu-
tion has the mixture normal distribution

MN <o, 27 f... (0) [ I6 Bx_uB;_u] _1> . (29)

Next we consider the limit theory for the frequency domain detrended estimator

I .
4 in the nonstationary case. Here we have:

Theorem 10 Under the conditions of Theorem 8
n(Bh—6a) % (JoB.BL) (/b B.aB.)

— MN (o, ( I5 Qxﬁg)*l 2 for (0)> , (30)

1 . . .
where B, = By — fo B, is demeaned Brownian motion B,. Moreover, when the
deterministic variable z includes a linear time trend

>f d - -
\/E(BAC —Bae) = N(O, [/zggfzm(w)dw] |?7T /Blcqum(w)fsa(w)dw] [/lggfmm(w)dw] ) .
(31)

Remarks ;
(a) Theorem 10 shows that the limit distribution of 5, is mixed normal with
~1
matrix mixing variate ( fol Ewﬁg) and scale given by the long run variance of

the equation error, 27 f.. (0). Note that the mixing variate depends only on the
demeaned Brownian motion B,. Thus, the limit distribution (30) is the same as
that for a cointegrated regression model in which it is only necessary for the data to
be demeaned.

(b) We may compare the mixed normal limit distribution (30) with (29). Note

-1
that By, (r) = By (1) — (fol Bxu’> (fol uu’) u (r) is the Ly projection residual of B,
on u. If the limit function u (r) has a component that corresponds to a constant, then
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fol B; lies in the span of u and the residual moment matrices satisfy the inequality
fol ByuB., < fo B, B!, so that when p > 1

-1

(JoB.BL) " < [JiBuuBLl]

It follows that in the nonstationary case the frequency domain detrended estimator BQ
has greater concentration than the unbiased component of the time domain detrended
estimator ﬁ 4. In this sense, ﬁ 4 loses both in efficiency and in central location over

BQ. When p =1 and u(r) = 1, we have By, (r) = By(r) — fo + = B, and the limit
distributions of 3 4 and BQ are then the same. Of course, for simple mean extraction,

the two estimators 3 4 and B "4 are equivalent in view of theorem 4 and the fact that
34 = 34 in this case, as mentioned earlier.

(c¢) The limit distribution (30) makes asymptotic inference about 34 using BQ
straightforward. For instance, regression Wald tests can be constructed in the usual
way leading to asymptotic chi-squared criteria by using consistent estimates of the
conditional covariance matrix in (30) of the form

27 .. (0) (n2X'W* AQ AWZAWX)_l — 2 f..(0) (n_ZX’QV\IJQVX)_l ,

where fas is a consistent estimate of the spectrum of ¢; obtained from the regression
residuals.

(d) Theorem 10 also gives the limit distribution of the frequency domain de-
trended estimator for the high frequency band B4. It is apparent from (31) that this
distribution is the same as it is in the case of trend stationary regressors - c.f. theo-
rem 6, which gives the variance matrix formula (26) for the band By, there being no
substantive difference between the bands in the stationary case. The result (31) is
especially interesting because, as shown in Phillips and Ouliaris (1997), the discrete
Fourier transform of the I(1) regressor Z; has the asymptotic form

1 ei)‘s [fn — fo}
wy(As) = 1 — etds Wer (As) = 1—eirs  nl/2
d 1 ei/\s (32)
~ T e () = T Bel)

and therefore depends on the limit Brownian motion B, of the standardised I(1)
regressor n~1/ Zx[n] even for frequencies Ay — A # 0. However, when the deterministic
regressors have a linear time trend component the inclusion of these regressors in
the frequency domain regression asymptotically eliminates the term involving B, (1)

n (32). This is so because the discrete Fourier transform of z; has a component
RN I
(corresponding to the linear trend) that behaves like (1 — ez’\5> e*s . Hence, high

band frequency domain regression on both x; and z; purges w3(\s) of the component
that carries the I(1) effect of the data into the non-zero frequencies. It seems that
this result, interestingly, is dependent on the presence of a linear time trend in the
deterministic regressors.
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(e) Equation (32) is also interesting because it shows that the discrete Fourier
transforms of an I(1) process are not asymptotically independent across fundamental
frequencies. More than this, (32) shows that cointegration has major leakage effects
at all non-zero frequencies. Thus, the corresponding result for the time series y; is

1 eths
wyAs) = T W, (As) = 7 By(1)
1 ez)\
= T ) T AaBe)

so that the dft’s of y; and x; are cointegrated for all Ay # 0.

(f) Finally, equation (32) reveals that any padding that occurs in fast Fourier
transform (fft) routines will affect the limiting statistical properties of the dft in the
I(1) case. Thus, when the sample size is not a highly composite number, it is common
in dft routines (e.g., the fft routines in GAUSS) to pad the sample observation vector
with zeros to make up the deficient number of observations to the nearest power of
2. In such cases, the final observation is Z,, = 0, and then in place of (32) we have

1 ers Ty g 1

w5 (As) = 1— eixs e (As) + T e nl/2 T 1= eine e ),

along all such non-composite sequences. Thus, padding the observation vector with
zeros is equivalent to eliminating the I(1) component in the dft of an I(1) process at
non zero frequencies.

5 Efficient Regression

Efficient regression uses a preliminary regression to obtain estimates of the equation
errors and a consistent estimate of the error spectrum, say f..(w). This spectral
estimate is then utilized in a weighted band spectral regression of the form

B = H'hy, (33)

where

Z Xs) fee (X (Z Ey(\s) fee(Ms) ™ )

As€EB4

-1
( Z Idd fss s) 1) ( Z Idz fss s) ) )
As€EBA As€BA



and Inq(As) = wa(As)wa(As)*. The corresponding estimate BQC over the band B9 is
defined in an analogous way. In conventional regression notation, these estimates can

be written as generalized least squares estimates obtained from (22) . For BQ we have
=/ * — *
Ba = (X'W*AQw z AW X)) (X'W* AQy z AWY)

where
V-1 1 I AT —1 1k a1
Qiwz =V = ViAW Z (ZW* AV T AW Z) - Z'W*AV;

and

V; = diag (f (Ao), Foe (ML) 5 ooy Foe (An,l)) .
An analogous formula holds for Bic. These estimates have the following limit theory.

Theorem 11 Under the conditions of Theorem 8
n(Bs—Ba) = (J§B.B:) (/5B.dB:)
-1
= MN (o, (/oB.B;) “2rfe (0)> :

and when z; includes a linear time trend

(34)

~1
Vi(Bhe = Bac) SN (0, 2m l / fm(w)faa(w)ldw] ) : (35)
B

Remarks ~f
(a) Theorem 11 shows that the limit distribution of 3, is the same as that of

B ‘4, as given in Theorem 10. Again, the mixed normal limit distribution facilitates
inference about 3,4 using BQ and regression Wald tests about 3,4 can be constructed

in the usual way using an estimate of the conditional covariance matrix of BQ of the
form 27 f.. (0) (X' W*AQY AW X)~1. The mixed normal limit theory in (34) is the
same as that of the optimal estimator for the model (22) under Gaussian assumptions
(c.f. Phillips, 1991).

(b) For regression over the band B, the estimator BQC has a limiting normal
distribution whose variance matrix (35) attains the usual efficiency bound in time
series regression (e.g., Hannan, 1970, eqn. 3.4, p. 427), adjusted here for band limited
regression. Note that (35) carries no effects from the deterministic detrending and is
identical to the corresponding result for efficient band spectral regression in stationary
regression.

(c) The estimator defined in (33) is based on weighted averages of periodogram
estimates at the fundamental frequencies. It has recently been shown in Xiao and
Phillips (1997) that estimates of this type have better higher order properties than
estimates based on smoothed periodogram estimates when the bandwidth for the
spectral estimates is chosen in an optimal data-determined way.

(d) Both limit results (34) and (35) permit the construction of asymptotic chi-
squared Wald regression tests on the coefficients in the familiar way.
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6 Monte Carlo Evidence

The practical importance of these time domain and frequency domain detrending
results can be demonstrated using simulations. To do so, we generated a statistical
model with the following properties:

AWj = AW X + AWE over the frequency band By = [0, 27/3)

AW5 = 0.25A°WX + AWE over the frequencies BY = [27/3, 7]

where X is an integrated process with normally distributed serially independent in-
novations which are independent of the normally distributed error €, which is also
serially independent. This model provides a best case scenario for the Hannan ineffi-
cient estimator since X and g are independent and € has a flat spectrum, so that the
Hannan inefficient estimator is also efficient.

The simulated data was converted to the time domain using an inverse discrete
Fourier transform routine and the resulting series for 3y and X were detrended using
a constant and a linear time trend. The simulation design was based on 100,000
iterations and sample sizes of n = 250, 500, 1000, and 4000 observations. The results
are given in Table 1(a).

The FFT routine used to compute the discrete Fourier transforms required vectors
with length an even power of two. This resulted in padded regressor vectors with an
additional 6, 12, 24 and 96 observations (all zero), respectively. Note that the padding
automatically produces deterministic leakage from the zero frequency to the higher
frequencies. We ran additional simulations that control for deterministic leakage by
using sample sizes that are highly composite numbers, viz. n = 256,512, 1024, and
4096 (all an even power of two). The results for these simulations are given in Table
1(b).

For the inefficient band-spectral estimator over the high frequencies using con-
ventionally detrended y and X , the empirical mean of the estimator for n = 250
observations was 0.3598 with a standard error of 0.7004e—03, giving a very large bias
of 0.1098, or over 40%. Notice that both the standard error of the estimates and
the average bias do not decline as n is increased. Moreover, the bias itself cannot be
attributed to deterministic leakage as bias is still evident when there is no leakage
(see Table 1(b)).

For the frequency domain detrending estimator (our recommended approach) and
a sample size of n = 250, the mean is 0.2496 with a standard error of 0.6728e—03.
This estimator is obviously unbiased for all sample sizes, corroborating the results of
section 3. The lack of bias also implies that the deterministic leakage in the discrete
Fourier transform caused by padding has been purged exactly using frequency domain
detrending. Also, the obvious decline in the standard error of the estimates as the

. ~f . .
sample size increases suggests that (3. is consistent.

Figure 1 provides kernel density estimates of the frequency domain and time
domain detrended simulation estimates (relative to the true parameter value of 0.25).
The frequency domain estimator is obviously unbiased and normally distributed. In
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contrast, the time domain detrended band spectral estimator has greater variability.
Also, its density its skewed to the right, suggesting the possibility of very large bias for
an single draw from the distribution. Using the simulated distribution, the probability
of observing positive bias in the estimates is 0.62, while the probability observing at
least a positive bias of 0.25 (i.e., the true parameter over (3 4.) is approximately 0.24.

Table 2 provides evidence on the accuracy of the asymptotic bias formula given
in Theorem 8(ii) as compared to simulated bias for the leading case of a simple time
trend z; = t. The table shows the arithmetic mean of the computed bias over 100,000
repetitions, assuming 3 4. = 0.25. The simulation results suggest that the asymptotic
bias formula performs quite well, being less than 20% different from the simulated
bias across all sample sizes. Figure 2 plots the mean bias (for n = 256) for increasing
values of B4. € [0,84 = 1]. Substantial bias is clearly evident for values of (3.
between 0 and 0.5.

Lastly, we provide evidence on the efficacy of Hannan’s efficient spectral regression
technique relative to inefficient spectral regression. For these simulations, the true
residuals of the model and the innovation sequence of the explanatory I(1) variable
were assumed to follow ARMA(2,1) processes, thereby providing an opportunity for
efficient spectral regression to achieve efficiency gains compared to inefficient spectral
regression. The simulation results are presented in Table 3. The results largely par-
allel those given in Tables 1(a) and 1(b) on the issue of frequency domain versus time
domain detrending. Both the inefficient and efficient estimators are obviously unbi-
ased; however, the conventional time detrended estimator still suffers from substantial
bias. The efficient frequency domain detrended estimator is clearly preferred; there
is an approximate 20% reduction in the standard error of the parameter estimates
relative to inefficient spectral regression. Of course, this efficiency gain is only illus-
trative, and will change with a different setting for the data generating mechanism
of the equation errors.

7 An Application to Present Value Models

7.1 A Simple Model of Stock Prices

Here we study a simple present value model of stock prices and dividends as in
Campbell and Shiller (1987).! The model is then used in an empirical application of

!The present value model is a special case of CCAPM with risk neutral consumers.To see this,
consider an infinite-lifetime representative economic agent with preferences determined by the dis-
counted expected utility:

o Z BU(cr)
t=0

where 0 < 8 < 1 is a discount factor, U (-) is a concave utility function, ¢; is consumption and Eg
signifies base-period conditional expectation. The agent’s budget set is given by:

ct +pirAr = (pt + di) A1

where A; is the quantity of assets held between ¢t and t 4+ 1, p; is the ex-dividend price in period ¢,
and d; is the t-period dividend payment. The first order conditions for optimization imply:
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the band spectral regression methods studied in earlier sections of the paper.
The present value model in Campbell and Shiller is given by:

[e.°]

pe=FE Yy Fdiy; . (36)

Jj=1

where p; is the ex-dividend stock price in period t, d; is the dividend payment, and
0 < 8 < 1is a discount factor. Suppose dividends follow the IMA(1,1) process

(1-L)d; =d+ (14 aL)e; . (37)
Under this specification
. o - 1+ .
R — >1.
Etdt+] <_] 1—|—O[>d+ 1—|—O[Ldt 5 \V/] = 1 (38)

Substituting (38) into (36) yields

o = 5(1"‘0‘5) d 5(1"‘0‘)
T 1+a)1-82" " (1-B)(1+al)

where ¢g(L) is a linear filter on the dividend process.
Since Ap; = g(L)Ad;, the frequency domain form of the relation (39) is

d == p+ g(L)dy, (39)

dZp(w) = g(e™)dZg(w) (40)

where Z, and Z; are the orthogonal processes that appear in the Cramér represen-

tations
¥y

Apy :/ "™ dz,(w), Ady :/ e dZy(w).

—m —m

In (40), g(e™) is the transfer function of the filter. Its amplitude or gain is given
by:

| _ 81 +a) Bl+a) \Y
sl = (T hasarmaoans )
B +aw) 1 1/2
N (1-0) <1 +a? + 2acos(w)> ’ (41)

For —1 < a < 0, the transfer function gain evaluated at w = 0,w = 7/2, and
w = 7 is ranked as follows:

B S B+ a) S B(1+a)
1-6" 1=p)A+a)l/2" 1=-p)(1-a)

U'(cet1) (P41 + detr)
U’ (Ct)

pt = Ef

Solving this expression forward, assuming risk neutral agents and no bubbles, we have the present
value relation (36) in the text.
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Note that the moving average coefficient a plays no role in the coherence between
dividends and stock prices at the zero frequency, but implies successively lower coher-
ence at higher frequencies. In fact, the amplitude (41) is a monotonically decreasing
function of frequency over the interval w € [0, 7] . Obviously, this is an implication of
the model that can be empirically tested.

7.2 Empirical Results

Hannan'’s efficient frequency domain regression is applied to the present value model
of stock prices studied in Campbell and Shiller (1987). Campbell and Shiller use
annual S & P 500 stock price and dividend data to estimate the long-run relationship
between stock prices and dividends. We use monthly rather than annual data to
facilitate the estimation of the short-run relationship.As in Cambpell and Shiller
(1987), the monthly Standard and Poor’s composite stock price index is converted to
real terms using the producer price index (PPI, 1967:7=1.00). The dividend series
is derived from the stock price index and the dividend yield, and converted to real
terms using the PPI.?

We begin with an examination of the time-series properties of real dividends (in-
dependently of stock prices). The Schwarz (1978) “BIC” criteria is used to determine
the appropriate order of the ARMA(p,q) model for dividends. Table 4 presents the
BIC(p,q) values for different values of p,q = 0, 1, 2; these results suggest that the
preferred model for real dividends is either ARMA(1,1) or ARMA(2,0), both of which
support a declining transfer function between stock prices and dividends.

Estimating an ARMA(1,1) model over the 1947:2-1997:2 period results in the
following estimates:

_0.6521e — 01 0.9986 0.3277

dy = dy — 1, R?=0. DW = 2.
! 1952 T (551.70) 11T T (g apsg) @ F = 09957, DW= 2.0579

where t-statistics are reported in parentheses. The ARMA(2,0) estimates for the
same period are:

_0.6018e — 01~ 0.6591 0.3388

"= i di—z, R* = 0.9957, DW = 2.044
t= 13606 T (17.086) %1 T (8.7ss) S = 09957, DW =2.0445

with inverted auto-regressive roots of 1.00 and -0.34. These roots imply that the
ARMA(2,0) model possesses an ARMA(1,00) representation with a negative first-
order moving average parameter. Also, formal tests of the unit root null using the
Phillips-Perron (1988) statistic support a unit root restriction on d;. The computed
value of the Phillips-Perron z; statistic using a Parzen kernel with 5 lags is -0.7867,
well above the 5% critical value of -2.915.

Direct estimation of the resulting IMA (1) model yields the following model:

_0.533e — 04 0.3280

Ady = - _1, R?=0.1128, DW = 2.0581
1T 40022) T (8.4888) ’

?These series (FSPCOM, FSDXP,PW) are from DRI Economics.
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The negative MA(1) parameter, which is statistically significant, suggests a declining
transfer function gain between stock prices and dividends, as anticipated in Section
7.1.

Table 5 contains band-spectral results for six frequency bands using (a) demeaned
data (8 pemeanca);(b) time domain detrended data (ﬁ grp); and (c) frequency domain
detrended data (B prp)- By comparing 3 grp and 3 EFp We can assess the empirical
effect in the stock price and dividend regressions of using time domain detrended data
rather than frequency domain detrended data (our recommended approach). We also
wish to measure the influence of stochastic leakage arising from the use of demeaned
I(1) data in frequency domain regression. This can be done by comparing 3 Demeaned
and 3 wrp for bands that do not include the zero frequency.

The recommended empirical methodology follows from the asymptotic form of
the dft of an I(1) variable given in (32). This representation suggests that band-
spectral estimates at the zero frequency can be derived from demeaned I(1) data
(thereby including the long-run stochastic component), while at non-zero frequencies
the frequency domain detrended data should be used (thereby eliminating the I(1)
effects at non-zero frequencies).

Five out of the six frequency bands in Table 5 (see rows 2-6) estimate the impact
of dividend movements over high frequencies. The widest of these frequency bands
spans [97/10, 7], or 61 periodogram ordinates, representing slightly more than 5 years.
The remaining high frequency bands contain successively less ordinates; these bands
are provided to assess whether the relationship between stock prices and dividends
depends on the length of the band examined. Lastly, we provide estimates of the
long-run effect of dividends on stock prices by estimating a band that includes the
zero frequency (see row 1 of Table 5). These estimates are based on demeaned I(1)
data.

The prediction of the theory, namely one of a declining transfer function gain
between stock prices and dividends (given an IMA(1,1) structure for dividends) is
clearly evident in the 3 rrp Darameter estimates. There is a significant relationship
between stock prices and dividends at the long-run frequency w = 0. The implied real
discount factor is approximately 2.1 per cent. Also, formal tests of the hypothesis
that the transfer function gain over [97/10, 7| is equal to the gain at w = 0 can be
easily rejected using a 5% level of significance. The t-statistic for this hypothesis
is 9.59. Overall, the results suggest that real dividend movements in the short-run
(i.e., 3 years or less) do not have significant effects on real stock price movements.
However, real dividends are important in the long-run.

We note that over the non-zero bands, there are substantial differences between
the three estimators, confirming the presence of stochastic leakage from the zero
frequency, and parameter bias arising from the use of time-domain detrended data.
Further, both the (3 Demeaned and 3 wrp estimates suggest a significant role for real
dividend movements that is statistically equivalent to the long-run effect of real divi-
dends. Using tests based on both £ pemeaneq a0d Bg7p ,;we cannot reject the hypoth-
esis that the transfer function gain over [97/10 7r] is equal to the gain at w = 0. The
t-statistics for this null hypothesis are 0.3641 ([3 Demeaned) and -0.0191 (ﬁ wrp)- The
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results from the EF D regression, reported in the last paragrah, suggest that this
finding is mistaken and is the direct consequence of bias.

8 Conclusion

It is natural to eliminate deterministic trends in the time domain by simple least
squares regression because the Grenander-Rosenblatt (1957) theorem shows that
such regression is asymptotically efficient when the time series are trend stationary
(although this conclusion does not hold when there are stochastic as well as deter-
ministic trends - see Phillips and Lee, 1996). In a similar way, it seems natural to
eliminate deterministic trends in band spectral regressions by detrending regression
in the time domain prior to the use of spectral methods. However, this paper shows
that such time domain detrending will lead to biased coefficient estimates in mod-
els where the coefficients are frequency dependent. Moreover, in models that have
both deterministic and stochastic trends, time domain detrending actually leads to
inconsistent estimates of the coefficients at frequency bands away from the origin.
Asymptotic analysis reveals that the inconsistency, which arises from omitted vari-
able effects, can be substantial and this is confirmed in Monte Carlo simulations in
finite samples.

Our suggestion is to model the data and run regressions, including detrending
regressions, in the frequency domain. In effect, discrete Fourier transforms of all the
variables in the model, including the deterministic trends, are taken and efficiently
weighted spectral regression is performed on the resulting model. Such frequency
domain detrending leads to optimal estimates for both the stationary components
(at high frequencies) and nonstationary components (at frequencies that include the
origin) of the model.

These differences between time domain detrending and frequency domain de-
trending seem important for practical work, where it is now common to model data
nonstationarities using both deterministic and stochastic trends. Our empirical appli-
cation of band spectral regression to monthly stock price and dividend data confirms
the relevance of the asymptotic results and shows that the bias effects from time do-
main detrending can be substantial. The empirical findings in the frequency domain
detrended regressions give a strong indication that the relationship between stock
prices and dividends declines as frequency increases, corroborating the prediction of
economic theory that there should be a declining transfer function gain between stock
prices and dividends.

9 Appendix

Proof of Theorem 4
Note that

QviQv = QuvY — QvYPy = QvY — Qv (Pyz + Pyez) = Qv¥ — QvVPyy
=V —-—PV—-—VPyy; +PyVPyy; =V —PyzV—VUPyy + PyzVPyy
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= QuzYQuz.
Further, since YPyy = Pyz, and V*¥ = VU, it follows that
Qv¥Qv = QuzVQuz = YQuz¥ = VQyyz.

Hence,

(X' UQuz¥X) N (X' UQuzy) = (X'QvIQvX)  (X'QvIQyy)
= (X'QuzVQuzX) (X' Quz¥Quzy)

and B =0 ,= B 4 follows. Finally, to show the equivalence of these estimates to BQ,
we simply note that

W*AQawz AW = W*AW — W* APy z AW = W — WZ(Z'0Z) 1 2"
= V(I —Pyz) = VQuz = VQuzY,

and the result follows from the definition of BQ

Proof of Theorem 5
We need to prove that (25) holds. This will be so if

nTIX'Q.0Q.X =nT'X'Q.VQ. X (42)

is positive definite as n — oo, and if

n1X'Q,0Q,0°X =n ' X'Q,0Q,7°X 5 0. (43)
Since Z; is a strictly stationary and ergodic sequence with mean zero and satisfies a
central limit theorem, (n~'D’D)~!(n"'D'X) = Op(n~"/?), and so

B —zn 227 T 2 X)) =5 — 267 (7' D'D) " (n T D'X) B &L
Thus
nX'Q,¥Q. X = n ' X'UX + op(1)
= nTIX'W AW X + 0,(1)

=n"1 D wi(A)wz(As)* + 0p(1). (44)
As€EBa

Let ng = #{As € Ba} and from Assumption 3 n,/n — 6, as n — oo. It is convenient
to subdivide [—7, 7] into sub-bands B; of equal width (say, 7/J) that centre on
frequencies {w; = 7;/J : j = —J +1,...,J — 1}. Let m = #(\s; € B;) and suppose
that J, of these bands lie in B4. Then n = 2mJ and n, = 2mJ,, approximately. We
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can now write the first member of (44) as follows

nt Z wx(A)wx(As)* =n Z Z wx(As)wz(Ag)*
As€BA j=—Ja+1 XsEB;
Jo—1
= % % Z w;()‘S)w;()‘S)* +Op(1)
]’:7.](1+1 ASGBJ
Ja—1 R
=a7 >, (1) fulwy)
j:_Ja+1
L[ fealw)de (45)
Ba

since fog(w;) = (2m) tm~! Yoaeen; Wi(As)wy(Xs)* s a consistent estimator of the
regressor spectrum fz(w) and w; = mj/J. By assumption, fyo(w) > 0, and thus
Is, fez(w)dw > 0. It follows that (44) has a positive definite limit in probability as
n — oo.

Next we need to prove (43). Decompose n1X'Q,0Q,T¢X as follows

X'Q.0Q,U°X  X'UQ,V°X X'W*AWQ,W* AW X
QEOTE _ XRETE L o) = @ +o,(1)
X'W*AAWX — X'W*AWP,W* AW X
= - +0p(1)
n n
X'W* AW P,W* AW X
== n + op(1)
X'W*AWD)\ /D'D\"} [ DW*AW X
- _ - ~ — +0p(1).

Note that
nIX'W*AWD = n! Z wx(As)wg(As)",
As€EB4
nIX'W*AWD = n~! Z wi(As)wa(As)™.
As€EB gc

Using (17), it is apparent that, since BAC excludes the zero frequency, we have
wa(As)* ~n~Y2f5, . Further, the {w=(\s) : As € Bac} satisfy a central limit theorem
for discrete Fourier transforms of statlonary processes (e.g., Hannan, 1970, pp. 224)
and are independently distributed as n — oco. Thus, as n — oo we have

nTh Y wr A wa)T ~ ST wr (M) A = Oy (n7Y).

As€B gc AsE€EBAc

On the other hand
3T wz (A wa(Ne)T ~ T Pz (No) fg +nTE YT ws(A) i) (46)

AsEBA As€Ba—{Xo}
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is at most Op(n~1/2), so that

X'W* AW P,W* AW X

n

=0,(n3%) L0

and (25) follows, as required. The same proof holds for the bias in B 4c when we
interchange the roles of ¥ and ¢ or A and A°.

Proof of Theorem 6

—~

Vil = B8) = — {17 X'QuQ.X} " [n72XQ.uQ. [v X (5, — Bs) —2)
= — {nil)?/Qz\I}QzX}71{7171/2)2/@,2\1/@2\1/6)?(6,4 - BAC)}
~ ~N —1 ~
= +{n‘1X’QZ\IJQZX} n"2X'Q,0Q,2.
As above
n~V2X'Q,0Q, VX = n V2X'0Q, VX + 0,(1)
= —n"V2X'Wr AW P,W* AW X + 0,(1)

_ (}Z’fW*AWD) <D/D>—1 (DW*ACWX) o)

N n n
= OP(1)7
so that
~ ~ ~3 —1 ~
ViBa=Ba) = {nTX'QUQ. X} nTV2X'QUQ.E + 0,(1)
~ ~3 —1 ~
= {an/\I,X} n V2 X'WE + 0,(1)
As in (45),
n XX 2 / Fra(w)dew, (47)
Ba
and
~ —Ja+1
nPXUE =02 S w(AJw ) =02 ST Y wr (A we (M)
As€B, j=—Jat1l AEB;

Now w(As) satisfies a central limit theorem for discrete Fourier transforms, and is
asymptotically independent N (0, 27 f..(w)) for As € B;. But for w; — w, we have

m! Z w;()‘s)w;()‘s)* 5 27szm(w)7
ASEBJ'

and, thus, in view of the independence of z; and &, we have
1

ﬁ A;Bj wg()\S)wE()\s)* . N(O, (27T)2fmz(wj)fss(wj))-
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Hence

23T ST wp(As)we(Ns)*

j=—Ja+1 AsEB;
1 Ja—1

1
—— ST (A w. ()
I PICISILS

J =TT

d

d N(O LR 0n)2 faalion) fnl ->>
QJ‘yi_Ja_,'_l zx\Wj) Jee W3
4 N(O, (2m) /BA fxx(w)fss(w)dw> . (48)

The stated result now follows from (47) and (48) . A similar derivation gives the result
for B3 4e-

To prove the result for the frequency domain detrended estimator BQ we use (46) ,
(45) and (47) to obtain

V(B = B) = (0 IXW AQ w2 AW X) T (n VX' W AQ aw 7 AWE)

= ( -1 Z wx(As)wz(As)* +op(1)) (n_l/z Z wx(As)we(Ag)* + 0p (1))

As€BA As€BA

1
/fxx(w)dw 2m /fxac fEE /fx;c
Ba

and the stated result follows. A similar derivation gives the result for Bic.

Proof of Theorem 8 _ _ _ _
(i) First consider the limiting behaviour of n72X'Q, Q. X and n 1 X'Q,VQ, VX
Define 2, = @/ — d{ (D'D) (D’ ) Since Z; is an I(1) process and satisfies an

~1/2

invariance principle when standardised by n , we have

-1
1/2i .d,[nr] _> BCL‘ (’/‘)/ —u (’f‘)/ (f(l) uu,) f(l) UBJIJ = BCL‘U (T)/ , Say. (49)
Write the discrete Fourier transform of 9~C~’d,t as wy 4(As) and then from lemma 7 (c)
we have
n72)2/@z\1}@z5€ = n_12 Z ww.d(As)wx.d()\s)*
AsE€EBA
LA fol B, .B.), =G, say.

(50)

Since fol By.uB ., > 0 (see Phillips and Hansen, 1990), n=2X’Q, ¥Q. X has a positive
definite limit as n — oo.
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Next, decompose n=1X' QZ\I/QZ\IJCX as follows
X'Q,0Q,U°X X'Q.W* AW P,W* AW X

n n

_ X' QpW*AW PpW* AW X
n
X'PpW*AWPpW*A WX  X'W*AWPpW*A'WX
n n

= term A — term B (51)

Take each of these terms in turn. Factor term A as follows and consider each factor
in turn. Write

X'PpW*AWPpW*AWX (X'PDW*AWD> <D/D>1<D'W*ACWX’>

n n3/2 n nl/2
(52)
The first factor is
n"2X'PoW*AWD  n~Y2X'D (D'D\"' D'W*AWD
n - n < n > n
4, /Oleu’<féuu’>1 fofo, (53)

in view of (49), (17), and lemma 7 (i). The second factor is simply n=1D'D — fol uu’.
The third factor is the conjugate transpose of

nTEXWEAWD =072 3T wr (A wa(As)*
As€BG

d 1 €i/\f1(A)*
L (Bm(l)/imd)) (54)
from Lemma 7 (d).

The limit of term A now follows by combining (54) and (53)

X'PpW*AWPpW*AWX  n~'/2X'PpW*AW D (D’D
n n

4, |:f(1JBzu’ (f(l)uu/)lfofo/:| (f(l)uu/)fl l_ (%)(/Bc %d))Bm(l)/]

== (%) [fo’ (f(lj uu')l/B 10 d/\] [f(l) Byu' (f(lj uu’)lfoBz(l)/} . (5%)

54 1-— e*“‘

>_1(D’W*ACW(n1/2)~())

n

Next consider term B of (51)
X'W*AW PpW* AW X

/ -1
- %(n_l/z ) w;()\s)wd()\s)*)(DnD > (n_1/2 ) wd()\s)w;(As)*). (56)
As€BA As€BG



We will deal with the first and last factors of this expression. The first factor in
expression (56) is

n=2 3w wa(As)* S 6 B! (57)

As€B 4

from lemma 7 (b). The last factor of (56) is the conjugate transpose of (54). Com-
bining (57) and (54) in (56) , we get

)Z"W*AWPRDW*ACWX i, (f(l)Bxul> (féuu')il (_ (%></ 3 i‘];l( )d)\B ( )))
(58)

Then, combining (55) and (58) in (51) we find

X'Q.9Q,¥¢X

n

o ) S ) 0]
+%(féBzu’)(féuu’)l(/ 4 )dk> (1)

= % (f(l) Bmu’> (fé uu’)i1 [I— fofo (f(lJ“ul)il

= F| say.

It follows that

! T\~ L/ 5%
(X Qz\ngX> (X Q:7Q.V X) 4 o-1p (60)
n n

Hence, (n*QJN(’QZ\IJQZ)N()*l(n*QJN(’QZ\IJQZ\IIC)N() = 0p(1) and BA L 3,, as required
for part (i).

To prove part (ii), we need to examine the asymptotic behaviour of the bias term in
(15), which depends on the matrix quotient (nil)?’Qz\IlcQz)?)*l (n1X'Q,U°Q, \Il)~()
Take each of these factors in turn. First,

X'Q.,0°Q,X X'QpUe X’ _ .

where wy g(As)* = wy(As)* — wd(/\s)*(n_lD’D)_l(n_lD’X’). From Lemma 7 (f) we
have

n S wnawna) S [ [fee(0) + 2m) gl Boglew, B) dw, (61)
As€BG A

which is a positive definite limit.
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Next consider

n1X'Q,0°Q, X = n 1 X'Q,VP,UX =n X' IpUPrUX

= (n_l > wm.d()\s)wd()\s)”) (n~'D'D)"Y(n"'D'X)

As€BG

- (n1/2 3 wz,d(AS)wd(As)*) (nflp'D)_l(n*WD'X) +0,(1).

As€BG

>From Lemma 7 (g)

Y weawah) S = [ g, B fiw)de.

AsE€EBG A

Hence,

nil)leZ\IJcQz\Ilf( 4, (—% /BC g(w,Bm)fl(w)*dw> (fé uu')ilf(l) uBgé. (62)

A

It follows from (61) and (62) that the asymptotic bias term for B JERT
~ ~\ —1 ~ ~
(n‘lX’QZ\IJCQZX) (n‘lX’QZ\IJCQZ\IIX>

< [ [ [Feete) + @) 7290, Bog(\ Bo)' dw] _

c
A

X (‘%) (/BC g(w,BZ)fl(w)*dw> (féuu’)_lféuBa’:]

-l

(4

establishing the stated result.

1
27 fro(w) + g(w, Be)g(w, By)"] d“}]

g(w,Bmfl(w)*dw) (Fywe’) 13 uB;] :

Proof of Theorem 9
Ba—Ba=—{X'QVQ.X} {X'QUQ[VX (B4 — Bae) —2]}
and so

n? n

Y/ Y (¥ ~
Gy — ) = {X Qz\mzx} {X szzs}

- { X'Q.90Q,X }1 { X'Q,0Q,0°X

n? n

(Ba— ﬁAc)} - (63)
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>From lemma 7 (c) and (50) above we have
n2X'Q.¥Q.X % [ ByuBl, =G, (64)

and from (60)

~ ~ _1 ~ ~
X'Q.9Q.X X'Q,9Q,V°X _
<7Q Q9 > (—Q 9 )iG LF. (65)
n n
Also
X'Q.0Q.2
Q Q5: _Iwad wsd)\)*
n As€EB4
Ja—1
- Z Z wxd wsd /\ )*
j=—Jat1 As€B;
| Jaml
:eﬁ Z wad s)We.d(Xs)™ + 0p(1)
j=—Jg+1 /\SGB
1 Jaml R
=6— Z 27 fre.a(wj) + 0p(1), say. (66)
2J,
.77_Ja+1
For the smoothed periodogram estimate fy.4(w;) = (21) tm~! SoreeB; Wad(As)

Xwe 4(As)*, and we may now proceed as in the proof of part (a) of Lemma 7. We
have

1 Jo—1 R 1 Ja—1 —iw;
2J, . Z 27fo5.d(wj) = eﬁ Z Z k < > Cae.d (h) e Wil (67)
= Jat1 j=—Jat+1 h=—n+1

Now,
caea(h) = Y (07w g) (0 ep i)
1<t,t+h<n

— Z (nfl/th.d)(nflﬂgt_‘rh)/

1<t t+h<n

_ Z (n—l/th'd)(n—l/Zdt)l(n—lD/D)—l(n—lD /8)

1<t,t+h<n

— Z (n_l/th.d)(n_1/25t+h)/

1<t,t+h<n

o (n—l Z (n_l/thd)d)( —lDID) ( —1/2D/€)

1<t,t+h<n

-1
= [§ BewdB. = ([ Beau') (Jouu') ™ [ udB.
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. 1 / 1 / 1 A
since [y Bzu’ = 0 and, therefore, B, ,, = By — (fo By, u ) (fo U ) uw= Bg,.In

the penultimate line above we use the fact that

_ _ d
Z (n 1/2xt.d)(n 1/25t+h)/ - f(l) Bx.udB€7
1<t t+h<n

which follows as in Phillips (1991).
Combining (66), (67), and (68) we have

n—1
5 () )

j=—Ja+1 h=—n+1

Ja—1 n—1
35 (32 ) )

X'Q.VQ.% 4 5L Ja—l
n 2J,

j=—Jda+1 h=—n-+1
1 1 1

~5 D (mE(m)) (J§ BoudB.) = [§ BrudB. (69)
jsza+1

The limit distribution (69) is a mixture normal distribution with mixing matrix vari-
ate [y ByuBl .,
It now follows from (64) and (69)that

<, oy-1l¢ 5, ~ -
(Foex) ' (Fer0s) a (s iy ) (imim) o
= MN (O, (f(l) BzuBg/cu>1> :

Using (63), (65), and (70), we deduce that

DBy — Ba) S GIF(B 4 — B) + Uol Bx_uB’m_u] ! Uol Bw_udBE] ,

which gives the stated result.

Proof of theorem 10
>From the proof of Theorem 4 we have

n(F = 8,) = (n—ZX'W*AQAWZAWX)’l(n—lew*AQ AwzAWE)
= (n2X'QuEQyX)” (n ' X'QuIQyE)
= (02 X'QEQyX)  (nT'X'QuQyE)
= (1 X'Quz¥QuzX) (17 X' QuzvQusE)
First note that

X'QuzV = X'U — X'PyyU = X'U - X'VZ(Z'VZ)'2'0
= X'U - X'UD((D'¥D) D'w
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and so

X'QuzVQuzX = (X'Quz7¥)(¥QuzX)
= X'UX' - X'UD(D'UD) ' DUX’

= D wr(Awz(As)”

AsEBA

- ( Z w’i(/\S)wd(/\S)*)( Z wd(/\S)wd(/\S)*> ( Z wd(/\S)wEZ()‘S)*) .

As€Ba As€EB4 As€EBA

Now, as in Lemma 7 (a), (b) and (i) we have

n72 3 wsAws(A)* 5 [ BaB,

As€EBA
n/( S wsuah >) (158.) 5.
As€BA
-1 Z wa(A )" —>f0f0
As€EB4

Thus
n2X'Quz¥QuzX % [4 BBl — (f(l)Bsz’) Folfifo) 2fe (fé foBgé)
= [§B.BL— ([0B.) ([3B.) = J§ BB,

where B, = B, — fol B, is demeaned Brownian motion B,.
Next consider the limiting behaviour of

n X' QuzVQuzE = nt [5('\115 - X”\IID(D’\IJD)_D’\IJE]

=n 'Y wr(Awe () — (n3/2 > w;(/\s)wd(/\s)*>

AsEBA As€EBA

X (nl Z wd()\s)wd()\s)*) (n1/2 Z wd()\s)wg(/\s)*)
As€EBa As€EBa

nt Y ws(A ) L[4 BydBe,
As€EB4

As in the proof of (69)

and

n-1/2 Z wa(As)we(As)* 4 fows( o) < £ [tdB. = foB.(1).

As€BA
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Thus
N X'Quy¥QuzE % [§ BedB. — ([§ Be) fi fol f3 fo)2F3 [ fodB.
= [§BedB. — (J§ B.) [§ dB. = [§ BodB..

It follows that

n(Fh =60 ([ Bas) " (JsBaaBe) =2V (0, (3 BuBL) 2n1.c(0))

giving the stated result for the band B4.
For the band B%,we have

~ -1
VitBhe = Bac) = (0 X W AQuewz AWX ) (n V2X W A“Qpery 1 AWE)
~ ~\ —1 ~
= (n_lX/Q\ch\IJCQ\pch) (n_l/zX,Q\ch\I/CQ\chg> . (71)
As above

X'Quez¥QuezX = (X' Quez ¥)(TQuezX)
= X'U°X' — X'U°D(D' VD) D'ueX’

= Z w;()\s)w;()\s)* — ( Z w;(AS)wd()‘S)*)

Xs€B5 Xs€B5

X ( Z wd()\s)wd()\s)*) ( Z wd()\s)w;()\s)*) .
Xs€BY As€EBY

>From the above expression and Lemma 7 (d), (e) and (h) we deduce that

niljle\IjCZ\PcQ\IjCZX
4, 35 [P N Nawo - | & hiw)
/Bc [fm( )+27r|1_ew|23m(1)31(1)]d [QﬂBmu)/c 4 dw]

—_ ptWw
Ale

[%/ Hi@) i ] [2/ fiw de()]

= /B {fm(w) + %me(l)Bw(l)’] dw — £ B, (1) B, (1Y U mdw]

[/fl il H/ﬁ

Next observe that [ch £ 1f18w Hch filw) fi(w )*dw}ifl(w) is the Ly(BY) pro-
jection of the function e (1 — e™)~! onto the space spanned by fi(w). When the
deterministic variable z; includes a linear time trend we know from (19) that the

] . (72)
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-1

vector fi(w) includes the function € (1 — e¢*)~! as one of its components. Hence, in

this case we have
[ [oe=—en <w>*dw] [ | a@s <w>*dw] filw) = (=)t (1)

for w € BY. It follows that (72) is simply foq foa(w)dw.
Proceeding, the second factor of (71) decomposes as
nil/QX/Qq;cZ\I/CQ\I;cZg
=2 3w (A we(N)*

As€B5
_ n_1/2 Z wg()\s)wd()‘s)* Z wd()\s)wd()\s)* Z wd()\s)wg()\s)* .
As€BG As€BG As€BG
Using (73) and the independence of z; and &; we find
nV2X Qe UeQye 75 & n 12 > wi(As)we(Xs)*
As€BG
(LB [ CHE,, o A d nTV2 YT
on Pz e ] _ ew 2ﬂ- 1\wW) 1w 1
A As€BG
SIS w;(&)—(#wm/c fﬂw )(/ AW AW dw> i) |we (A
As€BG €
-1/2 e x
Xs€B5
_ 1 et (X, — To] eirs
— 1/2 n *
e ll—eﬂs%ww BT v Ok LR
EB¢,
d —1/2 1 *
412 3 [1_61,&%@3)} w. ()
A€BS
d T 1 *
N (0,% > mwvz(ks)wvz(ks) }f&s(As))
As€BG

d
4 N(O, o /B feale) fgg(w)dw> :

We deduce that
—1 —1
X/E(BAC Bac) = ( [/ Jaz(w dw] [277/Bcfww(w)f€€(w)dw] [/Bcfxx(w)d‘d] )7
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giving the stated result.

Proof of Theorem 11
~f _ _ _
n(Ba —Ba) = (n2Ha) " (n " hae),

where
Hy = Z fEE s Z Igd fEE s)
As€EB4 As€EB4
Z Idd fss 8 Z Idz fss s) )
AsEBA As€EB4
and

hae = Y L(Xs) fee(M (Z As) fee(Ns) ™ )

AsEBA €Ba

( Z Idd faa ) ( Z Ids fea ) )
As€EBA As€EB4
)

First, proceeding as in Lemma 7 ( ), (b) and (i) and in Phillips (1991) we have

n~? Z w(A fss s) - Z w(A s)" fee(As)™ L4 fss(o)_lf(l)Bchlm
AsEBA As€EB4

n—3/2( Z wg(/\s)wd(/\s)*.]?ae(/\s)_l) < n_3/2( Z wE(/\s)wd(/\S)*fEE(/\S)_l)

As€BA As€B 4
% fe(0) (f&B ) f3,
! Z wg(A fae -1 Z wg(A )" fee (A ) - fae((o)_lfof(;'
AsEB4 AsE€EB4
Then,

W2 Ha % £ (0)7 5 BBl — (£ (0) 7[5 Bafy) (£(0) 7 ofd) (£ (0)7 05 BY)

= fee(0)7" [ J§ BoBL = [§ Baf§ Bi] = fee(0) 7' [§ BB
Next,

~

1hA5 =n ! Z w~ wa()‘ )*fsa()‘s)il - (713/2 Z w;(As)wd()‘s)*ﬁe(As)l)

As€EBA As€EBA

( As)"* fEE( ) ) (”1/2 Z wd(AS)wa(AS)*ﬂa()‘S)l)
As GBA

As€BA
L foel0) L[} BodB. — (f55<> o Bofs) (fe O fofg) (Fe=(0)7HG fodBe)
= fee(0)7 (J5 BodB: — (f3 Br) J§dB: ) = fee(0)" [ BodB.
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Thus B .
n(Bh - 00 % (15 B.B,) " (1 BadB:),

as stated.
For regression over the frequency band B9 we have

V(B = Bae) = (0 THae) L Y2hpel)

; ) -1
- N (O, s [/qufm(w)fgg(w) 1dw] )

X ( Z wd()\s)wd()\s)*ﬁg()\s)l) wd(AS)wa(AS)*ﬂa(AS)l)
As€BS

As€BS
As in (72) above, we find

n~tHje =n"! Z wE(/\S)wE(/\S)*fEE(/\S)_l - ( e Z w’i()‘S)wd()‘S)*fss()‘S)_l)

As€Bg
X ( 2 was)wZ(As)fES(As)) (n” " wd<As)w§<As)f€£(As))
As€B3 As€BG
d 1 , B
- /351 {fmm(w)Jr%mBm(l)Bz(l)] fee(w) tdw

~ B.(1)B.(1) [— L5 fli‘ii)*f%(w)—ldw] (74

A

e

’ [%/B;f 1<”>f1<w>*fse<w>‘ld”] [%/B;ﬁ(w)%f%(w)—ldw] .

Now, [ fe STEEE foo(w)1dw) [ fi, filw) fulw) frelw) o]~ fiw) foelw) 7% is the
Lo(B4) projection of the function ™ (1 — €)1 f..(w)~¥/? onto the space spanned
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by fi(w)fee(w)~2. When the deterministic variable 2 includes a linear time trend
we know from (19) that the vector fi(w) includes the function €™ (1 — ¢®)~! as one
of its components. Hence, in this case we have

1
/Bceiw(l—ei”)_lfl( w)* fee(w ldWH/ fiw) fi(w)" fee(w)™ ldw] Fi(@) fee(w) 2

A

— eiw(l _ eiw)flfge(w)fl/Q (75)

for w € B4 and so

Us Z:fﬂw) Foe(w 1de/ frw@) frw) fee(w 144 [/ Fw) T ) ! dw]
:/Bgﬁf%(w) Ldw.

It follows that (74) that

N~ H ge 4, /BC froe(W) fee (W) " Ldw. (76)

Xs€B5
X ( Z wa(As fff 5) ) ( )\8)*]?55()\8)_1)
As€BG As€BG
& 1 w~ ’“’f1( )* o)
11623; ) (s) fee(As) ™ = Ba(1) [% /B o fe ) W]

As€BG

[— /. cﬁ(w)fl(w)*fga(w)ldw] ( S RO () )

& pm1/2 > [w;(/\s)—%Bx(l) [/B :J_cl(w) fee(w)™ 1@]

As€BG A

x [ZL i f1(w)f1(w)*f5€(w)1dw] iﬁ(&)} w(A) fee ()
B4

A ) *
PSS YER S A S T e fi (w) )
SRS ll—eﬂs v ) = g Ball) Bx(l)[/zs T o Jee(w)dw

C
As€BG A

x [ i ﬁ(w)ﬁ(w)*fgg(wrﬂ ms)] we () feelA) !
B4
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=n"1/? Z 1 —1ei>\s e (As)We (As)™ fee (A )_1
As€BG
d 2 1 * -2
~ N(Oaf Z |:‘1 61)‘3‘2 Uz()‘s)wvz(/\s) :|f€€()‘8)f55(/\ ) )
AsEBS,

(77)

It follows from (76) and (77) that

-1
\/E(BQC — Bc) a4 N (0, o7 V fzz(w)fgg(w)ldw] ) ;
B4

giving the required result over the band B¢.
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TABLE 1(a)
Time Domain versus Frequency Domain Detrending
Inefficient Spectral Regression with Leakage

Observations
_ 250 500 1,000 4,000
BFD 0.2496 0.2513 0.2511 0.2502
_SE 0.6728¢-03 0.4731e-03 0.3320e-03  0.1651e-03
BTD 0.3598 0.3546 0.3513 0.3466
SE 0.7004e-03 0.5362e-03 0.4385e-03  0.3393e-03

Notes:

(a) Simulations used 100,000 iterations.

(b) Random numbers were drawn from an N(0,1) distribution.
(c) Simulation standard errrors: less than 0.00159

(d) Computations were performed using GAUSS/NT.

TABLE 1(b)
Time Domain versus Frequency Domain Detrending
Inefficient Spectral Regression without Leakage

Observations
_ 256 512 1,024 4,096
Brp 0.2494 0.2501 0.2496 0.2499
SE | 0.6641e-03  0.4683e-03  0.3269¢-03  0.1633e-03
Brp 0.3493 0.3509 0.3514 0.3523
SE | 0.1034¢-02  0.9293¢-03  0.8735¢-03  0.8269¢-03

Notes:

(a) Simulations used 100,000 iterations.

(b) Random numbers were drawn from an N(0,1) distribution.
(c) Simulation standard errrors: less than 0.00159

(d) Computations were performed using GAUSS/NT.
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TABLE 2
Time Domain versus Frequency Domain Detrending
Efficient versus Inefficient Spectral Regression
Observations Aysmptotic Bias Simulation Bias Ratio

256 0.1197 0.1017 1.1769

512 0.1195 0.1004 1.1902

1024 0.1194 0.1004 1.1892

4096 0.1193 0.0995 1.1989
Notes:

(a) Simulations assume deterministic trend, z = ¢
(b) Simulations used 100,000 iterations
(c) Computations were performed using GAUSS/NT

TABLE 3
Time Domain versus Frequency Domain Detrending
Efficient versus Inefficient Spectral Regression

Observations

B 256 512 1,024 4,096
Brrp 0.2516 0.2509 0.2508 0.2502
SE 0.5920e-03  0.4193¢-03  0.2947¢-03 0.1467¢-03
Brrp 0.2492 0.2504 0.2506 0.2502
_SE 0.7071e-03  0.4993¢-03  0.3501e-03 0.1739¢-03
Brrp 0.3067 0.3084 0.3079 0.3084

SE 0.8535e-03  0.6872e-03  0.5856e-03 0.4987e-03

Notes

(a) é prp = efficient spectral regression, frequency domain detrending
(b) @ 1rp = inefficient spectral regression, frequency domain detrending
(c) 3 rp = inefficient spectral regression, time domain detrending

(d) True residual process: v; = 0.10v;—1 + e; — 0.1e;_1-0.2e;_2

(e) Explanatory variable: Azy = 0.25x; 1 + e; — 0.25e;_1_0.1e; o

(f) e drawn from N(0,1) distribution.

(g) Simulations used 100,000 iterations.

(h) Computations were performed using GAUSS/NT.

45



TABLE 4: Real S&P 500 Dividends

BIC(p,q) values

p/dq 0 1 2
0 -9.796 -11.068 -11.736
1 |-15.126 -15.235 -15.232
2 |-15.235 -15.120 -15.221
Notes:

(a) Data are monthly: 1947:2 - 1997:2

TABLE 5

Efficient Band Spectral Estimates

Real S & P 500 Stock and Dividend Data, 1947:2-1997:2

Frequency Band  Months 3 pemeancd t Brrp t Brrp t
[0,7/3] 201 46.9590  32.4969
[97/10, 7] 61 54.8944  14.3312 32.4131 4.2036 6.3080 1.8597
[237/25, 7] 51 54.8309  14.0350 35.6940 4.5090 8.8669 2.6749
[477/50, ] 37 51.2143  13.3244 40.7684 5.4046 5.1825 1.4421
[247/25, ] 25 49.0149  15.5310 47.6218 7.5607 8.0998 1.4668
[497 /50, ] 12 46.1224  12.0325 47.0147 6.6639 8.4609 0.5772
Notes:

(a) Computations were using GAUSS/NT.

(
(
(

b) _B Demeaned = band spectral estimates based on demeaned I(1) data.

c)
d)

s
B

46

rp = band spectral estimates based on time-domain detrended I(1) data.

rp = band spectral estimates based on frequency-domain detrended I(1) data.



