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Abstract

The recent ellipsoidal method for solving linear programs due to
Khachian and Shor is shown to process linear complementarity problems
with positive semidefinite matrix. Suitable modifications of all lemmas
are presented and it is shown that the algorithm operates in polynomial
time of the same order as that required for linear programming. Thus
quadratic programming problems are sclvable in polynomial time.
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Cne of the most studied problems in operations research is the
linear complementarity problem (LCP) which may be stated as follows.
n n

Given an nxn matrix M and a vector ge R , find z € R that

satisfies the following conditions:

Mz +q >0
LCF z 20
zT(Mz+q) 0.
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It has been shown that LCP is the fundamental mathematical problem asso-
ciated with linear programming,bimatrix games, quadratic programming and
a number of important problems arising in engineering science. See [2],
[41, [5], [9] and the references cited there.

In this paper, we extend some results of [8] (as elucidated in [6])
and provide a polynomial algorithm for computing a solution to LCP, or
verifying that none exists, in the case when M is positive semi-definite.
This case is of particular importance because it provides a polynomial

algorithm for solving convex quadratic programs. Consider the problem

nminimize %XTEX + ch
subject to Ax +b >0
x > 0

where E 1is a positive semi-definite matrix. The associated Kuhn-Tucker

conditions are:

Ex + ¢ - ATy 20
Ax +b >0
x>0

y20

xT(Ex-Fc) + bTy =0 .

This is a LCP with z = [ﬁ] , g = [;] and



and it is easy to verify that M is positive semi-definite if and only
if E 1is positive semi-definite. We remark that the general quadratic
programming problem and the general LCP are NP complete (see [11], [12]).
Thus, a polynomial algorithm for an important class of subproblems is
very desirable.

Processing LCP by the Shor-Khachian method requires that we solve
a system of convex non-linear inequalities of the form:

xT(Mx +q) < b

(1) 0

AX < Db

where A disa 4nxn matrix, b iss 4nx1 vector and b0 is apositive scalar,

Svstem (1) represents a sufficiently small relaxation of the inequalities in LCP.

Specifically.
q + 2_4Le -M
2—4Le -I
= ﬁ_3L = =
bO =2 s b= L , A=
2% - g M
2ke I

where e 1is an n-vector of ones and L = ) Elogz(|mij|-+l) + Zlog2(|qj|-+l)

i3 j
+ logn+ 1 is the space needed to state the problem. As in [6], we
outline the algorithm as follows. Define a sequence {xn}w of vectors
n=0 _
in R° and a seqguence {An}00 of matrices recursively. Let xb =0
n=0

and AO = 2kI where k is a sufficiently large integer so that the volume
of an ellipsoid determined by AO and centered at the origin contains
a certain part of the feasible region. As in [6], it suffices to let

k = 2L . Now assume (xK, Ak) is defined and check if Xy is a solution



of (1). 1If so, stop. If not pick any inequality which is violated and

set
P S <
k+1 K nt+l Q?AKa.
i7K%
2 (Aa,) (aga,)”
__n 2 ey ey
Yl T2 1R T T T
1A%%1
where a; is the ith row of the matrix A in (1) if i =1, ..., 4n
and a, = ZMxK +q if i =0 . A sequence of ellipsoids of geometrically

decreasing volume is generated each containing the feasible set of the
system of inequalities described in (1), It remains to show that the
feasible region has sufficiently large volume and includes a solution to
LCP if one exists., We state the necessary lemmas and prove them in the

appendix.

Lemma 1. 1If there exists a solution to LCP, then there exists a solution
whose coordinates are rational numbers with numerator and dencminator

less than 2L/n .

Lemma 2. A solution to LCP exists if and only if the system (1) has a

solution.

Lemma 3. If the region defined by (1) is non-empty, then its volume is

at least 2—69nL

-

Theorem. The algorithm detects a feasible point in 99n(n+l)L steps.



Proof. Let EK be the current ellipsoid determined by ( A and

Xee Ay)
A(EK) be its volume. Then we know from [6], that the feasible region
of (1) 'scontained in Ec for all K and has volume at least 2—69nL

according to Lemma 3. Furthermore
MEY) < exrmed ()
K 2(n+l) 0

If the algorithm does not terminate in K = 99n(n+l)L steps, then

-X
MED < ez(n+l)A(EO)
-99n(n+1)L

_ . 2i) ,onL

< 2—69nL

which is a contradiction,

It is interesting to note that the order of the algorithm for the
positive semi-definite LCP and linear programming is the same. Linear
programming might appear to be an easier, special case of quadratic pro-
gramming but the existence of a non-zero quadratic term does not make
the problem any harder.

Several remarks are in order, First, the positive semi-definite
case that we have studied is not properly included in that class of LCP's
solvable as linear programs (thus solvable by a polynomial algorithm)
as studied in [3] and [10].

Second, our results are more general than those in [7] where a dif-
ferent method of proof is used to deal with the positive definite case.
Finally, we indicate that our procedure can be used to solve the symmetric

dual quadratic programs that are studied in [1].



APPENDIX

Lemma 1. If there exists a solution to the LCP, then there exists a
solution whose coordinates are rational numbers with numerator and de-

nominator less than 2L/n .

Proof. It is a well-known fact that the LCP has solutions which are ver-
tices of the polyhedron of linear constraints. The lemma follows exactly

as in [ 6, Lemma 1].

Lemma 2. A solution exists to the LCP if and only if the system

A
[ %)

XT(Mx+ q)
Mix + q; > -2 e

(*%) X, > =2 e ri=1

has a solution.

Proof. Any vertex solution to the LCP clearly satisfies (*%), since Lemma

1 insures that the last two sets of inequalities are satisfied. Let

xO be a solution to (**), First note that for each i =1, ..., n,

0 4L ,L _ ,-3L

0
xi(Mix + qi) > =2

and so from the quadratic inequality



0,. 0 -3L, T .0, 0
Xy (Mx" +q.) <2 + .Z X (Mx +qy)
i=]
< 273 + n2-3L < 2L .
0 0 -2L .
Thus Ixi(Mix -+qi)| < 2 , which means that for each i =1, ..., n,
either xq <27V or M.xO + q, < o~ L . Set
i i i
M, , i=1, ..., n
a; =4 ° th
(n-1i) unit vector, i = n+l, ..., 2 ,
bi ) -4y i=1, ..., n
o, i=ntl, ..., 2n
and
6.(x) =a.x-b, . i=1, ..., 2n .
i i i
We have

Claim, There exists an xl £ R" such that

(1) ei(xl) 3_min(2"L, ei(xo)) , 1=1, ..., 2n .

A
|2

(2) The vectors {ai : ei(xl) } span every other a;

The proof of the claim is almost identical to that of [6, Claim 1 of
Lemma 1], and we omit it here.

Suppose, then, that xl satisfies the claim. Renumber the_in—
equalities so that Bi(xl) < Z—L , 1i=1, ..., k, and so that |

8y, ..., a_ are linearly independent and span a r <k.

r+1* "0 %2 0

Let z be any sclution to



We know that for all i =1,

where Aj = Dj/D and Dj and D are integers of size at most ZL/n

and D > 0 . Now

r

T _ T
D{ajz-b,) = .2 D,a;z - Dby
j=1
T
= ] Db, - Db,
t T.1 1 T 1 1
= ) D.(a.x -6.(x7)) - D(a;x" -e.(x))
2373 3 i
3
Ir
= D-ei(xl) -1 D.Sj(xl)
j=1 7
T
>-p273F _ ¥ |p |27
j=1
> -1 .
t T
Since Z D,b. - Db, is integer, then D{a.z-b,) > 0 , and so
=1 i3 i i i’ =

v

T .
a;z - bi 0o, i=1, ..., 2n .
Therefore =z satisfies the linear inequalities for LCP. Further,

for i =141, ..., k, we have

r
p27" + ¥ |Dj|2'L

1
D.o.(x7)
33 -

A

1 r
Dei(x Y - .z

j=1



Here the integer D(aiz-bi) <0, so that aiz - by = 0,

But the choice of xo and the claim insure that, for every i

i=1, ..., k .

l, ..., n,
at least one of zg and Miz + q; is 0, and hence 2z satisfies the

complementary portion of the LCP. This completes the lemma.

Lemma 3. If the region defined by (**) is non-empty, then its volume

is at least 2-69nL .

Proof, By Lemma 2, if (¥®*) is non-empty, then it contains a vertex solu-

tion wu, to the LCP. Thus ug has coordinates uOj = DOj/DO . where

DOj and DO are integers at most 2L . Further, Uy is in the interieor of

conv{vo, cees vn}

where Vgr «res Vv, BTe vertices of the polyhedron defined by

-4l < Mix +q; < 2L

t
2]
A

X, % EL .
i =

I
[o*]
LIS

By multiplying through by 24L and applying Cramer's rule, we get that

the v, have coordinates of the form

o4 (n=1)L, D, .
v,, = 1]

_ i3
ij 24“1‘13i 2“‘]3i

where Di is the determinant of a matrix of original coefficients, and

Dij is a matrix of original coefficients plus the right hand side column.

Thus ZALDi < 25L and Dij < 26L . Further the vectors

Vi =Yg -+rs VpTUy arve linearly independent. Yfor i =1, ..., n choose
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A; te be the maximum Ai satisfying

T =2L
[u0+Ai(vi—uO)] {M[u0+)\i(vi—u0)_'l+q} <2 , 0 <2

Then A; >0, since u, satisfies the quadratic constraint with equality.

0

In fact, either AI =1 or A; is the unique positive root to the

quadratic solved at equality. In particular, if we set

_ T

A= (vi—uo) M(vi-uo)
T T, , T

B = [uO(M+M ) +q ](Vi'uo)
Ty, TNT -3L

C = (uOM-+q )u0 2 .

* A
Then Ai satisfies

AGH + B ¥+ C =0
1 1

and so

* -B + fﬁz - 4AC

i 2A

p2.23L

Multiplying top and bottom by common denominator Dg i , We can

assume that A, B, and € are integers at most
2 228L .

2 2 L
0' i' ‘2 '(m?x Dij)

A

Using the inequality

2
- b
|a-“">"|ijy%r+7%



when b > 0 , we obtain

-1
[2a(\B} + /32 - 4A0)]

A >
i
5 2-57L .
Now the points
. -57L -
v, = u

are affinely independent, and so the simplex

A= conv{ﬁo, coey v

0 Y1 =Y + 2 (vl-uo), vees Vo

is non-empty and contained entirely in the region defined by (¥%).

volume of this simplex is

1 - A
A(a) ETdEt(VO’ vy V)

n

L1 peSTL ,=57L oL
Tt T ot oo =l
170 n 0 Yo

where the matrix on the right has integer coefficients.

2—57nL

N -69nL
2(n-l)L+4nL+5nL-—

1
Ala) > ar

and this completes Lemma 3,

]

<>
-

Thus

()

<>
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