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Abstract

This paper studies efficient estimation of partial linear regression in time series mod-
els. In particular, it combines two topics that have attracted a good deal of attention
in econometrics, viz. spectral regression and partial linear regression, and proposes
an efficient frequency domain estimator for partial linear models with serially corre-
lated residuals. A nonparametric treatment of regression errors is permitted so that
it is not necessary to be explicit about the dynamic specification of the errors other
than to assume stationarity. A new concept of weak dependence is introduced based
on regularity conditions on the joint density. Under these and some other regularity
conditions, it is shown that the spectral estimator is root-n-consistent, asymptotically
normal, and asymptotically efficient.

JEL Codes: C14 C22 C13

Keywords: Efficient Estimation; Partial Linear Regression; Spectral Regression; Ker-
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1 Introduction

The subject of this paper is the partially linear regression model

ye = 8wy + g(z) +up t = 1,2, .0, (1)

where {z, 2, us )71 are RP x R! x R -valued random variables, g(-) is an unknown real
function, and (3 is the vector of unknown parameters that we want to estimate. In this
model, the mean response is assumed to be linearly related to one or more variables,
and nonparametrically related to some other variables. This specification arises when
the primary interest is precise estimation of 3, while the building of a full parametric
model may be of secondary importance or the relation of the mean response to ad-
ditional variables is not easily parameterized. This compromising modeling strategy
is more flexible than the standard linear model, and affords greater precision than a
pure nonparametric one.

Partial linear models have been an important object of study in econometrics
and statistics. One approach to estimation in these models is based on the penalized
least squares method and has been employed by Wabba (1984), Engle et al. (1986),
and Shiau et al. (1986), among others. Estimation is obtained by adding a penalty
term to the ordinary nonlinear least squares criterion to penalize for roughness in
the fitted function ¢(-). Heckman (1986) and Chen (1988) proved that this estimator
of 8 can achieve a /n convergence rate if 2 and z are not related to each other.
Rice (1986) obtained the asymptotic bias of a partial smoothing spline estimator of
(B in the presence of dependence between x and z and showed that it is not generally
possible to attain the \/n convergence rate for 3.

Green et al. (1985) and Speckman (1988) suggested a simultaneous equation
method of estimating both § and g. y/n-consistency and asymptotic normality are
established in Speckman (1988). Juhl and Xiao (2000) studied partially linear models
with unit roots and show that the autoregressive parameter can be estimated at rate
n even though part of the model is estimated nonparametrically. For additional work
on partial linear regression models, see Cosslett (1984), Chen (1988), Shiller (1984),
Eubank (1986), and Schick (1986), among others.

Most of the above estimators are not efficient. Robinson (1988) addressed effi-
ciency issues when the regression errors are iid normal. In particular, he used (higher

order) Nadaraya-Watson kernel estimates to eliminate the unknown function and in-



troduced a feasible least squares estimator for 3. Under regularity and smoothness
conditions, y/n-consistency and asymptotic normality are obtained by this approach.
When the errors are iid normal, this estimator achieves the semiparametric infor-
mation bound. A higher order asymptotic analysis of this estimator is given by
Linton (1995). Fan and Li (1999) extended the Robinson estimator to regressions
with weakly dependent disturbances and established \/n-consistency and asymptotic
normality for the density weighted version of the Robinson estimator. However, when
the unobserved disturbances are autocorrelated, this estimator is no longer efficient
and, moreover, when the correlation structure is not parameterized, it is generally
not possible to estimate the full covariance matrix and the conventional time domain
GLS estimator is infeasible.

We believe that frequency domain regression can address some of the efficiency
issues in the presence of serially correlated residuals. Spectral regression estimators
were introduced by Hannan (1963), following earlier work by Whittle (1953). Hannan
(1963) showed that a frequency domain GLS estimator achieves asymptotically the
Gauss-Markov efficiency bound under general smoothness conditions on the residual
spectral density. Hannan (1971) and Robinson (1972) extended this method to non-
linear models. Phillips (1991) showed how to apply it to cointegrating regressions in
the presence of integrated time series and developed a new asymptotic theory for this
case. These frequency domain estimators are semiparametric since they rely upon a
nonparametric treatment of the regression errors.

Consider the time series regression vy; = ('z; 4+ u;, where u; is stationary and
has absolutely continuous spectral density. Roughly speaking, the discrete Fourier
transform (dft) of this regression has residuals that are locally asymptotically inde-
pendent (Phillips, 2000, showed this property for frequencies in the neighborhood
of zero) making the frequency domain a natural setting for efficient estimation. In
particular, efficient methods of estimating § in the frequency domain are possible
via weighted regression and have been used in a variety of econometric applications
(see, inter alia, Engle, 1974, Robinson 1991, Corbae, Ouliaris, and Phillips 2001).
Such a technique has the advantage that it is not necessary to be explicit about the
generating mechanism for the errors other than to assume stationarity.

In this paper, we show that spectral regression methods can be applied to partial
linear models with serially correlated residuals to obtain an asymptotically efficient

estimator of §. In particular, we consider a partial linear regression model whose



residuals follow a linear process. Such a linear process includes quite general sta-
tionary time series and facilitates the asymptotic analysis. We also allow for serial
correlation in the regressors x and z, as long as they are independent of the resid-
uals. We introduce a new concept of weak dependence that controls the temporal
correlation in z and is formulated directly in terms of the joint probability density.
This concept is particularly useful in developing an asymptotic theory of regres-
sion in the present context. We construct nonparametric preliminary estimators for
the conditional expectations as in Robinson (1988), and then propose a frequency
domain efficient regression estimation of 3. Under some regularity conditions and as-
sumptions on the kernel function and bandwidth expansion rates, we show that the
proposed spectral regression estimator is root-n consistent, asymptotically normal,
and asymptotically efficient.

The paper is organized as follows: The next section describes the model and
assumptions. Analysis for the estimators are presented in Sections 3 and 4. Section

5 studies the more general model. Section 6 concludes.

2 Assumptions and Econometric Estimation

Our interest is in the efficient estimation of 8 in the presence of serially correlated
residuals in (1). For convenience of exposition, the case of scalar z; will be examined
first, the more general case being considered in Section 4.

Taking expectations in (1) conditional on z;, we have

E(yiz) = B'E(w4]2¢) + g(21), (2)

and combining (1) and (2) leads to
ye — Eyelze) = B'(w — Bz z)) +
which has the following parametric regression form
yi =Bz} + uy, 3)

where yf =y — E(ye|2), and @} = z¢ — E(24]2).
If E(yt|2:) and E(z¢|z¢) were known, yf and ;7 could be calculated and then (3)
would be amenable to regression. In practice, E(y:|z:) and E(x¢|z;) are unknown and

appropriate estimation of these quantities is needed to construct a feasible estimator



for 3. The conditional means E(y:|z) and E(x¢|z) can be estimated nonparametri-

cally by standard Nadaraya-Watson kernel methods giving the estimates

—

E(ylz) = nh ZK

)y;/ f(z), (4)

E@Z) = § 1(<Zt & )xj/f(zt)> (5)
nh h
j:l

where
F(z) h Z (6)

is a consistent density estimator for f (zt) under certain bandwidth conditions, K(-)
is a kernel function, and h is a bandwidth parameter. Constructing deviations of the

data from these nonparametrically fitted conditional means gives
Ui =yt — E(plze), and 27 = 2¢ — E(a|2), (7)

and then a feasible estimator for G can be formed by least squares regression giving

Bows = [ wmar] [Sam].

Robinson (1988) studied the semiparametric estimator 3or¢ when (z}, z, )
are iid, and showed that, under certain regularity conditions, Bo g 18 y/n-consistent,
asymptotically normal, and asymptotically efficient. In the case where the residuals
are weakly dependent, Fan and Li (1999) considered the density weighted version
of Bo s and showed that under certain regularity conditions, the density weighted
regression estimator is still \/n-consistent and asymptotic normal. However, in the
presence of autocorrelated residuals, the OLS estimator Eo s is no longer efficient,
just as in convention linear time series regression.

We propose an efficient estimation procedure for 8 when w; is a linear process
whose coefficients satisfy certain summability conditions as in Phillips and Solo (1992,
hereafter PS). We employ the following condition, which is convenient for our devel-

opment but which involves some strengthening of the conditions in PS.

Assumption A: w = C(L)e, where & is iid (0,02) with 02 > 0, and C(L) =
> 720 c; L7, C(1) #0, and |cj| < p?, for any j and some 0 < p < 1.



While stronger than the summability conditions in PS, the dominance requirement
lcj] < o/ is general enough to include leading cases like autoregressive moving average
(ARMA) models in stationary time series. This dominance condition is useful in our
technical development and, in particular, provides a sufficient condition for controlling
the order of magnitude of various summations involving ¢; (such as sums of the form
32228 > CrCrys—j). No doubt this dominance condition could be weakened, but we
do not attempt to do so or to find minimal conditions under which our results hold.

Notice that regression (3) is a (parametric) time series regression with stationary
residuals. Thus, if z} and y} were known, efficient methods of estimating 3 by spectral
methods would be possible and have been developed by Hannan (1963), following the
ideas of Whittle (1953). Performing a discrete Fourier transform (dft) of regression

(3) and assuming for simplicity that n is an even number, we have

Wy (Ae) = Bwgs (M) + wu(Ae),

where \;, = 27t /n, (t = —n/2+1,...,n/2) are the fundamental frequencies and w, ()
is the dft of time series a; at frequency A. Under smoothness conditions on the
residual spectral density, the error terms in the above frequency domain regression,
wy(A¢), are, roughly speaking, asymptotically independent but heteroskedastic. The
frequency domain GLS estimator for 3 suggested by Hannan (1963), which is based

on smoothed periodogram estimates, has the following form:

ﬂH: Z fz*m*(wj)fuu(wj)ll [ Z fm*y*(wj)fuu<wj)71 s (8)
j=—M+1 j=—M+1
where

Fuul (wj) =m™* Z L(A Liu(Xs),
As€EB;

fmw (wj) =m™* Z L(A 2+ (As),
As€EB;

Farre g (wj) =m™1 Z L(A v (As)s
As€EB;



wj = mj/M, L(-) is a kernel function, and I, (As), Lz=z*(Xs), and Ip=y«(As) are pe-
riodograms defined as wy, (A¢)wy (Ae)*, Wa (M) Wa (Ag)*, and wgs (Ag)wy«(A¢)*, respec-
tively. Under general smoothness conditions on the spectral density, the frequency
domain GLS estimator achieves asymptotically the Gauss-Markov efficiency bound.

An alternative frequency domain estimator of 5 can be constructed based on

a weighted average of periodogram estimates at the fundamental frequencies w; =

2mj/n,
[ e . T, )
= > If‘f*x*<wj)fuu(wj)1] [ S Ly (@) fuulw)) T (9)
j=—n/2+1 Jj=-n/2+1

This spectral estimator of 3 is first-order equivalent to the estimator B i, is widely
used in spectral regression applications (e.g., Robinson 1991) and has certain advan-
tages over BH In particular, the estimator (9) has been found to be second-order
more efficient than the original Hannan estimator (2) — see Xiao and Phillips, 1998.
Our analysis in this paper will focus on @ and, while similar results can be derived
for @ 1, we will not detail them here.

In the partial linear model, x}, y;. and u; are unknown and so (8) and (9) are not
feasible. However, xj and y; can be estimated by the nonparametric method given in
(4) — (5). Thus, the dft of z} and y; can be estimated based on z} and y;, which in
turn may be used to construct periodogram ordinates. Let Bp be a preliminary +/n-
consistent estimator of 3, e.g. the conventional partial linear regression estimator
- see Fan and Li (1999). We can then estimate the dft of wu; using the residuals
U = yi— Zi;,@* and a feasible frequency domain GLS estimator for § in the partial
linear regression (1) can be obtained as in (9). This is the approach that will be
followed in the sequel.

It is convenient to make the following assumptions for the analysis that follows.

Assumption B: The spectral density of u; is bounded away from the origin and is

absolutely continuous.

Assumption C: K(-) € K, where Kq is the class of even functions k(-): R — R
satisfying
/u’k(u)du =040, 1=0,....,g—1
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k(u) = O((1 4 [u|™*%)™1), some e > 0,

and 0;;5 is Kronecker’s delta.

Assumption D: 2z, admits a pdf f(-) which is strictly positive and has bounded
support.

Assumption E:  f(-),m1(-) = E(x¢|-), and g(-) have uniformly bounded continuous
partial derivatives up to order q + 1, and their v-th partial derivatives are Lipschitz

of degree q — v.
Assumption F:  E[{x; — E(x¢|z) Har — E(xe|ze)}] is positive definite.

Assumption D is not strictly necessary and is mainly used for convenience. It
allows us to avoid modifying the nonparametric estimator by trimming, which intro-
duces an extra sample size varying quantity that has to be determined in practice.
However, our methods can be extended to the more general case by using trimming
- see Linton (1995a) for similar assumptions and discussion on this issue. For some
subsequent asymptotic analysis, more assumptions will be made about the regressors
and the bandwidth expansion rate. In addition, we denote for any function K and
integer ¢, p,(K) = [ K(u)uldu/q!.

3 Spectral Partial Linear Regression-Asymptotic The-
ory

To simplify the asymptotic development, this section considers the case of iid regres-
sors and the general case with time series regressors is left to Section 5. Accordingly,
we impose the following conditions on the regressors in (1) and make an additional

assumption about the bandwidth parameter h.

Assumption G: (x4, z¢), t = 1,2, ....., are independent and identically distributed,

have finite fourth moments, and are independent of s, for ¥ s.

Assumption H: As n — oo, h — 0,nh? — oo, and nh* — 0.



For notational convenience, we denote E(y¢|z:) and E(x¢|z) by ma(z:) and mq (z),
and corresponding nonparametric kernel estimates of them by ma(z;) and m1(z;). The

model (1) implies that

ma(zt) = B'mi(z) + g(z¢) + U,

where
N 1 & 2t — Zj
W= o LK /e (10
N 1 & 2t — 2
g(z) = %;K( o 2)g(2)/ f(z0),

o~

and ma(z¢), mi(z), and f(z) are defined by (4), (5), and (6) in Section 2. Thus, we

have

yy = 0T + 1y, (11)
where
uy = up — U + g(zt) — g(2t)- (12)

Besides u;, the residual process u; contains a smoothed residual term u; and a non-
parametric error term g(z¢) — g(2¢).

Using these quantities, we construct the following frequency domain estimator of

B
_ n/2 B -1 n/2 _
G = Z I (Wj)fuu(wj)ll [ Z I}c\*ﬂ* (wj>fu1L(wj)71 ) (13)
j=—n/2+1 j=—n/2+1
where
Ig*g* (/\3) = Wz« ()\t)wg* ()\t)*, Ig*g* ()\s) = Wps (/\t)wg* (/\t)*,
and

funlws) =m™" 37 L = wi)Iiz(As) Tig(s) = wgAs)wz(A)*,  (14)

AsEB;
is the kernel estimator of the residual spectrum fu, (). Bj = {\ : wj — 57 < A <
wj + 547} is a frequency band of width 7/M centered on w; = 27mj/n. Let m =
[n/2M], where [-] signifies integer part. Then each band B; contains (approximately)

m fundamental frequencies Ay. In (14), L(-) is the spectral window that L(-) € Kg,

8



and % YoneB(w) L(As —w) = 1. Candidate kernel functions can be found in standard
texts (e.g., Hannan 1970, Brillinger 1980, and Priestley 1981). For convenience of
comparison, we let the order of magnitude of the bandwidth in spectral estimation
be the same as that in the nonparametric regression, so that M ~ 1/h and satisfies
Assumption H.

Combining (11) and (12), we have

B n/2 B -1 n/2 _
Vn(B—p5) = 1 > L (w)) fuu(wy) ™! [% > L (@) fuu(wy) ™!
j=—n/2+1 j=—n/2+1

As shown in the proof of Theorem 1 given in Appendix A, the asymptotic distribution

of 3 is derived from the following two results:

n/2

l Z IE*E* (wj)fuu(wj)_l —p % / fz*z* (w)fuu(w)_ldwa (15)

n j=—n/2+1
and

1 n/2

NG AAW'Nw‘_l W‘**w W_lw.
\/ﬁj:;/2+llx*u*< J)fuu( ]) :>N(0,2 / fx T ( )fuu( ) d ) (16)

The resulting limit theory is contained in the following theorem, indicating that the
proposed spectral regression estimator Zi is y/n-consistent and has a limiting normal
distribution whose variance matrix attains the GLS efficiency bound in time series

regression.

Theorem 1: Under Assumptions A to H,
_ . -1
Vn(B—p53)=N (0, 2m U - (w)fuu(w)—ldw] ) : (17)

It follows that B is asymptotically equivalent to what would be the usual efficient
time series regression estimator of § were z} = x; — F(x¢|z) and yf = yr — E(ye|2t)
observable. Thus, there is no loss in efficiency from the nonparametric estimation of
the nonlinear component in (1).

Under Assumption G, xf is iid, fpez+(w) = %E* where X, is the variance matrix

of =7, and therefore the asymptotic variance (17) has the form

27 U (27 fun (@)} oo

1
>t

9



It follows that efficient regression on (3) is in this case formally identical to least
squares regression on
= ﬁ/]}r + wy,

where wy is iid(0, 02)) with o2 = 27 [] {27 fun (W)} ! dw} -

4 Multivariate Regressor

Our results can be extended to the case where the dimensionality of z; is arbitrary.
In this Section, we consider the partial linear regression (1) when x4, z;, and u; are
RP x Rl x R -valued random variables. To accommodate the change in the dimension

of z;, we consider the multivariate kernel function K defined as

l
K(u) = H k(u;), and k € ICy.
i=1

The Nadaraya-Watson kernel estimators are then

—

E(ylzt) = nthK

yy/f<zt)

E(x]z) = nthK l’y/ﬂzt)

and
~ 1 & 2 — 2
=y K=t
)= R

Defining y; and z; by (7), and

N | LR — ~
N 1 &N oz — 2z ~
g(z) = %;K( . L)g(z5)/ f(z),

equations (11) and (12) still hold. As the dimension [ of z; increases, the relative im-
portance of the nonparametric estimation error increases and, as in Robinson (1988)
it is convenient to use higher order kernels in the construction of our estimator to
achieve the necessary bias reduction. Hence, we modify Assumptions C and H as

follows:

10



Assumption C2: K(u) = [I'_; k(u;) and k € Ky, where Ky is the class of func-

tions satisfying the properties in Assumption C.

Assumption H2: As n — oo, h — 0, nh? — oo, and nh* — 0.

The asymptotic analysis for the general case parallels that of Section 3 and re-
sults similar to Lemmas 2 to 14 can be proved. We do not go through all the details
here but summarize these preliminary results in Appendix B. The resulting limiting
theory for Zi is given in the following Theorem, giving the multivariate analogue of
(17).

Theorem 2: Under Assumptions A, B, C2, D, E, F, G, and H2,

-1

\/ﬁ(ﬁ - ﬁ) = N<0> 2m |:/ fw*w* (W)fuu@))ildw ) (18)

Remark:  The original Hannan estimator @ r can be analyzed in a similar way.

Under similar conditions, it can be shown that

r q—1
- 1 Mo - = m

- 1-1

= 2]\[ Z f:c x* w] fuu(wj) ! \/ 27;[ Z fz *u* w] fuu(wj)

j=—M+1 | ~M+1
+0p(1)
where w; = mj/M, and
1 X
3 2 S @)™ = o),
—M+1

1 7 -1
m.:_%Hf<m1_an><ml_al><wj>fw<w> ~ (D).

11




\/; Z fm1 mi) w])fuu(wj) = Op(l),

—M+1
\/ QA[ Z fm *u w] fuu(wj) = Op(1)>
j=—M+1

\/J Z (g 3wﬂ)fuu(%) L= o,(1).

Thus [Ni g has the same asymptotic distribution as E

5 Dependent Regressors

This Section extends our method to partial linear regression models with serially
correlated regressors. Such an extension allows for temporal dependence in both
the residuals and the regressors. However, to develop the limit theory in this case,
assumptions are needed to control the temporal dependence in (x¢, z¢).

To aid the analysis we introduce a new concept of weak dependence that bet-
ter suits the present application. In particular, given the nature of our model and
the frequency domain regression methods being employed, it is convenient for the as-
ymptotic analysis to use dependence conditions that are based directly on the density
functions rather than conventional mixing conditions.

To begin, we introduce the following notation. The joint density function of
(2t, Zt4ay " * *» Zt+a,) 1s denoted pqy, ...q, (-, - -, -) and the marginal density of z; is de-
noted by f(+), as before. For a function p(ty, -, tx) of k-arguments, V,(,?,l.’.'.;',}i“)p(tl, o
-, tx) is used to denote its (aj + - - - + ay)-th partial derivative with respect to the
vi,- - -, and v, arguments, i.e. OMT (b - 1) /OLSL - - - OtSs. We use the

following concept of asymptotic regularity.

Definition: A function H(x,y) is asymptotically reqular with respect to x if there

exist T > 0 and some function 1 (-) such that, as |z| — oo,
H(x,y) = (1+ |z]7")(y). (19)

T 48 called the index of asymptotic regularity.

12



In place of Assumptions G and H in Section 3, we make use of the following con-

ditions, which allow for autocorrelation in the regressors.

Assumption G': (i) {x4, 2}, t = 1,2, ..., are stationary with finite fourth moments,
and are independent of us, for ¥ s.

(i1) The joint probability density functions pq, ... q, (-, ) of the process z satisfy
the following conditions:

(a) For r < 3 and any integrable function p; that is independent of aj, j = 1,7,

ap 7”‘7Tt17....7t7t 1
/ a1, ,a ( ry Upd >(,0j(t17”"ytTatT+1)dt1“”dtT+1

f<t1> e f(tT>
is asymptotically reqular of index T with respect to a;.

(b)For 0 < a; <q,i=1,- -k, and 0 < a3 +---+a, <gq,

ylanan) et t
/ v, Ve  Pai, ,flr( 1, s Upy T+1)<Pj(t17' ”'7tr’t7ﬂ+1>dt1 . 'dtr+1

JAGYRRRNACY
is asymptotically reqular of index T with respect to a;.
(iii) xf = x¢ — E(x¢|2) follows a stationary linear process that satisfies the sum-

mability conditions of Assumption A.

Assumption H: As n — 0o, h — 0, nh? — oo, and n73)/THpta 0 where

T > 1/3 is the index of asymptotic reqularity.

Assumption G/(ii) is similar to conventional mixing conditions in the existing lit-
erature in that it requires the temporal dependence between z; and z;,, to decrease
as the temporal distance, a, between observations increases. However, unlike conven-
tional mixing conditions, dependence between z; and 244, is measured through the
behavior of the joint density function. Intuitively, Assumption G'(ii) assumes that as
the time distance a goes to oo, the joint density of (z, z¢+4) Will be asymptotically
regular with respect to a. In other words, it can be expressed in the form (1+|a|™ "),
where v is independent of a. The requirement in Assumption H’ that 7 > 1/3 can be
relaxed to 7 > € with € > 0 arbitrarily close to zero. However, in this case, expansions

to higher order terms will be needed to prove the asymptotic result.
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Under Assumption G’(ii), for any integrable function ¢ that is independent of «,
and for 0 < a1 <¢q, 0<as <gq, and 0 < a; + as < g, we have that

' pa,b<t7 t, t)‘/)(t) pa,b,c<ta s, t, 3)90<t7 5) s
R i Ay T

and

[V ettt )l ) /1)
are asymptotically regular of index 7 with respect to a. Such results will be used in
the proof of Theorem 3. We give some illustrations of this weak dependence concept
before developing the limit theory for the partial linear regression estimator in the

general case.

Example 1: If {#} is an iid sequence, then p,p c(t1,t2,t3,t4) = H?ﬂ f(t;), and

‘pa,b,c@a‘s»tas) ( s)ds
/ oy ) dsdt = /f Vo(t, s)dsdt

is independent of a, and is therefore asymptotically regular with respect to a for any 7.

Example 2: If z; is a stationary Gaussian AR(1) process, say, z: = azi—1 + ug,with
up = 4idN (0, 1), and |a| < 1, the correlation between z; and 24, decreases exponen-

tially. Thus fp“}’é('}fgs) dtds = (14 O(|a| ")) (b, ¢) for any 7 > 0. Notice that the

joint p.d.f. of (2¢4a, 2t, Zt4b, 2t4e) 18

PapelZ) = (2m) 2|0 exp{-2'071 22},

with
1 a‘a‘| a'b_a| a'c_a|
o_|a® 1 ek ak
- a'b_a‘ a‘b‘ 1 a'b_c‘

O[|C—CL‘ a‘c‘ a'b_c‘ 1

1,
Qa* Q**

If we partition €2 as

and let Z = (s,t,t,s), then

pabc( )
—~dtds
() f(s)
o O- 2
— (207l 1/2//exp{ [‘j g 319*) +Z;Q;*1Z*—t2—32Hdtds.

14



where
Ze = (t,t,8).

It can be verified that
1[5 - 9,902,
21—, 051,

+ 2017, — 12 — 52]

can be written as

—5(15, $)% < s > + 50 (615 + 29ts +ns )

where ¥ is a positive definite matrix, and 3t% + 2yts + ns? is a quadratic function of
(t,s). Notice that |a| < 1 and

Q1712 = (1 + O(al*) )y (b, 0.

Thus, when « is large,

PapelZ) ¢ — a2\ (b, o) — N
| e dids = (L4 0@ )b, 0) = (1+ Olla| ) (brc).

Similarly, for any integrable function ¢, it can be verified that

PabelZ) ©(t, s)dtds = (14 O(la]""))y (b, c)

fF)f(s)

as required, and this holds for any 7 > 0.

Theorem 3: Under Assumptions A, B, C, D, E, F, G', and H’
-1

Vit~ 8) = N(O.27 [ [ oo ) o) ] ).

Theorem 3 extends the earlier limit theory to the case of weakly dependent regres-
sors under assumption G’. Its proof is similar to that of Theorem 1 relies on similar
supporting results to Lemmas 2-14, which continue to hold under Assumptions G’
and H'.

Asymptotic normality of 3 facilitates construction of test statistics for inference
about 3 in the usual manner. For instance, the regression Wald test of Hy : RG =7,

where 7 is a ¢ X 1 vector and R is an ¢ X p matrix, is simply

W= (RB—r) [RER] " (RB—1)
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where
n/2

S= Y L@ fuulwp) ™

j=—n/2+1

and, under Hg and the same conditions as Theorem 3, W,, — X?,-

6 Conclusion

This paper shows that partial linear regression models with time series errors and
weakly dependent regressors can be efficiently estimated using frequency domain tech-
niques. The approach is simply to remove the nonparametric component in the con-
ventional manner by kernel regression and then apply efficient time series regression
(or feasible GLS in the frequency domain) to an empirical version of the transformed
equation (3). The resulting estimates are /n consistent and asymptotically efficient
in the sense that they have the same limit theory as GLS estimates based directly on
(3). A novel aspect of our approach is the mechanism used to measure and control
for weak dependence in the regressors. This mechanism places conditions directly on
certain functionals of the joint density of the time series and seems likely to be useful

in other econometric applications with serially correlated data.

7 Appendix

In the first subsection of this Appendix, we state Lemmas 1-15 that are used in the
proofs of the Theorems. In the second subsection, we prove Theorems 1 to 3. In the

third subsection, we prove Lemmas 1-15.

7.1 Lemmas
Lemma 1:  fuu(w;) = fuul(w;) + op(ﬁ) uniformly in w;.
Lemma 2: [—(w) = Oy(n th7Y), for any w = 2ms/n, s # 0.

uY

Lemma 3: [, o &(\s) = Op(n~th + h?9), for any \s = 27ws/n, s # 0.

16



Lemma 4:

Lemma 5:

Lemma 6:

Lemma 7:

Lemma 8:

Lemma 9:

Lemma 10:

Lemma 11:

Lemma 12:

Lemma 13:

Lemma 14:

Lemma 15.

I~(Xs) = Op(n

uu

1), for any \s = 2mws/n, s # 0.

Lyg—5)(As) = Op(h? + n=Y/2ht2), for any A\ = 21s/n, s # 0.

Ia(g_@()\s) = 0p(n~Y2ha + 0 h/?), for any \s = 27s/n, s # 0.

2‘712,”/24»1 x* (ml—ﬁzl)(wj)fuu<wj>il = Op(1>'

(mlfr/)\il)(mlfr/r\zl) (Wj)fuu<wj>71 - Op(1>'

n/2
E]*—71/24-1
n=1/2 E?ﬁzn/gﬂ I,. u(%)fuu(wy) l= Op(l)-

_ n/2 _
n-1/2 Ejifn/2+1 I(ml—rfﬁl)u(wj)fuu(wﬁ t= Op(1>-

n1/2 Z;‘lf_n/zﬂ I(ml m1)a 2(Wj) fuu(wy) ™ b= op(1).

n—1/2 En/2

j=—n/2+1 m *(g ﬂ(w])fuu<wj)_1 = Op<1)'

— n/2 N —
W22 1 Lo nye—g) (@) (w0 = 0p(1).

n1/2 E?f_n/zﬂ Lpvu (Wj) fuu(wy) ™

For w=2ms/n, s # 0, Yjy t et = O(nt/(1+7),

7.2 Proof of Theorems

Proof of Theorem 1 It suffices to prove (15) and (16). We first consider fuu(wj) =

m~ 2oA€B; L(As (@p — 08)'z}, by result of Lemma

—w;)I=(Xs). Notice that u; = uf —

1 in Appendix A we have

Funlw) = Fulior) + op%),

17
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for any w;, where

Suu(wy) —n— > L(As — wj) Ly (As)-

AsEB;
By definition, u; contains the true residual term, wu;, the locally smoothed residuals,
u¢, and the nonparametric estimation error, g(z;) — g(z¢). In order to obtain (15) and
(16), we have to show that the periodogram averages based on u; and g(z:) —g(2¢) are

small in order of magnitude. The periodogram of u; can be decomposed as follows

Lve ) = L) + LggAs) H g5y (g—g) As) =215 (Xe) +2L, o) (As) = 2L5,_5) (As)-

The estimator fy,(w;) can thus be further written as

fuu(w;) = fuu(wj) + 1 (W)) + Pa(wj) + @s(wj) + pa(wj) + @5(wj),

where
fuu W] - Z L (As)a
)\seBJ
and
1
ey = — ZB (hs = @) (A
1
polwj) = — Z — Wiy 5y g—5) (Ns)s
As€B
2
plwy) = —— Z L(As = wj) ] z(Xs),
)\SEBJ'
2
@4(("]]) = E Z L<)\5_WJ>Iu(g—@</\S)7
Xs€B;
2
pslwy) = —— D L —wi)l5(s)-
AsE€EB;

The leading term fuu(wj) is the conventional kernel estimator of fy,(w;) based on
known u;. The asymptotic properties of this estimator are well documented in the
literature. The other terms in fy,(w;) involve errors arising from nonparametric
estimation of the conditional expectations. Lemma 2 to Lemma 6 in Appendix A
give the orders of magnitude of Iz(As), Iy_gyg—5)(As)s L(As), Lyg_5)(As), and
Lio—9) (As). In addition, uniform consistency and convergence rates for fy,(w;) of the

type

Fuulw;) — fuu(wj)‘ = O, (M™9) + O, (m~1/2%°),

max
J

18



where € is any small positive number, are also well developed in the literature — e.g.,
Brillinger (1980, Theorem 7.7.4). Masry (1996) also gives uniform rates of conver-
gence for nonparametric estimators for stationary processes. Using arguments similar
to those in Masry (1996) and Brillinger (1980), uniform results of the nonparametric
kernel smoothed quantities ¢;(w;), ¢ = 1,...,5, can be obtained. The calculations are
somewhat more complicated in view of the present partial linear regression context
but do not involve anything essentially new and are not reproduced here. To avoid
having to deal with two bandwidth parameters, we may choose M to be of the same

order of magnitude as 1/h. With this simplification, we can then show that
005 | fun(07) = fun(103)] = Op(M ) + Op(m™1/2+¢). (20)

By a geometric expansion, we obtain

1 n/2 _

- > Lug (@) fuulwy) ™!
j=—n/2+1

1 n/2

= = Y L) fuulw) ™ (21)

j=—-n/2+1
1 n/2 _

= Y b @) fuw) 7 [fuu(ws) = funlwy) (22)
j=—-n/2+1
1 n/2 . - 2

= > Ly (@) fuu(@05) 72 fuu(w) ™ [fuu<wj>_fuu<wj>}> (23)
j=—n/2+1

and

1 n/2 ~ .

- IE*E*<W')fuu<w')i

IR Sl

1 n/2 .

= — Lo (@) fuu(wj) ™ (24)

Vi, 2 S
1 n/2 27

= Lo i) Juu i) uu i) — Juu j 25

+\/ﬁj:;/2+1 aear (W)) fuu(wy) [f (wj) — f. (WJ)} (25)
1 n/2 . | Ny NER ‘ ‘ 2 96

+EF%HMMMMMﬁWW[MM%MMﬂ%)

To prove Theorem 1, we show that, under our assumptions, (21) converges in prob-
ability to (2m) 7! [ forgs (W) fuu(w) " Ldw, (24) converges weakly to N (0,27 [ fyegs (W) fun(w) " dw),
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and (22), (23), (25) and (26) are o,(1). Notice that, under Assumption B, fy,(w) is
bounded away from the origin, and under our bandwidth assumptions, by (20) we
can show that (22), (23) and (26) are o,(1). The result for (25) is more complicated.

First we decompose this term in the following way:

n/2

1 ~
— IA*A* 1) Juu )2 uu 1) — Juu ]
ﬁj__;/m o (@03) Fun (@) 72 | Fu(05) = )]
1 n/2 o s
~ — I, i) Juu i) uu i) — Juu j
ﬁj:;/m s (@03) Fun (@) 72 | Fu(05) = )]
SR ﬁ (@5) Fun() 200 (5)
+ — Lo (Wj) fuu (i)~ “pp (wj
v=1 \/ﬁjzfn/2+1 ’ ’ ’

Then, we verify that each of these terms are o,(1). The verification of the magnitudes
of these terms is similar in each case, so we illustrate the proof for only one of these

cases. We write

n/2 N

> L @) fun()) 72 [Funw) = Fuulw)]
j=—-n/2+1

n/2 N

> Lewwi) fuuw) 7 [ Fuulw) = fuulws)]
j=—n/2+1

n/2 =R

> Limgeinne @) fun(@5) 72 [Fuuw) = Funly)]
j=-n/2+1

n/2 N

Y L) fun) 7 [Faulws) = fuulws)
j=-n/2+1
1 n/2 -
v Yo i —myal@i) funwi) 72 [fuu(wa') - fuu(wj)}

j=—n/2+1

1 n/2 217
e j__;ml L (g5 (@) Fuul@3) ™ [Fun(w) = funlw)]
1 n/2 =N
o= Y e @i ) 7 [Fanles) = funle)]

[ S

I

+

Bl

For the leading term,

n/2

% Z Ix*u(wj)fuu<wj)i2 {fATW(wﬂ) o fuu(w])}

[ Sy )
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n/2

= % Z Ix*u(wj>fuu<wj>_2 |:% Z L(/\s - wj) (qu()\s) - f"“()\s))] (27)
j=—n/2+1 As€B;
n/2
+% Z Tpeu(w5) fuu(wy) ™ [ Z L(X ) (fuu(As) = fuu(W])I:|28)
j=—n/2+1 As€B;

and we shall analyze each of them. The first term is the “variance” term, under

Assumptions A and G, notice that

1 n/2 ]
—— e u(w )fuu Wi L >\ — Wy ( S) - fuu(As))
Vi j_—%/:%-l ’ /) A%J g

has mean zero and its second moment is approximately

n/2
L Z B [Lpegr (w)) Tuu(w5)] fuu(ws)™ {7 2 Z L(As _WJ> fuu(As) ]

n j=—n/2+1 As€EB;
1 n/2
~— Z f:c x* (w])fuu W] Z L
Jj=—n/2+1 AseBJ
1 1 n/2
~ mn Z Jarar (Wj)fuu w] Z L(As _w]
= O(m™),

and thus the term (27) is of order o,(1). The second term (28) contains the bias
effect in fuy (wj) :

E Z L >\ _wj) (fuu( s) - fuu(wj)) ~ _]w_qkqf"q(wj)’

As€B;
where £, is the characteristic exponent associated with the kernel function L (e.g.,

Hannan 1970) and

1 n/2 |:
= Lpvu(wj) fuu(wj) ™ L(Xs = wj) (fuu(Xs) = fuu(wy))
ﬁj=§2+l ’ ’ )\_;B ’ ’
n/2
~ ]\/fiqk’q % Z Iw*u(wj)fuu(wj)2fuq<wj)]
j=—n/2+1

= 0,(M™).

Now we move to (21) and (24). Notice that T} = x} + [mi(z) — mi(z¢)] and

uf = up — Up + g(2¢) — g(z¢). We have the following decomposition:

1 n/2
p > Lo (W) fuu(wi) ™
j=—n/2+1
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n/2 n/2

1 ~ _
= = Y e @)fu@)T 4o Y Ly (905 funle) ™!
j=—n/2+1 j=—n/2+1
1 n/2 .
+ﬁ Z I(mlfal)(mlfal)(Wj)fuu(wj)f ;
j=—n/2+1
1 % .
— Lge (W5) fuu(wj)™
v j=—n/2+1
1 % L1 ”2/2 )
v j=—n/24+1 v j=—n/2+1 o
1 "2/2 L1 % .
—= Li(w)) fun(wi) ™ + —= Lo —mya(wi) fuu(wy) ™
\/ﬁj:fn/2+1 ‘/ﬁjz—n/2+1 (=)
1 "2/2 L1 "2/2 .
= I *(g— (W‘>fuu<w'>7 +—F I —-m — (W‘>fuu<w')7 .
z*(g—g)\*J J (m1—m1)(g—g)\“J J
\/ﬁj:—n/2+1 e \/Ej:—n/2+1 e

It is shown by Lemma 7 to Lemma 14 that the errors caused by the preliminary

estimation are all negligible op,(1) terms. Thus, we have

1 n/2 1 n/2
~ > Lp@fw@) T == > Leer (@) fuu(wy) T+ 0p(1),
j=—n/2+1 j=—n/2+1
1 nzm 1 1 % 1
— I?E*E* (Wj)fuu<wj)7 = = Im*u(wj)fuu(wﬂi + Op(1>>
\/ﬁj:—n/Q-i-l \/7_1 j=-n/2+1

and the results (15) and (16) follow. B

Proof of Theorem 2: The proof of Theorem 2 parallels that of Theorem 1. In

particular, it can be shown that the following results hold.
o [~(w) = Op(n~th7Y), for any w = 27s/n, s # 0.

* Iy ) As) = Op(n~tht + h29), for any \s = 27s/n, s # 0.

I ~(X\s) = Op(n™1), for any A\s = 2ms/n, s # 0.

u

Lyg—g)Xs) = Op(h® +n~/2hl/2) for any As = 2ms/n, s # 0.

Lg—)(Xs) = op(n~Y2hT 4+ n1ha/2) for any \s = 27s/n, s # 0.

22



n/2 _ B
EJi—n/Q-l-l z*(mlfﬁml)(wj)fuu(wj) 1:Op<n 1h2q)

n/2 _ _ _
E]1—71/24—1 (m1—my)(mi— ml)(wj)fuu(wj) 1:Op(n 1h2q+n lhl)

W2 L) fuu(wf) = O 2 2)

n—1/2 2?12,"/2+1 (m1— m1) (wj)fuu(wj)_l — Op(hQ+n—1/2hl/2)‘

n~l? E?K{n/2+1 (m1—m1)u (wj)fuu(wy) = Op(n_l/QhQ/Q + h?)

12 E?K{n/2+1 z*(g—9) <wj>fuu(wj)_1 = Op<hq)'

n_1/2 E?K{n/2+l (m1 m1 (g—j< >ﬁ‘“(wj)_1 = Op<n1/2h2q+n_1/2hq_l+hq+l)‘

And thus the result of Theorem 2 follows. B

Proof of Theorem 3 The logic in proving Theorem 3 is the same as those for

Theorem 1 described in Section 2 and again similar results as Lemmas 2 to 14 have

to be established. We use Assumptions G’ and H' to control the weak dependence

and the moment of quantities in Lemmas 2 to 14. Corresponding to Lemmas 2-14,

we prove that

L~(w) = Op(n~™/0+7) 4 n=1h=1) for any w = 27s/n, s # 0.
I(g_@(g_@(ks) = Op(n~th + h*), for any s = 27s/n, s # 0.
L~(w) = Op(n~™/0+7) 4 = h=) for any w = 27s/n, s # 0.
L9 g s) = Op(n~ At 4+ K2t/ (+7)) for any \s = 27ws/n, s # 0.
I=(N\s) = Op(n~7/0+7)) for any \s = 27s/n, s # 0.
Lyg—5(As) = Op(han/2047) 4 =1/2pl/2) for any \g = 27s/n, s # 0.
Lao—9) (As) = 0p(n~ Y219 4 n~1h9/2) for any \s = 27s/n, s # 0.
n/2 - -7 T
Eji_n/gﬂ z*(mral)(wj)fuu(wj) L= Oy(n~ /(47 p2a),
E?12—7"0/2—%1 I(m171711)(m171711)(wj)fuu(wj)il = Op(niT/(lJrT) h?d + nilhl)

nV2S2 1 L) fuu(wy) TE = O(n=Y2R712),
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ol E;l2—n/2—‘r1 I(m177?zl)u(wj)fuu(wj)71 = Op(hqn1/2(1+7) + n*1/2hl/2).

n—1/2 En/Z I (wj)fuu(wj>71 _ Op(n*1/2hq/2 + hqn1/2(1+7)>_

jm—n/241 L (mi—m1)a
WEENE Lo i) = Oyl 7/,

_ n/2 N _ p - _ _
DTV it Ly o) (@) Fuu ()T = Op(n(TH/ AT 20y =1 /2Ty
pat).

For example, for I-—(w), we show that the leading term

1 n n

3 2o 2 f) () {n—lh ) K<%>uj] [% 3 K]

t=1p=1

is of order O,(n~7/(47). As the proof of Lemma 2, the first moment of this term

can be decomposed into the summation A + B + C + D, where

1 1 n n n n
A= B ——= > > ).
2T (nh)” {5 iy pmt 51 11
_ 24— % Zp = 20\ it —iwn [
f(Zt) 1f<Zp) 1K< t . J)K( ph )e t p(ZCTCT+l]>7
r=0

1 1 XE e N e N
C = olE— f(z) 2K< ])K< ) ( Crcr-&-l—‘) )
* 27 (nh)? ;]Z_;lqé%:_l h h 7;) ’
1 1 &K& o 2 — 24 >
D = olE-— (=) 21&(—])2( c%)-
o 2125 &

A = UEE%(nh)QtZ Z Z Z




P@t—p),(t—5),(t— l(Zt,ZwaZz) 2t — Zi ., R — 2
[ ] ] [ ) o it

- Ey Y z S et (z )

t=1t#p,p=1j=11#£j,l=1

D(t—p),(t— ] (=) (25 + hug, 21 + hup, 25, 1)
K (u) K (up)dzidzidugd
//// Z] +hut)f(zz+hup) (Ut) (Up) Z10z;AULAUp

< EpS 333 (o)

t=1t#p,p=1j=11#j,l=1

/ /P(t p),(t—j }zﬂl;z“zf’zl) dzdz; / K (ug)dug / K (up)duy,.

Under Assumption G/, if ¢ and p are distant, then for some function 6,

//p(t Bh{E J t-(% 21 %, Zl)dzdej =1+ (t—p)T)o(t—jt—1),

zi) f(21)
so that
A~ 271""),3; Z_ Z Z_ 1+ t_ )6(t_]t Zwt p (ZCTCT"H ]>
t#£p,p=1j=11#j,l=1
- Y3 S d-ge- (z) S (1t e
™me iz 1j=11#£51=1 —0 APl

3

n

~ O’?E%n*3+l/ (147) ZZ Z 6 t —j,t — l) (Z CrCrJrlj)
r=0

t=1j=11#51=1
= O(n™/1+7),

since

Z (1 + |t — p|77> ciw(t—p) Z ciw(t—p) 4 Z it —p| " Jiw(t-p)

p=1 = =

= i ‘t p| -7 W(t D)
p=1
by Lemma 15.
Similarly,
7 Z “ SN ) () K (B i (et
27m3h2 t=1p=1j=1 P h h




[/// (t—p),(t—j) (2t »)Zp ZJ)K(Zt;Zj)K(Zp;Zj)dthZdej] ciw(t—p)

: (zc)wi £5

t=1p#t,p=1j

(t—p),(t—j) (25 + hug, 25 + huy, %) | piw(t—p)
[/ / / ot hut)f Y ]>f(zj)K(ut)K(up)duthde]] cw(t—p

Q
ﬁ)ql\?
POEEERS
]38
(@)
C_”/
¥
3, =
N
N
]

: (
r=0 t:].]:l ;D:l
o0 1 n n
~ o? (z) 35350 01
r= =1j=

and,

0 - arlia R 8w (o)

and

1 1 L. _ 2t — Z; e
D = UgE%Wsz@t) 2K(TJ>2 <ch)

t=1j=1 “~
> ! 1 e [ e BT _
= Jg <7¥0012n> E% (nh)2 ;jZl/ / K(TJ)2f<Zt) 1f(2j)dztdzj
= O'g <7§)C%> 27T7Z7Z2h IZ:JZ_‘; |:/ K ]Ef(zt)
= 0(-)

In a similar way, it can be verified that the second moment is Op(n*%/ (A+7) yn=2p-2),
For I, 2 (4—5)(As), the leading terms are of order Op(n~'h + h2an!/(0+7))). Con-

sider

n

=33

t=1p=1j

Z ezwt —iwp

17=1

n n
27m —
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P () K2 (g0) — 9z K () g(z) — ()

when ¢, p, 7,1 are different,

- Qﬂnshzz Z Z Z et

t=1t#p,p=1j=11+#£j,l=1
(t—p),(t— ] )(Zt,z Z,Zl) 2t — Zj Zp — 2]
/1]]" <zp)pj K=K (F57)
(g(z1) — g(z]>><g<zp> 9(21))dzdzdzydz;

= ngz >3y e

t=1t#p,p=1 j=11#j,1=1

//// (t—p),(t—3),(t— l)(zt,zp 2t + huj, zp + hy)
f(z) f(2p)
K (uj) K (w)(g(2t) — gz + huy))(9(zp) — g(2p + hw))dwdujdzidzy.

Notice that by Taylor expansion

Pt—p),(t—g),(t—1) (Zts 2ps 2t + hug, 2p + huy)
ngafpt o))t (2t 2ps 22, 2p) BT PG

q
1
9(ze + huj) —g(z) = Z ag(“)(zt)u‘;h“ + 0p(h7)
a=1 "

q

9(zp + hw) — g(z) = b' (b)<zp)ulh + op(R9),

e D DND DEDID DICERDY

t=1 t;ép,p:l =11£j,i=1 ,B.a,b

1 P(t—p), (t—3),t—1) (Zt: “p: 2t: 2p) (a) (b) a+B+a+b
alb! Z zp)h
////a!b! Fz)f(z) 9\ (2)9"" (2p)

K (uj) K (up)u; udte ﬁ+bduldedztdzp

h? &

n n ol 1
e P i) DD MDD D DR

n
t=1t#p,p=1 j=11#jl=1 ata=q,f+b=q
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() —),(t— l)(Ztaszt?Zp) (a)

/] T el

/ K(uj)ujduj / K (w)ufdu,

D

t=1t#p,p=1j=11#£j,l=1 a+a=q,B+b=q
_ O(h2qn1/(1+r))
Similarly,
1 1 n n n
—— FG) ()™
270 (nh)? ; . 7%;:1; P
&t T Rj - Rp T Zj iwt  —iw
K(= —)(9(2) = 9(z)) K (F5—)(9(2p) — g(z7))e e ™7
_ O(h2qn1/(1+T)),
and
1 1 n n n
27 (nh)® §;l¢%;1
_ Zt — & Zt — %2,
Se) PR () 0z = 9(2) K (F5—) (g(=1) — g(2)

when t =p, j =1,

1 1 K& o 2 — 2
E%(nh)g ZZf(Zt) R(ih :

t=1j=1

)(9(=)
Similarly, we can verify the orders of magnitude for the other terms. B

7.3 Proofs of Lemmas

Proof of Lemma 1: By definition

-~/
~ -~ ~x
Ut = Y — Bpxt
/%

= Ui — 0% — (8, - 8)7;

= wu— U +Q(Zt) - ./g\(zt) -

= — (B, - B)3,

(Bp - ﬂ)/i‘\:ﬁk?

28

(Zt)g(b) (2p)dztdzy

,i!(lﬂt—p)”

—9(2))? = O(n™"h).
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where Ep is a preliminary /n—estimator of 5. Thus

La(s) = wi(A)wgz(Ae)”

uY

and

ﬁw(‘*’j) =

Tuulw) + op%)

where

Tunl) == 37 L0 =)L (M)

Asij

Proof of Lemma 2: By definition

1 n n R -
%ZZ 1 zwt wp (29)

t=1p=1

uu

and

iy = ih SRS/ 1), (30)

Plugging (30) into (29), the leadlng term in [--(w) is

27m3h2 Z Z f(z) 1f (zp)~ [ZK ] [ZK(ZP ; Zz)ul] oWt g—iwp

t=1p=
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We show that (31) is of order Op(n~th™1) by verification of the order of its moments.
Start with the first moment:

B 2o 22 1) () [Z K(%)w] [Z (2 "")uz]

» ~ =t
1 L& EE
- 27m3h2;,;;;

f(zt>*1f<zp>*1K<Zt K () (Z ) (Z czm)
r=0 k=0

2 00
— 2 iwt _ —iw
)E CTCTJrl,j&j,TB (& P
h —
r=0

f(Zt)71f<Zp)71K(Zt ; Zj )K(Zp ; 2l )eiwte—iwp <Z Cr0r+lj>

r=0

f(ze)” 1f<zp) 1K(

J Ap T RN iwt —iw -
)K( p - l>e7,wte P <Z Crcr+lj>
r=0

h
+02E27m3h22 DS

t=1t#p,p=1j=1

f(zt>—1f<zp>—1K(Zt ; Zj>K(Zp ; Zj>€iwt€—iwp <Z C%)

+02E27m3h2 ZZ Z f(z) 2K ; K - (ZC’“CT’” J)

t=1 j=11£4,l=1

+02E 3h2 ZZf 2t) 2K — ( C )
r=0

t=1j5=1
= A+B+C+D.

The order of these terms is now verified. In particular,




/ / / / K(Zt ; 4 )K(Zp ; & )f(Zj)f(Zl)dzzdztdzpdzjei“’te—iwp (i Cr0r+l—j)

r=0
= O™
and,
_ 2 > 2 L 1 SRR -1 1 Rt T R\ Rp T Zj iw(t—p)
b= <§CT>E2wn(nh)2;;j§ﬂzt> J(zp) ™ K A ])K(ph L)er =P
_ 2 sl 2 L 1 n n n 2t — Zj Zp — Zj ‘ 1 iwlip)
e <7§)Cr> 2mn (nh)2 ;p;é%;:l; {///K( h )E( n )f(’z])dztdzpdzj] e P
= O(nt
Similarly,
_ p2p b1 Shniiy R N R N .
Cc = JEEZWn(nh)Q ;j;l;é;l_lf<2t> K( . VK ( : )(gcrcwl])
= O(n™)
and
_ o e2p Ll Ny Lo 2 (X 2
D = asEzm(nh)Qt;;f(zt) K(=) (;C)
- A(Se) rmpp ] [ KGR
r=0 t=1j=1
EENCEASYANTE IR IR ot ) )
G <7§) T> E27mn2 ;; {/ K(u) ]Ef(zt)
1

Thus, the first moment of (31) is of order (nh)~!. In a similar fashion, it can be
verified that the second moment of (31) is Op(n"2h~2).

Proof of Lemma 3:  The order of magnitude for I, o g_@(ks) can be verified
in a similar way to Lemma 2. Substituting

n
~ 1 2t — 25§ ~

9(e1) = = S0 K(A)g(2)/ F (),
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into I(g_@(g_@()\s) we have

—1 —1 zwt fzw
Ig-9g-a@) ~ Qﬂnzzfzt Fzp '

t=1p=1
1 Zt
i K
{nh ; (

Again, by a calculation of moments, we show that it is of order O,(n~th + h??). For

9(=) - Hihz ) (gz) — g()) |

example, the first moment can be calculated as follows

n n

By 33 fla) ™ ) eteior

t=1p=1

) DI DD DD DIV CO R EO R
T (nh)” (= et J=1 T
KEZ) g(0) = 9K (2 () — glz))ete
+ ﬁ(nz)Q; #le;f<2t> f<zp)_1
t=1t#p,p=17=
K000 = 95 K (B 9() - gle)e e
11 & "

)(g(z1) — g(=1))
>3 fE) PR (T (g(z) — g(24))

2mn (nh)? = j=1

It can be verified that the leading terms in the above expectation are O,(n~th+h?).

For example, when t, p, j, [ are different,

o 3, oo 3, 3




2t — 2j »— 2

K (——")g(z) — g(2) K (2 ) (9(2p) — glz))e e

n n n
N 27m nh2z > D e

t= 1t7£pp—1] 1i#j4,l1=1
2]

B (107 K2 g0 — 9(2))| B | £ KT () — 9(a0)|.

notice that

. Zt—Zj

<gf><q><zle>1 (@) [ K]
(

Thus

1 1 K )2 At — % ) — alz
2wn(nh)2;;f( )R (T ) — 9(2)
1 1 & D
= P 2 ) Z_}/ (Y20 — glz))2 (5)d
1 h &
~ B gt 2 ) 22h2 g/ (a)? [ Kl

— %n‘QhZEf(zt)_lg'(zt)Q/‘K(u)2u2du
= n_lh% / K(u)*u?duE [f(z)_lg'(z)ﬂ :

The calculation of the other terms and of the second moments are similar. l

33



Proof of Lemma 4:  The first moment of the leading term in / (w) is

1 (n n n e - 29— 2 00 00
2mn2h YOS S erP p()T K( ph )| D et (Zcmf)
T |t=1p=11i=1 j=0 r=0
1 n n n e - 29— 2 00
= 52l ZZZ@ 5(t p)f(zp) 1K<pT) Z CrCr+t—l512_r
n | t=1p=1i=1 4t —1>0,r=0
3 2h ZZZGM CPE(2) { flz)dz Z CrCriit—1
AL o rt—1>0,r=0
= O™,

and, similarly, the second moment of I ~(w) is O(n™2). Thus, I, ~(\s) = Op(n~'). W

Proof of Lemma 5: It is mean zero and so we only need to verify the second
moment. The order of magnitude can be easily verified by the results of Lemmas 2
and 3. W

Proof of Lemma 6: It can be verified that I, (As) is mean zero and its second

moment is of order O(n~th% + n=2p7). W

Proof of Lemma 7: By definition Ix*(ml ml)(wj) = =3 > o1 TE(ma(zp) —
M1 (zp))e™s(t7P). Substitute this into n =" 2]7 n/2-+1 Lax (my—ma) (w])fuu(w]) , giving

n/2
2 o shf““ {szt [Zf‘

j=—n/2+1 t=1p=1

b (ma(zp) - ﬁzl(zp))/f(zp)] ei“’j(t”)] -

Conditional on z, it can be shown that the above term is mean zero and its second

moment is
S ) iy E IS S gt
(27)2 nSh? s,j=—n/2+1 ] t=1p=1k=1r=1
> K(FE)m(z) —m <zl>>/f<zp>] [Z K(E20) (ma () = ma(2))/ ()| -
=1 b=1
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Notice that (x, z;) are independent across t, conditional on z, E(zjz}) = 0, for t # k.

Thus, we have

1 n/2 . n n n 2
- - u(Ws . E zwj(t D) zws(t—r)
(2m)2 bR s’j:zn:p Hf () fuule) tzlp;lzl
[Z K () (ma(z) = ma (1)) (3 ] [ZK %) (ma (=) - m1<zb>>/f<zr>] .
=1 b=1

Again, we can verify that the order of magnitude of the leading terms in the above

moment are o(1). For example, when ¢ # p # r # [ # b, it can be verified that

n/2 n n n

2;62 Z fuu(Ws)ilfuu(Wj)ilE Z Z Z (13:)2 eiwj(tfp)eiws(tfr)

(27T) n®h s,j:—n/2+1 t=1p=1r=1

[i () (m () - m1<zl>>/f<zp>] [Z K (T2 (=) - m1<zb>>/f<zT>]

=1 b=1
n/2 n n o n
= G Y el M) Y Y B )’
T)n s,j=—n/2+1 t=1p=1r=1

e

i (£p) giws (1) 2042, ()22 lmlf @(z) - ()f my) @ (Z)]

= O(n 'h%).

Proof of Lemma 8: Notice that

I(m1—r7z1)(m1—m1 27rn ;Zl 7711 Zt —m (Zt))<7nl<zs) - 7/7\“(28))] eiwte—iw87
and
(ml(zt) ma(ze))(ma(zs) — ma(zs))
& z -z a1 25— %
QZZ )i (a) = ma () f(20) (=) (ma(z) = ma ().
j=1l=1
The leading term in
1 & 1
n- Z I(mlfr/)\il)(mlfr/ﬁl) (w])fuu (w])i
j=—n/2+1
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is

1 & sl et wt | —iws
o2 Z Juu(wj)™ 222226 e
j=—n/2+1 t=1s=1j5=11=1
f<zt>*1fc<%><m1<zt> = () f(z) T R (Z) (ma (z) = ma(2),

which can be decomposed into the sum of the following terms

n/2

27rln2 Z fuu (Wj> n Z Z Z Z zwte—inf(Zt)—l
j=-n/2+1 tsgl 1 t#s£j#l
() m (=) - ml(Zj))f(ZS)‘lK< ) ma () —ma (1))

n/2 n n
1 —iws -
+27Tn2 ‘ Z fuu(wj Z Zf zwe f(zt> !
j=—n/2+1 = =

2t — % Zg — %

K 8><ml<zt>—m1<zs>>f<zs>*1f<< ) (m (25) — ()

n/2 1 n n
w 1 6zwt —lws
2mn? ]_—%/:2-&-1 fuuless) (nh)? ; t;észszzl ZJ:
flz) K (2 ; ) (ma(21) — ma (2) f (26) L (22 ) (ma(26) = ma(2)
n/2 n
Y ) Y S e
™ (nh)" = i34
K(Zt ; . )(ma(z) — ml(zj))K<Zt ; Zl)<ml(zt) —mai(21))
- f Fualo) =5 33 ()
2mn2 Pllvey 0 R (nh)? t=1j=1 t
K(2 ; ) (ma(z0) = ma(2)) f(z0) (2 ; ) (ma () — ma(2)).

Again, it can be verified by calculation of moments that all these terms are o,(1).

For example, if we calculate their first moments, when t # s # j # [,

n/2

! 1 Shabate t  —iws
i) DI MCH e DD DD DD B
Jj=-n/2+1 (nh) t=1s=1j=11=1
fla) K (= ; ~ )(ma(ze) — m1(zj))f(zs)*1K(Zs ; i Y(ma(zs) —ma(z))



n/2

1 B 1 n n n n
= onZ Z Juu(wy) ! 22222
j=—n/2+41 (nh)” (= = 1j=11=1
piwt p—iws }, 2q+2 2 2 my @ (z) = (m )(q)(z)
g (K E )
= O(n~'h?).
And, when t = s # j =1,
LY g3y
2mn? Py wud (nh)2 =4
Pl K ma e1) — ma(2) F(20) ™ K () ) = (37)
g w L s [ (=) s 2
N 27Tn2j:;/2+1fuu<w]) (nh)QEJ;E{ f(z) a h >]
B 1 n/2 N & (ma(ze) —malz))) . 2 — 2
= 27Tn2j__%/:2+1fuu(w]) (nh)2;]§E{/{ (o) K( h )} f(Z]>dZ]}
S Y e LYy
2mn? Pllvey /0 v (nh)? =i

=

hE { / le(zt) } (721)(Zt +u) '(u)} 2 Flz + uh)du}

_ 1 & 1l ey (M4 (2))? o o
" oo 2, ) <nh>2§;m{/ NCE d“}
B P L) [ O I S -
a nE[ f(2) ]/ K (u)? anj__%/:ﬂlf““( i)
= O(nth).
When t =s # j #1,
1 n/2 n
2mn?2 Z Fuulw;)™ 2 Z

j=-n/2+1 t=1j=11#j

Zt — 2

£l 2R ) (mn(z1) = ma () K () m (22) = ()

1 n/2

n
= o2 Z Juu(wy)™ 22 ZEth
I#j

j=—n/2+1 t=17=1
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/ (22) - m1<zj>>K<Zt ) (ma (1) = ma (2))  (23)f (222
1 n/2
- 22 Z f"“< 2 ZhQ
j=—n/2+1 t=1j=11#j
f[.K( )(ma(ze) —ml(zt—i-uh))K( Y(ma(ze) — ma(ze + vh)) f(ze + uh) f(z + vh)dudv
f(z)?
- LT ey
2?4 T ) E S
agsa g Kt 19 0) — () ()]
f(z)?
n/2 L my FD(2) — (my )@ (2 ?
- 2 : 2 Z fuu(wj)_l%ﬂq(hyyz ZE [< 1fq( ) (21f> ( )>‘|
(L ) (1) t=1j=11#j f(z)
o [ f9) = ()@ <z>>r LR
- 11q(K) E[ 702)? G j__nZ/QH Juu(wj)
= O(n~'h?).

Other terms and the second moments can be analyzed similarly and thus

1 n/2
E Z I(mlfr/)\il)(mlfr/)\il)(wj)fuu(wj)_l = 010(1>'
j=—n/2+1

Proof of Lemma 9: It can be verified that it has mean zero and has O(n=*h~1)

second moment. H

Proof of Lemma 10:  Notice that E(U|X, Z) = 0, so the expectation of

n/2

n71/2 Z I(mlfﬁl)U,(w])fuu(w])il

j=—n/24+1
is zero. Now we verify that its second moment is o(1). The order of magnitude of

the second moment of n~1/2 2712 /241 Lmi— ml)u(wj)fuu(wj)*l is determined by

n/2

E|n7! Z I(m1*77l1)(m1*7?n)(Wj)luu<wj)fuu(wj)i2
j=—mn/2+1
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n/2

j=—n/2+1

ORI SR (59 s ol ANV (51)] B o S ) B

It can be verified that this second moment is O(h?? +n~'h). B

Proof of Lemma 11:

Notice that

n/2
2
j=—n/2+1
n/2
2
j=—n/2+1
n/2

2

j=—n/2+1

n—1/2
n—1/2

n=3/2

Again, we verify the moments of n=1/2 %"

I(ml —m1)u (W) fuulw;)™ !

jﬁu “U [

1

___fﬁu QU

1

2mn it

t=1p=1

n n
lzi:zgz Tnl Zt 7n1 Zt

n/2
j=—n/2+1

n n
ZZ mi(z¢) — ma( zt))@pewf(t P)

) e

I(ml m1)u (wj)fuu(wj) L

] iwj(tp)] )

Using the linear process form of u;, and by an analysis similar to that of the previous

Lemmas, we can show that the leading terms in n=1/2

are Op(n~1/2h9/2) and O,(h9). Thus

n—1/2

n/2

>

j=—n/2+1

Proof of Lemma 12:

n/2
2
j=—n/2+1
n/2
2
j=—n/2+1
n/2

>

j=—n/2+1

n-1/2

— 32

n—5/2

~

L (g5 (@5) fuu(wj) ™

1 _’I’L n

— fuu(wj) ™! i (g

2 J ;pzl ¢

1 " 1 & z
_fuu(w‘)_l l’* - K’( P
o funls ZE a3

I(ml —mi)u (wy)fuu(wj>

n/2
j=—n/2+1

L= 0,(h9).

9(zp))e™ (t_p)]

I(ml —m1)u (wj)fuu(wj)

1

Zp) — Q(Zl))/f(zp)] eiwj-(t—p)] _

Conditional on z, it can be shown that the above term has mean zero and its second

moment is
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Z fuu(ws)ilfuu@)j)ilE

s,j=—n/2+1 t

n

Z Zn: Zn: z} xzezw] (t—p) zws(kfr)

p=1k=1r=1

1
(27)2 nPh2

n

hE

Il
—

Zr — Zp

zp>—g<zn>/f<zp>] [iff( ) (g(z0) — glz))/ £ (20)]
b=1

Notice that (2, z;) are independent across ¢, conditional on z, E(zfz}) = 0, for ¢t # k.

Thus, we have

n/2

! Shake i(t— zw t—r
e 2 Jelw) e TES S Y (o) st
s,j=—n/2+1 t=1p=1r=1
ZK _Zl zp) —9(2))/ J( ZP] lZK Y (g(z) — g(2))/f(z) | -
=1 b=1

Again, we can verify the order of magnitudes of the leading terms in the above

moment calculation. For example, when ¢ £ p # r #£ [ # b,

n/2

1 e i(t—p) Jiws(t—r
e o el M ule) TEY DY () e
s,j=—n/2+1 t=1p=1r=1
DK o(e) - g<zz>>/f<zp>] [Z K () g(z0) = 9(z0)) /()
= b=1
n/2 n n n
- %2 S ) ) PSS B @)
(2m)" n3h sjmn/241 t=1p=1r=1

, , (@() —
Wi (t—p) ezws(t—r)h2q+2uq(K>2E2 [gf <Z> jfg

= O(n™).

Proof of Lemma 13:

n/2
2N L anye—g) @) fuu(w) !
j=—n/2+1
n/2

~ 2N fulw) o [0 (mla) — la) (9(2p) — G(zp))e s EP)

j=—n/2+1 t=1p=1



n/2

_ 1 zw](t D) 2
27TTL3/2 j_;/2+1 fuu W] tz;pz (nh>
l zp) — 9(21))/ f( Zp] l (2t) — g(Zb))/f(Zr)l
=1
n/2 2
1 iw;(t—p) (L
27T7Z3/2j ;/2+1fuu WJ tzlpze (nh>

2) — 9(z0)/ F(z ] [ n >—g<zb>>/f<zr>] .

[ n
=1

We can show that the leading term

S S IR 3 (L)z
2mn?/? j=—n/2+1 ) t=1 p=1 nh
[ (2p) = 9(20))/ f( Zp] [ZK )—g(Zb))/f(Zr)]
=1 b=1
is op(1). Thus
n/2 N
En ™ 3 o anye—) @i Fuulwy) ™!
j=—n/2+1
ha w2 |9 92) = (f9) 9 (2) mfD(2) — (mf)D(2)
~ zqu(mﬂ /@) f(@)
n/2 n o n
Z fuu w] 12261‘0]@ ?)
j=-n/2+41 t=1p=1
= O(n'/2n%).

Similarly, it can be verified that the leading terms of its second moment are of order
of magnitude O(nh*?), O(n='h?1=2), and O(h?1+2) respectively. B

Proof of Lemma 14: This result can be obtained as in traditional spectral regres-
sion theory (Hannan, 1970). B

The following Lemma is useful in the proof of Theorem 3 below.
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Proof of Lemma 15

n . n .
Z t*Tezwt — Z t*’rezwt
t=1 t=1
— Z t—'reiwt + Z t—'reiwt

t<L t>L
— O(L)+0(nL™)
— O(nl/(1+T))

where the last equality was obtained by letting L = O(nl/ (HT)). |
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