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Abstract

A variety of measures have recently been proposed for measuring the
relative importance of individual compenents in the overall reliability of
a system. Several of these seemingly different measures are very closely
related under the conditions typically assumed in the reliability litera-
ture. The measures are also closely related to the probabilistic values
of game theory; although the game theoretic literature predates the relia-
bility literature by up to two decades, the similarities have apparently

not been previously observed or exploited.
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Introduction

in many systems, whether or not the failing of a particular component
causes the entire system to fail depends on what other components have pre-
viously failed. For example, in a nuclear power generating facility, certain
compenents are redundent in the sense that they may all fail without causing
the system to fail. |In designing, modifying, and protecting systems, it be-
comes yseful to assess the relative contribution, or the relative importance
of the reltability, of each component to the overall reliability of the en-
tire system,

A number of seemingly different measures for the importance of indivi-
dual components have been proposed; these include those of Barlow and Proschan
[2], Birnbaum [3], and Fussell [6]. Although these measures have, on occasion
been discussed together (e.g., Lambert [7]) they have apparently never been
critically compared. We will show that several of these measures are simple
transformations of each other if, and only if, certain commonly-assumed
conditions are satisfied.

The above reliability measures are closely related to the concept of
probabilistic values in game theory; probabilistic values measure the rela-
tive contributions of the players to the outcome of the game. Although the
work by Banzhaf [1] and Shapley [9] predates the corresponding reliability
literature by up to two decades, the connection has apparently not been ob-
served before now. We will use certain game theoretic results, translated
into the context of reliabllity, to critically compare a variety of measures

for the i{mportance of individual components in the reliability of a system.



The following two assumptions on Pt(S) are for future reference;

we will not necessarily make these assumptions.

Assumption 1 (Independence of Failures): P _(S) = T ¥, (t) I (1-F, (t)) ,
t - i . i
ies igs

where Fi(t) is shorthand for F{i}(t)
Assumption 2 {Symmetry of Failures): P (8) is a function solely of s
(i.e., t&he.number of components in S ); components are interchangeable

for purposes of computing Pt(S) .

Sensitivity Measures

The first class of measures considered are of the form "“what is the
probability that the system status changes when the characteristics of a
particular subset of components are altered?' Although measures are typically
defined for individual components in systems with each Q(S) either zero or
one, the definitions may easjly be stated more generally. In parti-

cular, consider the following measures,.

M ((K) = Ig PL(S) [US)-Q(\B)]

M, (X)) =IgP (8) [QSUK)-Q(S)]

M3’t(X) = zS Pt(S) [Q(sux)-Q(s\X)] = Ml,t(x) + MZ,t(x)

M4 t(X) = dH(t)/de(t) . (This is defined only if H(t) is a function

of Fx(t)).

The first may be interpreted as the probability that the system status

at time t <changes {f all the non-functioning components in X are repaired



at time t ; this measure corresponds to that of Fussell [5]. Alternative-
ly, it is the change in the probability that the system functions at time

t when the components in the set X are made fail-proof. This appears an
appropriate measure for those defending a system against attack or trying
to improve system reliability by selectively upgrading some components.

The second measure may be interpreted as the probability that the
system status at time t changes if all the functioning components in X
are broken at time t . Such a measure might be of interest to anyone plan-
ning to sabotage a system. The measures of Banzhaf [1], Barlow and Proschan
[2], and Shapley [9] are obtained by making specific choices for the Pt(S)
in the second measure.

Finally, the last two measures may be interpreted as the sensitivity
of the reliability of the system to whether or not al!l the components of the
set X are functioning at time t . The third and fourth measure correspond
to that of Birnmbaum [3].

Although the above measures have been stated as reliability measures,
they are closely related to the game thecretic "probabilistic values"

v, (i=1, 2, ..., n) defined by Lg P(s) [Q(SUi)-Q(S)] , where the P(S)'s
may be any non-negative numbers summing to one. A game theoretic question
analogous to that of reliability is: given the value of each coalition of
players, what is the contribution of any one player to the overall value,

For example, in a voting situation, the value of a coalition is zero or onej;
a coallition's value is one if and only if the members of the coalition,
working together, can assure the passage of a bill. The importance of a par-
ticular individual depends on how many votes he has (or controls) and how

often his votes can influence the outcome.



in order to relate the various reliabflity measufes, it is useful to
assume that H(t) is a function of Fi(t) for each 1. Although this as-
sumption rules out many forms of dependencies among the failure distributions
of different components, the assumption is consistent with many reliability models.
The various reliability measures are illustrated in Figure 1. The first
three measures correspond to intervals, while the fourth {and also the third)
correspond to slopes. This figure, together with some results of Owen [8]

on muitilinear extensions of games, suggests the following theorem.

Theorem 1: When H(t) 1is a function of Fi(t) ¥i, then the following four

conditions are equivalent.

1. P.(s) = m Fo(e) T (i-F (1) ve.
i€S S
2. For any function Q, the corresponding H(t) is given by

Ht) = Zoas) T F () T G-F (1) v
ies ! T€S '
3. For any function Q, the corresponding H(t} is linear in

each F,(t), and H(r) = Q(S) whenever F.(t) =0 ¥igs
and Fi(t) =1 ¥ies.
4., For any function Q, the corresponding measures satisfy
"

’t(i)/Fi(t) = Mz’t(i)/(l-Fi(t)) = M3,t

Proof: It is clear that 1 = 2 => 3. It follows fromFiguresland2 that 34,

(i) = Mh,t(i) ¥i,t.

Owen proves that 3 =» 2. Finally, 2 = 1 follows from comparing the second

condition to the definition H(t) = EES Q(s) Pt(S) for all Q.

The first of the equivalent conditions is the independence of component
failures defined earlier; this assumption is explicitly made in most of the
cited works on reliabi}ity measures. The independence assumption is however
quite restrictive in practical problems. For example, it rules out the pos-

sibility that a particular component (eg. a lock on a vault) must typically



fail before some other component can fail (e.g., before a safe deposit box in
the vault can be burgled).

Although the independence assumption is commonly made, this relation
between the four measures has, apparently, not been previously observed. Note,
however, that although the measures are closely related, this relationship is
not necessarily obvious from numerical results. Since the numerators in the

(n,
M, (2), ... , M, (n)) (j =1, 2, 3, 4) of measures are not proportional to

it it

each other.

fourth condition depend on i , the corresponding vectors ﬂj ¢ " (Mj ¢
» ]

in cases where the functions Fi(t) are unknown, Birnbaum [3] suggests
evaluating dH(t)/dF (t) at F.(t) = 1/2 Vi. This is equivalent to as-
suming that each of the other components has an independent fifty-fifty chance
not functioning. This approach seems somewhat ad hoc; in the next section
it is shown that this particular symmetric choice of values for Fi(t) at
which to evaluate (H(t) cannot hold for all t in a symmetric model.

Under independence of failures, setting Fi(t) = 1/2 ¥i in the fourth
condition results in the same measure obtained by setting Pt(S) = I/Z(n-l) vS
in the first or second measure, and is precisely the game theoretic Banzhaf [1]
vaiue when Q s a zero-one function. Dubey and Shapliey [5] observe that the
Banzhaf value is equivalent to the Chow [4] parameters characterizing networks
with threshhold functijons; since there are not. in general, threshhold functions
for the class of reliability prcblems under consideration, the relation to Chow

parameters wi'l not be treated further here.



Causal Measures

An alternative measure for the importance of a particular component is
the probability that the system fails due to the failing of this particular
component. In such a measure, a component contributes to the fallibility of
the system only when it is the proverbial "straw which breaks the camel's
back.'"' A component which always fails before the system fails (but is never
the last component to fail before the system fails) contributes nothing to
system failures and is assigned a zero weight in such causal measures.

Consider the following two causal measures.

Mg (i) = T Pris=s|i fails at time th) [Q(5Ui)-Q(s)]

M6 t(i) = E:S Pr(St=S| i repaired at time t+) {Q{s)-Q(s\i)1,

]

where ""i fails at time t™" is to be interpreted as "'i & St, but st+e = StUi
for all sufficiently small positive e," and "i repaired at time t+” is to

be interpreted as "I € S, but S =$\i for all sufficiently small positive

t+
e.'" Note that this Implicitly assumes zero probability of more than one
failure and/or repair occurring simultaneousty,

Under independence of failures, the probabilities in MS,t(i) simplify
to Pt(S)/(l-Fi(t)), while the probabilities in M6,t(i) simplify to Pt(s)/Fi(t)'

This observation, together with Theorem 1, yields the following result.

Theorem 2: if there is independence of failures, then M6 t(i) = Ms t(i) =

Mh’t(i) =M (i) = M, t(i)/(l—Fi(t)) = M]’t(i)/Fi(t).

3,t ’

Barlow and Proschan [2] consider systems without repair and define the
importance M* of component | as the probability that the failing of i
causes the system to fail. Although the authors assume both symmetry and in-

dependence of failures, the measure can be defined for more general models.



Under independence of failures, the expected number of system failures

caused by component | during the time interval T s _f (i) dFi(t)+,

M
teT 5,t

+ .
)’ denotes the positive part of dFi(t). if there are no repairs,

where dFi(t
tﬁen this expectation is equal to M*. However, under independence of failures,
Theorem 2 may be used to relate M* to the sensitivity measures.

In models with no repairs and symmetry of failures, it is easy to verify
that each of the n! possible orders in which the n components may fail are
equally likely to occur, Thus, the probability that the failure of component
i is preceeded by the failures of all the elements of S 1is s!{n-s-1)!/n!,
where s denotes the number of elements in S. This observation resuits in

the following generalization of the characterization of M* by Barlow and

Proschan.

Theorem 3: |If there is symmetry of failures and there are no repairs, then

Mx = E:S {s!{n-s-1)'/n2][Q(SUi}-Q(S)]

The above value of M* is also the game theoretic Shapley [9] valuej the

unique game theoretic value satisfying certain axioms, including one of symmetry,

I (1) or M, t(i) is independent of t in a model without re-
b

M
3,t

pairs and with symmetric and independent failures, then these measures are equai

to Zg [st{n-s=1)'/n'1[Q(SUi)-Q(S)]. In particular, as Weber [10] observes for

game theoretic probabilistic values, M3 t(i) and M, t(i) cannot be equal
H »
to the Banzhaf [1] value (or, equivalently, the Birnbaum [3] measure evaluated
at F.{t) = 1/2 ¥i) for all times t in models with symmetric, Independent
l

failures and no repairs.
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Finally, an example shows that Theorem 3 need not hold if there are
repalrs. 1In particular, consider a three component system with
Q({1,2,3}) = Q({1,3}) = qQ({2,3}) =1, and Q(S) = 0 for all other § .
Assume that the "uptimes'" (time from completion of repair until the next
failure) of the components are identical independent exponential random
variables. Likewise, the "downtimes'" (time from failure until completion
of repadir) are identical independent exponential random variables; the
uptimes and downtimes are also assumed to be independent of each other.
Thus, the failures and repairs are symmetric and independent.

Characterize the state of the system by the subset of failed components;
there are eight possible states. The memoryless quality of exponential
distributions results in a Markov process for the transitions from ome state
to another. This process is depicted graphically in Figure 3. The prob-
ability that the system goes from state 1 to state ] conditional on the
systemn being in state i are indicated in the fiture as a function of p ;
P 1is the fraction of time a component is failed, or more precisely, the
mean downtime divided by the sum of the mean uptime and the mean downtime.

The above transition probabilities imply the following state prob-
abilities: P (5) = P|g ¥t , where P; - 1-p)?/2 , P = (+)(A-p)/6 ,

P2 = p(2~p)/6 , and P3 = p2/2 . Thus, the relative probabilities that

the failing of component i causes the system to fail are the probabilities
that the system goes from state {3} to state {1,3} , the probability
that the system goes from state {3} to state {2,3} , and the probability
that the system goes from state {1,2} to state {1,2,3} , from state

{2} to state {2,3} , or from state {1} to state {1,3} . Thus, it
follows that the probability component i failing causes the system to

fail, conditional on the system failing, is (1-p)/(4-3p) , (1-p)/(4-3p) ,
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and (2-p)/(4-3p) , respectively, for 1 =1, 2, and 3.

If p is clese to one, then most of the system components are likely
to be non-functional; under such cases, a system failure is most likely to
have been caused by a transition from state {1,2} to state {1,2,3} .
Indeed, as p tends to one, the conditional probabilities that component
i causes system failure tends to 0, 0, and 1 respectively. Alternatively,
if p 1s very small, then the system is likely to be in a state with few
failed components and system failures are likely to have been caused by
any one of the three components failing. In particular, as p tends towards
zero, the conditional probability that component i causes the system to
fail tends to 1/4, 1/4, and 1/2 respectively. Note that in the above
example with symmetric and independent failures and repairs, the relative
importance of the three components (measured in terms of which component's
failing causes the system to fail) depends on the parameter p and cannot
satisfy the conclusion of Theorem 3 for arbitrary p . Thus, the assump-

tion of no repairs is necessary for Theorem 3.
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Conclusion

A number of apparently different measures for the importance of an
individual component to the reliability of a system are examined in this
paper. By defining all the measures within the same, sufficiently general,
model, some insight is gained into the different probability questions cor-
responding to the different measures. It is, however, shown that under the
{common)} assumption of independence of failures, the four ''sensitivity"
measures are very closely related to each other. It is also shown that under
the (common) assumption of symmetric failure rate distributions, the "causal"
measures must take a particular form, and that they are also, over appropriate
time intervals, equal to one of the previously mentioned sensitivity measures;
in addition, it is noted that Birnbaum's suggestion for evaluating his sensi-
tivity measure in cases of insufficient information is not the, essentially
unique, time independent measure corresponding to modelé with symmetric and

independent failures,
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Figure 1

Relation of Measures for General System Reliability Function



H{t)

Figure 2

Relation of Messures for Linear System Reliability Function
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FIGURE 3. Markov Process Corresponding to Example.



