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Abstract

This paper establishes error orders for integral limit approximations to traces of
powers (to the p’th order) of products of Toeplitz matrices. Such products arise fre-
quently in the analysis of stationary time series and in the development of asymptotic
expansions. The elements of the matrices are Fourier transforms of functions which
we allow to be bounded, unbounded, or even to vanish on [—, 7], thereby including
important cases such as the spectral functions of fractional processes. Error rates are
also given in the case in which the matrix product involves inverse matrices. The
rates are sharp up to an arbitrarily small £ > 0. The results improve on the o(1)
rates obtained in earlier work for analogous products. For the p = 1 case, an explicit
second order asymptotic expansion is found for a quadratic functional of the autoco-
variance sequences of stationary long memory time series. The order of magnitude
of the second term in this expansion is shown to depend on the long memory para-
meters. It is demonstrated that the pole in the first order approximation is removed
by the second order term, which provides a substantially improved approximation to
the original functional.

Key words and phrases: Asymptotic expansion, higher cumulants, long memory, sin-
gularity, spectral density, Toeplitz matrix.



1 Introduction

Let f(z) and g(z) be integrable real symmetric functions on [—7, 7. Let R,, and A4,
be n x n Toeplitz matrices with entries (R,,);x = 7|j_k and (Ay);x = aj;j_k, satisfying

Tn = / ™ f(x)dx
a, = / e g(x)dz.

Let p be a fixed, arbitrary and positive integer. Define

1
S’n,,p = gt’l"(RnAn)p,

L, = (@n)> ! / " (@)glw))rda (1)
and set
An,p = ‘Sn,p - Lp’ . (2)

The problem of bounding quantities of the form of (2) has a long history in the
literature, dating back at least to Grenander and Szego (1951). When f(x) and g(x)
are consistent with the conditions

> lagllil < o0 (3)

j=—00

and -
> Irjllil < oo, (4)
j=—0o0

Taniguchi (1983) proved that A,,, = O (n™!). The conditions (3)-(4) hold, for in-
stance, when f(z) and g(x) are spectral densities of short memory processes, such as
those associated with ARMA models. These conditions do not hold for long-memory
processes. In that case, when f(z) and g(x) satisfy

|f(2)] = O(]z]7%) as [z] — 0; < 1 (5)
and
lg(x)| = O(l2| 7) as |z] — 0;8 < 1, (6)
Fox and Taqqu (1987, henceforth FT) proved that under the condition
pla+p) <1 (7)

A, , = o(1). This bound is not sharp and we expect the error A,, , to be dependent
on the parameters a and (3 governing the singularity of f and g. The present paper
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shows this to be so. In particular, for f(z) and g(x) satisfying (5)-(6) and under
condition (7)

Npp = O (n7HPEIFE) ve >0, if a+ 8> 0, (8)
Anp = O(n) Ve>0, ifa+3<0.

In establishing the o (1) rate for A,, ,, FT use a probabilistic approach. Specifically,
FT expressed S, , as

1
S = [ Py ©
where
U = [-mna?
n—1 n—1
Pn(y) _ Z . Z ei(j1*j2)yl ei(jZ*jB)w . ei(j2p7j1)y2p (10)
Jj1=0 J2p=0
Q(y) = f yl)g(yQ)"'g(yQP)'
Defining

i (E) = W /E P, (y)dy, E C U, (11)

FT showed that for any set £ C U, on which Q(y) is bounded,

Jim Q ) dp, (y / Q (y) du(y
where pis a Lebesgue measure on Uy, concentrated on the diagonal D of U, and D
is defined as D = {y € R¥ : y; = yo = --- = y9,} . The use of this weak convergence
argument is imaginative but has the limitation that the best that can be achieved is
an o (1) rate.

The present work makes use of some of FT’s results, particularly the power count-
ing theory, but keeps the original algebraic form of the problem. In doing so, we are
able to obtain the O (n_1+p(“+ﬂ)+5) rate given in (8), which is sharp up to the n®-
factor. When the product involves inverse matrices such as

SI,, = %tr {H (Rn(f3)™" R (gj))} )

j=1

with f; and g; satisfying (5)-(6), Dahlhaus (1989) used the Whittle approximation to
R, (f )_1 in conjunction with Theorem 1 of FT to show that the quantity

1" (@ .
st [ {11445}

Al

n,p —
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is 0 (1), under the condition' p (3 — «) < 1. The present paper shows that
AL, = O (nrextzlzretipl@=atel) ye > 0, if f—a >0

and
Al,, =0 (n7/%%¢) Ve > 0, if f — a < 0.

The aforementioned results are particularly useful in the context of estimation
of spectral density parameters of stationary Gaussian processes, possibly with un-
bounded or vanishing spectra at the origin. Such cases arise in the study of long-
memory and anti-persistent time series. In this context, cumulants of log-likelihood
derivatives can be shown to be finite sums of terms of the form SI,, , or S,,, and the
bound on the error of their integral limits is useful in studies of high-order theory
for maximum likelihood estimators (MLE’s), on which some recent work has been
done by Lieberman et al. (2002), Lieberman and Phillips (2001) and Andrews and
Lieberman (2002).

In addition to the new error order results, for the p = 1 case we derive explicit
second-order expansions to S, 1. The expansions reveal how the asymptotic integral
formula (1) breaks down as an approximation. In particular, the integral limit for-
mula has a singularity at the boundary of the parameter space and the second order
term in the asymptotic expansion removes this singularity in the limiting integral
approximation, thereby leading to a substantially improved approximation.

The plan for the remainder of the paper is as follows. In Section 2 we establish
an O (n~'¢) order for A, ,,Ve > 0, in the case where f and g are continuously
differentiable. This rate is inferior to Taniguchi’s (1983) direct O (n™!) rate but is
obtained under somewhat weaker conditions. The proof uses the power counting
theory discussed by FT and is a building block for the case in which f and g satisfy
(5)-(6). The latter is treated in Section 3 and the results are applied to obtain bounds
on Toeplitz products of the form of ST, ,. Section 5 derives an explicit second order
expansion to the product trace in the p = 1 case and demonstrates the existence of
a removable singularity in the integral limit. A numerical illustration is provided.
Section 6 gives some examples and Section 7 concludes.

2 Bounds in the Short Memory Case

This section provides a bound on A,, , in the short memory case. The following result
(see Taniguchi and Kakizawa, 2000) is due to Taniguchi (1983).

Lemma 1 Under conditions (3)-(4), Anp = O (n71).

Theorem 2 below gives a related result that is not as sharp but which holds under
the following condition for which (3) and (4) are clearly sufficient.

'Dahlhaus states the condition p (8 — a) < % but it appears that p (6 — a) < 1 is needed.
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A1 There exist constants K;, with 0 < K; < 00,1 =1,2,3,4, such that
sup |f(2)| < K1, sup |g(z)| < Kz, sup |f'(z)] < K3, sup |¢'(z)| < Kq.

z€[—m,m] z€[—m,m| z€[—m,m] z€[—m,m|

Theorem 2 Under A1, A, , = O (n~'¢) Ve > 0.

The proof of Theorem 2 provides a step toward the result given in the next section
on the bound in the long-memory case. The proofs of Theorems 2 and 5 make use
of power counting theory and it is helpful to adopt the notation of FT. Consider the
function P : R"” — RU{oo}, defined as

P(x) = |Li(2)[" - | L ()"

where L; (z) = M;(xz)+ 0,7 = 1,...,m, the b;’sand 6;’s are real constants and
the M;’s are linear functionals on R". Define " = {Ly, ..., Ly, }. For any W C T,
let s(W) = T N span{W} and define d(P,W) = |W|+ 3 1 )by A set

= {Ly,...,L; } is said to be strongly independent if M, ,..., M;, are linearly
independent. Denote by S the set of L;’s in T' for which all b; > 0.Let U; =
{reR": —t <uz; <t,i=1,...,n}. We use the following result (Theorem 3.1 of FT).

Lemma 3 Suppose that d (P,W) > 0 for every strongly independent set W C S.
Then [, P (z)dx < 00,¥t > 0.

Proof of Theorem 2 In what follows K denotes a generic positive constant. Fixing
p > 1, it is easy to see from (10) that

1
— P, (y)dys - - - dysp = 1.
(2)2p—1n /[—ﬂﬂr]Qpl (y)dy2 Y2p

Hence,

e [ ey = [ P@Q w02
>From (1), (2), (9) and (12),
1

Doy = 3| [ Q) ~ Qo
< - [ 1P — Q) H

Now, (10) can be rearranged as

n—1 n—1 n—1
Pn(y) _ (Z ei(y1y2p)j1> (Z ei(y2y1)j2> Z e W2p—y2p—1)J2p

Jj1=0 Jj2=0 Jop=0

= hy(y1 — yap) o (Y2 — 1) - Iy (Y2p — Y2p—1) (13)



say. It is easily shown (FT, p. 237) that on [—2m, 27]
|7y (2)] < 4ha(2), (14)

where

I (2) = min(|z + 8 (2) |, ),
and ¢ (z) is the alternator

2w, if —2n <z < —m
0(2)=1 0,if —m<z<7 . (15)
=2m, ifr < z<2m

For any 7 € (0,1) we also have
hn(2) < hpy(2) =02+ 6 (2) 77, —2m < 2 < 2. (16)

Under Assumption Al we can expand Q(y) around y = (y1,...,%1) as

Q) =~ Qo) = Y- P ). an

where § = (y1,ca,...,co) and |¢; — y1| < |y; — y1], j = 2,...,2p. Further,

J
ly; =yl < Z Y — Yr—1]- (18)
k=2

Note that U, is a finite union of intersections of sets of the form

Ry, = {yeR?:y;—yj 1 €a} NUsJ=2,..,2p, (19)
Ry = {yeR¥*:yy—y € apfNUn,
aj = [2m,—m),aj = [—m,7),a;3 =7, 27],5=1,...,2p.

It follows from (13)-(18) that

2p J
K .
Bup < WZZZ/U [y — Y1 lly1 = y2p + 6 (Y1 — yop) "

j=2 k=2
2p

< I Iy = w1 + 6 (g — yia) " dy.
=2

where the outermost (finite) summation is over all possible configurations implied by
(19). Make the change of variables

rr = U

T o= y—y1,l=2,...,2p
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and note that ys, —y; = 23522 Zm- The Jacobian of transformation is unity and the

transformed integration region is
2p
Ul = {xERQP:—Wle §7T,—7T§x1+x2§77,...,—ﬂ§ingw.}.
i=1

The last integral becomes

K 2pJ
THL> [ Il

j=2 k=2

=1 o

2p
- Z Ty + 61 H \xl + (Sl’nild,f. (20)
m=2 =2

Let
Uspr = {xe]RQP s 2pm < x; < 2pm, i = 1,...,2p}.

It is clear that U, C Uypr, hence (20) is at most

K w 2p =1 g9p
e o) SN T LD SEMTA N | (EER U )
j=2 k=2 U2pr m=2 1=2
For the k in (21), we set
2p
M1 = — Z Lm, Mj = xj,j = 2, ...,2p, M2p+1 = Tk,
m=2

Ll = MJ +6J7.] = 17 "'72p7 L2p+1 = M2p+1-

In this case T'= {L1,...Lop+1} and S =T\ {Lopt1}. For any set W = {L.,,...,L; }
with {7, ...,7.} C{1,....2p}\{k} and r < 2p — 1,

dip,W)=r+r(n—1)=rn>0.
For any W including either Ljor Loy and with |W| =17 < 2p — 1, s (W) includes
both Lj and Ly, and so
dip,W)=r+r(n—-1)+1=rn+1>0.
Consider now a set W including either Ljor Lo, and with |W| = 2p — 1. Here
S (W) =T and
dip,W)=2p—1+2p(n—1)+1=2pn > 0.

Note that positivity of d(p, W) is assured in this case due to the unit exponent on
|z|, a term arising due to the bound on |Q(y) — Q(y1,-..,y1)|. Finally, the case
W =S yields

dip,W)=2p+2p(n—1)+1=2pn+1>0.
By Lemma 3, the integral in (21) is finite. Thus, A, , < Kn~172")_ Since we may
choose 7 arbitrarily close to zero, A, , = O(n™'*¢),Ve > 0. O
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3 Bounds in the Long Memory case

We make the following assumptions.

A2 The functions f(x) and g (x) are symmetric, real valued, continuously differen-
tiable at all x # 0 and there exist 0 < ¢; < 00, 0 < ¢g < 00 such that

o x| a < 1,
Co |x|7ﬂ7ﬂ < 17

IA TN

Vo € [—m, 7).
A3 For all t > 0,dAMy; and M, such that

sup | f'(z)] < My and sup |¢' (z)] < M.

|z|>t |z|>t

Lemma 4 (Theorem 1, FT) Under A2 and the conditionp (o + 3) < 1,1lim,, 00 Ay, =
0.

The proof of Lemma 4 in F'T relies on a weak convergence argument. The approach
is to partition U, into three disjoint sets, F;, F}, G, satisfying

F, = U\W
G = U,nNW,
where
W = Uiflm/h
W, = {yeR2p:\yijg@},izy..,zp—l,
Woy = {yGRgp:\yzp\S%}
and

U =[-t,t]*,0<t <

Then, the derivation proceeds as follows: (i) @ (y) is shown to be bounded on FEj. (ii)
iy, defined in (11), is shown to converge weakly to Lebesgue measure p concentrated
on the diagonal D of Uy. (iii) Weak convergence establishes that

lim [ Q(y)du, (y) = ; Q(y)du(y)z/t< y {f(w)gWw)}rdy,0<t <1 (23)

n—oo Et



(iv) The proof is completed by verifying that

1
hm limsup — / P,(y)Q(y)dy =0
F

t— n—oo I

and
lim [ P,(y)Q(y)dy = 0.

n—oo el

The crux of the argument is (23) and relies on weak convergence, leading to the o (1)
convergence of Lemma 4.

The following result uses an algebraic rather than probabilistic approach to pro-
vide more explicit information on the convergence rate.

Theorem 5 Under A2-A3 and the condition p (o + 3) < 1,

Npp = O (n71PETAT) ve >0, ifa+ >0,
App = O(n™7),Ve>0, ifa+ B <0.

Proof Since U, = E, U F, UG,

1
An,p — g

[ RIQW - Q)b

< ; 1Pa(y){Q) — Qy1, - - - y1) Hdy
41 IR0y (24)
1

!P( QW1 ..., y1)|dy

/ |Pa(y)Q(y)|dy

Note that from p. 237 of FT, |y;| > ¢/2%*~',j =1,...,2p, on E;. Hence, by Assump-
tions A2-A3, ) and 0Q)/0y; are bounded on E;, j = 1,...,2p. Thus, the first integral
on the ths of (24) is less than or equal to (21), which is O(n1*%), Ve > 0. To deal
with the second integral, note that from (22) F;, = U; N W¢ and that on W¢,

2] ys] lyop| o1
|y1|>7>7> >22p1>ﬁ'

Under Assumption A2,

Q)| < Ky gl P+ |yap| *

10



which is less than or equal to K|y |™7*#) on W¢. Thus

1 K e

— [ P.(y)Qy)ldy < — 1| P Pa(y)ldy. (25)
nJr n Ju,nwe

Make the change of variables

i

yi= [z i=1,..2p. (26)

k=1

The transformed integration range is U/ N W, where

2p
Ul = {zERsz—tgzl St,—tﬁz1z2§t,...,—t§Hzi<t.}

i=1
and
1 1 |G 1
W — {Z c R? . |Zl| > 5 |2122| > W HZZ' > ﬁ |Zl| }
1=
The Jacobian of transformation is | 21| |21 22| - - - |21 - - - Zgp—1| , which is at most K |z [** "

on W¥. We can choose t sufficiently small such that ¢ (z) = 0 for all possible z. Using
(13)-(16), (25)is less than or equal to

K 2p n—1
— |Zl|2p—1—p(a+ﬂ) H 2 — 2 |le2 — n—1
n (UnWey Pl
2p 2p71 77_1
X |212223 — 21Z2|77*1 e HZZ. _ H 2 dz
i=1 i=1
K 2p n—1
< - ‘zl’2p*1*p(a+ﬂ) ’Zﬂn*l Hzi -1 ’zlynfl ‘Z2 . anl
1—-2pn
n (Uinwey paley
2p—1 |71
n-1 n—1 n—1
<ozl s — 1" ] a| e — 1T d2
i=2
2p n—1
< %/ ‘zl’2pflfp(a+ﬂ)+2p(nf1) H Z—1
X |z — 1]77_1 e |zgp — 1]77_1 dz
2p n—1
K
= |Zl|—1—p(a+ﬁ)+2pn sz' 1 (27)
n P (Unwe)! Py
Xz =170 2 — 1|7 dz,

11



the last inequality following from the bounds implied by W¢. This integral is clearly
finite under the conditions —1 — p(a + ) +2pn > —land 1 > 7 > 0, i.e,,

2pn > p(a+F) and 1 > n > 0. (28)

It follows from (27)-(28) that

1
— | Pa(y)Q(y)ldy < Kn~tHPet8)te ve > 0 if o+ >0and p(a+6) <1
Iy
and |
— | 1Pa(y)Q(y)ldy < Kn™ Ve >0, ifa+ [ <0.
Fy

The third integral on the rhs of (24) is handled in an analogous way. To deal with
the fourth integral, we note that the order of the integral will follow from the order

of
1

L / IPmQWId.

n

see pp- 236237 of FT. By Proposition 6.1 of FT, if a + 3 > 0, then

1
_/ |P(y)Q(y)|dy = O (n_1+p(“+ﬁ)+8) Ne>0,ifa+B3>0
U.NW1

n

and
1

—/ |P.(y)Q(y)|dy = O (n~ ') ,Ve > 0, if a+ 8 < 0.
UNW1

n

A similar result follows for the last integral in (24). Thus, under Assumptions A2-A3
and the condition p (o + ) < 1, we obtain

Npp = O (n7HPETIFE) ve >0, if a+ 8> 0,
App = O(n) Ve>0, ifa+3<0.

O

4 Products involving Matrix Inverses

Next, we provide error bounds on limiting approximations of traces of matrix products
of the form ST, ,, where f; and g; satisfy A2-A3, with exponents oo and 3, respectively.
The following limit result is due to Dahlhaus (1989, Theorem 5.1).

Lemma 6 For f; and g; satisfying A2-A3 with exponents o and 3, and under the
condition p (o — 3) < 1, lim,, 06 Al , = 0.

12



This lemma is useful in finding the order of magnitude of cumulants of Gaussian
log-likelihood derivatives and is an important tool in the development of asymptotic
expansions for the Gaussian MLE for fractional processes - see Lieberman, Rousseau
and Zucker (2002). In proving Lemma 6, Dahlhaus used two main arguments: (i)

the Whittle approximation to R, (f)™", viz., Ry, ({471’2 f }_1) ; and (i) FT’s Theorem

1(a). The following theorem improves on this result by providing an explicit rate for
the convergence of Al ,,.

Theorem 7 For f; and g; satisfying Assumptions A2-A3 with exponents o, 3 < 1,
and under the condition p (o — ) < 1,

AL, = O (nmaxt/2etpEatel) ve > 0, if f—a >0

and
AL, =0 (n'?%¢) Ve >0, if B —a < 0.

Proof By the triangle inequality,

AL, %tr {f[ (Rn (fj)fl R, (gj)) } — %tr {f[ (Rn ((4772]”]-)71) R, (gj)) }‘
R (7 I e 1 o R

It is clear from the proof of Theorem 5.1 of Dahlhaus (1989) that the first term
of (29) is at most Kn~'/?t Ve > 0. To deal with the second term, we note that
by Theorem 5, if p(f—a) < 1 and 8 — a > 0, the second member is at most
Kn=1#pB-a)+e e > 0. If p(B—a) < 1 and B — a < 0, the second member is at
most Kn~1*¢, and the stated result follows. [J

5 Second Order Expansions for S,

This section provides an explicit second order expansion for S, , when p = 1. The
main result in this section is as follows.

Theorem 8 Let f (v) and g (x) be the spectral density functions of two long memory
times series defined as

o? /2w
2d, g ('I) =

|1 — e|

o? /2w 1
_ T with d,.d, € [0,=).
\1—6”’]2‘1’” [ 2)

f(z) =

13



Under the condition d, + d, < %,

1
S = —tr [ (f) Au(9))]
a(d,,d,) 1
= 277/ [z ~ 1-2d,—2d, +o <n12dr2da> ’ (30)
where
204 . 1 1
a(d,,d,) = ?sm(ﬂd )sin (7d,) ' (1 —2d,) I' (1 — 2d,) 1 od _2d. + il

Proof Observe that

n—1

h
Sp1 = Z rha_pwy, for w, =1— u
h=—n+1 n
oo 1 n—1
= Z ThG_p — Z ThG—p — " Z Al rha_p
h=—o00 |h\2n h=—n+1
T oo 1 n—1
— / [ Z rhe_”h] g(x)de — Z TRhO_p — — Z || rra_p
T Lh=—oc0 |h|>n " h=—n+1
= 271'/ f(x)g(z)dx — I, — Ip, say (31)

The autocovariance 7}, is

(-1)"T (1 - 2d,) o2
T(h—d,+1)T(1—h—d,)
(=1)" o2 (1 — 2d,) sin [x (h + d,)] T (h + d,.)
' (h —d, +1)
o’T (1 — 2d,)sin[rd,|T (h + d,)
' (h—d, + 1) ’

T, =

which uses the reflection formula I' (1 — z)['(z) = 7/ sin(7rz). From the asymptotic
expansion of the gamma function for large h > 0, we have

. _ T (1= 2d,) sin [rd; {1+O GN |

mhl=2dr h

Hence, for d, + d, < %,

IA = Zrha,h:22rhah

|h|>n h>n

14



_ 20'T(1-2d,)T (1 - 2d,) Zsin [7d,] sin [rd,] {1+0 (1)1

) 2—2d,—2d, h
h>n
20T (1 — 2d,) T (1 — 2d,) . _ ©
- ( 772) ( ) sin [rd,] sin [7d,] /n mdh [1+o0(1)]
2047 (1 —2d,) T (1 — 2d,) sin [7rd,] sin [7rd,]
2 n1=24:~2da (1 — 2d, — 2d,) [1+o0(1)], (32)

as n — oQ.
Next, take any integer L > 1 such that % + % — 0 and write

n—1 n
1 1 2
_[ fd — oy = — = —
B n E |h| ThQ_p n E |h| ThQp n E hrhah
h=—n-+1 |h|<n h=1
20T (1 — 2d,) T (1 — 2d,) sin [rd,] sin [rd,] h
= o E m L+0 h
L—1

BT (h+ d) T (h + da)
+Zr h—d + DT (h—dy+ 1)

_ 204F (1 —2d,)T (1 — 2d,) sin [rd,] sin [rd,] [ n?d+2da O (L)
nm? 2d, 4 2d,
20T (1 — 2d,) T (1 — 2d,) sin [7d,] sin [rd,]
= 1 1)].
m2nl—2dr—2da (24, + 2d,,) L+o(L)] (33)
We deduce from (31), (32) and (33) that
Sup = 2 [ [(2)g(x)dx
_20'T (1 —2d,) T (1 — 2d,) sin [nd,] sin [rd,] 1 N 1
2 nl—2dr—2da 1—-2d, —2d, 2d,+2d,

1
o nl—2d.—2d, )’

giving the stated second order approximation. [l

Remarks

(a) Fig. 1 shows the computed values of the asymptotic form, the second-order
expansion (30), and the exact value of S,,;, for a range of d = d, + d, with
d, = d, over d € [0,0.5) and with 02 = 1. Observe that the asymptotic form is
undefined when d, = d, = i, and the adequacy of the asymptotic approximation
deteriorates rapidly as d — % On the other hand, while the coefficient a (d,., d,)
in the second term of the approximation (30) also becomes infinitely large as

15



8,
C .
S ---  Asymptotic i
< 4 — — Second Order !
T —— Exact !
[
i)

O I I I I
0.0 0.1 0.2 0.3 0.4 0.5

Figure 1: Exact Value and Approximations to 1tr [R,,A,] for n = 50

d,,d, — i, the second order approximation (30) appears to do well over the
full range of values, showing only a small deterioration as d — % There is some
tendency for the second order term to overcorrect for the large error in the
asymptotic approximation as d — % The exact value of S, ; remains bounded
over the domain d,, d, € [0, 1] for finite n.
(b) We analyze the behavior of the approximations as d,., d, — i. Setting 0% = 1, the
first-order asymptotic formula has a pole when d = d, + d, = % In particular,

4 - I'l1—-2d
o }1 N ezm‘ 2ddl‘ _ 0_4(73,
I (1—d)

2 dr = —

[ t@e@an=Z [
the variance of a time series with long memory parameter d. Then, using the
Laurent expansion of the gamma function I' (1 — 2d) around its pole at d = 3,

we have
1 1 7T2 2 / 2
I'(1—2d)= 1_2d+¢(1)+§(1—2d) §+¢ (1) —¢ (1) +0 ((1—2d)7),
(34)
= —~, Euler’s constant. It follows that

where 1) is the psi function and v (1)
4
(35)

o ﬂf(x)g(x)dxzﬁJrO(l),

—T
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asd — % On the other hand, the asymptotic behavior of the second order term

a(d,,d,) as d,,d, — % is readily seen to be

20t s 1 ot
dy,d,) = in? | 7] 1+0()| =—2——10(1).
aldr,do) = == sin | 3] |95 H 1+ O] = T + O 1)
Thus, the pole in the first order approximation is removed by the second order
term, so that the approximation

Q a(dr,da)
277/ fla)g (@) de — —=55 =i

is bounded as d,.,d, — i. This good behavior explains why the second order
approximation produces a good approximation that does uniformly well over
d,,d, € [0,0.25], including the limits of the domain.

c) We may also develop asymptotics as d — = along different sequences for d, an
W Iso devel toti d— 3 al different for d, and
d,. For instance, suppose d = d, + d, — % with d, — % and d, — 0. Then
the representation (35) for the first order asymptotic term clearly continues to

apply. On the other hand, using (34) we have

204md s 1 1
d,,d,) = % sin = 0@
a(dr, do) a2 g (1—2@) (1—2d> o)

_ 20'm (jz_dT) (1_1%) (1_12d> +0(1)

4

= sz TOW:

and second order equivalence continues to hold at the limit of the domain of
d,.,d,. More generally, along an arbitrary ray for which d = d, + d, — % we
have

a(dydy) = 20T = 2d) o [T (1~ 24,)] sinfrd,] ( — d) Lo

T2

— ﬁ(z;da)sin [g (1-— 2da)} sin [7rd,] (1_7120[) +0(1)
ot cos %— 7d, o
WSifl(QTrja) ) <1_12d>+0(1):7r(1——2d)+0(1)’

and again the equivalence holds.

(d) The second order approximation (30) is new. It reveals how the first order limit
formula breaks down, shows that the second order term removes the singularity
in the limit approximation and provides what appears to be a substantially
improved approximation.
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6 Applications

These results have applications to the distribution theory of Gaussian MLE’s. For
a zero mean, stationary, long-memory process with covariance matrix X,(fy), the
Gaussian likelihood is given by

, 1
Ln(0;2) = —g log 27 — - log det, (fo) — §xn2n (f5)2n:

where z,, = (X1, ..., X,,)" and fp (\) is the spectral density. The latter depends on a
vector of unknown parameters 6 € © C R™, satisfying

fo(A) ~ [A]7@ Ag(N) as A — 0,

with 0 < a(f) < 1 and Ay(A) slowly varying at 0. For a given set of subscripts
v = (r1...ry), denote the log likelihood derivative (LLD) of order ¢ by L, =
01L/00,, - -- 00, . LLD’s have the form

L,=2'B,(0)x — F,(0),

where

1 915!
B,(0) = 2 51
=52, -0, aeTq Z“’f LH ge»] n (fo);
the a;’s are constants, the g;’s are derivatives of the spectral density with respect to

f and
Z aitr

e.g., see Lieberman, Rousseau and Zucker (2002). The cumulants of the LLD’s are
finite sums of terms proportional to

Pk

1= (0% (90,3’)] )

J=1

p

Hznl(fe)gn(ge,j)] :

Jj=1

tr

For a long-memory process, the gy ; (\) are O (|>\|a7§) ,V6 > 0. Hence, by theorem 7

1 ™ p 0.5 A
tr [Hz geg)] —~ %/_W <j1 gf; é;) X
(36)

This result is important in establishing high-order theory for Gaussian MLE’s of
spectral parameters when there may be a singularity in the spectra.

=0 (n %) 6 > 0.
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For the Gaussian ARFIMA(0, d, 0) model with d € (0,1/2) and unit error variance,
Lieberman and Phillips (2001) derived Edgeworth expansions to the distribution of
the normalized MLE, Sn =/n (czn — do) , Where czn is the MLE and d; is the true
value of d. The spectral density of the process in this case is

1 ix|—2d
fa(N) = o 1—e } )
Set aw = 2d. Clearly, f;()\) satistfies A2-A3. Let

L\ 2 . .
(5715 0g = (2—12) (2T g = XTIENTIS,
S\ 3 . ..
(1) eaadsan = 2(T78) -3 IR,

and so forth, where

¥ =(0/0d) L, % = (9°/0d*) .

Define
. tr ((2_12*)(d,d,d7d,dd))
Cn,l (d) =
tr ((2712*)@@)
1
Chs(d) = mtr ((2_12*)(2d,d,d73d,dd))
and

1
Rn,1,1 (d) = 2—t’l“ ((2712*)(0@@) .

n
The ‘exact’ Edgeworth expansion for the density of O iS

ngw»=¢wmﬁJu»u+;%xzmwu+0@«nwn- (37)

Lieberman and Phillips (2001) showed that

7'('2

lim €, (d) = 0; lim C 5 (d) = ¢ (3); lim A1 (d) = . (38)

n—00 6

No bounds on the orders of the errors of the limits in (38) were given. Using (37)-(38),
the ‘approximate’ Edgeworth expansion for the density of ¢, is

B () = ¢ (u; %) {1 _ %)u?»} |

The ‘exact’ and ‘approximate’ cdf expansions have the form

ST CO VI A 1cO
A9 @d) = / A (us d)du

— 00

= (I)(x\/"{/n,l,l) (39)
1 * * — *
_m¢(m\/ Kn,l,l) {(le + 207173/{'%71171) + Cn73x2} ,
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and

H M (z) = @ (:g%) + \fj(;)qs G%) {% + x2} , (40)

respectively. Lieberman and Phillips (2001) showed that for d € D = (0,1/2) and
any compact D* C D

sup sup |Fy, (Sn < x) — ﬁgl)(x;d)) =0 (nfl/Q) :
zeR D* n
sup sup Ijlél)(x; d) — ﬁél)’A(x)‘ =0 (n—l/Q) .
reR D* n n

The results in the present paper allow a more precise determination of the errors in
these expansions. For instance, applying Theorem 7, it is apparent that the differences
between corresponding terms in the ‘exact’ and ‘approximate’ cdf expansions are

Ca i (d)] =0 (n V) W6 >0 (41)
Ci s (d) +¢(3)] =0 (nV/*) ,¥6 >0 (42)

and
Kna1 (d) — % =0 (n_1/2+6) V6 > 0. (43)

So the omitted term in the ‘approximate’ expansion (40) is contaminated by an ap-
proximation error of O (n~**?) arising from (41)-(43). Numerical calculations in
Lieberman and Phillips (2001) indicate that (39) delivers a better general approxi-
mation than (40) and so the approximation errors (41)-(43) appear to be relevant in
practice.

7 Conclusion

Products of Toeplitz matrices arise commonly in the Gaussian estimation of the
parameters of time series models. The evaluation of such products is needed for the
development of first order asymptotics and asymptotic expansions. Results such as
(36) are useful in this respect because they allow for unbounded spectra and therefore
give error bounds on the approximations that apply in long memory models. In some
cases, as is apparent from the analysis in Section 5, the first order theory breaks
down because the limiting integral representation diverges even though the finite
sample cumulant is finite. Section 5 shows that a second order asymptotic expansion
successfully removes the singularity in this case and delivers a substantially improved
approximation. Extension of these results to the general case seems worthwhile.
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