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Abstract

We propose a nonparametric test for multiple calibration of nu-
merical general equilibrium models, and we present an effective algo-
rithm for computing counterfactual equilibria in homothetic Walrasian
economies, where counterfactual equilibria are solutions to the Wal-
rasian inequalities.
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1 Introduction

Numerical specifications of applied microeconomic general equilibrium mod-
els are inherently indeterminate. Simply put, there are more unknowns (pa-
rameters) than equations (general equilibrium restrictions). Calibration of
parameterized numerical general equilibrium models resolves this indeter-
minacy using market data from a “benchmark year”; parameter values are
gleaned from the empirical literature on production functions and demand
functions and the general equilibrium restrictions. The calibrated model al-
lows the simulation and evaluation of alternative policy prescriptions, such
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as changes in the tax structure, by using Scarf’s algorithm or one of its vari-
ants to compute counterfactual equilibria. Not surprisingly, the legitimacy
of calibration as a methodology for specifying numerical general equilibrium
models is the subject of an ongoing debate within the profession, ably sur-
veyed by Dawkins et al. (2002). In their survey, they briefly discuss multiple
calibration. That is, choosing parameter values for numerical general equi-
librium models consistent with market data for two or more years. It is the
implications of this notion that we explore in this paper.

Our approach to counterfactual analysis derives from Varian’s unique in-
sight that nonparametric analysis of demand or production data admits ex-
trapolation, i.e., “given observed behavior in some economic environments,
we can forecast behavior in other environments,” Varian (1982, 1984). The
forecast behavior in applied general equilibrium analysis is the set of coun-
terfactual equilibria.

Here is an example inspired by the discussion of extrapolation in Var-
ian (1982), illustrating the nonparametric formulation of decidable counter-
factual propositions in demand analysis. Suppose we observe a consumer
choosing a finite number of consumption bundles x; at market prices p;,
ie., (p1,71), (p2,22), ..., (Pn, Tn). If the demand data is consistent with util-
ity maximization subject to a budget constraint, i.e., satisfies GARP, the
generalized axiom of revealed preference, then there exists a solution of the
Afriat inequalities, U, that rationalizes the data, i.e., if p; - x < p; - x; then
U(z;) > U(x) for i = 1,2,...,n, where U is concave, continuous, monotone
and nonsatiated (Afriat, 1967; Varian, 1983). Hence we may pose the follow-
ing question for any two unobserved consumption bundles Z and &: Will Z
be revealed preferred to & for every solution of the Afriat inequalities? An
equivalent formulation is the counterfactual proposition: Z is not revealed
preferred to & for some price vector p and some utility function U, a solution
of the Afriat inequalities.

This proposition can be expressed in terms of the solution set for the
following family of polynomial inequalities: The Afriat inequalities for the
augmented data set (pi,z1), (p2,22),..., (Pn,Tn), (p,2) and the inequality
p-T > p-Z, where p is unobserved. If these inequalities are solvable, then
the stated counterfactual proposition is true. If not, then the answer to our
original question is yes. Notice that n of the Afriat inequalities are quadratic
in the unobservables, i.e., the product of the marginal utility of income at &
and the price vector p.

We extend the analyses of Brown and Matzkin (1996) and Brown and
Shannon (2000), where the Walrasian and dual Walrasian inequalities are
derived, to encompass the computation and evaluation of counterfactual



equilibria in homothetic Walrasian economies.

Brown and Matzkin (1996) characterized the Walrasian model of com-
petitive market economies for data sets consisting of a finite number of
observations on market prices, income distributions and aggregate demand.
The Walrasian inequalities, as they are called here, are defined by the Afriat
inequalities for individual demand and budget constraints for each consumer;
the Afriat inequalities for profit maximization over a convex aggregate tech-
nology; and the aggregation conditions that observed aggregate demand is
the sum of unobserved individual demands. The Brown—Matzkin theorem
states that market data is consistent with the Walrasian model if and only if
the Walrasian inequalities are solvable for the unobserved utility levels, mar-
ginal utilities of income and individual demands. Since individual demands
are assumed to be unobservable, the Afriat inequalities for each consumer
are quadratic in the unobservables, i.e., the product of the marginal utilities
of income and individual demands.!

A decision method for this system of Walrasian inequalities constitutes
a specification test for multiple calibration of numerical general equilibrium
models, i.e., the market data is consistent with the Walrasian model if and
only if the Walrasian inequalities are solvable. In our section on algorithms,
we give an effective deterministic algorithm for this decision problem. For
every ¢ > 0, the algorithm computes a finite e-net of solutions. The algo-
rithm is based on the following observation: There is a finite set of candidate
marginal utilities of income (one per agent per observation) such that every
set of consumption bundles admitting a solution of the Afriat inequalities
with strictly quadratically concave utilities, actually admits a solution with
strictly concave utilities with one of our candidate marginal utilities of in-
come. Moreover, this solution is the solution of a linear program. The
Walrasian inequalities are solvable if and only if for all sufficiently small ¢,
the corresponding linear programs are solvable.

An important point is that this set of candidates has cardinality (1/¢)V7
where € > 0 is a parameter, N is the number of observations and 7" the num-
ber of agents. Hence the algorithm will run in time bounded by a function
which is polynomial in the number of commodities and exponential only
in N and T'. In situations involving a large number of commodities and a
small N, T, this is very efficient. Note that trade between countries observed
over a small number of periods is an example.

!The Afriat inequalities for competitive profit maximizing firms are linear given mar-
ket data — see Varian (1984). Hence we limit our discussion to the nonlinear Afriat
inequalities for consumers.



A more challenging problem is the computation of counterfactual equi-
libria. Fortunately, a common restriction in applied general equilibrium
analysis is the assumption that consumers are maximizing homothetic util-
ity functions subject to their budget constraints and firms have homothetic
production functions. A discussion of the Afriat inequalities for cost mini-
mization and profit maximization for firms with homothetic production func-
tions can be found in Varian (1984). Afriat (1981) and subsequently Varian
(1983) derived a family of inequalities in terms of utility levels, market prices
and incomes that characterize consumer’s demands if utility functions are
homothetic. We shall refer to these inequalities as the homothetic Afriat
inequalities.

Following Shoven and Whalley (1992), see page 107, we assume that we
observe all the exogenous and endogenous market variables in the bench-
mark equilibrium data sets, used in the calibration exercise. As an example,
suppose there is only one benchmark data set, then the homothetic strict
Afriat inequalities for each consumer are of the form:?

Ul <X%p? .21 and U? < \pl.2?
Ul — )\1[1 U2 — )\2[2

where we observe p!, z! and I'. Given A! and A\? we have a linear system
of inequalities in the unobserved U!, U2, 22, p? and I?. A similar set of
inequalities can be derived for cost minimizing or profit maximizing firms
with production functions that are homogenous of degree one.

As an application of our approach, we revisit the Harberger model of
capital income taxation as exposited in Shoven and Whalley (1992). We
discuss the simulation and evaluation of a change in the taxation of capital
in a homothetic two-sector general equilibrium model, assuming the mar-
ket data available in multiple calibration of numerical two-sector general
equilibrium models.

2 Economic Models

We consider an economy with L commodities and T’ consumers. Each agent
has Ri as her consumption set. We restrict attention to strictly positive
market prices S = {p € RY : SL  pi = 1}. The Walrasian model assumes
that consumers have utility functions u; : ]RJLr — R, income [; and that

2 a1 .
“Here we assume utility functions are homogenous of degree one.



aggregate demand T = Z;le x¢, where

(o) =, e, (@)
x>0
Suppose we observe a finite number N of profiles of income distributions
{I7}Y] |, market prices p” and aggregate demand Z", where r = 1,2,..., N,
but we do not observe the utility functions or demands of individual con-
sumers. When are these data consistent with the Walrasian model of aggre-
gate demand? The answer to this question is given by the following theorems
of Brown and Matzkin (1996) and Brown and Shannon (2000).

Theorem 1 (Brown and Matzkin) There exist nonsatiated, continuous,
strictly concave, monotone utility functions {us}i_, and {z}}]_,, such that
ug(x}) = maxpro<gr u(w) and Z;le xy =", where r = 1,2,.... N, if and

only if 3{uj}, {\[} and {z}} for r=1,...N; t=1,...,T such that

Uy < U +Np°-(zf —zf) (r#s=1,.,N; t=1,..,T) (1)
AL >0,u; >0and z; >0 (r=1,..,N; t=1,..,T) (2)
preay=I (r=1,.,N; t=1,..,T) (3)

T
dap=1 (r=1,..,N) (4)

t=1

(1) and (2) constitute the strict Afriat inequalities; (3) defines the budget
constraints for each consumer; and (4) is the aggregation condition that
observed aggregate demand is the sum of unobserved individual consumer
demand. This family of inequalities is called here the (strict) Walrasian
inequalities.®> The observable variables in this system of inequalities are the
I7, p" and z", hence this is a nonlinear family of polynomial inequalities in
unobservable utility levels 4}, marginal utilities of income A and individual
consumer demands zj.

Brown and Shannon (2000) proposed an equivalent family of polynomial
inequalities in terms of the dual strict Afriat inequalities which we find more
useful for our analysis of calibration.

The dual strict Afriat inequalities for each consumer ¢ can be expressed
as follows:

T S

p p_> (r#¢s=1,.,N; t=1,..,T) (5)

AT AS ST1S8,.5
’Ut > Ut — )\tIt l‘t . <F — Ts
t t

3Brown and Matzkin call them the equilibrium inequalities, but there are other plau-
sible notions of equilibrium in market economies.



A >0and 2y >0 (r=1,..,N; t=1,...,7T) (6)

Theorem 2 (Brown and Shannon) There exist numbers 07, \{ and
vectors xj for (r = 1,...,N; t = 1,..,T) satisfying the dual strict Afriat
inequalities (5) and (6) if and only if there exist numbers 4}, A\; and vectors
xy for (r=1,..,N;t=1,..,T) satisfying the strict Afriat inequalities (1)
and (2).

Hence we define the dual strict Walrasian inequalities as (3), (4), (5) and
(6) where now the data is consistent with the Walrasian model of aggregate
demand if and only if the dual Walrasian inequalities are solvable.

Brown and Shannon (2000) in their Lemma 1 also show that any solution
of the dual strict Afriat inequalities gives rise to C*° functions wy : Ri“'l —
R where wy(p,I) is convex in (p/I), strictly increasing in I and strictly
decreasing in p such that wi(pf,I]) = 97 and D, ywi(p},I{) = =N Ijx}
for (r=1,..,N;t=1,..,T). Shannon and Zame (2002) define a smooth
convex function wy : R — R as (strictly) quadratically convex on a convex
subset Y C Ri if there is a constant k; > 0 such that for each z,y € Y,
where x # y:

wi(y) > we(x) + Dwy(x) - (y — @) + kel — yl|*. (7)

They point out that any smooth strictly convex function on a compact
convex subset Y C R is (strictly) quadratically convex. Their observation
follows from the second order Taylor expansion of w:(z) and the fact that
D?wy(x) is positive definite on R”, for all z € Y. Let Apin(*) = minimum
eigenvalue of D?w;(x), then k; = mingey Amin(7). The inequality in (7) will
be used to define the dual strict quadratically convex Afriat inequalities.

The case of homothetic utilities is characterized by the following theorem
of Brown and Matzkin (1986).

Theorem 3 (Brown and Matzkin) There exist nonsatiated, continuous,
strictly concave homothetic monotone utility functions {u;}L_; and {zi}1,
such that ui(x}) = maxyr o< rr u(x) and Sl =7, wherer =1,2,.., N
if and only if I{uj} and {z}} for r=1,...N; t=1,...,T such that

<ot a1 Nt =1,.,T) (8)
ut<utps-acf r#s=1,..,N;t=1,..,
a; >0and 2y >0 (r=1,.,N; t=1,..,T) 9)



pxy=I (r=1,.,N;t=1,..,T) (10)

T
Y ap=z" (r=1,.,N) (11)
t=1

(8) and (9) constitute the strict Afriat inequalities for homothetic utility
functions.

Both the Brown—Matzkin and Brown—Shannon analyses extend to pro-
duction economies, where firms are price-taking profit maximizers. See Var-
ian (1984) for the Afriat inequalities characterizing the behavior of firms in
the Walrasian model of a market economy.

3 Algorithms

3.1 A Nonparametric Test for Multiple Calibration

In multiple calibration, two or more years of market data together with em-
pirical studies on demand and production functions and the general equilib-
rium restrictions are used to specify numerical general equilibrium models.
The maintained assumption is that the market data in each year is consis-
tent with the Walrasian model of market economies. This assumption which
is crucial to the calibration approach is never tested, as noted in Dawkins
et al. (2002).

The assumption of Walrasian equilibrium in the observed markets is
testable, under a variety of assumptions on consumer’s tastes, using the
necessary and sufficient conditions stated in Theorems 1, 2, and 3 and the
market data available in multiple calibration. In particular, Theorem 3 can
be used as a specification test for the numerical general equilibrium models
discussed in Shoven and Whalley (1992), where it is typically assumed that
utility functions are homothetic.

If we observe all the exogenous and endogenous variables, as assumed by
Shoven and Whalley, then the specification test is implemented by solving
the linear program, defined by (1), (2), (3), and (4) for utility levels and
marginal utilities of income or in the homothetic case, solving the linear
program defined by (8), (9), (10), and (11) for utility levels.

If individual demands for goods and factors are not observed then the
specification test is implemented using the algorithm given in the next sec-
tion.

Following Varian, we can extrapolate from the observed market data
available in multiple calibration to unobserved market configurations. We



simply augment the equilibrium inequalities defined by the observed data
with additional polynomial inequalities characterizing possible but unob-
served market configurations of utility levels, marginal utilities of income,
individual demands, aggregate demands, income distributions and equilib-
rium prices. Counterfactual equilibria are defined as solutions to this aug-
mented family of equilibrium inequalities.

In general, the Afriat inequalities in this system will be cubic because
they involve the product of unobserved marginal utilities of income, the
unobserved equilibrium prices and unobserved individual demands. This
is to be contrasted with observations that include the market prices where
the Afriat inequalities are only quadratic in the product of the unobserved
marginal utility of income and individual demand. The important exception
is the homothetic case where consumers have homothetic utilities and firms
have homothetic production functions. Then the relevant Afriat inequalities
are only quadratic in the unobservable terms containing the \’s.

3.2 Computing Counterfactual Equilibria

In this section, we describe an algorithm to find solutions of the dual strict
Walrasian inequalities. We do so by simply showing that there is a finite set
of “candidate” X’s-marginal utilities of income (one for each consumer for
each observation) — such that for every solution of z’s (individual consump-
tion bundles), one of the candidate A’s works with the z’s. First we assume
that the observables z", p", I] forr =1,2,..., N, t =1,2,...,T are given and
further, we assume that the dual strict Afriat inequalities were generated by
utilities belonging to a C2-compact family of smooth strictly convex indirect
utilities on a compact cube containing z" in its interior for r = 1,2, ..., N.
We write the dual strict quadratically convex Afriat inequalities in this case
with the substituition z; = A1, which is made to simplify the computation
below :

T T S

p" p p" D
w?>wf—szf-(l—{—l—f>+k‘l—g—1—f (r,s=1,..,.N; t=1,..,T)
zi >0and zf >0 (r=1,.,N; t=1,..,T). (13)

Let &1 = min, _, \lp" /1] — p®/1}]|.
r#s

Lemma 1. Suppose Wy, 2{ and zj solve the dual strict quadratically convex
Walrasian inequalities (3), (4), (12), (13). Then for any z; with 2] < z] <



27 4 ke? Vt,r we have that o) = W}, \j = 2 /I, 2} satisfy the dual strict
Walrasian inequalities (3), (4), (5), (6).

Proof
T S
. .s (P p
¢ ¢
T 8 S
N asas P Ty -p . A A
< wj - Zag - i + 27 tIS since 2} < z{ and 25 - p"/I] > 0
¢ ¢
T 8 S
N a5 5P ~sTt D . A A
< wj — zfx?F +zftT + ke? using z§ < 28 + kef and &5 - p® < I}
¢ ¢

< wj — 2 <% — F) + ke? < @} by hypothesis.
t t

If the dual strict Afriat inequalities have a solution, we may scale the w
and z so that after scaling, we may assume that all the w and z are between
0 and 1. Similarly for the dual strict quadratically convex Afriat inequalities
(12), we may scale w, z as well as k so that after scaling we may assume
that the w and z and k are between 0 and 1. We make this assumption.

Now define

Sk = {z: z{ is an integer multiple of ke? 0< 2y <1+ ke%} .

Then, by the lemma it follows that

Lemma 2 For any Wy, 2] € [0,1],&] solving the dual strict quadratically
conver Walrasian inequalities (12), (13), (3), (4), there exists a z € Sy, such
that wy, \{ = z{ /1], T} satisfy the dual strict Walrasian inequalities — (5),

(6), (3), (4)-

This immediately yields an algorithm: for fixed k € [0, 1], we enumerate
the set Sy and then for each candidate z € S, we now solve a linear
program to see if the inequalities (5), (6), (3) and (4) have a solution. If
there is no solution for any z , then we conclude that the system (12), (13),
(3), (4) has no solution with this k. Otherwise, we would have found a
solution to (5), (6), (3), (4). Note that

L+ kDN 1

Sl < ~
N P

(14)




which is only exponential in N7 and independent of L, the number of com-
modities. For each candidate z, we solve a linear program where the com-
putational time is bounded above by a polynomial in N, T, L. Thus, when
the number of observations and number of agents are small compared to the
number of commodities, this is a very efficient algorithm. For each k, we
execute the algorithm, reducing k by a factor of 2 each time. We stop if
no solution has been found for k¥ = 2=, Hence there are at most logy, M
iterations of the algorithm.

4 The Harberger Tax-Model

We begin by recalling the two-sector model of the US economy. In this
model there are two types of households or consumers; two types of firms or
producers; two goods; and two factors of production, labor and capital. We
assume that consumers have homothetic utility functions and are endowed
with the factors of production. Firms have production functions that are ho-
mogeneous of degree one, hence make zero profits in equilibrium. Following
Harberger, we assume that factors are inelastically supplied.

Assuming there are two years of data available, as is the case in a typical
multiple calibration exercise, the Walrasian inequalities for the two-sector
model constitute a specification test for the Harberger tax-model. In both
years we observe: individual demands of consumers and firms for goods and
factors; each consumer’s endowment of factors; the income distributions
of households; and market prices of goods and factors, where labor is the
numeraire good. We can now state the Walrasian inequalities for the two-
sector model.

Households:
ut</\tp cxy (r#s=1,2; t=1,2) (15)
NI (r=1,2 t=1,2) (16)
U >0and 27 >0 (r=1,2; t=1,2) (17)
prexy=I] (r=12;t=1,2) (18)
2
Y oap=1" (r=12) (19)
t=1
Firms: R
e H/ R TH (7“7582172;15:172) (20)

ft =, (21)
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ff>0andyl >0 (r=1,2; t=1,2) (22)
¢yl =J (r=1,2t=1,2) (23)

2
=9 (r=12) (24)
t=1

where

xj is consumer t’s demand for goods in period r

Uy is consumer t’s utility level in period r

I} is consumer t’s income in period r
is the price vector for goods in period r
Z" is the aggregate demand for goods in period r
A} is consumer t’s marginal utility of income in period r

y; is firm ¢’s demand for factors in period r

ftr is firm t’s output level in period r

J{ is firm t’s cost in period r

q" is the price vector for factor demands in period r
7" is the aggregate supply of factors in period r
1/~7 is firm t’s marginal cost in period r

Equilibrium:

I = q¢ -y (r=12t=12)
= (f[,f5) (r=1,2)

gtzz (r=1,2)

y; is consumer t’s endowment of factors in period 7.

If we now impose a per unit tax 7 on the use of capital by firm 1 then
counterfactual equilibria are solutions to the equilibrium inequalities for the
two-sector model, augmented in the following manner: The range of r in the
equilibrium inequalities is now {1,2,3} where ¢ = (1,a +T), ¢ = (1,)
and o > 0 where « is the net rate of return and o + T is the gross rate
of return — see Chapter 6 in Shoven and Whalley (1992). In addition, we
require p® > 0 and consumer’s factor endowments to be the same in periods
two and three. Tax revenue is redistributed to households as lump sum
payments. In each counterfactual equilibrium we compute the social loss
due to the tax: 2TAKl, where A K] is the change in demand for capital by
firm 1. A decidable family of counterfactuals in this model are of the form:

11



The augmented equilibrium inequalities and the inequality %T AK) > a,
where « is known and fixed. Of course, we can also compute the equivalent
variation, KV, or compensating variation, C'V, for each household, using
the utility levels before and after the imposition of the tax on corporate
capital. Given the assumption of linear homogenous utility functions:

N _ 170 N _ 770
U Ny U

cv N o0

1°
where 0 denotes the equilibrium values before the tax and N denotes the
equilibrium values after the tax, see Shoven and Whalley (1992, p. 125).
The homothetic Walrasian inequalities are weak inequalities, if utility
functions and production functions are assumed to be homogenous of degree
one. Our algorithm is only applicable to a system of strict inequalities, hence
we approximate the homogenous of degree one case by a family of inequalities
derived from utility and production functions assumed to be homogenous of
degree r, where r € (0,1) and r is close to 1.
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