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Abstract

This paper considers the problem of choosing the number of boot-
strap repetitions B for bootstrap standard errors, confidence intervals,
and tests. For each of these problems, the paper provides a three-
step method for choosing B to achieve a desired level of accuracy.
Accuracy is measured by the percentage deviation of the bootstrap
standard error estimate, confidence interval endpoint(s), test’s criti-
cal value, or test’s p-value based on B bootstrap simulations from the
corresponding ideal bootstrap quantities for which B = co. Monte
Carlo simulations show that the proposed methods work quite well.

The results apply quite generally to parametric, semiparametric,
and nonparametric models with independent and dependent data.
The results apply to the standard nonparametric iid bootstrap, mov-
ing block bootstraps for time series data, parametric and semipara-
metric bootstraps, and bootstraps for regression models based on
bootstrapping residuals.
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1. Introduction

Bootstrap methods have gained a great deal of popularity in empirical research.
Although the methods are easy to apply, determining the number of bootstrap repe-
titions, B, to employ is a common problem in the existing literature. Typically, this
number is determined in a somewhat ad hoc manner. This is problematic, because
one can obtain a “different answer” from the same data merely by using different
simulation draws if B is chosen to be too small. On the other hand, it is expensive
to compute the bootstrap statistics of interest, if B is chosen to be extremely large.
Thus, it is desirable to be able to determine a value of B that obtains a suitable
level of accuracy for a given problem at hand. This paper addresses this issue in
the context of the three main branches of statistical inference, viz., point estimation,
interval estimation, and hypothesis testing.

We provide methods for determining B to attain specified levels of accuracy for
bootstrap standard error estimates, confidence intervals, and hypothesis tests.? A
three-step method for choosing B is proposed for each case. Three steps are required
because one needs to determine the relevant features of the problem in the initial two
steps before one can determine a suitable choice of B in the third step.

The measure of accuracy differs somewhat across the cases considered. For stan-
dard error estimates, we measure accuracy in terms of the percentage deviation of
the bootstrap standard error estimate for a given value of B, from the ideal bootstrap
estimate, for which B = co. For confidence intervals, we measure accuracy in terms
of the percentage deviation of the bootstrap endpoint(s) of the confidence interval for
a given value of B, from the ideal bootstrap endpoint(s). For symmetric two-sided
confidence intervals, this measure of accuracy is equivalent to a measure based on
the percentage deviation of the length of the confidence interval for a given value of
B, from the ideal bootstrap length.

For tests with a specified significance level a, we measure accuracy in terms of
the percentage deviation of the bootstrap critical value of the test for a given value
of B, from the ideal bootstrap critical value. For tests in which one wants to report a
p-value, we measure accuracy in terms of the percentage deviation of the bootstrap p-
value for a given value of B, from the ideal bootstrap p-value. (We note that reporting
a bootstrap p-value exploits the potential higher-order improvements of the bootstrap
that are available for tests; see Section 4 below.) For each type of statistical inference,
the measure of accuracy is directly related to the issue of whether one could obtain
a “different answer” from the same data merely by using different simulation draws.

The accuracy obtained by a given choice of B is stochastic, because the bootstrap
simulations are random. To determine a suitable value of B, we specify a bound on the
relevant percentage deviation, denoted pdb, and we require that the actual percentage
deviation is less than this bound with a specified probability, 1 — 7, close to one. The
three-step method takes pdb and 7 as given and specifies a data-dependent method
of determining a value of B, denoted B*, such that the desired level of accuracy is
obtained. For example, one might take (pdb, 7) = (10,.05). Then, the three-step
method yields a value B* such that the relevant percentage deviation is less than
10% with approximate probability .95.



The three-step methods are applicable in parametric, semiparametric, and non-
parametric models with independent and identically distributed (iid) data, indepen-
dent and non-identically distributed (inid) data, and time series data. The methods
are applicable when the bootstrap employed is the standard nonparametric iid boot-
strap, a moving block bootstrap for time series, a parametric or semiparameric boot-
strap, or a bootstrap for regression models that is based on bootstrapping residuals.
The methods are applicable to statistics that have normal and non-normal asymptotic
distributions. Essentially, the results are applicable whenever the bootstrap samples
are simulated to be iid across different bootstrap samples. We do not require that
the simulations are iid within each bootstrap sample—in fact, they are not for most
time series applications.

The results for confidence intervals apply to symmetric, equal-tailed, and one-
sided percentile ¢ confidence intervals, as defined in Hall (1992). Efron’s (1987) AB;
confidence intervals are not considered. They will be considered elsewhere. The re-
sults for tests apply to a wide variety of tests of parametric restrictions and model
specification based on t statistics, Wald statistics, Lagrange multiplier statistics, like-
lihood ratio statistics, etc.

For bootstrap standard error estimates, the three-step method depends on an
estimate of the coefficient of ezcess kurtosis, 74, of the bootstrap distribution of
the parameter estimator. We consider the usual estimator of v, as well as a bias-
corrected estimator of it. We compare these two methods via simulation. Because
the computational cost of carrying out the bias correction is small and the gains are
significant in some cases, we recommend use of the bias-corrected estimator of Yo-

For confidence intervals and critical values of tests, the three-step method depends
on estimates of the “density” evaluated at specific quantiles of the bootstrap distri-
bution of the statistic that is used to construct the confidence interval or test. For
this purpose, we use an estimator of Siddiqui (1960) with an optimal data-dependent
smoothing parameter, which is a variant of that proposed by Hall and Sheather
(1988).

The three-step methods are justified by asymptotic results. The small sample ac-
curacy of the asymptotic results is evaluated via simulation experiments. We assess
the performance of the three-step methods for standard error estimates and symmet-
ric percentile ¢ confidence intervals. In short, the simulations show that the methods
work very well in the cases considered.

The closest results in the literature to the standard error results given here are
those of Efron and Tibshirani (1986, Sec. 9). Efron and Tibshirani provide a simple
formula that relates the coefficient of variation of the bootstrap standard error esti-
mator, as an estimate of the true standard error, to the coefficient of variation of the
ideal bootstrap standard error estimator, as an estimate of the true standard error.
Their formula depends on some unknowns that are not estimable. Hence, Efron and
Tibshirani only use their formula to suggest a range of plausible values of B. An ad-
vantage of our approach over that of Efron and Tibshirani is that the unknowns in our
approach can be estimated quite easily. This allows us to specify an explicit method
of choosing B to obtain a desired degree of accuracy of the bootstrap standard error



estimator as an estimate of the ideal bootstrap standard error estimator.

The closest results in the literature to the confidence interval results given here
are those of Hall (1986). His paper has two parts. The part that deals with coverage
probabilities considers unconditional coverage probabilities, i.e., coverage probabili-
ties with respect to the randomness in the data and the bootstrap simulations. In
constrast, we consider conditional coverage probabilities, i.e., coverage probabilities
with respect to the randomness in the data conditional on the bootstrap simulations.
We do so because the bootstrap simulation randomness is ancillary and, hence, should
be conditioned on when making inference according to the principle of ancillarity or
conditionality; see Kiefer (1982). We do not want to be able to obtain “different
answers” from the same data due to the use of different simulation draws.

The second part of Hall’s (1986) paper (see Section 3) considers the asymptotic
distribution of the difference between a bootstrap percentile ¢ confidence interval
endpoint based on B bootstrap repetitions and the ideal bootstrap endpoint. He
considers the case where the bootstrap employed is the nonparametric iid bootstrap
and the t statistic is a normalized sample mean of iid random variables.

While our three-step methods rely on similar results, we use a proof that differs
from that of Hall in that it does not rely on smoothing the bootstrap distribution
of the statistic. Furthermore, our results apply to a much wider array of statistics,
types of bootstraps, and assumptions regarding the iid, inid, or dependent nature of
the original sample than do Hall’s, although it may be possible to generalize Hall’s
results along these lines. In addition, our results allow B to be data-dependent, as is
necessary for the three-step methods.

In any event, the focus of Hall’s results is quite different from that of this paper.
Hall uses his results to demonstrate the near continuity of the discrete nonparametric
iid bootstrap distribution of the ¢ statistic. In contrast, we address the question of
choosing a desired number, B*, of bootstrap repetitions.

The closest results in the literature to the test results given here are those of
Davidson and MacKinnon (1997). Davidson and MacKinnon consider the effect of
the number of bootstrap repetitions on the unconditional power of a bootstrap test,
i.e., the power with respect to the randomness in the data and the bootstrap simu-
lations. They propose a pretesting method of choosing B that aims to achieve good
unconditional power for a given significance level a. In contrast, the method that
we consider aims to achieve a bootstrap test that has good conditional significance
level given the simulation randomness. We do so for the same reason as given above
for confidence intervals, viz., the bootstrap simulation randomness is ancillary and,
hence, should be conditioned on when making inference according to the principle of
ancillarity or conditionality.

The remainder of this paper is organized as follows. Sections 2, 3, and 4 provide
the results for standard error estimates, confidence intervals, and tests respectively.
Section 2.1 introduces notation and definitions for the standard error results. The
notation follows that of Efron and Tibshirani (1993). Section 2.2 presents a formula
for the accuracy of the bootstrap standard error estimator for finite B as an estimator
of the ideal bootstrap standard error estimator. Section 2.3 introduces the three-



step method for determining B for bootstrap standard error estimates. Section 2.4
presents Monte Carlo simulation results for the three-step method of determining
B. Section 2.5 introduces a bias-corrected three-step method of determining B for
bootstrap standard error estimates. Section 2.6 assesses its performance via Monte
Carlo simulation.

Section 3.1 introduces notation and definitions for symmetric percentile ¢ confi-
dence intervals. The notation follows that of Hall (1992). Section 3.2 provides the
three-step method for these confidence intervals. Section 3.3 provides the asymp-
totic justification of the three-step method for these confidence intervals. Section 3.4
presents Monte Carlo simulation results for the three-step method of determining B
for symmetric confidence intervals. Section 3.5 extends the results of Sections 3.1-3.3
to equal-tailed and one-sided percentile ¢ confidence intervals.

Section 4.1 provides the three-step method and its justification for tests with
a specified significance level. Section 4.2 provides the three-step method and its
justification for tests when a p-value is to be reported.

An Appendix of Proofs provides proofs of the results given in Sections 2-4.

2. Standard Error Results

In this section, we present the results for bootstrap standard error estimates.

2.1. Notation and Definitions

The observed data are a sample of size n: X = (Xi,..., X,))". Let § = §(X) be
an estimator of a scalar parameter 6g based on the sample X. We are interested in
estimation of the standard error, se, of §. By definition,

(2.1) se = (B@X) - E9(X))2)"

where E denotes expectation with respect to the randomness in X. Of course, se
depends on n, but we take n to be fixed in this section except where stated otherwise.

Let X* = (X{,...,X;)’ be a bootstrap sample of size n based on the original
sample X. When the original sample X is comprised of iid or inid random variables,
the bootstrap sample X* often is an iid sample of size n drawn from some distribution
F. For example, for the nonparametric bootstrap, F is the empirical distribution
function based on X. That is, F(z) = 1£2 ,1(X; < ), where 1(X; < z) denotes
the indicator function of X; < z. For parametnc and semiparametric bootstraps,
F typically depends on estimators of §y and other parameters. When the original
sample X is comprised of dependent data, the bootstrap sample often is taken to
be a moving block bootstrap or some variation of this; see Carlstein (1986), Kunsch
(1989), Hall and Horowitz (1996), and Li and Maddala (1996). When the model
is a regression model with independent or dependent data, the bootstrap sample is
sometimes generated by bootstrapping the residuals; see Freedman (1981), Li and
Maddala (1996), and the references therein. All of these bootstrap methods are
covered by our results.



The “ideal” bootstrap standard error estimator of se is

(2.2) 5o = (E*(@(X*) - E*?(X*))z)l/ 2

where E* denotes expectation with respect to the randomness in the bootstrap sample
X* conditional on the observed data X.

Analytic calculation of the ideal bootstrap standard error is usually intractable.
Instead one usually approximates it using bootstrap simulations. Consider B iid
bootstrap samples {X} : b = 1,..., B} each with the same distribution as X*. The
quantity B is referred to as the number of bootstrap repetitions. The corresponding
B bootstrap estimates of 6 are denoted by 9,, = B(Xb) forb=1,...,B. The bootstrap
standard error estimator for B bootstrap repetitions is

1 - A2\ Y2
(2.3) Sépg = (B;_—123=1 (Bb BE 90) ) .
Note that
(2.4) Bliinoo 5 = S€up

in probability and almost surely by the law of large numbers provided E*(§(X*))2
oo. The latter holds automatically for the nonparametric bootstrap due to its finite
support.

Here and below (except as stated otherwise), all probability statements and the
probability and expectation operators P* and E*, respectively, refer to the random-
ness in the iid bootstrap samples {Xj : b = 1,..., B} conditional on the observed
data X. We note that our results are applicable in any bootstrap context in which
the simulated bootstrap samples {Xj : b=1, ..., B} are iid over the index b.

Let p and Y2 denote the mean and the coeﬂ‘iczent of excess kurtosis of the boot-
strap estimator Bb By definition,

p = E*§(X*) and

_ B -t EE(X)-wt
9 T e e 0w

(From above, the standard error of §Z is 5€x.) Note that v = 0 if @Z has a normal
distribution, 5 > 0 if 5; has kurtosis greater than that of a normal distribution, and
¥y < 0 otherwise. For example, for a ¢ distribution with df degrees of freedom, the
coefficient of excess kurtosis is 6/(df —4). Thus, for df = 10, y9 = 1; for df = 7,
79 = 2; and for df = 5, 79 = 6. The range of possible values of 7, across all
distributions is [-2,00). (The normal and ¢ distributions are mentioned here for
illustrative purposes only. For the nonparametric bootstrap, it is not possible for
6(X*) to have a normal or ¢ distribution, because the distribution of 6(X*) is discrete.
Nevertheless, §(X*) may have a discrete distribution that is closely approximated by
a normal or ¢ distribution.)



Often {d, (8, — o) : n > 1} converges to a normal distribution as n — oo and is
uniformly integrable to the fourth power, where {d, : n > 1} is a divergent sequence
of positive constants, such as n1/2 or n%5. In such cases, 7, —, 0 as n — co. In
many applications, however, v, is greater than zero in finite samples.

Estimates of . and 5 are given by

- 1_p
fip = HTiiabp and

- B0 - Bs)*
(2.6) o = B -3.
SeB

These estimators are consistent by the law of large numbers and Slutsky’s Theorem:

(2.7) lim fig =p and lim Hop =1y,
B—oo B—oo
in probability and almost surely, provided séo, # 0.
Let x?_, denote the (1 — 7)-th quantile of a chi-squared distribution with one
degree of freedom for 7 € (0,1). That is, P(Y < x3_,) = 1—7, where Y has x?
distribution with one degree of freedom.

2.2. A Formula for the Accuracy of ség as an Approximation
for se,,

In this section, we give a simple formula which provides a probabilistic statement
of how close Sép is to 5€x as a function of the number of bootstrap repetitions B.
The results are justified by asymptotics as B — oo and are established by a simple
application of the delta method.

The percentage deviation of Sép as an estimate of 5é., is

Sépg — 5€
(2.8) 1001588 = S8l
S€oo

Let 1 — 7 denote a probability close to one, such as .95. Let pdb be a bound on the
percentage deviation of 5ég from Sé,,. We want to determine B = B(pdb,T) such
that .
(2.9) P (100'-8—6“5’7"3&1| < pdb) =1-1.

S€00
Alternatively, for given B and 7, we want to determine pdb = pdb(B,T) such that
(2.9) holds.

The relationship between B, pdb, and 7 that is determined by (2.9) satisfies the
following approximate formula:

pdb = 50()&_,(2 4+ '7'2)/3)1/2 or equivalently

(2.10) B = 2,500x%_,(2 + v5)/pdb?.
This formula is accurate in the sense that
- |s€p — 5€co| 2 172\ _
(2.11) B!l_rgoP <IOOT <50 (Xl—r(2 + ’)’2)/3) ) =1-r.
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The proof of this result and others below are given in the Appendix of Proofs.
Formula (2.10) is not operational because it depends on the unknown parameter
5. One can substitute the consistent estimator Y55 of (2.6) for v, to obtain

1/2
pdb = 50 (x%_,,(2 +%B)/B) / or equivalently
(2.12) B = 2,500x%_,(2 + 755)/pdb?.

Equations (2.7) and (2.11) combine to give

(2.13)  lim P (100'—33’5;—3931| <50 (x4 (2 +725)/B) " 2) —1-1,
B—oo S€xo
which justifies (2.12).

We now show how the formula of (2.12) can be utilized. Suppose B has been
specified, perhaps by the author of some research paper of interest. We are interested
in whether this choice of B is sufficiently large to yield 5ég close to 5€,,. Take 1—7
close to one, say .95. Then, x{_, = 3.84 and

(2.14) pdb = 98 ((2 +7,5)/B)2.

Table 1 provides the values of pdb that correspond to an array of values of 4,5 and
B when 1 — 7 = .95. For example, if 455 = 0 (which corresponds to the kurtosis
of the normal distribution) and B = 50, then pdb = 20. That is, with probability
approximately .95, 5€p is within +£20% of 5é.,. Or, with probability approximately
.95, 5€u is within £20% of 5ég. (The latter interpretation is valid because (2.13)
holds with €5, in the denominator replaced by ség.)

Table 1 shows that to obtain very accurate estimates of Sé., say pdb = 5, one
needs quite large values of B, e.g., B = 750 when 7,5 = 0 and B = 2,000 when
Yo = 3. Much smaller values of B are required to obtain moderate accuracy, say
pdb = 20, e.g., B =50 when 455 = 0 and B = 100 when 7,5 = 2.

2.3. A Three-step Method for Determining the Number
of Bootstrap Repetitions

We now specify a three-step method for determining B to achieve a desired ac-
curacy of sép for estimating 5€,,. The desired accuracy is specified by a (pdb, 7)
combination, such as (10, .05). The method involves the following steps:

Step 1. Suppose v, = 0 and use (2.10) to specify a preliminary value of B, denoted
By. By definition,
(2.15) By = int(5,000x3_, /pdb?),

where int(a) denotes the smallest integer greater than or equal to a.

Step 2. Simulate By bootstrap estimates {5; :b=1,...,Bo} and compute 7,5, as
defined in (2.6) with B replaced by Bo.



Step 3. Take the desired number of bootstrap repetitions, B*, to equal B* =
max{B, By}, where

(2.16) Bj = int(2,500xF_,(2 + A2, /pdb?).

If 435, < 0, then B* = By and one computes €« using the By bootstrap
estimates {6 : b=1,...,Bo} calculated in Step 2. If A28, > 0, one has to compute
B; — By, additional bootstrap estimates {5; : b= By+1,...,B1} before computing
Sépx.

‘BUsing the three-step method above, as pdb — 0 or 7 — 0, we have By — oo,
¥2B, — 72 in probability and almost surely, By — oo provided 5 > —2, and By <
B* — oo. The justification of the above method is that as pdb — 0, we have B; — oo
and

(2.17) p* (mol_gz‘?_l___Sf_E_i”_|

5€c0
provided v, > —2. We stress that B; depends on pdb in (2.17) via (2.16). Equation
(2.17) implies that the three-step method attains precisely the specified accuracy
asymptotically using “small pdb” asymptotics when v, > 0. Of course, if v, < 0,
then B* = By > B; with probability that goes to one as pdb — 0 and the accuracy of
sep« for approximating 5e., exceeds that of (pdb, 7). (This is a consequence of the
fact that it would be silly to throw away the extra By — B; bootstrap estimates that
have already been calculated in Step 2.) Because one normally specifies a small value
of pdb, the asymptotic result (2.17) should be indicative of the relevant non-zero pdb
behavior of the three-step method. The simulation results of Sections 2.4 and 2.6 are
designed to examine this. We note that the asymptotics used here are completely
analogous to large sample size asymptotics with pdb driving B; to infinity as pdb — 0
and B; playing the role of the sample size.
When 7 = .05, equations (2.15) and (2.16) become

(2.18) By = int(19, 200/pdb?) and By = int(9, 600(2 + o5, ) /pdb?).

For illustrative purposes, Table 2 provides values B that correspond to several values
of ¥op, and pdb, with 7 = .05. The values of pdb considered are 20 (moderately
accurate), 10 (accurate), and 5 (very accurate). Table 2 indicates that the necessary
B; values increase very quickly as the desired level of accuracy increases.

The three-step method discussed above is based on a scalar parameter 6. In most
applications, however, one has a vector of unknown parameters. In this case, one can
apply the three-step method to several parameters of interest, or all the parameters
in the model, to obtain Bj,..., By, say, when considering w parameters, and then
take B* to equal the maximum of these values. Then, B* is the number of bootstrap
repetitions needed to obtain the desired accuracy for all of the w bootstrap standard
error estimates (where accuracy is defined as above parameter by parameter).



2.4. Monte Carlo Simulations

In this section we evaluate the performance of the three-step method introduced
in Section 2.3. The proposed method is justified by the limit result of (2.17). We wish
to see whether this limit result is indicative of finite sample behavior for a range of
values of pdb and 7 in a standard econometric model. More specifically, given several
(pdb, ) combinations, we want to see how close P*(100[35€p, — 5€uo|/5€00 < pdb) is
tol—r.

Note that we focus initially on Bj rather than B* because, for Bj, equation
(2.17) implies that P*(100[S€p, — 5€s|/S€s < pdb) should be approximately equal
to 1 — 7, whereas for B* equation (2.17) only implies the less precise result that
P*(100|5€p+ — 5€00|/5€c0 < pdb) should be approximately greater than or equal to
1 — 7. Of course, our interest ultimately is in the performance of B*.

The model we consider is the linear regression model

(219) Yi = .’L':ﬁ +u;fori=1,...,n,

where n = 25, X; = (y;, z)’ are iid over ¢ = 1,..,n, z; = (1, 215, ...,T5)" € RS,

(z14, ..., 25:) are mutually independent normal random variables, z; is independent of
u;, and Eu; = 0. The simulation results are invariant with respect to the means and
variances of (21, ..., Zs:), the variance of u;, and the value of the regression parameter
B, so we need not be specific as to their values. For reasons discussed below, we
consider three error distributions: standard normal (denoted N(0,1)), ¢ with five
degrees of freedom (denoted t5), and chi-squared with five degrees of freedom shifted
to have mean zero (denoted x2).

We estimate 3 by least squares (LS). We focus attention on bootstrap standard
error estimates for the LS estimator of the first slope coefficient. Thus, the parameter
6 of Sections 2.1-2.3 is 3, the second element of 3.

The LS estimator of 6 is a linear combination of the errors {u; : 4 < n}. Thus, for
normal errors, the coeflicient of excess kurtosis of the LS estimator of 8 is zero. The
crucial parameter 9, however, is the coefficient of excess kurtosis of the (discrete)
bootstrap distribution of the LS estimator of §. In general, the parameter v, depends
on the sample and need not equal zero. Nevertheless, the value of v, will tend to be
close to zero for normal errors for most samples, because the bootstrap distribution
mimics the true distribution of the LS estimator. Correspondingly, for fat-tailed error
distributions, the value of 5 will tend to be large for most samples.

To obtain samples for which -, is close to zero, we consider normal errors. To
obtain samples with larger values of 74, we consider the fat-tailed error distributions
ts and x2. The t5 and x§ distributions have similar tail behavior and generate samples
with similar values of 5. The t5 and normal distributions are symmetric, whereas the
x2 distribution is highly skewed. The results for the x# error distribution are used to
determine whether skewness of the error distribution has an impact in finite samples
on the performance of our three-step procedure for determining B. The results of
Section 2.2 establish that skewness has no effect asymptotically.

We simulate 20 different samples from each error distribution because the value of
7, varies with the sample. For each of the 20 samples drawn (for a given distribution

9



of u;), we compute the LS estimate 6 and the ideal bootstrap standard error estimate
3€x defined in (2.2). We accomplish the latter by employing 250,000 bootstrap
repetitions (each of sample size 25). We explicitly assume that 250,000 is close enough
to infinity to accurately obtain Séu.

Next, we run 2,500 Monte Carlo repetitions for each of the 20 samples, for a total
of 50,000 repetitions. In each Monte Carlo repetition, we compute 5ég, and 5éep-
for the LS estimate of the first slope coefficient following the three-step procedure
outlined in Section 2.3. These calculations are made for several combinations of pdb
(viz., 20%, 10%, and 5%) and 1 — 7 (viz., .90, .95, and .975). For each repetition and
each (pdb,T) combination, we determine whether or not the estimate 5ép, satisfies

(2.20) 1001588 = Fecel _ g,
S€oo

We call the fraction of times that this condition is satisfied, out of the 2,500 repe-
titions, the empirical level based on B; bootstrap repetitions. The empirical level
based on B* bootstrap repetitions is defined analogously. For each (pdb, T) combina-
tion and each sample, we compute the empirical levels based on B; and B* bootstrap
repetitions. The three-step method of Section 2.3 is considered to perform well if the
empirical level based on B; bootstrap repetitions is close to 1 — 7, or if the empirical
level based on B* bootstrap repetitions is close to, or greater than, 1 — 7.

The results from this set of experiments are reported in Table 3 for the N(0,1)
and ts error distributions. The numbers reported in Table 3 are averages over the 20
samples. (For example, Med is the average median over the 20 samples.) Results for
the x% error distribution are almost the same as those for the ¢5. In consequence, we
do not report the xZ results. They indicate that asymmetry of the errors is not an
important factor for the performance of the three-step method.

Table 3(A) shows that the empirical levels are very close to their asymptotic
counterparts for the experiment with the N(0,1) error distribution,. This is true
even though the bootstrap distribution of the LS estimate with only 25 observations
in the sample can be far away from its asymptotic normal distribution. Note that
the empirical levels for the more stringent bounds (i.e., smaller pdb’s) and higher
probabilities (i.e., higher 1 — 7’s) are closer to the asymptotic levels. The reason is
that the asymptotic approximation improves as By, or B*, increases. Smaller pdb
values and/or larger 1 — 7 values lead to larger B; and B* values and, hence, better
performance.

The average of the v, values over the 20 samples used in Table 3(A) (computed
using 250,000 bootstrap repetitions for each sample) is .37. The mean (over 2,500
simulation repetitions) of the estimator 4,5 averaged over the 20 samples, as re-
ported in Table 3(A), is markedly lower than .37 when By is small (or equivalently,
when pdb is large). This downward bias of 7,5, leads to By and B* values that are
smaller than desired. In turn, this leads to empirical levels based on B; and B*
bootstrap repetitions that are less than 1 — 7 when By is small. For larger values of
By (which occur with smaller pdb values), this bias vanishes and the empirical levels
are closer to 1 — 7. The problem of underestimating 7y, stems from the fact that nei-

10



ther the numerator nor the denominator of the estimator Jyp, in (2.6) is an unbiased
estimator of its population counterpart, although both are consistent estimators.

Note that there is significant variation in the values of B, over the various (pdb, 7)
combinations in Table 3(A). The mean values of B; range between 37 and 11,257.
The corresponding values for B* are very similar, because v, > 0 for all 20 samples,
Yo, is positive or close to zero for the vast majority of repetitions, and B* = B,
whenever Yop, > 0. If one is satisfied with a modest percentage deviation (e.g., pdb =
10%), then the required number of bootstrap repetitions is not very large. On the
other hand, if one sets a very stringent percentage deviation (e.g., pdb = 5%) and a
very high probability (e.g., 1 — 7 = .975), then the number of bootstrap repetitions
needed to achieve this level of accuracy is large.

Table 3(B) presents the results based on t5 errors. The average value of 7,
over the 20 samples with ¢5 errors is 1.26, which is noticeably larger than the value
of .37 for normal errors. In Table 3(B), the empirical levels based on By and B*
bootstrap repetitions are lower than 1 — 7 and lower than their values in Table
3(A). Nevertheless, the same basic pattern is observed as in Table 3(A). That is, the
difference between the empirical levels and 1—7 are largest when By is small, which
corresponds to pdb being large. When By is small, 7,5, is markedly downward biased
and its bias is greater in magnitude than in Table 3(A). This causes B; and B* to
be smaller than desired by a greater magnitude than in Table 3(A).

Overall, the empirical level results of Table 3(B) are not as good as those of Table
3(A). Nevertheless, the three-step method still performs quite well with ¢5 errors. The
largest deviation of an empirical level based on B; repetitions from its asymptotic
counterpart is .052 and for all other (pdb, 7) combinations the deviations are less
than half as large. Furthermore, the deviations based on B* are smaller than those
based on B;.

2.5. A Bootstrap Bias-corrected Estimator of v,

The simulation results of Section 2.4 suggest that the performance of the three-
step method of Section 2.3 could be improved, especially when 7, is large, if a less-
biased estimator of 7, than 7,5, is employed. In this section, we specify such an
estimator.

The iid sample of By bootstrag estimates of 0 in Step 2 of the three-step method

of Section 2.3 is ®* = (0;,...,530). By definition, 7y, is the coefficient of excess
kurtosis of the distribution of @; for any b =1, ..., By. For present purposes, we think
of (5;, ...,5*30) as being an original sample and 4,g, as being an estimator based on
this sample that we want to bootstrap bias correct.

Let G denote the empirical distribution of (7, ..., 5;0). A bootstrap sample @** =
(5;*,...,530) is a random sample of size By drawn from G. Let 5,(©**) denote
the estimate ¥y, of 7, computed using the bootstrap sample @**, rather than the
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original sample ®*. That is,
1 _«Bo (3™ _ 1 «Bo 5*\*
5 o (6 — & 228

(2.21) F2(@™) = o s 2\ 2
1 *k Ak
(”Bo-—l S (0 — 8 2 65) )

Note that ?230 = ’72(6*)
The “ideal” bootstrap estimate of the bias of 7,5, for estimating v, is

(2.22) E™53(0™) — 43,5

where E** denotes expectation with respect to the randomness in ©@**, e.g., see Efron
and Tibshirani (1993, eqn. (10.2), p. 125). The “ideal” bootstrap bias-corrected -
estimate ¥yp, o, Of 72 is

(2.23) N2Booo = VoB, — (E™42(@™) — Aap,) = 2925, — E™*H,(0™).

Analytic calculation of the ideal bootstrap bias-corrected estimate of v, is in-
tractable. Instead we approximate it using bootstrap simulations. Consider R in-
dependent bootstrap samples {@;* : r = 1,..., R}, where each bootstrap sample
e = (5::,...,5;*0,) is a random sample of size By drawn from G. The corre-
sponding R bootstrap estimates of v, are 7,(©}*) for r = 1,..., R. The bootstrap

bias-corrected estimator 4,5, g of 75 for R bootstrap repetitions is

=~ =~ 1 R *k
(2.24) YaBoR = 2728, — R Zml 72(©77).

Now, the three-step method of Section 2.3 can be altered by (i) adding a step
between Steps 2 and 3 in which 7,5, g is calculated and (ii) replacing Jp, in Step 3
by ¥9p,r- The added step is summarized as follows:

Step 2(b). Simulate R bootstrap samples {@}* : r =1, ..., R}, compute R bootstrap
estimates {7,(@;*) : r = 1,..., R} from these samples using (2.21), and compute
Y28,k from these bootstrap estimates and ,p, using (2.24).

We refer to the new procedure as the bias-corrected three-step method for determining
B for bootstrap standard error estimates.

The computational requirements of Step 2(b) are quite modest. Step 2(b) requires
that one simulate R bootstrap samples and calculate the simple closed form expres-
sions for 45(@;*) for r = 1, ..., R. For example, when By is 192 (which corresponds to
(pdb, T) = (10, .05)) and R = 400, the computational time is only about four seconds
using a Sun Sparc-20 computer. Note that the computational requirements of Step
2(b) are the same no matter how difficult the computation of 8 is and no matter how
large the original sample size n is. Thus, if a single bootstrap estimate of 6 takes
several minutes or several hours to compute, the time required to carry out Step 2(b)
is a small fraction of the total computational time.
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2.6. Monte Carlo Simulations for the Bias-corrected
Three-step Method

Here we evaluate the performance of the bias-corrected three-step method of
Section 2.5 via Monte Carlo simulation. Table 4 reports simulation results for the
bias-corrected three-step method of determining B for the linear regression model of
Section 2.4 with 5 errors. That is, the results of Table 4 are analogous to those of
Table 3(B) except that the three-step method is replaced by the bias-corrected three-
step method. We only consider the t5 errors because they yield the worst results of the
three error distributions considered in Section 2.4. The number of repetitions, R, used
in the bootstrap bias correction is taken to be 407. This number is chosen, somewhat
arbitrarily, to be a value that yields a reasonable tradeoff between computational time
for our simulation experiment and accuracy of the bootstrap bias-corrected estimator.

The results of Table 4 show a significant improvement in the performance of the
three-step method when it is augmented by a bias-correction of J5p,. Most of the
empirical levels are very close to their theoretical counterparts. The largest deviation
is .025 and all the rest are about half as large or less. The results in the “Mean”
column for 7,p,  indicate that the bias of the bias-corrected estimator 4,5, g is much
smaller than that of 455 in Table 3(B). The “Mean” numbers of bootstrap repetitions
B are larger than in Table 3(B) due to the bias-correction, but the increase is not
substantial. Analogous results hold for B*.

We conclude that the bias-corrected three-step method yields a noticeable im-
provement over the three-step method in cases where 7y, is large. The computational
cost of the bias-correction is minimal in absolute terms. Also, it is minimal rel-
ative to the total computational cost for calculating the bootstrap standard error
estimate Sép~ whenever 0 is difficult to compute. Thus, we recommend use of the
bias-corrected three-step method.

3. Confidence Interval Results

In this section, we consider the problem of choosing the number of bootstrap
repetitions B for percentile ¢ confidence intervals. The first three subsections deal
with symmetric two-sided confidence intervals and the last subsection extends the
results to equal-tailed two-sided and one-sided confidence intervals.

3.1. Notation and Definitions

We begin by introducing some notation and definitions. As in the previous sec-
tion, X denotes the observed data and 6 = E(X) is an estimator of an unknown
scalar parameter . We wish to construct a confidence interval for 6y of (approxi-
mate) confidence level 100(1 — )% for some 0 < @ < 1. Here we consider symmetric
confidence intervals about 8. (Note that symmetric confidence intervals typically yield
greater coverage accuracy as measured by higher order expansions than equal-tailed
confidence intervals; see Hall (1992, Secs. 3.5 and 3.6).)
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We assume that the normalized estimator n*(6 — 6g) has an asymptotic normal
distribution as n — oco. (Adjustments for the non-normal case are specified below.)
In many cases of interest, kK = 1/2. We allow for k # 1/2, however, to cover non-
parametric estimators, such as nonparametric estimators of a density or regression
function at a point. Let & = &(X) denote a consistent estimator of the asymptotic
standard error of n*(6 — ). Let

(3.1) T =n*(0 — 6y) /5

denote the t statistic for testing whether & = #y. The ¢ statistic has an asymptotic
standard normal distribution when the true parameter is 6y.

~ The “theoretical” symmetric percentile ¢ confidence interval of confidence level
100(1 — @)% is

(3.2) Jsy = [0 = n"Gkq,0 + n"6ka),
where k., is the solution to
(3.3) P(T| <ky)=1-a.

By definition of k,, Jsy has exact confidence level 100(1 —a)%. In practice, however,
one typically does not know k,. We consider using the bootstrap to estimate k.

Define a bootstrap sample X* = (X7,..., X )’ and a bootstrap estimator 6 =
6(X*) as in the previous section. Let 5* = 5(X*) denote the asymptotic standard
error estimator based on the bootstrap sample X*. Let 7™ = n"(@* —6)/6* denote
the bootstrap ¢ statistic based on X*. Let anoo denote the ideal bootstrap estimate
of ko. Because the bootstrap statistic T* has a discrete distribution (at least for the
nonparametric bootstrap), there typically is no value Ea,oo that satisfies the equation
PY(|T*| < Ea,w) = 1 — a exactly, where P*(-) denotes probability with respect to the
bootstrap sample X* conditional on the original sample X. Thus, to be precise, we
define kg 00 = inf{k : P*(|T*| < k) >1—a}.

The ideal bootstrap symmetric percentile ¢ confidence interval of approximate
confidence level 100(1 — )% is

(3.4) Tsy.c0 = [0 — N7 5ka,00,0 + 1" ka00)-

Analytic calculation of the ideal bootstrap estimate Ea,oo of the critical point k is
usually intractable. Nevertheless, one can approximate Ea,oo using bootstrap simula-
tions.

As above, consider B iid bootstrap samples {X} : b = 1,..., B}, each with the
same distribution as X*, and the corresponding bootstrap statistics 5; (= 5(X;)),
&} (= (X})), and T} = n~(@, — )/} for b=1,...,B. Let {|T*|gp : b = 1,..., B}
denote the ordered sample of the absolute values of Tj.

Following Hall (1992, p. 307), we choose B not to be just any positive integer, but
one that satisfies v/(B+1) = 1 —a for some positive integer v. (This has advantages
in terms of the unconditional coverage probability of the resultant confidence interval;
see Hall (1992, p. 307).) Then, the bootstrap estimate of k, based on B bootstrap
repetitions is defined to be
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(35) Ea,B = |T*|B,1/-

That is, 75&,3 is the v-th order statistic of {|T;*| : b = 1,..., B}. Furthermore, the
bootstrap symmetric percentile ¢ confidence interval of approximate confidence level
100(1 — @)% based on B bootstrap repetitions is

(3.6) jSY,B = [5 - n"‘&Ea,B,E + n"‘&Ea,B].

Note that B can be chosen as in the previous paragraph only if « is rational. We
assume therefore that

(3.7) a=a/a
for some positive integers @; and ay (with no common integer divisors). Then,

(3.8) B=oaga-landv=(a—aj)a

for some positive integer a. For example, if a = .05, then @; = 1, ag = 20, B = 20a—1,
and v = 19a for some integer a > 0. That is, B = 19,39,59, etc. If a = .10, then
a1 =1, a3 =10, B=10a — 1, and v = 9a for some integer a > 0.

3.2. A Three-step Method for Determining
the Number of Bootstrap Repetitions

In this section, we introduce a three-step method for determining B for the boot-
strap confidence interval ng B defined above. Our main interest is determining B
such that sz B is close to the ideal bootstrap confidence interval szoo A secondary
interest is in the unconditional coverage probability of ng, B (where “unconditional”
refers to the randomness in both the data and the simulations).

Our primary interest is the former, because the simulated random variables are
ancillary with respect to the parameter 6. Hence, the principle of ancillarity or con-
ditionality (e.g., see Kiefer (1982) and references therein) implies that we should seek
a confidence interval that has confidence level that is (approximately) 100(1 — a)%
conditional on the simulation draws. To obtain such an interval, we need to choose B
to be sufficiently large that jgy, B is close to jSY,oo~ Otherwise, two researchers using
the same data and the same statistical method could reach different conclusions due
only to the use of different simulation draws.

We measure the closeness of fsy B to jgyoo by comparing the endpoints of the
two intervals. The percentage deviation of the endpoints of ng;_; to the endpoints
of szoo is

(3.9) 100|n akaB——n ak:aool

_naka,oo @,00

We could also measure the closeness of jgy B to jSYoo by comparing the lengths
of the two intervals. This is a particularly appropriate measure in the present case
because each interval is symmetric about the same value 6. Furthermore, the length
of a two-sided confidence interval is of inherent interest because it directly reflects
the precision of the interval estimate.
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Denote the length of a confidence interval J by L(J). We have
(3.10) L(Jsy B) = 20 "6ka p and L(Jsy,co) = 20 "5 ka,c0-
The percentage deviation of L(jgy’ B) to L(jsy,oo) is

|IL(Jsy,8) — L(Jsv,e0)| _
L(JSY,oo) ka,oo

Thus, for the symmetric confidence interval, our measure of the closeness of fgy, B
to jSY,oo, based on the percentage deviation of the endpoints, is equivalent to a
measure based on the percentage deviation of the length of the confidence interval.
The former measure is applicable more generally, however, because in the case of
one-sided confidence intervals the lengths of all confidence intervals are infinite.

As in the previous section, let 1 — 7 denote a probability close to one, such as
.95. Let pdb be a bound on the percentage deviation of the endpoints of jsy, B to the
endpoints of jgy,oo. We want to determine B = B(pdb, T) such that

(3.11) 100

(3.12) P (100"“—“’-2—_—'““’—""' < pdb> =1-7.

ka,oo
That is, we want to specify a method of determining B to obtain a desired level of
accuracy pdb with probability (approximately) equal to 1 — 7.

We introduce a three-step method of doing so. The method relies on an estimator
of the reciprocal of a density function at a point, which appears in the asymptotic
distribution of the sample quantile ko p. For this, we use Siddiqui’s (1960) estimator
(analyzed by Bloch and Gastwirth (1968) and Hall and Sheather (1988)) with a plug-
in estimator of the bandwidth parameter that is chosen to maximize the higher order
asymptotic coverage probability of the resultant confidence interval, as calculated
by Hall and Sheather (1988). To reduce the noise of the plug-in estimator, we take
advantage of the fact that we know the asymptotic value of the density and use it to
generate our estimators of the unknown coefficients in the plug-in formula.

The three-step method is defined as follows:

Step 1. Compute a preliminary number of bootstrap repetitions By via

By = asag — 1, where

, 2,500a(1 — a)x3_,
(3.13) ag = int and o = a1 /as.
Zf_a/2¢2(21—a/2)17db202

Step 2. Simulate By bootstrap ¢ statistics {T; : b = 1,..., Bo}; order the absolute

values of the bootstrap ¢ statistics, which are denoted {|T™*|g, : b = 1,..., Bo}; and
~ . 2/3\ T

calculate vg = (a2 — a1)ag, m = 1nt(caBO/ )s ka,Bo = |T*|Bovos 1T | g vo—m» and

|T*|BO,V0+;;1, where

1/3
(3.14) o = (6Zf—a/z¢2(zl—a/2)> /

2zf—a/2 +1
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Step 8. Take the desired number of bootstrap repetitions, B*, to equal B* =
max{By, B1}, where

B; = aga; — 1 and

. {10,000a(1 — @)X}_; / Bo /1 . 2
(315) a; = int ( E2 pdb2a2 1-7 (%) (lT |Bo,llo+T’T\l — |T |BO,VU—771> .
«,Bo

Note that 2;_,/, denotes the (1—a/2)-th quantile of a standard normal distribution,
#(-) denotes the standard normal density function, and x?_, denotes the (1 — 7)-th
quantile of a chi-square distribution with one degree of freedom.

Having determined B*, one simulates B* — By (> 0) additional bootstrap ¢ sta-
tistics {Ty : b= By + 1,..., B*} and orders the absolute values of the B* bootstrap t
statistics, which are denoted {|T™|g=p : b = 1,..., B*}. The desired cutoff value, v*,
and the desired critical point, EQ,B., are then given by

*

v* = max{vg,v1}, v1 = (a2 — a1)a;, and
(316) ka,B‘ = |T*|B*’,ﬂ.

The resulting bootstrap confidence interval, based on B* bootstrap repetitions, is
equal to

(3.17) js}/’B. = [5 — n_nak\a,B' R 5 + n_nak\a’Bn].

In Table 5, we provide the values of By, ag, Vg, Ca, and M that correspond to
common values of a, 7, and pdb. Table 5 indicates that By increases significantly
as 7 decreases and even more so as pdb decreases. For example, the combination
(o, pdb, T) = (.05, 15,.10) requires By = 119. In contrast, (a,pdb,7) = (.05,5,.01)
requires By = 2399. In addition, By increases as a decreases. The pattern of variation
of vg and 7 is the same as that of By except that 7 decreases as a decreases. This
occurs because the height of the “density” that is being estimated decreases as «
decreases and it decreases quickly enough to offset the increase in By.

To assess the magnitude of the B; values generated by our three-step method,
we carried out the following procedure: (i) we assumed that the bootstrap distribu-
tion of T* was some specified distribution, viz., N(0,1), ¢, ts5, or X§§ (ii) for each
(o, pdb, T) combination in Table 5, we took By draws from the specified distribution
and calculated B; according to Steps 2 and 3 of the three-step procedure; (iii) we
repeated the simulation of part (ii) 5000 times; and (iv) we computed the median,
mean, minimum, maximum, and standard deviation of the 5000 values of B;. For
brevity, we do not provide tables of the results, but just summarize them briefly.

The use of the N (0, 1) distribution illustrates typical By values when the bootstrap
distribution of T* equals (or is close to) its asymptotic distribution, which is N(0, 1).
In this case, we found that the ratio of the median B; value to By was in the range
1.0-1.1 for most (a, pdb, 7) combinations with & = .05 or .10. Thus, in this case, the
initial choice of By is an accurate starting value to determine Bj.
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When we used the #19, t5, and x2 distributions, which differ increasingly from the
N(0,1) distribution, we found that the ratio of the median B, value to By increased
significantly. For example, for the t5 distribution, which has very thick tails, the
ratio was in the range 2.3-3.5 for a = .05 and 1.8-2.1 for @ = .10. Thus, when the
bootstrap distribution is far from its asymptotic normal distribution noticeably more
bootstrap repetitions By are needed than By. This illustrates the importance of using
a three-step method, which takes account of the actual bootstrap distribution of T™*
in Steps 2 and 3 and does not rely on its asymptotic distribution.

To illustrate the magnitude of B, for what may be a typical scenario, we consider
the ;0 distribution and specify (a,pdb,T) to equal (.05,10,.05). In this case, the
median B; value is 699. This is larger than the number of bootstrap repetitions often
used in the econometrics literature.

As in the previous section, the three-step method introduced here is based on
a scalar parameter §p. When one is interested in separate confidence intervals for
several parameters, say w parameters, one can apply the three-step method for each
of the parameters to obtain B(1)v B(2), cery B(w) and take B* to equal the maximum
of these values.

If the asymptotic distribution of 7" is not normal, then ay and ¢, in Steps 1 and 2
above have to be adjusted. Suppose the asymptotic distribution of |T| is F, the
(1 — a)-th quantile of F'is q;_q, and F has a density f(-) with respect to Lebesgue
measure at qi—q, then ap = int((10,000a(1 — a)x?_,) /(¢?_of?(q1-a)pdb?as)) and
Cq is defined as in (5.31) of the Appendix of Proofs. If F' depends on unknown
parameters, then consistent estimates of these parameters can be used to provide
estimates of q1_o and f(g1—q) for use in the definitions of ag and c,.

3.3. Asymptotic Justification of the Three-step Method

We now discuss the justification of the three-step method introduced above. The
three-step method relies on the fact that E B is a sample quantile based on an iid
sample of random variables each with distribution given by the bootstrap distribution
of |T*|. If the bootstrap distribution of |T*| was absolutely continuous at ka 0, then
BY/ 2(ka B—ka .00) would be asymptotically normally distributed as B — oo for fixed n
with asymptotic variance given by a(1 —a)/ f? (k:a,oo), where f(-) denotes the density
of |T*|. (Here and below, we condition on the data and the asymptotics are based
on the randomness of the simulations alone.)

But, the bootstrap distribution of |T| is a discrete distribution (at least for the
nonparametric bootstrap, which is based on the empirical distribution). In conse-
quence, the asymptotic distribution of B/ 2(k B— ko 00) a8 B — oo for fixed n is a
pointmass at zero for all a values except for those in a set of Lebesgue measure zero.
(The latter set is the set of values that the distribution function of |T*| takes on at
its points of support.)

Although |T™| has a discrete distribution in the case of the nonparametric iid
bootstrap, its distribution is very nearly continuous even for small values of n. The
largest probability 7, of any of its atoms is very small: 7, = n!/n™ ~ (27n)1/2¢~"
provided the original sample X consists of distinct vectors and distinct bootstrap
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samples X* give rise to distinct values of |T*| (as is typically the case); see Hall (1992,
Appendix I). This suggests that we should consider asymptotics as n — oo, as well as
B — o0, in order to account for the essentially continuous nature of the distribution of
|T*|. If we do so, then BY/2 (Ea B — Ko 00) has a nondegenerate asymptotic distribution
with asymptotic variance that depends on the value of a density at a point, just as
in the case where the distribution of |T™| is continuous. This is what we do. It
is in accord with Hall’s (1992, p. 285) view that “for many practical purposes the
bootstrap distribution of a statistic may be regarded as continuous.”

We note that the (potential) discreteness of T™ significantly increases the com-
plexity of the asymptotic justification of the three-step method given below and its
proof.

We now introduce a strengthening of the assumption of asymptotic normality
of the t statistic T that is needed for the asymptotic justification of the three-step
method. We assume: For some £ > 0 and all sequences of constants {z, : n > 1} for
which z, — 21_q/2, We have

P(T| € z») = P(|Z| < z,) + O(n™%) as n — oo and
(3.18) P*(|T*| < z4) = P(|Z]| < z,) + O(n™%) as n — oo,

where Z ~ N(0, 1). (The assumption on |T™*| is assumed to hold with probability one
with respect to the randomness in the data, i.e., with respect to P().)

Assumption (3.18) holds whenever the ¢ statistic and the bootstrap ¢ statistic have
one-term Edgeworth expansions. This occurs in any context in which the bootstrap
delivers higher order improvements in the coverage probability of confidence intervals
based on T. The literature on the bootstrap is full of results that establish (3.18)
for different ¢ statistics. For example, see Hall (1992, Sec. 3.3 and Ch. 5), Hall and
Horowitz (1996), and references therein. When x = 1/2 and & is an n!/2-consistent
estimator of the asymptotic standard error of 8, then (3.18) typically holds with
¢ = 1. (The n='/2 terms in the Edgeworth expansions of T and T™* typically are even
functions of z,, and hence cancel out in the Edgeworth expansions of |T| and |T™|,
leaving the order of the first terms of the latter equal to n~1.) One example where
(3.18) holds with kK = 1/2 and £ < 1 is when fis a sample quantile and & is an
estimator of its asymptotic standard error (which is not n!/2-consistent because it
involves the nonparametric estimation of a density at a point); see Hall and Sheather
(1988) and Hall and Martin (1991). When k < 1/2, as occurs with nonparametric
estimators 6§, then (3.18) typically holds with £ < 1; see Hall (1992, Ch. 4) and
references therein.

The discussion above considers letting B — oc. This is not really appropriate
because we want B to be determined endogenously by the three-step method. Rather,
we consider asymptotics in which the accuracy measure pdb — 0 and this, in turn,
forces B — oco. Thus, the asymptotic justification of the three-step method of choosing
B* is in terms of the limit as both pdb — 0 and n — co.

We assume that pdb — 0 sufficiently slowly that

(3.19) pdb x nf — oo as n — oo,
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where £ is as in (3.18).
The asymptotic justification of the three-step method is that

~

p* (100&%5};-M < pdb) —1—7 aspdb — 0 and n — oo, where

«,00

(320)  KaB, = |T*|B, ., and Jsy B, = [0 — n "Gka p,,0 + 1 "Gka p,).

As above, the probability P*(-) denotes probability with respect to the simulation
randomness conditional on the infinite sequence of data vectors. Under the assump-
tions above, this conditional result holds with probability one with respect to the
randomness in the data. The proof of (3.20) is given in the Appendix of Proofs.

Equation (3.20) implies that the three-step method attains precisely the desired
level of accuracy using “small pdb and large n” asymptotics when B* = B; > By.
When B* = By > Bj, then the accuracy of the three-step method exceeds the
desired level of accuracy. (This is a consequence of the fact that it would be silly to
throw away the extra By — B bootstrap estimates in Step 3 that have already been
calculated in Step 2.)

3.4. Monte Carlo Simulations for Symmetric
Confidence Intervals

In this section, we evaluate the performance of the three-step method introduced
in Section 3.2. As in Section 2.4, the purpose of the Monte Carlo experiments reported
here is to evaluate whether or not the limit result of (3.20) is indicative of finite sample
behavior for a range of values of «, pdb, and 7. That is, we want to see how close
P*(100 | ka8, — ko0 | /Kaoo < pdb) is to 1 — 1.

As in Section 2.4, we focus our attention on Bj rather than on B*, because
equation (3.20) implies that for By, P*(100 | kB, — kayco | /Faco < pdb) should
be approximately equal to 1 — 7, whereas for B* equation (3.20) only implies that
P*(100 | ko, B* — ka00 | /kaoo < pdb) should be approximately greater than, or equal
to, 1 — 7. Nevertheless, as above, the ultimate interest is in the performance of the
three-step method based on B*.

We consider the same linear regression model as in (2.19) with the same three
error distributions : N(0,1), ¢5, and x2. Again, we estimate 3 by LS and focus our
attention on the first slope coefficient. Thus, the parameter  of Sections 3.1-3.3 is
By (the second element of §). The standard error estimator @ is defined using the
standard formula. Thatis, 32 is the (2,2) term of the matrix 52 (Tiz1,. o5 xixi/25)71,
where 32 = e’e/(n — 6) and e is the vector of LS residuals.

We simulate 250 different samples from each of the three error distributions.
For each of the 250 samples, we compute the LS estimate 6 and the standard error
estimate &. Then, we simulate anoo using 250,000 bootstrap repetitions (each of size
25). As in Section 2.4, we explicitly assume that 250,000 is close enough to infinity
to accurately obtain Ea,w. Given 5, 7, and Ea,oo, we calculate the ideal symmetric
confidence interval Jgy, oo defined in (3.4) for each of the 250 samples for each error
distribution.
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Next, we run 2,000 Monte Carlo repetitions for each of the 250 samples for a total
of 500,000 repetitions. In each Monte Carlo repetition, we compute Jgy,p,, Jsv,B,
ko,B,, and Ea, B+ using the three-step method of Section 3.2. We make this calculation
for several combinations of a (viz., .10 and .05), pdb (viz., 15%, 10%, and 5%), and
1 — 7 (viz., .10 and .05). For each repetition and each (a,pdb,T) combination, we
check whether ko p, satisfies

Ea - Ea [e+]
(3.21) 1001—’3—%—’-—| < pdb,

,00
or equivalently, whether L(fgy, B, ) satisfies

|L(Jsy,,) — L(Jsy,c0)]
L(Jsy,c0)

We call the fraction of times this condition is satisfied, out of the 2,000 repetitions,
the empirical level based on B;. The empirical level based on B* bootstrap repetitions
is computed analogously. In addition, we compute the fraction of times that 6 falls
within the constructed confidence interval fsyy B,- We call this fraction the empirical
unconditional coverage probability. The empirical unconditional coverage probability
based on B* bootstrap repetitions is defined analogously.

The three-step method of Section 3.2 is considered to perform well if the empirical
levels based on Bj bootstrap repetitions are close to 1 — 7. Based on B* bootstrap
repetitions, the method is considered to perform well if the empirical levels are close
to, or greater than, 1 — 7.

The results from this set of experiments are reported in Table 6 for the N(0,1)
and t5 error distributions. The numbers reported in this table are averages over
the 250 samples. The results for the x2 error distribution are very similar to those
given in Table 6(B) for the t5 error distribution in terms of both the empirical levels
obtained and the number of bootstrap repetitions B; needed. These results show
that the high skewness of the X2 error distribution does not have any effect on the
performance of the three-step method. For brevity, we do not report these results.

Table 6(A) shows that the empirical levels are somewhat higher than the corre-
sponding 1 — 7 values for the experiments with the N(0,1) error distribution. Nev-
ertheless, with low pdb (5), the empirical levels are quite close to their asymptotic
counterparts.

Table 6(A) indicates that the performance of the three-step method is determined
by the number of bootstrap repetitions B, or B*, employed. The (a, pdb, 7) combi-
nations that yield the best results are those that induce a relatively large number of
bootstrap repetitions. Thus, the smaller the bound pdb, the closer are the empirical
levels to their asymptotic counterparts, and the more so, the higher the 1 — 7 value.
For example, for the (.10, 5, .10) combination, the median B; value is 1348, while for
the combination (.10, 15, .10), it is only 230. As a result, the empirical level for the
former case is .907, which is quite close to .900, while for the latter it is .942.

Also, the empirical levels are closer to their asymptotic counterparts for the con-
fidence intervals with lower confidence level 1 — . This occurs because it is more

(3.22) 100

< pdb.
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difficult to estimate the .95 quantile of |T*| needed for a 95% confidence interval than
to estimate the .90 quantile of |T*| needed for a 90% confidence interval.

Table 6(B) reports the results from the Monte Carlo simulations with the t5 error
distribution. The general picture revealed by Table 6(B) is very similar to that
of Table 6(A). The empirical levels are comparable to those reported in Table 6(A).
They are somewhat higher than their asymptotic counterparts. The most pronounced
difference between the two sets of experiments is that for all («, pdb, 7) combinations,
the number of bootstrap repetitions B is somewhat larger for the experiment with
the t5 error distribution, but not by much. This indicates that even with a relatively
small sample size (25 observations) the bootstrap distribution of T* with a fat-tailed
ts error distribution is not much different than with a N(0,1) error distribution.
Certainly, the bootstrap distribution of 7™ based on t5 errors is far from being a t5
distribution itself.

We conclude that the three-step method does pretty well in attaining the desired
accuracy of the bootstrap endpoints and confidence interval length in relation to
their ideal bootstrap counterpoints. The three-step method is slightly conservative,
because the accuracy obtained is slightly greater than the nominal accuracy.

Lastly, we consider the empirical unconditional coverage probabilities. In all cases,
they are the same whether based on B; or B* bootstrap repetitions. In Table 6(A),
they equal .908 or .909 for all cases where a = .900 and they equal .957 for all cases
where a = .950. In Table 6(B), they are in the range .900-.902 for all cases where
a = .900 and they are in the range .951-.953 for all cases where a = .950. Thus, the
empirical unconditional coverage probabilities are extremely close to their asymptotic
counterparts. This is consistent with Hall’s (1986) result that one need not employ a
large number of bootstrap repetitions in order to obtain good unconditional coverage
probabilities. Nevertheless, our results show that in order to construct confidence
intervals whose endpoints, length, and conditional coverage probability are close to
that of the ideal bootstrap confidence interval, one does need to employ a relatively
large number of bootstrap repetitions.

3.5. Equal-tailed and One-sided Confidence Intervals

We now develop three-step methods for choosing B for the case of equal-tailed
g*nd one-sided bootstrag*percentile t confidence intervals. We take X, 5, 0o, 7, T, X*,
6 ,5* T*, and {(X},6,,Ty) : b = 1,..., B} as in Section 3.1. We assume that the
normalized estimator 75(6 — ) has an asymptotic normal distribution as n — co
for some k > 0. (Adjustments for the non-normal case are provided below.)

The “theoretical” equal-tailed and one-sided percentile ¢ confidence intervals with

exact confidence levels 100(1 — 2a)% and 100(1 — a)%, respectively, are

(3.23) Jo = [5 - n""&ql_aﬁ —n""5q,] and J; = [5 - N "0q1—q,0),
where g, is the solution to P(T < g4) = a for any a € (0,1).

We use the bootstrap to estimate the quantiles g, and ¢;_,. Let go,00 denote
the ideal bootstrap estimate of q,, i.e., the a-th quantile of the distribution of T*.
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Again, to be precise, we define §n 0o = inf{q : P*(T* < q) > a}. The ideal bootstrap
equal-tailed and one-sided percentile ¢ confidence intervals of approximate confidence
levels 100(1 — 2a)% and 100(1 — a)%, respectively, are

J200 = [@ - n"“&ijl_a,oo,b\ — N7 G400 and
(3.24) Jiy00 = [0 = n7"1—a,00, 00).

We approximate §1—q,co and Ja,co using bootstrap simulations. Let {Tg, : b =
1,...,B} denote the ordered sample of {T}* : b = 1,.., B}. We assume that « is
rational. That is, @ = a1/as for some positive integers a; and g (with no common
integer divisors). We choose B to be a positive integer that satisfies v/(B+1) = 1—a
and /(B + 1) = a for some positive integers v and 7. That is, B = aza — 1,
v = (a2 — ay)a, and 7 = aa, for some positive integer a. For example, if a = .05,
then a3 = 1, ag = 20, B = 20a — 1, v = 19a, and 1 = a for some integer a > 0.

The bootstrap estimates of g, and g, based on B bootstrap repetitions are
defined to be

(3.25) 1’1\1_04,3 = Tg,,, and f]\a,B = Tg:'l'
That is, §1—«,B and gu,p are the v-th and 7-th order statistics of {T : b= 1,..., B}.
Then, the bootstrap equal-tailed and one-sided percentile ¢ confidence intervals of

approximate confidence levels 100(1 — 2a)% and 100(1 — «)%, respectively, based on
B bootstrap repetitions are defined to be

JoB = [0 = n"3G1—0,B,0 — N"GGa ] and
(3.26) J1.B = [0 = n""6G)—a,B, ).

We now introduce three-step methods for determining B for the bootstrap confi-
dence intervals J2 B and J1 B. We measure the closeness of Jh B to Jh oo by comparing
the endpoints of these intervals for h = 1,2. The percentage dev1at10n of the lower
endpoint of fh, B to the lower endpoint of fh,oo is

—KFa; — m—KEA ~ =
(3.27) 100 |n aql_‘i’BAA n aql—a,ool = 100 |q1'—a,f ql—-a,ool
n nUQl—a,oo Q1—a,00

for h = 1,2. The percentage deviation of the upper endpoint of :7\2,3 to the upper
endpoint of fzm is defined analogously.

As above, let 1 — 7 denote a probability close to one, such as .95. Let pdb be
a bound on the percentage deviation of an endpoint of fh,B to the corresponding

endpoint of fh,oo for h = 1 or 2. For the lower endpoint, we want to determine
B = B(pdb, T) such that

(3.28) P (10018izeB = Bmacol ) g _
‘h—a,oo

For the upper endpoint, we want to determine an analogous value of B with 1 — «
replaced by a.
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The three-step method of determining B for j\zy B is designed to obtain a given de-
sired level of accuracy pdb for both endpoints, each with probability (approximately)
equal to 1 — 7. The three-step method for the equal-tailed confidence interval fz, B is
defined as follows:

Step 1. Compute a preliminary number of bootstrap repetitions By via
By = agag — 1, where

N2
(3.29) ag = int (12,000a(1 2)Xi_r

da= .
zl_aq&z(zl_a)pdbzaz) and a = a1/

Step 2. Simulate By bootstrap ¢ statistics {T; : b = 1,..., Bo}; compute the ordered
bootstrap ¢ statistics, which are denoted {T , : b = 1,..., Bo}; and calculate vg =

~ . 2/3 ~ %
£a2 - Oq)ao, Mo ;; aiag, m = lnt(cOtBO/ ) qQ1~a,By = TBo,uo’ TBo vo—m’ TBO,VO“}";T\L’
Qa,Bo = TEO,"IO’ TBO)"O_;ﬁ’ TBO{’)O"‘ ’ Where
1/3
(330 o = (50 (51o0)
) “ 222 +1 )

Step 3. Take the desired number of bootstrap repetitions, B*, to equal B* =
max{ By, B1¢, Bi.}, where

Bi¢ = az2a11 — 1, B, = a2a1, — 1,

. 10, 000a(1— )X% _. (B 2 . )
e = nt ( QI aBopdbzag <—2—ﬁ:) (Tgo,vo+1’ﬁ _TBo,Vo—fﬁ) , and
10,000a(1 — a)Xl—'r B, . )
" ( ‘ﬁ,Bopdbzaz (2m) (TBo,no+m - TBo,no—fﬁ) .

Note that the term in (3.30) that depends on z;_o/7 rather than z;_, follows
from the formula of Hall and Sheather (1988); see (5.31). It is not a typographical
error.

Having determined B*, one simulates B* — By (> 0) additional bootstrap ¢ sta-
tistics {Ty : b= By +1,..., B*} and orders the values of the B* bootstrap ¢ statistics,
which are denoted {T; By b =1, ..., B*}. For the equal-tailed confidence interval

:7\2, B, the desired cutoff values, * and n*, and the desired critical points, §;—, g+ and
G, B+, are then given by

(3.31) aju

v* = max{vg, Vi, Viu}, V1e = (@2 — 01)a1, Vie = (02 — @1)014,
*

n = max{no,nwmu}, MNe = Q1Q12, My = X1A1y,
(3.32) q\l_.a’B‘ = Tg"‘,y*? alld é\a,B‘ = Tg*,f]"

The three-step method of determining B for the one-sided confidence interval
Ji,B is the same as that for Jp p except that one does not need to calculate 7, g4, B,,
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Ty, ~,or Ty ~in Step 2 and one defines B* = max{Bo, B1,} in Step 3. (For

Bo,ng—m’ 0, +m -

the one-sided confidence interval (—oco,6 — n™*6q,, | that has a finite upper bound,
rather than lower bound, the three-step method is the same as that for j\Q’ B except
that one does not need to calculate v, §i1—q,Bq, T;o,va—ﬁz’ or Tgom i in Step 2 and
one defines B* = max{By, B} in Step 3.) The desired cutoff value, v*, and the
desired critical point, §i_q B, for the one-sided confidence interval J; p are given by
(3.32) with vy, deleted in the definition of v*.

The equal-tailed and one-sided bootstrap confidence intervals based on B* boot-
strap repetitions, then, are equal to

Jo g+ = [0 —n""6G1—ap+,0 — n"GGs pr] and
(3.33) JiBe = [0~ n7"G§1_q,B+, 00).

Table 7 provides the values of By for equal-tailed and one-sided confidence inter-
vals that correspond to different (a, pdb,7) combinations, along with corresponding
values of vg, 7y, ca, and M. The pattern of Table 7 as (a, pdb, ) varies is exactly the
same as that of Table 5 for symmetric confidence intervals, as is expected from the
formulae.

Tables 5 and 7 indicate that the By values for equal-tailed and one-sided confi-
dence intervals are noticeably larger than those for symmetric two-sided confidence
intervals with the same confidence level. The ratio of the By value for equal-tailed
or one-sided confidence intervals to that for symmetric confidence intervals only de-
pends on the confidence level and not on pdb or 7 (except for rounding effects from
the int(-) function.) For equal-tailed confidence intervals, this ratio is 2.0 and 2.1
for confidence levels .95 and .90 respectively. For one-sided confidence intervals, this
ratio is 1.8 and 2.3 for confidence levels .95 and .90 respectively. (Note that to make
these comparisons correctly one has to take account of the fact that the confidence
levels of symmetric and one-sided confidence intervals are both 1 — o, whereas the
confidence level of equal-tailed confidence intervals is 1 — 2a.) The reason fewer rep-
etitions are needed for symmetric confidence intervals is that the asymptotic density
of |T*| is twice as large as that of T* at any positive value.

As in Section 3.2, we computed the magnitude of B) values generated by the
three-step method for equal-tailed and one-sided confidence intervals by specifying
certain distributions for 7. In this case, we considered the distributions N(0, 1), ts,
and xZ. The results (in terms of the ratios of the median B values to the By values)
and their implications are quite similar to those for symmetric confidence intervals,
so we do not repeat them here.

The asymptotic justifications of the three-step methods introduced above are anal-
ogous to the asymptotic justification given for the symmetric percentile ¢ confidence
intervals. Details are given in Section 5.3 of the Appendix.

As in previous sections, when one is interested in separate confidence intervals for
several parameters, say w parameters, one can apply the three-step method for each
of the parameters to obtain BZ‘I), BZ‘z), ceey Bz‘w) and take B* to equal the maximum
of these values.
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If the asymptotic distribution of 7" is not normal, then Steps 1 and 2 of the three-
step method have to be adjusted. Suppose the asymptotic distribution of T is F,
the a-th and the (1 — @)-th quantiles of F are §, and §;_,, and F' has a density
f(-) with respect to Lebesgue measure at g, and g;_,. To allow for the case where
F is not symmetric about zero, we have to define two pairs of values (Bog, Bp) and
(aqe, a0y) in place of By and ag in Step 1 and four pairs of values (voe, You), (Mo Mou)
(e, T,), and (Cag, Cau) in place of vg, 1, M , and c,, respectively, in Step 2. Then,
in Step 3, aq is defined with By vo, 19, and m replaced by By, voe, Mg, and Mg,
respectively, and ag,, is defined with By vg, 19, and m replaced by Boy Vou, gy, and
My, respectively.

- It suffices to define (age,apn) and (car,Cou). The other new terms above follow
from these via the same definitions as in Steps 1 and 2 above. We define agp =
int((10,0000(1 — a)x3_,) /(@ _o F*(@1_o)pdb?a2)) and ag, the same way except with
g, in place of g, _,, twice in the formula. We define cq¢ as in (5.31) with ¢q;_, replaced
by §;_,, and cqy as in (5.31) with ¢;1_, replaced by g,.

If F depends on unknown parameters, then consistent estimates of these parame-
ters can be used to provide estimates of §;_,, G,, f(G;_o), and f(g,) for use in the
definitions of ags, @y, Car, and Coy.

4. Test Results

In this section, we consider the problem of choosing the number of bootstrap
repetitions B for tests. First, we provide a method of doing so when a specific
significance level a is of interest. Next, we provide a method of doing so for p-values.
We recommend the use of the p-value results in most circumstances, because they
convey more information.

4.1. Tests of Significance Level o

We begin by introducing some notation and definitions. As above, X denotes the
observed data. We wish to construct a test of some null hypothesis of (approximate)
significance level a for some 0 < a < 1. Our results apply to a wide variety of tests,
such as tests of parametric restrictions and of model specification in parametric,
semiparametric, and nonparametric models. Let T denote a test statistic based on
X. For example, T could be a t-statistic, a Wald statistic, a Lagrange multiplier
statistic, a likelihood ratio statistic, etc.

We assume that the test statistic T has an asymptotic distribution, G, under the
null hypothesis. For example, G could be a normal distribution, the distribution of
the absolute value of a normal random variable, a chi-squared distribution with d
degrees of freedom for some positive integer d, etc. We asssume that G has a unique
(1—a)-th quantile, denoted g 1—q, and that G has a density with respect to Lebesgue
measure at ¢G 1—a, denoted g(gg1-a)-

The “theoretical” test of significance level a rejects the null hypothesis if T > k,,
where k, is the solution to P(T > k,) = a. By definition of k,, the “theoretical”
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test has exact signifance level a. In practice, however, one typically does not know
k. We consider using the bootstrap to approximate k.

Let X* = (XT,...,X}) denote a bootstrap sample based on X. Depending upon
the circumstances, the bootstrap employed could be a variant of a nonparametric iid
bootstrap, a moving block bootstrap for time series data, a parametric or semipara-
metric bootstrap for iid or time series data, or a bootstrap for regression models based
on bootstrapping residuals . Let T™ denote a bootstrap version of the test statistic
T based on X*. We assume that T™ is defined such that its asymptotic distribution
conditional on the data is G with probability one (with respect to the randomness in
the data). It is important for purposes of power of the test to define T* such that the
latter holds whether or not the null hypothesis is true; see Hall and Wilson (1991),
Hall and Horowitz (1996), and Li and Maddala (1996).

If T is an asymptotically pivotal statistic (i.e., the asymptotic distribution G
of T is the same for all distributions in the null), then the significance level of the
bootstrap test typically exhibits higher order improvements (in terms of the closeness
of its exact and nominal significance levels) over the standard test that results from
using the delta method to estimate kq; e.g., see Beran (1988) and Hall (1992).

Let Eam denote the ideal bootstrap estimate of k,, i.e., the (1 — a)-th quantile of
the distribution of T*. To be precise, we define ko 0o = inf{k : P*(T* < k) > 1 — a},
where P*(-) denotes probability with respect to X* conditional on the data X. The
ideal bootstrap test of approximate > significance level a rejects the null hypothesis if
T > ka oo+ Analytic calculation of k oo 1s usually intractable. In consequence, one
typically approximates ka,oo using bootstrap simulations.

As above, consider B iid bootstrap samples {X} : b = 1,..., B}, each with the
same distribution as X*. The corresponding B bootstrap test statlstlcs are {Ty : b=

-, B}. Let {Tp,:b=1,..., B} denote the ordered sample of {T} : b = 1,..., B}.

We assume that a = oy / ay for some positive integers a; and as (with no common
integer divisors). We choose B to be a positive integer that satisfies v/(B+1) = 1—a
for some positive integer v. That is, B = aga—1 and v = (ag—ay )a for some positive
integer a. ,

The bootstrap estimate of k, based on B bootstrap repetitions is defined to be

(4.1) kap= B

That is, Ea, B is the v-th order statistic of {T}* : b = 1, ..., B}. Then, the bootstrap
test of approximate significance level a based on B bootstrap repetitions rejects the
null hypothesis if

(4.2) T > koB.

We now introduce the three-step method for determining B for the bootstrap
test. The percentage deviation of the simulated critical value kg B from the ideal
bootstrap critical value ka,oo is

(4.3) 100————|k“’BE_ Koo



As above, let 1 — 7 denote a probability close to one, such as .95. Let pdb be a
bound on the percentage deviation of the critical value k, p from the critical value
Ea,oo. We want to determine B = B(pdb, T) such that

(4.4) P* (100'—'“‘—’1%—_@&* < pdb) =1-7.

The three-step method of determining B is designed to do so. It is defined as
follows:

Step 1. Compute a preliminary number of bootstrap repetitions By via

By = asag — 1, where
o (10,0000(1 - ),
0 =

% 194G, 1-a)Pdb20

(4.5) ) and a = a1 /as.

Step 2. Simulate By bootstrap test statistics {T;* : b = 1,..., Bo}; compute the
ordered bootstrap test statistics, which are denoted {Tgo p» 1 b =1,..,Bo}; and

% %
TBO,I/O_;E, and T’

~ . 2/3y T
calculate vg = (a2—aq)ag, M = 1nt(caB0/ )s ka,Bo = Tg, o vati?

where

vg?

(4.6) . = 1.5x2_,9%(96,1-a) 1/3
* " \3¢'(g61-0)% — 9(4c,1-0)9" (4G,1-a)

Step 3. Take the desired number of bootstrap repetitions, B*, to equal B* =
max{By, B: }, where

Bl = (x2Q3 —1and

. [ 10,000a(1 — a)x?_, ( Bo /. N 2
(47) a1 = 1nt ( T (2—m> (TBo,Uo+7?L - TBQ,I/O—‘I’T\L) .

Eg, 5,Pdb2as

Steps 1 and 2 require the calculation of gg1-a, 9(961-0a); 9'(¢61-a), and
9"(96,1-a), where ¢'(:) and ¢”(:) denote the first and second derivatives of g(:).
If G is a standard normal distribution, then these quantities equal z1_q, #(21-a),
—21-a®(21-a), and (22_, —1)$(21_4), respectively, where 2;_,, denotes the (1 — a)-th
quantile of a standard normal distribution. If G is the distribution of the ab-
solute value of a standard normal random variable and a < .5, then these quan-
tities equal Z21—af2s 2¢(z1—a/2)a —2z1—a/2¢(zl—a/2)o and 2(2%_0/2 - 1)¢(21—a/2) re-
spectively. If G is a chi-squared distribution with d degrees of freedom, then these
quantities equal g, g(g) = (2%/°T'(d/2))"'¢¥ exp(—g/2), ¢'(q) = (¥/q — 1/2)g(q), and
g"(q) = W —1)/q* —¢/q+1/4)g(q), respectively, where 1) = d/2—1 and ¢ denotes
the (1 — a)-th quantile of a chi-squared distribution with d degrees of freedom.

If G depends on unknown parameters, then consistent estimates of these para-
meters can be used to provide estimates of gz 1—o and f(gg,1—«) for use in Steps 1
and 2.
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Having determined B*, one simulates B* — By (> 0) additional bootstrap test
statistics {T : b = By + 1,..., B*} and orders the values of the B* bootstrap test
statistics, which are denoted {T3., : b= 1,..., B*}. The desired cutoff value, v*, and

o~

the desired critical value, k4 g+, are given by
(4.8) v* = max{vg,v1}, v1 = (a2 — aq)a;, and EQ,B* =Tge yr-

The bootstrap test based on B* bootstrap repetitions, then, rejects the null hypoth-
esis if
(4.9) T > ko, B

"~ To assess the computational burden of the three-step procedure for tests with
specified significance levels, Table 8 provides values for By, as well as ag, vg, and
m, for a variety of (a,7) combinations when pdb = 10 and the asymptotic null
distribution of the test statistic is absolute N (0, 1), N(0,1), xZ, and x%. (Results for
the x}, distribution are intermediate between those of the X2 and x?5 distributions,
but are somewhat closer to the x5 results.)

Table 8 shows that for tests with absolute N(0,1) asymptotic null distribution
the same number of initial bootstrap repetitions By are needed as for symmetric
confidence intervals. For tests with N(0,1) asymptotic null distribution, noticeably
larger By values are required—the ratio of By values for N(0,1) to absolute N(0,1)
tests is in the range 1.8-2.3 for @ = .05 or a = .10. For tests with X% asymptotic
null distribution, similar By values are required as for absolute N(0,1) tests—the
ratio of By values for x2 to absolute N(0,1) tests is in the range 1.0-1.2 for a = .05
or a = .10. For tests with x2: asymptotic null distribution, noticeably smaller By
values are required than for absolute N(0,1) tests—the ratio of By values for x2¢
to absolute N(0,1) tests is in the range .38-.50 for @« = .05 or @ = .10. Thus,
there is considerable variation in suitable values of By for test statistics with different
asymptotic null distributions.

In all cases, By increases quickly as a or 7 decreases. It is also true that By
increases very quickly as pdb decreases, but Table 8 only reports results for pdb = 10.
For most combinations reported, the number of bootstrap repetitions required is
greater than that commonly used in empirical econometric applications.

The asymptotic justification of the three-step method introduced above is anal-
ogous to the asymptotic justification given for symmetric percentile ¢ confidence in-
tervals in Section 3.3. See Section 5.4 of the Appendix of Proofs for details.

4.2. p-values

We now consider choosing the number of bootstrap repetitions B for a testing
problem in which one wants to report a p-value. By definition, the p-value is the
infimum of the significance levels for which the test rejects the null hypothesis given
the observed value of the test statistic T. We view the reporting of a p-value to be an
efficient method of communicating the result of hypothesis tests for all significance
levels a € (0,1). The use of a bootstrap p-value exploits the higher-order improve-
ments of the bootstrap, because given the p-value and a significance level a of interest
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(which may vary across individuals), one can determine whether the test rejects the
null hypothesis and the significance level of the test is accurate to the level obtained
by the bootstrap test.

We use the same notation, definitions, and assumptions as in Section 4.1 except
that assumptions (5.36) and (5.37) are not needed and 7 is treated as fixed. We con-
sider probabilities with respect to the bootstrap simulation randomness conditional
on the sample X.

The ideal bootstrap p-value is defined to be

(4.10) Poo = P*(T* > T),

where P*(-) denotes probability with respect to X* (and hence T™*) conditional on
X (and hence T). We assume that Poo does not equal zero or one. (This holds with
probability one with respect to the randomness in the sample X except in pathological
cases.) We estimate Poo using bootstrap simulations. Given B bootstrap repetitions,
the bootstrap p-value is

1 &
(4.11) == 1Ty >T).
Bb=1

We now introduce a three-step method for determining B for the bootstrap
p-value. The percentage deviation of the simulated p-value pg from the ideal boot-
strap p-value Poois
(4.12) 10028 Peol

Poo
Let 1 — 7 denote a probability close to one, such as .95. Let pdb be a bound on the
percentage deviation of pp from po.. We want to determine B = B(pdb,7) such that

(4.13) p* (100"’3:—”“" < pdb) —1-7.

(o o]

The three-step method of determining B is designed to do this. It is defined as
follows:

Step 1. Compute a preliminary number of bootstrap repetitions By via

. {10,000x%_.G(T)
(4.14) By =int ( 0= G(T) )pdb? ) .

Step 2. Simulate By bootstrap test statistics {7, : b =1, ..., By} and compute
1 &

(4.15) Po = 5 S UTy >T).
0 b=1

Step 3. Take the desired number of bootstrap repetitions, B*, to equal B* =
max{By, B; }, where

. {10,000x3_.(1 — Pg,)
4.1 B = :
(4.16) 1 mt( P, pdb?
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In Step 1, the term 1—G(T) is an initial estimate of the p-value that is obtained by
using the asymptotic null distribution G of the test statistic 7. For example, if G is a
standard normal distribution, then G(T") = ®(T'), where ®(-) is the standard normal
distribution function. If G is the distribution of the absolute value of a standard
normal random variable, then G(T') = 2®(T) — 1. If G is a chi-squared distribution,
then G(T)is the corresponding chi-squared distribution function evaluated at T.

If G depends on unknown parameters, then consistent estimates of these parame-
ters can be used to provide estimates of G(T) for use in Step 1.

We note that one should adjust one’s choice of pdb in light of the initial p-value
estimates 1 — G(T') and/or pp,, because the level of accuracy needed depends on the
p—value. In particular, when the p-value is small or large, e.g., .001 or .70, then one
does not need to take pdb to be as small as when the p-value is of intermediate mag-
nitude, e.g., .075. This is quite important in terms of minimizing the computational -
burden.

If one or more significance levels a are of particular interest, then one should
choose By and B; (by rounding up) such that v/(B + 1) = 1 — a for some positive
integer v for each a of interest. For example, if significance levels .05 and .10 are
of particular interest, then By and B; should be rounded up to the nearest value
B = 20a — 1 for some a = 1,2,.... (i.e., B = 19,39,59, etc.). If .01, .05, and .10
are of particular interest, then By and B; should be rounded up to the nearest value
B =100a—1 for some a = 1,2, .... The reason for doing this is that it has advantages
in terms of the unconditional significance level for the values of a of particular interest;
see Hall (1992, p. 307).

Having determined B*, one simulates B* — By (> 0) additional bootstrap test
statistics {T : b= By + 1, ..., B*} and computes the bootstrap p-value

1 &
(4.17) Per == Y 1Ty > T).
B3

Table 9 provides representative values of By for the three-step method for p-
values. Three different values of 7 are considered, viz., .01, .05 and .10. A range
of values of the initial p-value estimate 1 — G(T) and the accuracy bound pdb are
considered. For clarity, the Table only provides (1 — G(T'),pdb) combinations that
are of some interest. For example, it is not of interest to consider the combination
(.001,5), because this combination yields excessive accuracy and, hence, requires an
excessively large value of By.

Table 9 indicates that the required magnitude of By depends on the initial p-value
estimate 1 —G(T). If it is quite small or large, then one does not need a small value of
pdb and the required magnitude of By is not large. On the other hand, if 1 — G(T) is
in an intermediate range, such as (.01, .15), then one may want to employ a relatively
small value of pdb and the required magnitude of By may be quite large.

The asymptotic justification of the three-step method of choosing B* is in terms
of the limit as pdb — 0 with n fixed:

(4.18) p* (100"'”3—1f—’1i'°—| < pdb) —~1—7 as pdb— 0,

Poo
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where pp, = B% Zlel (Ty > T). This conditional result holds provided P does not
equal zero or one. The proof is given in the Appendix of Proofs.

Equation (4.18) implies that the three-step method attains precisely the desired
level of accuracy using “small pdb” asymptotics when B* = By > By. When B* =

By > Bj, then the accuracy of the three-step method exceeds the desired level of
accuracy.
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5. Appendix of Proofs

5.1. Proofs of the Standard Error Results

First, we prove (2.11). We rewrite Ség of (2.3) as

1/2
1 o~k 2 1 ~k 2
(Ezfﬂ (9b - #) - <§E§=19b - #) )

m(Ag), where

1vB (3" _ ) 1/2
(5.1) Ap = <32b=1 (0” ,u) and m(a) = (a1 —a%) / for a = (a1, az)’.

sep

%Egzleb 2

For convenience, we have replaced B — 1 in the denominator of 3ég by B. By the
central limit theorem,

BY2(Ap — A) 4, N(0, Q) as B — o0, where

2 « (p* _ N2 _ 2 2 *(pF . \3
(5.2) A= (sew) and = (B (@ =P —5%)" BB -
0 E* (6, — p)® 2,

We have £m(a) = 3 (a1 — a%)_l/2 (1, —2a3)" and £m(A) = (1/(28€x), 0)'. The
delta method now gives

BY2(52p — 5800) = BY2(m(Ag) — m(A)) % N(0,V), where

(5.3) V=—1——E*((5*— )% — 5e? )2=5A52—°-(2+7)
* 4§E§o b lu’ o o] 4 2/
In turn, this gives
—~ -~ 2
SER — S€o d
(5.4) (100'—%——') /(2,500(2 +75)/B) 5 2,
(o o]

where x? denotes a chi-squared random variable with one degree of freedom, which
establishes (2.11).

Next, we prove (2.17). Let By; = 2,500x%_,(2 + v5)/pdb?. Note that Bj; is non-
random. Equations (5.2)—(5.4) hold with B replaced by Bj; throughout and with
the limit as B — oo replaced by the limit as pdb — 0 (because the latter forces
Bj; — 00). Now, by the central limit theorem of Doeblin—-Anscombe for a sum of
independent random variables with a random number of terms in the sum (e.g., see
Chow and Teicher (1978, Thm. 9.4.1, p. 317)), provided B;/Bj; —, 1 as pdb — 0,
the result of (5.2) holds with B replaced by B; and with the limit as B — oo replaced
by the limit as pdb — 0. In turn, this implies that (5.3) and (5.4) hold with the same
changes. The latter can be rewritten using (2.16) as

— — 2
se — S€xo ~ d
655) (100ZB22) (2 ppai?)(2 43,/ (2-+ 72) % X s pio 0.

[e <]
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(The effect of the int(-) function in (2.16) is asymptotically negligable and, hence, is
ignored in obtaining the previous equation from (5.4).) By (2.7) and the fact that
By — o0 as pdb — 0, this yields

— — 2
(56) (1002 2=y s s 25 as pas 0,

which establishes (2.17).
It remains to show that By/B1; —p 1 as pdb — 0. This follows from (2.7) because

B1/B11 = (2 +72p,)/ (2 + 72)-

5.2. Proofs of the Symmetric Confidence Interval Results

We now prove (3.20). First we show that (3.20) holds with Bj replaced by the
non-random quantity Bj;. By definition,

Bi1 = azan — 1, vi1 = (a2 — a1)an, and

2
. 10,000a(1 — a)x3_ 1
5.7 a1 = int L .
(5.7) H ( Zf_a/gpdlﬂaz 26(21-a/2)

Note that Bj; — oo as pdb — 0 and By; does not depend on n.

We establish the asymptotic distribution of B}{2(Ea’ B — Ka00) as pdb — 0 and
n — oo, where kq p,, = |T*| Buivips Using an argument developed for proving the
asymptotic distribution of the sample median based on an iid sample of random
variables that are absolutely continuous at their population median; see Lehmann
(1983, Thm. 5.3.2, p. 354). (In contrast, recall that kq p,, is the sample (1 — a)-
th quantile of iid observations each with the bootstrap distribution of |T*|, which
depends on n and may be discrete.)

We have: For any z € R,

~

(58)  P*(Bi{*(Fa,By — Fage) <2) = P*(IT*|Byywn < Fayoo + z/BL{%).

Let Sp be the number of [T}|’s for b = 1,..., B that exceed kq oo +.7:/B%{2. Presently,
we consider Sp,,. Below, we consider Sp,. (In both cases, the cutoff point Ea’oo +
:L'/B%{2 depends on Bj;.) We have

(5.9) |T*|Byy w11 < Faoo +z/B11? if and only if Sp,, < Bi1 — v11 = Bha— (1—a).

The random variable Sp,, has a binomial distribution with parameters (Bi1,pp,;.n),
where

(5.10) PByn = 1= P*(|T*| < kaco +z/B{?).
The probability in (5.8) equals
pP* (S]B11 < Byia— (1 — a))
(511) = p* (( SB11 - BllpBu,n < Bna - (1 - a) — BllpBu,n) .

BllPBn,n(l —an,n))l/2 N (Bllmen(l _pBu,n))l/2
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Note that the random variable in the right-hand side probability has mean zero
and variance one and satisfies the conditions of the Lindeberg central limit theorem
(applied with pdb — 0 and n — c0).
Using the assumption of (3.18), we obtain
Ea,w = inf{k: P*(|T*| < k) >1-a} =inf{k: P(|Z| < k) > 1—a} + o(1)
= 2)_q/2 +0(1) as n — oo and

(6.12) ppyn=1-P(|T* < Eer 00 +a:/B}{2) — aas pdb — 0 and n — oo.

The upper bound in the right-hand side probability of (5.11) can be written as
g = Bl @=pBy0) = (1= a)/Bif?
e (PB11,n(1 ~ PByy,n)) Y2
(5.13) = ((a(1 - @)™+ o(1)) Bi{*(a — ppyy,n) + o(1)

as pdb — 0 and n — oo. In addition, we have

Bi{*(a = ppyn) = B (P*(IT*| < kawo +2/Bi{%) — (1 — @)
Bi{*(P(IT| < Fayo +2/B}{%) — P(IT| < Fayeo)) + o(1)
= BY{*(P(1Z| < a0 +2/Bi{?) — P(1Z] < Fae)) + o(1)
= Bi{*26(Cpy m)2/Bi{* + o(1)
(5.14) — 2¢(21_a/2)x as pdb — 0 and n — oo.

The first equality of 5.14 holds by the definition of pp,, ,. The second and third
equalities hold by (3.18) and (3.19) (using the fact that the latter and the definition
of By imply that B}{2 = O(1/pdb) = n*O(1/(pdb x nf)) = o(nf)). The fourth
equality holds for some (g, , that lies between koyo0 + 1/ B%I/Q and Ea,m by a mean
value expansion using the fact that the density at y > 0 of the absolute value of
a standard normal random variable is 2¢(y). The convergence result of 5.14 holds
because (g, n = 21-a/2 85 pdb — 0 and n — oo.
Equations (5.13) and (5.14) give
(5.15) s B WBn = 20(21-a/2)/ (a1 - )2,

Equations (5.8), (5.11), and (5.15) plus the Lindeberg central limit theorem ap-
plied to (5.11) yield

P*(Biﬁkaan ko) < ) xzas(zl_a/z)/(a(l—a))”?) and

. Bk,
(5.16) (ka,Byy — ( 2¢ Zl a/2) )

as pdb — 0 and n — oo.
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This result, (3.11), and (5.7) imply that

P* 6_00 |ka,BE - ka,oo' S pda
% —% _A))1/2
@,00 21-a/231{ 2¢(21-0/2)

— 1 —17 as pdb — 0 and n — oo, where

(5.17) Jsv.By = [0 —n"Gka B,y ,0 + 1" Fka By, -

Thus, (3.20) holds with B; replaced with Bj;.
Next, we show that

(5.18) (By — B11)/B11 2 0 as pdb — 0 and n — oo

(with respect to the simulation randomness conditional on the data). This follows
from

By 1
(5 19) ka ,Bo —'> 21— /2 and < m) (|T|Bu vo+m |T*|BO’V0_;;1> f_), m
as pdb — 0 and n — oo. The former holds by (5.12) and (5.16) with By; replaced by
By. The latter is established as follows.

Define the inverse of a distribution function F' to be F~1(t) = inf{z : F(z) > t}.
Let F’!T*l(‘) denote the distribution function of the bootstrap distribution of |T*|.
Let {Uy : b = 1,...,Bo} denote iid uniform [0,1] random variables. Let {Up, :
b=1,...,Bp} denote the ordered sample of {U, : b= 1,...,By}. Then, F 1T*|(Ub) has

the same distribution as |T}| and F| IT*|(U Bob) has the same distribution as |T*|p, 5.
It suffices to show that

BO —_ ~—1 P ].
(5.20) <2m) (ﬂT~|(UBO,u0+a) - F]T~](U30,uo-a)) = e
as pdb — 0 and n — oo. (Note that By — oo as pdb — 0.) Let
(5.21) ¥U(z) = P(|Z| < z) = ®(z) — ®(—z), where Z ~ N(0,1).

The left-hand side of (5.20) equals

Fpay(U4) - Fgh (U)\ /B Fhy(Us) = Bty (U-)
[T\ IT'I 0 _ I Bl A IT I
= (%) @ - ) i | L+ o(1)
(5.22)
where Uy and U_ abbreviate Up , ,~ and Ug vo—im Tespectively. Equation (5.22)

holds by the argument of Bloch and Gastwirth (1968 Pf. of Thm. 1) (which relies
on the fact that the spacings of the order statistics of uniform random variables have
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beta distributions). The first term in parentheses on the right-hand side of (5.22)
equals

) - e | B PER (U - UL By () — e L))
Uy - U- B}, -U.) B{w, -U.) '
(5.23)
The first summand of (5.23) satisfies

Up 51-q, U_—gl—a, and

-1 -1

U= 90 5 0 a1 1
Uy — U oz T T(1-a)  28(z1-ap2)
as pdb — 0 and n — oo, where 9(-) = U’(:). The first two results of (5.24) hold
by standard results for the sample quantiles of iid uniform random variables. The
third result follows from the first two results using the definition of differentiability
of U~1(-) and an almost sure representation argument.

Next, we show that the second and third summands of (5.23) are o0,(1). By the

argument of Bloch and Gastwirth referred to above, Bé/ 3(U+ —U_) % 2¢4 > 0. Thus,
it suffices to show that

(5.24) 2

(5.25) By*(Fz} (U+) = 97} (U4)) £ 0 as pdb — 0 and n — oo

and likewise with “U,” replaced by “U_”. The proofs of these two results are the
same, sO we just prove the former.

It suffices to prove (5.25) with Bé/ 3 replaced by n%/3 because Bé/ 5 = o(n%/3)
by the assumption of (3.19). For any distribution function F, z; < F~(t) < z, if
and only if F(z1) <t < F(z2); see Shorack and Wellner (1986, p. 5). Thus, for any
e>0,

n2/3FoL (U4) - 0N (UL)| < e
iff U71(U4) —n e < Frl (Uy) < U7 (U,) + n%/%
(5.26) iff Fire (U7 (U4) —n~%%) < U, < Fir (T™YU4) + n~%/3%).
We have
Fipe (U1 (UL) — n=%/3¢)
= (F|T"|(\I’—1(U+)—n_2£/36)_\P(\I’_I(U+)—n_QE/BE))—}-\IJ(\I’_l (U+)_n—2.£/36)

p(n8) + (Us +20(7 5y ) (-0 2/%) )

(5.27) < U; with probability that goes to one as pdb — 0 and n — oo,

where the second equality holds by (i) the assumption of (3.18), the fact that
HUL) —n B —, 2, /2, and the use of an almost sure representation argu-

ment and (ii) a mean value expansion, where v, ,, lies between ¥=1(U,) — n=%/3¢
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and U~1(U,) and, hence, v Bon —*p ?1-a/2- An analogous result (with the inequality
reversed) holds for Fip|(¥~1(Uy) + n~2/3¢). Hence, the right-hand side of (5.26)
holds with probability that goes to one, which establishes (5.25), and the proof of
the second result of (5.19) is complete.
Now we use equation (5.18) and the above proof that (3.20) holds with the random
quantity B; replaced by the non-random quantity Bi; to establish (3.20) as is.
First, we have: For any z € R,

(5.28)  P*(Bi)*(Rayps — Fao) < ) = P*(IT*|By s < Koo +2/B110).

(Note that we take the normalization factor to be By not B;.) Let Sp, be as defined
above. We have

(5.29) IT*|By0s; < koo + /B2 iff Sp, < By —v1 = Bia — (1 — a).

The random variable Sp, has a binomial distribution with parameters (B1,pp;; ),
where pp,, n is the same as above. The probability in (5.28) equals

P*(Sp, < Bja—(1-a))

- p* SB] — BlpBu,n < Bla - (]- — a) — BlpBu,n)
(BlpBu,n(]- _pBu,‘n))l/2 - (BlpBu,‘n(l _p311,n))1/2

The random variable depending on Sp, in the right-hand side probability is a
normalized sum of independent random variables with a random number, B, of
terms in the sum. By the central limit theorem of Doeblin-Anscombe (e.g., see
Chow and Teicher (1978, Thm. 9.4.1, p. 317)), it has a standard normal asymptotic
distribution, because (i) it has a standard normal asymptotic distribution when B;
is replaced by the non-random quantity By; and (ii) B1/B1; —p 1 by (5.18).

Now, for present purposes, equation (5.12) holds without any changes. In addi-
tion, by the same argument as in (5.13)-(5.15), coupled with (5.18), the upper bound
in the right-hand side of (5.30) converges in probability to z;_q/2 as pdb — 0 and
n — 00. These results and the result of the previous paragraph combine to verify
(5.16) and (5.17) with By replaced by Bj. That is, (3.20) holds, as desired.

We finish by showing that our formula for the bandwidth parameter m used with
the Siddiqui estimator corresponds to that given by Hall and Sheather (1988). In our
notation, Hall and Sheather’s formula is

(5.30)

1/3
1523_, o f4(q1-a) /
3f(q1-0)* = f(q1-0) f"(q1-0) ’

where f(-) denotes the density of the iid random variables upon which the sample
quantile is based, f'(-) and f”(-) denote the first two derivatives of f(-), ¢1—q denotes
the population quantile, and 2;_, /5 is as above. In our case, we use the asymptotic

analogues of f(-) and ¢1—q, viz., 2¢(-) and 2;_,/, in the formula. Note that ¢ (z) =
—z¢(x) and ¢"(z) = (x? — 1)¢(z). Hence, our constant c, satisfies

1/3
62808 (21-02)\ "* _ 622_¢ /20" (21-a/2)
zzf_a/g +1 3¢l(zl—a/2)2 - ¢(zl—a/2)¢”(zl—a/2)

(5.31) m= int(caBg/B) and cq = (

1/3

b

(5.32)cq = (
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which corresponds to Hall and Sheather’s constant c,.

5.3. Asymptotic Justification for the Three-step Methods
for Equal-tailed and One-sided Confidence Intervals

The asymptotic justification of the three-step methods introduced in Section 3.5
for equal-tailed and one-sided confidence intervals is analogous to that given for the
symmetric percentile ¢ confidence intervals in Section 3.3. First, we introduce an
analogous strengthening of the assumption of asymptotic normality of the ¢ statistic
T. For :]\2, B*, we assume: For some £ > 0 and all sequences of constants {z, : n > 1}
for which &, — 21_q/2 O Tn — —21_q/2, We have

P(T < z,) = P(Z < 2,) + O(n™%) as n — oo and
(5.33) PYT* < 2,) = P(Z <z,) +O(n"¢) as n — oo,

where Z ~ N(0,1). For J; g+, we make the same assumption except that we do not
need it to hold for sequences for which z, — —2,_4/2- (As above, the assumption on
T* is assumed to hold with probability one with respect to the randomness in the
data.)

Assumption (5.33) holds whenever the ¢ statistic and the bootstrap ¢ statistic have
one-term Edgeworth expansions, just as in the case of symmetric confidence intervals.
When & = 1/2 and & is an n!/2-consistent estimator of the asymptotic standard error
of 8, then (5.33) typically holds with £ = 1/2 rather than £ = 1, however, because
there is no cancelling out of the n~1/2 terms in the Edgeworth expansions of T and
T* as there are in the Edgeworth expansions of |T'| and [T*|.

The asymptotic justifications of the three-step method of choosing B* are in terms
of the limit as pdb — 0 and n — co. We assume that pdb — 0 sufficiently slowly that

(5.34) pdb x né — o0 as n — oo,

where £ is as in (5.33).
The asymptotic justifications of the three-step methods for J; g« and Jj p- are
that

Q1—a,00

P <100'q1‘°’33‘ ~Tiaool pdb) — 1—7 aspdb— 0andn — oo and

P*(IOOM—QL&E—MSpdb) — 1—17 aspdb— 0 and n — oo, where

da,00

~ e ~ ™
Q-c,Byp = TBlhaVlh’ 9a,B1p, = TBthIlh’
J2,B,, = [0 —n7"6G1-a,B,,,0 — " "Gqq,B,,] for h=£,u, and

(535) jl,Bu = [5 - n_nﬁf]\l_a,gu, OO)

As above, the probability P*(-) denotes probability with respect to the simulation ran-
domness conditional on the infinite sequence of data vectors. Under the assumptions,

39



this conditional result holds with probability one with respect to the randomness in
the data.

Equation (5.35) implies that the three-step method for fg,B* attains precisely
the desired level of accuracy using “small pdb and large n” asymptotics when B* =
max (B¢, Biu) > By. When B* = By > max(Biy, Biy), then the accuracy of the
three-step method exceeds the desired level of accuracy. An analogous statement
holds for the three-step method for fl B*-

The proof of (5.35) is the same as that given in Section 5.2 for symmetric percentile
t confidence intervals except that |T'| and |T*| are replaced throughout by 7" and T™,
ka B and kaoo are replaced throughout by either §i_o p and Gi—a00 O Gu,B and
Ja,00, and the formulae for ag, By, cq, and 7 are changed to reflect the fact that we
are estimating a density that asymptotically equals either ¢(z1-4) Or ¢(zq) rather

than 2¢(z1—a/2)'

5.4. Asymptotic Justification for the Three-step Method
for Tests with a Specified Significance Level

The asymptotic justification of the three-step method for tests of significance
level @ introduced in Section 4.1 is analogous to the asymptotic justification given
for symmetric percentile ¢ confidence intervals in Section 3.3. First, we introduce an
analogous strengthening of the assumption of convergence in distributuion to G of
the test statistic 7" under the null hypothesis. We assume: For some £ > 0 and all
sequences of constants {z, : n > 1} for which =, — gg,1-qa, we have

P(T < z,) = G(zn) + O(n™*) as n — oo and
(5.36) PYT* < z,) = G(z) + O(n %) as n — o0

when the null hypothesis is true. (The assumption on 7™ is assumed to hold with
probability one with respect to the randomness in the data.) Assumption (5.36) holds
whenever the test statistic and the bootstrap test statistic have one-term Edgeworth
expansions, just as in the case of symmetric confidence intervals. This assumption
is widely applicable. See Hall and Horowitz (1996) for an example in which (5.36)
holds with the asymptotic distribution G being a chi-squared distribution.

The asymptotic justification of the three-step method of choosing B* is in terms
of the limit as pdb — 0 and n — co. We assume that pdb — 0 sufficiently slowly that

(5.37) pdb x € — 00 as n — oo,

where £ is as in (5.36).
The asymptotic justification of the three-step method is that

~

o ke
(5.38) P* (IOO@E%—M < pdb) —1—7 as pdb— 0 and n — oo,

a,00

where Ea, B, =15p e Under the assumptions, the conditional result above holds with
probability one with respect to the randomness in the data.
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Equation (5.38) implies that the three-step method attains precisely the desired
level of accuracy using “small pdb and large n” asymptotics when B* = B; > By.
When B* = By > B, then the accuracy of the three-step method exceeds the desired
level of accuracy.

The proof of (5.38) is the same as that given in Section 5.2 for symmetric percentile
t confidence intervals except that |T'| and |T™| are replaced throughout by 7" and T*
and the formulae for ag, By, co, and M are changed to reflect the fact that we are
estimating a density that asymptotically equals g(gg,1—a) rather than 2¢(z;_, /2)-

5.5. Proof of the p-value Results

All of the probabilistic statements below refer to the bootstrap simulation ran-
domness conditional on the sample X. First, by the central limit theorem for iid
random variables,

P~ W

£ 42 —
Pl po) X 0BT
because P, does not equal zero or one.

Next, let By = 10,000x3_, (1 — Po)/(Poopdb?®). Note that By; is non-random.
Equation (5.39) holds with B replaced by Bj; and with the limit as B — oo replaced
by the limit as pdb — 0 (because the latter forces Bi; — o00). Now, by the central
limit theorem of Doeblin—-Anscombe for a sum of independent random variables with
a random number of terms in the sum (e.g., see Chow and Teicher (1978, Thm. 9.4.1,
p- 317)), provided B,/B11 —p 1 as pdb — 0, the result of (5.39) holds with B replaced
by B; and with the limit as B — oo replaced by the limit as pdb — 0. With these
changes, (5.39) can be rewritten using (4.16) as

BB, — Pool \* (23 \ [ Poo(l —PBy)\ d
5.40 (100 L ) z ( 0 >_+ 2 as pdb — 0.
(5.40) Poo pdp? | \(1 - Pwo)PB, X e8P

(The effect of the int(-) function in (4.16) is asymptotically negligible and, hence, is
ignored in obtaining the previous equation from (5.39).) By the law of large numbers
for iid bounded random variables, pp, —p Poo as pdb — 0 because By — oo as
pdb — 0. This and (5.40) yield

P~ 2
(5.41) (100@:&1) X2 _, /pdp? LA x? as pdb — 0,

o o}

which establishes (4.18).
It remains to show that B;/Bj; —; 1 as pdb — 0. This follows from pp, —p Doos
because Bl/Bll = (ﬁoo(l _ﬁBo))/((l - ﬁoo)ﬁBo)-
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6. Footnotes

1The authors thank Ariel Pakes, three referees, and the co-editor for helpful com-
ments; Glena Ames for typing the manuscript; and Rosemarie Lewis for proofreading
the manuscript. The first author acknowledges the research support of the National
Science Foundation via grant number SBR-9410975. The second author acknowl-
edges the research support of the National Science Foundation via grant number
SBR-9320386.

2We received the following comment on an earlier version of this paper, which only
considered bootstrap standard errors: “This paper addresses the wrong bootstrap
statistics. Standard errors are not interesting quantities for statistical inference. A
standard error is useful only if it can be used to obtain a confidence interval or test
statistic.”

We disagree with this comment. It is not in accord with standard statistical theory
or practice. Point estimation accompanied by a measure dispersion of the distribution
of the estimator, usually its standard error, is a perfectly valid and widely used
method of statistical inference. For example, see Dawid’s (1983) entry on “Statistical
Inference” in the Encyclopedia of Statistical Science and Efron and Tibshirani’s (1993,
Ch. 6) discussion of the use of the bootstrap for estimating standard errors.

Point estimation with standard errors, confidence intervals, and tests are the
three most commonly used forms of statistical inference. Each is a special case of
statistical decision theory. None is right or wrong. Each is just more or less suitable
for a given application. In practice, point estimation is probably the most common
form of statistical inference used in econometrics and many other fields.
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Table 1. Values of pdb as a function of 4,5 and B when 7 = .05
for Standard Errors

B
Y95 | 10 | 25 | 50 | 100 | 200 | 350 | 500 | 750 | 1,000 | 2,000
0 |44128{20| 14| 10| 74| 62|51 | 44 3.1
1 | 541342417 |12 | 91| 76|62 | 54 3.8
2 16213928 20| 14 {105 88| 72| 6.2 44
3 |69(44 (31| 22| 15 {11.7]100| 80| 6.9 4.9

Table 2. Values of B; as a function of 4,5, and pdb when 7 = .05
for Standard Errors

pdb
Y98, 20 10 5
0 48 192 768
1 72 288 1,152
2 96 384 1,536
3 120 480 1,920
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Table 3. Monte Carlo Simulation Results for Standard Errors

A. Error Distribution N(0,1)

Empirical ~

pdb | 1-7 |  Level Bo B 72Bo
B* B Mean | Med | Min Max | Mean | Med Min | Max
20 | .900 | .891 | .870 34 37 33 12 222 0.15 { -0.07 | -1.34 | 11.07
10 | .900 | .897 | .890 136 158 148 76 1,297 0.32 0.17 | -0.89 | 17.13
5| .900 | .896 | .894 542 645 620 | 417 4,449 0.38 0.28 | -0.46 | 14.42
20 | .950 | .945 | .931 48 54 49 19 386 0.21 0.01 | -1.24 | 14.06
.10 | 950 | .947 | .944 192 225 213 120 1,805 0.34 0.21 | -0.76 | 16.80
5| .950 | 951 | .950 768 917 884 | 630 6,901 0.39 0.30 | -0.36 | 15.97
20 | 975 | .973 | .964 63 71 65 27 545 0.25 0.07 | -1.14 | 15.35
10 | 975 | .973 | .972 251 297 281 165 2,440 0.36 0.24 | 069 | 17.44
51 .975 | .975 | .974 | 1,004 | 1,204 | 1,161 854 | 11,257 0.40 0.31 | -0.30 | 20.42

B. Error Distribution i5
Empirical ~

pdb | 1—T Level Bo By Y2Bo
B By Mean | Med Min Max | Mean | Med Min | Max
20 | .900 | .859 | .848 34 45 39 13 276 0.65 | 029 | -1.28 | 14.24
10 { .900 | .878 | .876 136 208 189 88 1,568 1.07 | 0./8 | -0.71 | 21.14
5| .900 | .889 | .889 542 874 828 516 6,385 1.22 | 1.05 | -0.10 | 23.40
20 | .950 | .925 | .917 48 67 59 21 456 0.79 | 043 | -1.14 | 16.97
10 | .950 | .934 | 934 192 300 276 135 2,227 1.12 | 0.87 | -0.60 | 21.20
5 .950 | .944 | .944 768 | 1,244 | 1,189 781 9,516 124 | 1.10 0.03 | 22.78
20 | 975 | .960 | .955 63 91 80 31 657 0.88 | 0.54 | -1.03 | 18.92
10 | .975 | .966 | .966 251 397 368 196 2,727 1.16 | 0.93 | -0.44 | 19.73
5| .975 1 .971 } 971 | 1,004 | 1,631 | 1,567 | 1,044 | 11,264 125 | 1.12 0.08 | 20.44

Note: The reported numbers are the averages over the simulations performed for 20 samples, each

of which consists of 25 observations. For each sample, we carry out 2,500 Monte Carlo repetitions.

Yo is calculated for each of the 20 samples using 250,000 bootstrap repetitions. The average of the
20 7yo values is .37 in part A of the Table and 1.26 in part B of the Table.
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Table 4. Monte Carlo Simulation Results for the Bias-corrected Three-step
Method for Standard Errors with Error Distribution s

Empirical B ~
pdb | 1=7 |  Level Bo ! V2BoR

B* B Mean | Med Min Max | Mean | Med Min | Max

20 | .900 | .887 [ .875 34 54 49 13 349 1.03 | 0.75 | -1.31 | 17.98
10 | .900 | .892 | .890 136 217 209 83 1,710 1.19 | 0.90 | -0.84 | 23.01
5| .900 | .899 | .897 542 913 849 505 | 7,327 1.20 | 0.96 | —0.27 | 24.77

20 | .950 | .945 | .939 48 79 77 19 511 1.08 | 0.79 | -1.20 | 18.85
10 | .950 | .947 | .945 192 324 290 139 { 2,463 119§ 0.92 | -0.67 | 23.37
5 | .950 | .949 | .949 768 | 1,334 | 1,203 766 | 10,186 124 | 098 | -0.18 | 24.34

20 | 975 | .972 | .970 63 110 99 31 696 112 | 0.80 | -1.08 | 18.59
10| 9756 | .973 | 971 251 439 395 192 | 3,305 1.21 | 0.98 | -0.55 | 24.39
5| .975 | .974 | .974 | 1,004 | 1,645 | 1,595 | 1,032 | 14,267 1.25 | 1.03 | -0.07 | 24.36

Note: The reported numbers are the averages over the simulations performed for 20 samples, each
of which consists of 25 observations. For each sample we carry out 2,500 Monte Carlo repetitions.
Yo is calculated for each of the 20 samples using 250,000 bootstrap repetitions. The average of the
20 7y values is 1.26. The value of R is 407.

Table 5. Values of ag, By, Vg, s, and M as a Function of o, 7, and pdb
for Symmetric Confidence Intervals

Q, Ca .01, .0837 .05, .2086 .10, .2993

T .01 .05 .10 .01 .05 | .10 .01 .05 { .10
pdb = 5:

ao 48 28 20 | 120 70 | 49 | 208 121 85
By 4799 | 2799 | 1999 | 2399 | 1399 | 979 | 2079 | 1209 | 849
Vo 4752 | 2772 | 1980 | 2280 | 1330 | 931 | 1872 | 1089 | 765
m 24 17 14 38 27 21 49 34 27
pdb = 10:

ao 12 7 5 30 18 13 52 31 22
Bo 1199 699 499 599 359 | 259 519 309 | 219
Vo 1188 | 693 | 495 | 570 | 342 | 247 | 468 | 279 | 198
m 10 7 6 15 11 9 20 14 11
pdb = 15:

ag 6 4 3 14 8 6 24 14 10
Bg 599 399 299 279 159 | 119 239 139 99
vo 594 396 297 266 152 | 114 216 126 90
m 6 5 4 9 7 6 12 9 7

Note: All quantities are defined in the three-step procedure of Section 3.2.
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Table 6. Monte Carlo Simulation Results for Symmetric Confidence Intervals

A. Error Distribution N(0,1)

Empirical
Level B,

B* By Mean | Med | Min Max
.90 15 .90 | .946 | .943 99 258 216 28 1837
.90 10 90 | .924 | .920 219 394 364 74 1482
.90 5 .90 | .907 | .905 849 1317 | 1280 | 481 3003

90 [ 15 .95 ] .970 | .968 139 309 273 47 | 1532
90 | 10 .95 | 960 | .957 | 309 524 493 | 124 1652
.90 5 .95 | .952 | .951 | 1209 | 1825 | 1785 | 756 | 3829

951 15 90 | .952 | .949 119 564 360 31 | 16709
95 | 10 .90 | .947 | 946 | 259 754 654 | 104 | 4346
.95 5 90| 915 | 915 | 979 | 1920 | 1843 | 591 5104

95| 15 .95 | .989 | .989 | 159 | 1228 804 69 | 35579
95 | 10 95 | .969 | .968 | 359 884 801 159 | 3809
.95 5 95 | .955 | .955 | 1399 | 2611 | 2531 | 947 | 6046

B. Error Distribution tg

Empirical

l1-a | pdb | 1-7 Level Bo B

B* B, Mean | Med | Min Max
.90 15 .90 | .945 | .942 99 275 230 29 1927
.90 10 90 | .924 | .920 219 418 385 79 1560
.90 5 .90 | .908 | .907 849 | 1388 | 1348 505 3196

90 | 15 .95 | 969 | .967 | 139 329 291 48 1686
90 | 10 .95 1 .959 | .957 | 309 555 521 130 1792
.90 5 .95 | 953 | .952 | 1209 | 1922 | 1878 | 792 | 4048

95 15 .90 | .950 | .948 119 587 377 32 | 18426
95 1 10 .90 | 947 | .946 | 259 800 696 | 107 | 4439
.95 5 .90 | 917 | 916 | 979 | 2055 | 1972 | 635 | 5320

95 | 15 .95 1 .989 | .989 159 | 1274 839 75 | 39633
95 | 10 95 | 969 | 968 | 359 941 854 | 163 | 3958
.95 5 .95 | 957 | .956 | 1399 [ 2799 | 2714 | 1007 | 6530

Note: The reported numbers are the averages over the simulations per-
formed for 250 samples, each of which consists of 25 observations. For each
sample we carry out 2,000 Monte Carlo repetitions.
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Table 7. Values of ag, By, Vg, g, Ca, and M as a Function of «, 7, and pdb

for Equal-tailed and One-sided Confidence Intervals

Q, Cqo .01, .0838 .025, .1436 .05, .2122 .10, .3074

T .01 .05 .10 .01 .05 .10 .01 .05 .10 .01 .05 .10
pdb=5:

ao 69 40 29 | 124 72 51 | 219 | 127 90 | 473 | 274 | 194
Bo 6899 [ 3999 | 2899 | 4959 | 2879 | 2039 | 4379 | 2539 | 1799 | 4729 | 2739 | 1939
Vo 6831 | 3960 | 2871 | 4836 | 2808 | 1989 | 4161 | 2413 | 1710 | 4257 | 2466 | 1746
Mo 69 40 29 | 124 72 51 { 219 | 127 90 | 473 | 274 | 194
m 31 22 18 42 30 24 57 40 32 87 61 48
pdb = 10:

ao 18 10 8 31 18 13 55 32 23 | 119 69 49
Bo 1799 1 999 | 799 | 1239 | 719 | 519 | 1099 | 639 | 459 { 1189 | 689 | 489
Vo 1782 | 990 | 792 | 1209 | 702 | 507 | 1045 | 608 | 437 | 1071 | 621 | 441
Mg 18 10 8 31 18 13 55 32 23 1 119 69 49
m 13 9 8 17 12 10 23 16 13 35 24 20
pdb=15

ag 8 5 4 14 8 6 25 15 10 53 31 22
Bo 799 | 499 | 399 559 | 319 | 239 | 499 | 299 | 199 | 529 | 309 | 219
Vo 792 1 495 | 396 | 546 | 312 | 234 | 475 | 285 | 190 | 477 | 279 | 198
Mo 8 5 4 14 8 6 25 15 10 53 31 22
m 8 6 5 10 7 6 14 10 8 21 15 12

Note: All quantities are defined in the three-step procedure of Section 3.5.
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Table 8. Values of ag, By, Vg, Ca, and m as a Function of & and 7
for pdb = 10 for Tests with Significance Level o

A. Test Statistics with Absolute N(0,1)
Asymptotic Null Distribution

@, Ca 01, .0837 05, .2086 10, .2993
T 01 05] 10| .01 05] 10| 01 ] .05] .10
pdb = 10:

ao 12 7| 5| 30| 18| 13| 52| 31| 22
Bo 1199 | 699 | 499 | 599 | 359 | 259 | 519 | 309 | 219
vo 1188 | 693 | 495 | 570 | 342 | 247 | 468 | 279 | 198
m 100y 7| 6| 15| 11| 9| 20| 14| 11

B. Test Statistics with N(0,1) Asymptotic Null Distribution

Q, Ca .01, .0838 .05, .2122 .10, .3074

T 014 .05 | .10 .01 .05 .10 .01} .05] .10
pdb = 10:

ao 181 10 8 55 | 32| 23| 119 69| 49
Bo 1799 | 999 | 799 | 1099 | 639 | 459 | 1189 | 689 | 489
vo 1782 | 990 | 792 | 1045 | 608 | 437 | 1071 | 621 | 441
m 13 9 8 23] 16} 13 35| 24| 20

C. Test Statistics with xZ Asymptotic Null Distribution

@, Ca 01, .0300 05, .1963 10, .2820

T 01] 05] 10| 01| 05] 10| 01 ] .05 .10
pdb = 10

ao 18| 10 7| 3| 21| 15| 52| 30| 22
Bo 1799 | 999 | 699 | 699 | 419 | 209 | 519 | 299 | 219
vo 1782 | 990 | 693 | 665 | 399 | 285 | 468 | 270 | 198
m 12| 8| 7)1 16| 11} 9| 19| 13| 11

D. Test Statistics with X21)5 Asymptotic Null Distribution

Q, Co .01, .0811 .05, .2022 .10, 2912

T 04 .05 10 01| .05) .10 | .01 |{ .05 .10
pdb = 10:

ao 8 5 4| 14 9 61 20| 12 9
Bo 799 | 499 | 399 | 279 | 179 | 119 | 199 | 119 | &9
Vo 792 | 495 | 396 | 266 | 171 | 114 | 180 | 108 | 81
m 7 6 5 9 7 5 10 8 6

Note: All quantities are defined in the three-step method of Section 4.1.
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Table 9. Values of By as a Function of 7, pdb, and 1 — G(T) for p-values

1—G() pdb
5 10 15 20 30 40 50 100 150 200 | 300
T=.01:
.001 6624 | 2944 | 1656 | 736
.005 5278 | 1320 587 330 | 147
.010 7293 | 4103 | 2626 657 292
.025 11492 | 6465 | 2873 | 1617 | 1035
.050 50388 | 12597 5599 | 3150 | 1400 788
.10 23869 5968 2653 | 1492 664
.15 15028 3757 1670 940 418
.20 10609 2653 1179 664 295
.30 688 387 172 97 62
.50 166 74 42 27
.70 32 18 12
.90 9 5 3
7 =.0b:
.001 3837 | 1705 960 | 427
.005 3057 765 340 192 85
.010 4224 | 2376 { 1521 381 169
.025 6656 | 3744 | 1664 936 600
.050 20184 | 7296 3243 | 1824 811 456
.10 13825 3457 1537 865 385
.15 8704 2176 968 544 242
.20 6145 1537 683 385 171
.30 399 224 100 56 36
.50 171 96 43 24 16
.70 19 11 7
.90 5 3 2
T =.10:
.001 2708 | 1204 677 | 301
.005 2158 540 240 135 60
.010 2081 | 1677 | 1074 269 120
.025 4698 | 2643 | 1175 661 423
.050 20596 5149 2289 | 1288 573 322
.10 9757 2440 1085 610 272
.15 6143 1536 683 384 171
.20 4337 1085 482 272 121
.30 282 159 71 40 26
.50 68 31 17 11
.70 13 8 5
.90 4 2 2

Note: All quantities are defined in the three-step method of Section 4.2.
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