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Abstract

Common knowledge plays an important role in coordination problems
and coordination problems are central to many areas of economic policy.
In this paper, I review some common knowledge puzzles culminating in
the electronic mail game. These puzzles may seem distant from practical
concerns. However, I then argue why insights derived from this literature
are useful in interpreting empirical evidence of how people coordinate under
uncertainty and in understanding the role of communication in coordinating
behaviour.

1. Introduction

Let us start by considering a classic common knowledge puzzle. Alice and Bob
each have an envelope, containing a certain number of dollar bills. One envelope
contains one more dollar than the other, with Alice having an odd number of
dollars and Bob having an even number of dollars. Each individual observes
the amount of money in his or her envelope, but not the amount in the other
individual’s envelope. First, Alice and Bob are each asked to announce if he
or she knows that he or she is richer, i.e., has the larger amount of money. Of
course, neither knows this, so neither makes an announcement. Now, it is publicly

*This work is based on a talk prepared for the 2001 European Meetings of the Econometric
Society in Lausanne.



announced that no envelope contains a thousand dollars or more. Initially, nothing
happens. But eventually one of the two announces that he or she is richer. Why?

If Alice in fact had $999, she would immediately realize that Bob must have
$998, and so she would announce that she was the richer. But now if Bob has
$998 and does not hear Alice announce that she is the richer, he will be able to
infer that Alice must have $997; thus he will announce that he is richer. Now we
may argue by backward induction, and infer that eventually the richer individual
will become aware that he/she is the richer individual. The key to the story is
that the announcement is public. If Alice and Bob were each privately informed
that no envelope contained $1000 or more, then - unless Alice has exactly $999
- neither individual would have learned anything new. But the public announce-
ment generates common knowledge among Alice and Bob that no one has more
than $1000. That is, Alice and Bob both know it, both know that both know it,
and so on. The story illustrate the important role that common knowledge plays
in interactive reasoning.

The importance of common knowledge, and the distinctive role that it plays,
was also highlighted by the electronic mail game, described by Rubinstein (1989).
Rubinstein considered a setting where - if there is common knowledge of payofts -
two players of a game can co-ordinate on an efficient outcome. But suppose that
there is merely a high number of levels of knowledge, but not common knowledge.
For example, suppose that each player knows the true payoff matrix; each player
knows that both players know the true payoff matrix; but one player is not sure
if the other player knows that he knows the true payoff matrix. In this case,
Rubinstein exhibits a setting where the unique equilibrium has both players forced
to an inefficient outcome because of the lack of common knowledge. And this
happens no matter how many finite levels of knowledge of payoffs there are, as
long as there is not common knowledge. The electronic mail game is reviewed in
detail below.

Rubinstein suggested that this result was rather counterintuitive: surely play-
ers with a high number of levels of knowledge would choose to act as if they
had common knowledge? This suggests that the modelling challenge is to come
up with a plausible model of bounded rationality that might limit this extreme
sensitivity to very high levels of knowledge.

However, a different reading of the e-mail game example is that it provides
a useful, if extreme, illustration of the logic by which higher order beliefs and
knowledge might influence outcomes in strategic settings. Informal arguments
about the importance of higher order beliefs in settings like financial markets,



bank runs and exchange rate crises are endemic, but standard models tend to
play down the effect of higher order beliefs (this is done implicitly, by assuming
common knowledge of payoffs or modelling uncertainty with simple type spaces
where higher order uncertainty is not significant). The e-mail game has played
an important role in thinking about how to model higher order beliefs in applied
settings. In particular, Carlsson and van Damme (1993) introduced the study of
a class of “global games” where each player observes the true payoffs of the game
with a very small amount of noise. While their motivation for studying this class
of games was quite different, it turns out that we can understand the striking
equilibrium selection results that occur in these games by working out the higher
order beliefs that the information structure generates, and then the logic of the
equilibrium selection is in fact closely related to what occurs in the electronic mail
game. Morris and Shin (1998) argued that this type of reasoning could be used
to understand currency crises, and a number of authors since then have used such
models in different contexts (see the chapter by Heinemann in this volume and
the survey of Morris and Shin (2000)).

But which reading is correct? Do the common knowledge “paradoxes” cul-
minating in the electronic mail game illustrate the need for developing models of
bounded rationality that remove the paradoxical outcomes? Or do they represent
a sensible starting point for modelling the role of higher order beliefs in applied
settings? In this talk, I want to discuss two arguments in defense of the latter
point of view. First, believing that players without common knowledge might be-
have according to rational predictions does not entail the belief that they reason
to very high levels (as Alice and Bob were required to do in the envelopes example
at the beginning of this paper). It is possible to describe heuristics for rational
behavior in risky coordination problems without common knowledge that are very
simple and are fully consistent with rational behavior. The second defense is more
prosaic: I will argue that the type of lack of common knowledge that arises in the
stylized information structure of the e-mail game will arise much more generally
in settings where there is imperfect but plentiful communication.

The paper is structured as follows. I will give a brief review of the common
knowledge paradoxes, culminating in the e-mail game. My purpose here is intro-
duce them to those who do not know them, and also describe a number of key
paradoxes in a common language, in order to bring out their connections. The
treatment is informal and non-technical. The chapter by Board in this volume
gives a more detailed treatment of the concepts that lie behind these puzzles.
Then 1 will attempt to provide some countervailing intuition to the view that



rational behaviour in the e-mail game is counterintuitive. Finally, T will review
some recent research looking at how the e-mail game generalizes to more realistic
communication structures. The ideas reviewed here been discussed elsewhere. My
hope is that by using the always provocative electronic mail game as a unifying
theme, it will possible to bring out some interesting connections.

2. Common Knowledge Paradoxes: A Very Brief Review

In this section, I very briefly review some common knowledge paradoxes culminat-
ing in the electronic mail game. I have changed original versions of the paradoxes
to try and make them more comparable. At the end of each example, I provide
some very brief bibliographical notes. For histories and surveys of these issues,
see Geanakoplos (1994) and Fagin, Halpern, Moses and Vardi (1995, chapter 1).

2.1. Envelopes

First, we see how we can represent the envelopes example discussed in the intro-
duction. Each row in the diagram below represents the number of dollars that
Alice has in her envelope (an odd integer). Each column represents the number
of dollars that Bob has in his envelope (an even integer). The symbol ® appears
in boxes corresponding to possible states, i.e., where the difference between the
amount of money is Alice’s envelope and the amount of money in Bob’s envelope
is 1.

Bob
012 4 ]-]2n|2n+2
1 R &
R | ®
Alice 21 HE L L
2n +1 Sl ® | ®
2n + 3 . 0%y
FIGURE 1

How knowledge and common knowledge be studied in this diagram? The event



that no one has more than or equal to six dollars is shown below:

0[2]14]6

| O | =
*

Now the event that everyone knows that no has more than or equal to six dollars
is:

416

| Y W~

The event that everyone knows that everyone knows that no has more than or
equal to six dollars is:

| O W+

and so on.

This example has the same logic as some classic puzzles examples involving
hats, dirty faces and cheating wives. Nalebuff (1989) discusses a version of en-
velopes problem where the individuals are asked if they want to trade envelopes;
this introduces complications, that we do not explore wish here, concerning how
gambles are evaluated ex ante and ex post.

2.2. Agreeing to Disagree

Now suppose that the probability that the smallest envelope contains n dollars is
p (1 —p)". These probabilities can be represented in the following diagram:
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FIGURE 2

What probability do Alice and Bob each assign to the event that Alice is richer
(i.e., that the true state is on the leading diagonal)? Independent of the amount
of money in her envelope, Alice assigns probability

1
2—p

to Alice being richer. Bob, on the hand, as long as he has at least $2 in his
envelope, assigns probability .
—p
2—p
to Alice being richer. Of course, if Bob has no money in his envelope, he knows
that Alice is richer.

Now suppose that in fact Bob has $2n and Alice has $(2n+1). Both Alice and
Bob know that they assign probabilities 2%}) and ;—:ﬁ, respectively, to Alice being
richer. Both know that both know this. In fact, we can use the diagram to confirm
that they both know that they both know.... (n + 1 times)... that Alice is richer.
But it is not common knowledge that they have these different posteriors. Aumann
(1976) showed that if individuals shared a common prior, and there is common
knowledge of their posterior beliefs of an event, their posterior beliefs must be
equal. This example shows that it is possible to have an arbitrarily high number
of levels of knowledge that individuals have different posteriors, without them
being the same. Geanakoplos and Polemarchakis (1982) first gave an example
making this point.

Now suppose that Alice and Bob successively announced what probability they
assigned to Alice being richer. For a long time, they would stick to their initial
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beliefs 2%]) and ;—:ﬁ. But eventually, one individual would realize that others’
failure to revise their beliefs gave crucial information to him or her, and they
would converge to common knowledge posteriors. Geanakoplos and Polemarchakis
(1982) showed that this always happens on finite spaces (Washburn and Teneketzis
(1984) provide the infinite state analogue).

2.3. Coordinated Attack

For the next two examples, we will change the story but keep the type space and
figures.

Now suppose that Alice and Bob are deciding whether to make a risky in-
vestment decision. Each would like to invest if he or she (1) has the resources
to invest; and (2) knows that the other individual is investing. It is common
knowledge that Alice has the resources to invest, but initially Alice does not know
whether Bob has resources or not. If Bob is able to invest, he sends an electronic
mail message to Alice informing her of this fact. However, there is a possibility
that the message will be lost. If the message arrives, Alice sends a message back
to Bob, confirming that she received the first message. Again, the message may
be lost. If there Bob receives the confirmation, he sends another message in turn.
And so on.

We can use figure 1 to represent this situation. The rows represent possible
types for Alice in this scenario, while the columns represent types for Bob. If
Bob is type 0, this means he does not have resources for investment (and thus
he does not send a message). If Alice is type 1, it means that she has received
no messages. If Bob is type 2, it means he has resources for investment and he
has sent a message, but he has not received a confirmation. If Alice is type 3,
it means that she has received a message informing her that Bob has resources
for investment, has sent a confirmation, but has not received a confirmation of
her confirmation. And so on. Notice that an individual is type n, then n is the
maximum number of messages that that individual thinks may have been sent
and that individual thinks the other individual is either type n — 1 or type n + 1.

Can we come up with a rule specifying when each individual should invest
as a function of his or her type, such that (1) no individual ever invests alone;
and (2) an individual who is supposed to invest always resources to invest? The
answer is no, and the proof is elementary. Let n4 be the lowest type of Alice how
invests and let ng be the lowest type of Bob who invests. By (2), ng > 2. By (1),
ng >ng+1and ng >ny +1if ny > 3. For any finite n4 and ng, we obtain a



contradiction.

This example is due to Gray (1978). His story was that Alice and Bob were two
generals commanding armies on different hills, and they sent messengers to each
other who might get lost. The argument generalizes to show that if coordinated
action requires common knowledge of some fact, and that fact is not initially
common knowledge, then no amount of communication through faulty channels
can ever generate common knowledge and thus coordinated action.

2.4. The Electronic Mail Game

To turn the previous example into a game, we must add probabilities to the various
type profiles and add payoffs to the various action profiles. Let the probability
that Bob does not have resources to invest be p; and let the probability that any
message gets lost be (coincidently) p also. One can verify that this story gives
rise to the probability distribution over types of figure 2. Let the payoffs for Alice
and Bob be given by the following matrix if both have resources to invest:

Invest | Not Invest
Invest 1,1 —-2,0 (2.1)
Not Invest | 0,—2 | 0,0

If Bob does not have resources to invest, then he has a dominant strategy to not
invest.

Now we have a game of incomplete information. The unique equilibrium of
this game has Alice and Bob never investing. To see why, first observe that if Bob
is type 0, he has a dominant strategy to not invest. If Alice is type 1, she assigns
probability ﬁ to Bob being type 0. But we see from the payoff matrix (2.1) that

if Alice assigns probability more than % to Bob not investing, she will not invest.
So, since 2% > % > %, Alice does not invest if she is type 1. But now if Bob is type

2, he knows that Alice will not invest if she is type 1, and he assigns probability
2%}) to Alice being type 1. So he will not invest. This argument iterates to ensure

that no type of either player ever invests.
This is the electronic mail game of Rubinstein (1989).! The result is more than

!There are some small changes to simplify my presentation. First, this version is
“private values,” so each player is certain of his own payoffs. Second, this version gives
player 1 a dominant strategy for one private state (bad), while in the original game
players simply faced the problem of coordinating on an efficient Nash equilibrium that
varied across states. Finally, the probability of lost messages and the ex ante probability
of different payoffs have been set equal.



just adding numbers to the coordinated attack problem. As Rubinstein noted, the
strategic paradox relies on the fact that payoffs are asymmetric when players do
not coordinate their behavior, i.e., the player who invests alone bears the cost
of mis-coordination. Also, it is worth emphasizing that while Gray’s paradox
shows that perfect coordination is impossible without common knowledge, one
can straightforwardly choose rules of behavior such that the probability of mis-
coordination is small when the probability of errors (p) is sufficiently small, if
the players could be relied upon to follow those rules. For generals commanding
armies, and in Gray’s applications to computer science, there should not be a prob-
lem having ex ante optimal rules of behavior followed ex post. But in the e-mail
game, players would like to make an ex ante commitment to invest, but if they
are unable to do so, then not only is there no equilibrium with perfect coordina-
tion, there is also no equilibrium with any positive probability of miscoordination.
Morris and Shin (1997) discuss at more length the different implications of the
common knowledge paradoxes in economics, computer science and philosophy.

3. Should We Care about Common Knowledge Paradoxes?

In this section, I review two kinds of arguments why the coordination problems
that arise in the electronic mail game should be taken seriously: first, one can
provide simple intuition for rational behavior in the electronic mail game that
does not rely on complex reasoning on the part of players; second, I review some
work confirming that the type of problems that emerge in the electronic mail game
occur more generally.

3.1. Heuristics for Risky Coordination

Rubinstein’s abstract for the e-mail game is the following:

The paper addresses a paradoxical game-theoretic example which is
closely related to the coordinated attack problem. Two players have to
play one of two possible coordination games. Only one of them receives
information about the coordination game to be played. It is shown that
the situation with “almost common knowledge” is very different from
when the coordination game played is common knowledge.

The paradox is that in two apparently close situations - common knowledge
of payoffs versus an arbitrarily high number of levels of knowledge of payoffs -

9



players behave very differently. If you buy the intuition that these situations are
very close in the minds of the players, then you are lead to the conclusion that
players should not be expected to behave rationally in the e-mail game. With this
interpretation, the message of the electronic mail game is that one should try to
come up with a model of boundedly rational behavior that delivers predictions
that are insensitive to whether there is common knowledge or a large number of
levels of knowledge.? While I will describe an alternative possible interpretation,
this remains a very interesting direction line of research that has not been much
pursued (see Dulleck (1998) for one exception).

An important paper by Monderer and Samet (1989) suggests an alternative
intuition, however. Suppose we turn around the question posed by the electronic
mail game and ask what definition of approximate common knowledge delivers the
conclusion that rational behavior when there is approximate common knowledge
is close to rational behavior when there is common knowledge. Say that event
is common p-belief if everyone believes it with probability at least p, everyone
believes with probability at least p that everyone believes it with probability at
least p, and so on. They establish that behavior when there is common p-belief
of payoffs, with p close to 1, is close to behavior when there is common knowl-
edge. Monderer and Samet (1996) and Kajii and Morris (1998) show that no
weaker notion of approximate common knowledge will suffice (and both papers
use examples with a similar logic to the electronic mail game to show tightness).
But these mathematical results - the topology generated by common p-belief is
the weakest one generating continuity of equilibrium behavior - also generates an
alternative intuition about rational play in settings of risky co-ordination.?

Aumann (1976) showed that an event E is common knowledge (in the iterative
sense described earlier) at some state w if and only if there is a evident event (an
event that everyone knows to be true whenever it is true) that is true at state

2Rubinstein (1989) writes “What would you do if the number on your screen in 177
It is hard to imagine that when L is slightly above M and ¢ is small a player will not play
B. The sharp constrast between our intuition and the game-theoretic analysis is what
makes this example paradoxical. This example joins a long list of games such as the
finitely repeated Prisoner’s Dilemma, the chain store paradox, and Rosenthal’s game,
in which it seems that the source of the discrepency is rooted in the fact that in our
formal analysis we use mathematical induction when reasoning. Systematic explanation
of our intuition that we will play B when the number on our screen is 17 (ignoring the
inductive consideration contained within Proposition 1’s proof) is definately a most
intriguing questions.”

3 As Rubinstein (1989) notes, “other definitions of convergence may be useful not only
as technical methods but also for expressing other intuitions of closeness”.
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w and implies event E. An event that occurs in public is automatically evident.
Monderer and Samet (1989) show that an event E is common p-belief (in the
iterative sense described earlier) if and only if there is a p-evident event (an event
that everyone believes to be true with probability at least p, whenever it is true)
that is true at state w, with the property that whenever the p-evident event is true,
everyone believes the event E with probability at least p. An event is p-evident
for p close to 1 if it is almost public: whenever it occurs, everyone is almost sure
that it occurs. Thus the intuition suggested by the literature on common p-belief
is that players will be able to co-ordinate on some efficient but strategically risky
behavior if and only if the true payoffs are almost public. The more risky a Nash
equilibrium of a complete information game is, the more public payoffs must be in
order to support play of that Nash equilibrium (this claim can be made precise).
A distinctive feature of the information structure of the electronic mail game is
that (if the probability of errors is small), no non-trivial event is common p-belief
for p greater than % This means the risk dominant Nash equilibrium must be
played in the electronic mail game, because of the lack of almost public events
supporting play of the risk dominant equilibrium (Morris, Rob and Shin (1993).

So we have two competing intuitions for how rational people might play the
game described in matrix (2.1). One intuition says if there is uncertainty about
payofts, you will not invest, but if there are a high number of levels of knowledge
about payoffs, you should behave as if there is common knowledge and invest.
Another intuition says that if there is uncertainty about payoffs, you will not
invest, but if there is common p-belief of payoffs, for p > %, you should invest.
The latter intuition is consistent with standard theory but requires behavior to be
sensitive to how public knowledge of payoffs is. The global games introduced by
Carlsson and van Damme (1993) also have the feature that there are no non-trivial
almost public events, and this is the driving force behind results in that literature
(the theoretical and applied literature on global games, and the relationship to
higher order beliefs, are surveyed in Morris and Shin (2000)).

There has been some experimental work on this subject (this is surveyed in
the chapter by Heinemann in this volume). Camerer (2000) reports a small ex-
periment that is very close to the original e-mail game and Cabrales, Nagel and

*If a symmetric two player, two action game has two strict Nash equilibria, the risk
dominant Nash equilibrium is one where each player is choosing a best response to a
50/50 probability distribution over the actions of his opponent (Harsanyi and Selten
(1988)). In the game of matrix (2.1), (Not Invest, Not Invest) is the risk dominant
equilibrium.
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Armenter (2001) construct a five signal game in the spirit of the email game and
global games. Both sets of results are consistent with earlier work on dominance
solvable games, showing that while initial play is not equal to the unique ratio-
nal prediction, as subjects learn to play the game, they converge to the unique
rational outcome. Cabrales, Nagel and Armenter conclude (both from the experi-
mental results and subject interviews) that the players do not engage in iterative
reasoning to any significant extent. Rather, repeated play leads to convergence to
the unique equilibrium. Note that since all these games are dominance solvable,
the convergence to the unique equilibrium occurs robustly in many learning and
evolutionary models (see, e.g., Nachbar (1990) and Milgrom and Roberts (1990)).

The above experimental work does not directly address the competing intu-
itions discussed here. It would be nice to establish that - even without learning
- while common knowledge of payoffs may lead to the efficient equilibrium being
played, lack of common knowledge of the type induced by the electronic mail
game and global games leads to inefficient but risk dominant equilibria being
played. This is a subtle thing to test, because there is a tendency to play the risk
dominant equilibrium in experiments even when a lack of common knowledge is
not (deliberately) included into the experimental design. Indeed, Cabrales, Nagel
and Armenter (2001) note that there was a strong tendency to converge to the
risk dominant equilibrium even when there was common knowledge. The related
experimental work of Heinemann, Nagel and Ockenfels (2001) on global games
also finds that while the results are consistent with theory concerning environ-
ments without common knowledge, similar results hold when there is common
knowledge.

An intriguing recent experimental result of Chaudhuri, Schotter and Sopher
(2001) supports the view that the existence of almost public events (i.e., events
that are p-evident with p close to 1) may be key in generating risky coordination.
They examine experimental subjects’ play in the minimum effort game of Van
Huyck, Battalio and Beil (1990). In this game, everyone choosing low effort is
a safe equilibrium - analogous to the risk dominant equilibrium. There are also
equilibria with high levels of effort, but these are strategically risky in the sense
that a player will be prepared to choose high effort only if there is a p-evident event
(with high p) contingent on which everyone will choose the risky action. Chaudhuri
et al. allow players to receive advice from a previous generation of players about
how to play the game. They observe that if players privately observe the advise
received by all players, coordination on the high effort equilibrium still does not
occur. However, if the advise is read out to players publicly, they are able to
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coordinate on the high effort equilibrium. Since the procedure being followed is
common knowledge, both these scenarios in principle generate common knowledge
of the advice received by all players. However, players treat the two scenarios
differently. One possible explanation is that in the first scenario, players act as if
there is some probability that others do not read the advice they receive; another
is that players do not realize that if there is common knowledge that everyone
receives some information, there is common knowledge of that information. In
either case, these experimental results provide support for the heuristic of only
choosing a risk action in a coordination game if there are sufficiently public events
supporting that behaviour.

Let me conclude by mentioning another useful heuristic highlighted in Morris
and Shin (2000). In symmetric binary action coordination games with a continuum
of players and a global games noise structure, the lack of almost public events pins
down a prediction of how people will play (these games are discussed in more detail
in Heinemann’s chapter in this volume). Each player will always choose a best
response to a uniform belief over the proportion of players choosing each of the
two actions. In other words, the unique strategy surviving iterated deletion of
dominated strategies will imply identical behavior to the very simple heuristic of
acting as if you are in complete ignorance of others’ strategy choices. This too
suggests that taking seriously a lack of common knowledge in economic settings
does not require a commitment to the belief that players reason to high levels of
knowledge. Notice that the key here is that even very accurate information about
payoffs allows for strategic uncertainty (uncertainty about others’ actions) to play
an important role in pinning down outcomes. This feature mirrors a key element
of the common knowledge paradoxes discussed earlier, where, for example, Alice
was always almost sure about the amount of money in Bob’s envelope, but the
small amount of uncertainty was leveraged into a large impact.

3.2. Taking Noisy Communication Seriously

Rubinstein (1989) wrote:
The story of the interchange of messages by electronic mail is intended
only to provide a precise, albeit rather special, model of how knowledge

comes to be shared by the players.

The purpose of this section is to review work that examines in more detail
how the outcome of the email game depends on the communication protocol. The

13



models remain rather stylized, but we can examine in more detail when almost
public events emerge from a communication process. I start with three more
straightforward questions. How does the result depend on the error probabilities?
What happens when a large number of players must coordinate their behavior,
and they meet publicly, but in small groups? And what happens when we make
realistic assumptions about the timing of messages? Then I look at two more sub-
tle questions that arise when we start to endogenize the communication process.
What happens if we stick to the original communication process of the e-mail
game, but make it a strategic decision whether to send messages or not? And
what happens when we add unprovable but public messages (cheap talk) into the
communication process? The bottom line is going to be that the issues concern-
ing communication and coordination raised by the electronic mail game are fairly
robust, but there are many open issues.’

3.2.1. Error Probabilities

Dimitri (2000) has examined the robustness of the email game to different message
error probabilities across players. Suppose that the probability of Alice and Bob’s
messages getting lost is p4 and pg, respectively, and the probability that Bob does
not have resources to invest is ¢. Then, one can show that there is no investment

in equilibrium if and only if
<2y,
l—gq

PB < 2( Pa >7
I —pa

and py < 2( o )
1 —ps

Thus if pp is small relative to ¢ and p4 and pg are sufficiently close to each other,
investment will not occur. If they are very different, then a player who does not
receive a confirmation will be sure where it got lost. This ensures that there are
sufficiently almost public events to allow coordination.

®See also Dimitri (2000), who examines the robustness of the email game to different
message error probabilities across players.
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3.2.2. Many Player Communication

There are N players. Each will have to decide simultaneously whether to invest
or not. A player’s payoff from investing is 1 if a public state is good and at least n
players (including himself) invest, where 1 < n < N. If the state is bad, or if less
than n players end up investing, then the payoff to investing is —2. The payoft to
not investing is always 0.

The ex ante probability that the state is good is % Every so often, the players
meet in groups of m players to discuss what they should do. The probability that
there will be a total of k£ meetings is p (1 — p)k, where p > 0. Thus conditional
on k meetings having occurred, the conditional probability that at least one more
meeting will occur is always 1 — p. The collection of players gathered together at
the 7 th meeting is random: each subset is equally likely. Thus the probability
than any one player attends any fixed meeting is always . If a first meeting
occurs (this happens with ex ante probability 1 — p), the players at that first
meeting are informed whether the state is good or bad. At each meeting, each
player gets to learn all the information about the state and previous meetings that
was available at previous meetings. A player does not know how many meetings
(if any) occurred after the last meeting that he attended.

Eventually, all the meetings are concluded. Each player must then decide
whether to invest or not, based on the history of meetings attended.

Proposition 3.1. (Morris (2001)) If m < n and

N—-m 2

1— z

then the meetings game has a unique equilibrium: no player ever invests.

This result is tight in the following sense. If either m > n or N;Nm > % and p

is sufficiently small, then there is an equilibrium where all players invest if they
know that the state is good.

3.2.3. Real Time Communication

Consider a timing game that is identical to the electronic mail game of section 2.4,
with one change. Instead of a message getting lost with exogenous probability p,
assume instead that it may take some time to arrive. Let F'(7) be the probability
that a message will take less than or equal to 7 minutes to arrive (and write f (+)
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for the density corresponding to F'(-)). At time 0, player 1 learns whether his
state is good; if it is good, he sends a message to player 2; if the message arrives,
she sends a confirmation; and so on. At time 7', however many messages have
been sent and received, the players must make their investment decisions.

Suppose that a player receives his last message at time ¢t. What probability
does he assign to his message having been the last? If he has just received a
message at date t, the probability that his message never arrives is

Nt)=1-F[T —1;

the probability that his message arrives but he never receives a reply is

A(t)E/TTtf(T)(l—F(T—t—T))dT.

=0

The likelihood ratio of these two probabilities is

A(t) _ Jro (D) (= F(T —t—7))dr

L =5a 1-F[T 1

Thus the probability that his message was the last sent, conditional on not receiv-
ing a confirmation is
N (t) B 1
N +A@lt) 1+L@1)

Proposition 3.2. (Morris (2001)). If L (t) < 2 for all t € [0,T], the timing game
has a unique equilibrium: both players never invest.

This result is tight in the following sense. If L (0) > 2, the timing game has
an equilibrium where player 1 always invests when his state is good and player 2
invests exactly if she receives at least one message. Morris (2001) considers some
examples that illustrate this condition.

3.2.4. Strategic Communication Decisions

The information structure in the e-mail game is clearly an unfortunate one for
players who would like to coordinate on the efficient outcome. If one were de-
signing an optimal communication system ex ante, it would be optimal to have
only one or two messages sent (see Chwe (1995)). But suppose that you were
unable to commit to a communication system, but instead were simply playing
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the e-mail game of section 2.4, with the additional complication that players could
choose not to send a message at any point. Binmore and Samuelson (2001) have
examined this question.

A first observation is that this game has many equilibria. There is an “infinite
message - no investment” equilibrium identical to the original equilibrium of the
email game, where players choose to keep sending their messages (until one gets
lost) and no investment takes place (in this equilibrium, if you choose not to send
a message, your opponent will just assume that your message got lost). There is
also a “no message - no investment” equilibrium where no messages get sent and
no investment takes place (if you don’t expect anyone to ever invest, you obviously
do not have an incentive to send any messages; if you don’t expect your opponent
to ever invest, you don’t have an incentive to invest). But there are also efficient
equilibria. For example, there is a “one message” equilibrium where Bob sends a
message confirming that he has the resources for investment, but Alice sends no
confirmations. Bob will then invest if and only if he has resources for investment
and Alice will invest if and only if she has received a message from Bob. In this
equilibrium, Alice has no incentive to confirm receipt of the message from Bob,
since (1) she knows Bob will invest; and (2) Bob completely ignores her message
in equilibrium anyway.

So to make any predictions in this game, it will be necessary to modify the game
and/or the solution concept. Binmore and Samuelson (2001) consider a number of
modifications. Their strongest results come from considering evolutionary stability
in a perturbed game where there are small ex ante costs to listening to each
message and there is a small ex post cost to sending each message. Since messages
are costly, the infinite message - no investment strategy profile of the original e-
mail cannot be an equilibrium. But they also show that the no message - no
investment is not evolutionarily stable. That is, for small costs, that strategy can
be invaded by the “one message” equilibrium. Any equilibrium where messages
get sent and investment takes place is evolutionarily stable.

On the other hand, Morris (2001) suggests an intuition why the no investment
equilibrium might be robust. Recall that anticipated confirmations are damaging
in the electronic mail game because I send you a message, anticipating a confir-
mation, and I do not receive a confirmation, then I assign probability 2%}) to my
message never having reached you; however, if I had not anticipated a confirma-
tion, I would assign probability p (the probability of a message getting lost) to
my message never having reached you. Thus, for small p, anticipated confirma-
tions reduce confidence in the current communication. However, if players cannot
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commit ex ante to the number of confirmations, the situation becomes very differ-
ent. While anticipated confirmations are damaging, unanticipated confirmations
are potentially Pareto-improving. If I did not expect to receive a confirmation
from you, a failure to receive one will not discourage me from investing. But if I
do receive an unexpected confirmation, I am all the more confident that you will
invest and therefore even more likely to invest myself. This provides you with an
incentive to send the unanticipated confirmation. Of course, there are no unan-
ticipated confirmations in equilibrium and the effect of the incentive to provide
unanticipated confirmations is to put us back in a world where many (anticipated)
confirmations get (strategically) sent and no coordinated investment takes place.

Why doesn’t this intuition work to rule out the “one message” equilibrium
in the basic electronic mail game with strategic message sending decisions? As I
noted above, the problem is that Alice expects Bob to invest for sure anyway (even
without the confirmation). In Morris (2001), I therefore consider a perturbed
version of the game where the probability of a player investing is always strictly
increasing in the probability he assigns to his opponent investing (this is achieved
by adding an idiosyncratic component to each player’s payoff that, with small
probability, will reverse his optimal action). In this case, if players followed the
strategy profile of the one message equilibrium, Alice would be almost sure that
Bob would invest, if Alice does not send a confirmation. But if Bob interprets an
unanticipated confirmation from Alice in the natural way as a signal that Alice
plans to invest, then an unanticipated confirmation will increase the likelihood
of Alice investing. So perturbing the game with idiosyncratic payoff noise and
refining out-of-equilibrium beliefs in the spirit of this argument, implies that only
no investment equilibria can be played.

Clearly, different perturbations and refinements lead to different conclusions
about the robustness of the electronic mail game to strategic message sending.
We do not know enough to come to any definitive conclusions on this issue.

3.2.5. Adding Public Cheap Talk

The analysis of the previous section was based on the assumption that players had
a strategic choice about whether to send a message or not. But it was assumed
that any messages sent were true; i.e., if a player claimed to have received a
message, he really had received that message. Ideally, one would like to model
a situation where communication takes place both privately and publicly and
some claims are provable while others are cheap talk. However, such a general
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analysis would be complex. In this section, I will give one example to illustrate
the limitations of unprovable cheap talk, even if it is public, in overcoming the
lack of common knowledge problem in the email game. This example comes from
Baliga and Morris (2000).

Suppose that we start with the information structure of the e-mail game, de-
scribed in section 2.4. But now suppose that prior to making their action choices,
players have the opportunity to make some public cheap talk statements. For
example, Bob could publicly announce that he has the resources for investment,
or Alice could publicly announce that she has received the first message from Bob.
If either of these messages were credible in equilibrium, then investment would
be possible in equilibrium following the public statements. But whether they are
credible depends on the incentives of Bob when he does not have the resources
to invest. We have assumed that in this case, he has a dominant strategy to
not invest. But that leaves open the question of what he would like Alice to do
(conditional on the fact that he is not going to invest). If he would like Alice to
not invest when he does not invest, then cheap talk will solve the coordination
problem. Bob could simply announce whether or not he has resources to invest,
and Alice and Bob would both invest if Bob’s public announcement said that he
did have resources to invest.

The more subtle case arises if Bob always wants Alice to invest (even if he does
not himself have resources to invest). In this case, the truth-telling equilibrium
breaks down: Bob would have an incentive to report that he had resources to
invest even if he did not. In fact, every equilibrium has no investment by any
type. To see why, fix an equilibrium and let n be the lowest type of either who
ever invests with positive probability (after any message). Since Bob’s type 0 has
a dominant strategy to not invest, we must have n > 1. Without loss of generality,
let n be even, i.e., a type of Bob. Let M* be the set of messages that Alice might
send that lead Bob’s type n to invest with positive probability. Alice’s type n — 1
sends a message in that set with probability 1 (since she knows that Bob’s type
n — 2 is not investing, she chooses her message to maximize the probability that
Bob’s type n invests). Now recall that ex ante, Bob’s type n assigned probability
2%}) to Alice being of type n — 1. Conditional only on observing a message in M*,
that probability must weakly go up (Alice’s type n — 1 always sends a message
in M*, even though type n + 1 may not). Thus for at least one message in M*,
Bob’s type n must assign probability at least 2%}7 to Alice being type n — 1, and
therefore not investing. But then it is a strict best response for Bob to not invest,
a contradiction.

19



This example suggests that once there is a lack of common knowledge of pay-
offs, even public cheap talk may fail to resolve it. However, it turns out that the
strong result that cheap talk makes no difference to the equilibrium set is rather
special. See Baliga and Morris (2000) and Baliga and Sjostréom (2001) for more
on this issue.
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