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Abstract

This paper considers a dual approach to the problem of maximizing lifetime utility subject
to liquidity constraints in a discrete time setting. These constraints prohibit the decision
maker from borrowing against future endowment income. The dual approach allows us to
exploit directly the supermartingale property of the marginal utility of expenditure and to
establish existence and uniqueness of the optimal solution. The optimal solution is interpreted
as deriving from a version of the problem that is subject to a single lifetime budget constraint,
where expenditures and incomes are discounted to the beginning of the horizon by means of
individualized Arrow-Debreu prices.
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1 INTRODUCTION

The present paper demonstrates the usefulness of duality theory for solving a fairly standard
problem of consumption decisions under uncertainty in the presence of liquidity constraints.
We modify suitably for our setting new research in finance that has exploited the consequences
of no arbitrage opportunities in the presence of alternative sets of institutional restrictions,
such as asset incompleteness, prohibition of short sales, etc. Here we explore the consequences
of a restriction that plays a key role in enhancing the attractiveness of the model of lifecycle
consumption and savings decisions. We assume that individuals receive labor income but are
prohibited from borrowing against that income. That is, they may not hold negative wealth
at any point during their lifetimes.

Models of optimal consumption, portfolio, and investment decisions under uncertainty
have served as the backbone of modern macroeconomics and finance theory. Maximizing
the expectation of a time-separable lifetime utility index (that ranks lifetime consumption
bundles) subject to well-defined investment opportunities lends itself neatly to a dynamic
programming formulation. The elegant contributions by Samuelson (1969) and Merton (1969;
1971) have been instrumental in popularizing this tool in studying consumption, savings
and investment decisions. Use of this basic workhorse has been hindered, however, because
closed-form solutions have been available only for the cases of linear-quadratic utility, which
lead to the certainty equivalence case, and fully diversifiable wealth, which is tractable, for
all members of the HARA class of utility functions. Naturally, imposing constraints such
as liquidity constraints further diminishes the likelihood that closed-form solutions may be
obtained in general [Zeldes (1989a); Hajivassiliou and Ioannides (1990)].

The problem of the optimal consumption decisions under uncertainty has received much
attention, especially because of its importance for monetary theory. See, for example the
classic formulation by Bewley (1977). Yet, it was only relatively recently that the problem
was solved explicitly for a general utility function by Karatzas, Lehoczky, Sethi and Shreve
(1986). Zeldes (1989b) has aptly demonstrated that the general case of maximizing lifetime
utility with income uncertainty yields results substantially different from certainty equiva-
lence. Zeldes’ method is numerical solution by means of the dynamic programming algorithm.
Deaton (1991) demonstrates the feasibility of the computational approach in the presence of
liquidity constraints when consumption as the single decision and several alternative assump-
tions are made about the stochastic process describing (exogenous) labor income.

The powerful consequences of the methods employed by the new finance literature may be



explained quite simply as follows. The maximization of expected lifetime utility as a function
of the consumption path subject to liquidity constraints is vastly simplified if it is formulated
by means of duality theory. This simplification is possible because the conditions that no
arbitrage opportunities are present in a continuous-time model are equivalent to the condition
that wealth must be non-negative at every point in time. This result, due to Dybvig and
Huang (1988), depends critically on the assumptions of continuous time. The lifetime budget
constraint along with the non-negativity of wealth constraint imply a sequence of budget
constraints involving expectations. A particularly significant feature of the dual approach is
that it enables us to interpret the optimal solution of the liquidity-constrained problem as
an unconstrained problem under an (individual-specific) implicit set of Arrow-Debreu state
prices. In general, this dual problem is much easier to characterize and to solve, in the case of
continuous time, and readily leads to the optimal solution to the original (primal) problem.

This advantage of duality theory has not been recognized before even in the context of
deterministic models. Pissarides (1978), Artle and Varayia (1978), and Jackman and Sutton
(1982) were the first to show in deterministic settings that the optimal consumption policy
takes the form of a sequence of subproblems. These subproblems alternate between consuming
all income as it is received, and consuming at a rate that is optimized over a suitably defined
subhorizon. As He and Pagés (1990) show, the interpretation of the optimal consumption
and investment model within the dual approach is that the decision maker behaves as if he
could sell his future endowment of income at the implicit Arrow-Debreu prices and set his
consumption in an unconstrained fashion. The implicit Arrow-Debreu prices are obtained
by transforming the Lagrange multipliers that adjoin the original sequence of constraints.
The dual statement of the constrained problem is rather standard and particularly simple
to obtain, as it rests on the saddle point property of the Lagrangean. Nevertheless, this
particular interpretation had not been pointed out before He and Pagés.

Under uncertainty, the advantage of duality theory is even greater. The interpretation of
the solution as an unconstrained problem supported by a suitable set of Arrow-Debreu prices
is retained. But, in addition, the partial differential Hamilton-Jacoby equation obtained
by dynamic programming for the dual problem in continuous time is easier to solve than
the well-known one for the primal problem. Finally, and quite importantly, when stated in
terms of the solution to the dual problem, this framework is actually identical to that of the
theory of marginal utility of wealth-constant demand functions or Frisch demands. This
connection has not been made previously and is particularly interesting in the context of

empirical applications.



The new breed of the finance literature uses continuous time models and owes its origin
to Cox and Huang (1989), Dybvig and Huang (1988), and Karatzas, Lehoczky and Shreve
(1987).! Dybvig and Huang prove that a nonnegativity-of-wealth constraint precludes arbi-
trage opportunities when quite general trading strategies are considered in continuous time
models. This is a very significant result because the existence of arbitrage possibilities in
a continuous time model would render asset pricing theory rather vacuous. Qur ability to
rule out getting something for nothing by imposing a constraint that may be institutionally
motivated is particularly welcome.

The first specific consideration of liquidity constraints in the context of finance literature
appears in Chapter 3, “Consumption of an Endowment,” of Pagés (1989). Pagés considers
the case of consumption when labor income is uncertain. With a finite horizon and complete
markets, this would be a standard case of the optimal allocation of lifetime resources, were
it not for an additional restriction he imposes on financial (i.e., non-human) wealth, which
is required to be non-negative. Even though the endowment of leisure is modelled so as
not to constitute, in itself, a new source of uncertainty in the economy, the non-negativity
restriction on non-human wealth embodies a certain kind of market incompleteness. The
agent is prevented from trading his endowment in ways that may cause a negative market
value of his portfolio at any point in time.?

Somewhat more general is the approach of He and Pearson (1989a,b) who assume in-
complete markets and include short-sale constraints. It is known that when markets are
complete, there exists a unique measure (that is, state price process) that is used to form the
equivalent budget constraint. When, on the other hand, markets are incomplete infinitely
many equivalent martingale measures are cénsistent with the absence of arbitrage. There-
fore, the equivalent static problem of maximizing lifetime utility is subject to infinitely many
budget constraints. He and Pearson show, however, that the feasible set of consumption
policies in the finite-dimensional case is generated by finitely many budget constraints, which
correspond to the extreme points of the closure of the set of state prices consistent with no
arbitrage.® It is then much easier to characterize the optimum. Most recently, Karatzas,

1On a bit of history, Cox and Huang was available as a working paper since 1986. Karatzas et al. were
unaware of this work and worked independently. They differ from Cox and Huang by their avoidance of L
theory.

3Before one prohibits entirely trading of the endowment process, one may consider trading the expected
value of the endowment process, that is by allowing borrowing against that expected value. An analogue is
pursued by Clarida (1987) who examines the possibility that one may borrow against the lower support of the
distribution of labor income.

3It would be interesting to know whether or not continuous probability distributions, expressing income or



Lehoczky, Shreve and Xu (1991) go further than He and Pearson by using duality theory and
local martingale methods developed by Xu (1990) and Xu and Shreve (1990).4

This paper poses the problem of optimal consumption under uncertainty subject to lig-
uidity constraints in a discrete time setting. We do so because we are primarily interested
in existence and characterization of the optimal solution in estimable models [Hajivassiliou
and loannides (1990)]. An alternative and much harder approach would be to consider the
problem in a continuous time setting and pose the estimation problem in the context of
sampling at discrete points in time. An interesting advantage of the approach taken in the
present paper is to set the optimal solution to the problem directly in terms of the dual
specification of preferences. This, in turns, leads to Frisch demand theory, a familiar tool
for applied theorists. We establish existence and uniqueness of the optimal policy. We char-
acterize it by means of a threshold value of assets, below which expenditure exhausts all

beginning-of-period assets.

2 THE MODEL

We consider the decisions of individuals who live finite lifetimes of length 7' in an economy
that runs for a countable number of discrete periods t € {1,...,T}, where T may be infinite.
Uncertainty in this economy is characterized by means of a probability space (£2, N, P),
where the element w € §2 stands for a particular realization of all random variables in this
economy from 1 to 7. Information in this economy is represented by a sequence of partitions
of 22, {N;|t=0,1,...,T}. The interpretation of this information structure is that at time
t the agent knows which cell of N; contains the true state. Information increases through
time; Niyp is at least as fine as N;. Without loss of generality we assume that Ng is trivial
(i.e., No = §2) and Ny is the discrete partition, i.e., Np = {w | w € §2). The o-field of events
generated by N; is denoted by Ny, and N = {Ny; t€ {0,1,...,7}} is the filtration generated
by the sequence of partitions N;.

The notion of filtration is a standard concept of the revelation of information over time.
That is, the increasing sequence of o—fields of events Mg C N ... C N, characterizes how

information accumulates over time in this economy by becoming increasingly finer. This

demographic shocks, may be represented by approximate discrete distributions, as in Deaton (1991). Deaton’s
approach is explicitly cast in terms of a dynamic programming formulation, which is quite different from the
more abstract martingale approach of He and Pearson.

4See Karatzas, et al. (1991) for full details on the relationship of their work with He and Pearson’s work.



information structure is rather standard and may be easily and intuitively represented by an
event tree. We use F; to denote the expectations operator associated with N;.

The typical agent faces a wage rate Wj(t) and a vector of prices of all other goods, W,(t),
and is characterized by an exogenous maximum amount of leisure in period t, L(t). The
vector W(t) = (Wi(t), W,(t)) is a stochastic process that is adapted to the filtration A/. Let
L(t), the endowment of leisure in period t, be a stochastic process that is also adapted to A"
The randomness of prices introduces no additional source of uncertainty.

Let u;(£(t),G(t) | M) denote a utility function as a function of leisure £(t) and the vector
of other goods, G(t), which is conditional on all new information available to the individual as
of time ¢, M;- Utility per period, u;(- | -) is assumed to be concave and increasing with respect
to all of its arguments (£(t), G(t)). To u,(: | -) there corresponds an indirect utility function
with the standard properties: v(b;W) = maz( ey @ w(£,G), subject to the constraint:
b= Wit + W,G.

The assumption that follows modifies suitably for our setting the assumptions usually
made about utility as a function of a scalar decision variable [ c.f. Arkin and Evstigneev,
op. cit. ; He and Pagés, op. cit. ]. We will rely on this Assumption to prove existence and
uniqueness of the optimal solution, and it will be retained for the remainder of the paper.

Assumption 1: Preferences are such that there exist functions of the price vector W, Ay, Ag,
1, AY, 8, and &', such that:

Al — ALY < u(b; W) < A + Agd®
where A, and Al are positive, and 0 < 6 < 1 and § < 0 .

The standard statement of the problem faced by the typical individual is to choose the
N;-measurable vector (£(t),G(t)) for each t € {1,...,T} to solve the problem

L
B | T 0010 v

subject to a lifetime budget constraint and to a terminal financial wealth constraint, and
given financial wealth at the beginning of the process, to be clarified below. The expectations
operator Eq is associated with Ap.

We introduce additional notation and rewrite (1) in terms of the indirect utility function



ve(b;W). Let the N;-measurable variables be defined as follows: F(t) is the market value
of financial and A(t) the market value of total wealth at the beginning of period ¢ (before
expenditure decisions for that period are made); F*(t) is the end-of-period financial wealth
(after expenditure decisions in period ¢ have been incurred); b(t) is net asset decumulation
in period ¢. We then have:

b(t) = W, ()G(t) + Wi(t)£(2). (2)
The household’s budget constraint in period ¢ is:
Alt)= F(t) + Wi(D)L(t) = b(2) + F*(2); t=1,...T. (3)

To complete the description of problem (1), let us also assume that there exist k¥ + 1
securities, k € {0,1,2,..., K}, that households may trade costlessly each period for current
consumption and labor, To simplify matters, we assume that K is countable [c.f. Altug and
Miller (1990); He and Pearson (1988)]. Let sx(t) denote the quantity of security k held by the
individual from period ¢—1 to period t, gx(t) its period ¢ price, and assume for simplicity (and
without loss of generality) that securities pay no dividends. Therefore, beginning-of-period

wealth comes from liquidating all asset holdings:

K

F(ty=Y_ sta(t)y t=1,...,T. (4)

k=0
End-of-period wealth is invested in financial assets:

K
Fr(t)=) s(t+Da(t); t=1,...,T. (5)
k=0
Conditions (4) and (5) must be satisfied for all measurable sets of M; and t € {1,...,T}.
The securities trading strategy, that is portfolio strategy, is a predictable (K + 1)— dimen-
sional process s, with s = {(so(t),...,sk(%)),t = 1,...,T}, where predictable means that
(s0(t),...,sK(t)) is measurable with respect to M;_;.
Problem (1) may now be restated as follows. Find a net asset decumulation path b(¢) and
a portfolio strategy (so(t), s1(t),...,8k(t)), 1 £t < T to maximize:



ve(b(t); W(t) | M) + E; { E (1 + )J-t

i=t+1

v;(b(3); W(4) |N:)} , (6)

subject to constraints (3), (4), and (5), and a given value of A(1). The consumption of leisure
and of other elements of the consumption bundle (f(t), G(t)) follows from v(- | -) and Roy’s
identity once b(t) is known.

As Altug and Miller (1990) emphasize, in a competitive economy with complete mar-
kets, problem (1) is vastly simplified. All trades occur at time period 1 by choosing an
Ni-measurable vector (£(t),G(t)) and an MN;-measurable vector (go(t),...,qx(t)) for each
t € {1,...,T} subject to a single lifetime budget constraint. This constraint is obtained
by requiring that the expectation of the present value of lifetime expenditure minus the ex-
pectation of the present value of lifetime receipts not exceed initial wealth A(1). Following
Altug and Miller, op. cit. , we use P;, a measure defined on N for each t € {1,...,T}, to
denote prices of contingent claims defined in terms of the numeraire good in period t. For ex-
ample, for any set Cy € A;, the nonnegative real number p,(C;) denotes the period 1 price of
a unit of the numeraire good to be delivered on date t, contingent on C; occurring. The usual
assumption is that p; is absolutely continuous with respect to P. This assumption implies
a “density” (strictly speaking, a Radon-Nikodym derivative of p,), denoted by (i'fr_:Ff)‘f’ of

contingent claims prices. Hence we may write:

1

p(Ce) = (T;—S‘Tl

/ A(w)P(dw). (7)

We now write the lifetime budget constraint corresponding to (3-5) under complete mar-

kets as follows:

Eo {E (1 + )t 1 [b(t) - Wh(t)l’(t)]} < AQ1). (8)

The necessary conditions for the maximization of (6), ¢ = 1,...,T, subject to (8) are:
0 ve(b(t); W(t) | M) = pd; (9
ob(t) ' ’
1 a(t + l)}
A= —E; <A . 10
= TE { t+1 RO (10)



Here p is a Lagrange multiplier associated with the individual’s lifetime budget constraint
(8) and reflects individual characteristics. Equation (9) holds with probability one. Once the
sequence (b(1),...,b(T)) has been computed the consumption bundle may be obtained from
Roy’s identity.

In the absence of complete markets, Equations (3)—(5) collapse to:

D ak()lse(t) = st + D] + Wa (D) L(2) 2 b(2). (11)
k

The corresponding first-order conditions become:

_9_

ao0g) OO W [ M) = A); (12)
At) = lil-pEt{'\(H'l)%(t)l)}; -

where TF:FT'\(':) is the Radon-Nikodym derivative of the period t Lagrange multiplier as-
sociated with the individual’s period ¢ constraint (11).

It is important to point out the difference between the definitions and properties of A;
and A(t). The Lagrange multiplier A(t) is a time-dependent variable, a stochastic process,
that depends on individual characteristics with a domain in the dual space corresponding
to the space where the consumption bundle, securities and prices are defined. Clearly if
markets are complete, (13) implies (10). The Lagrange multiplier A(t) satisfies A(t) = pAq,
and is, thus, multiplicatively separable with respect to individual characteristics and market
information by being expressed as the product of an individual-specific variable, u, and the
(market-dependent) density A; defined in the complete markets case above. This multiplica-
tive separability of the Lagrange multiplier in the complete markets case is emphasized by
Altug and Miller (1990) and lies at the heart of their innovative estimation procedure. In the
remainder of the present paper we demonstrate that the solution to the liquidity constrained
problem may be interpreted in a way that utilizes the important intuition obtained from the

complete markets case.

A. Liquidity Constraints and Incomplete Markets

Matters are substantially complicated if liquidity constraints are introduced. Here lig-
uidity constraints express the (reasonable) restriction that the individual may not borrow



against his future labor income and consequently the individual’s end-of-period assets may
not become negative in any period.
As can be seen from conditions (11)—(13), if markets are incomplete, the necessary con-
ditions for the maximization of (6) over an individual’s lifetime with respect to
{b(2), A(t); s0(t),51(1), - . ., sk (t)} and subject to (3)~(5) are substantially more complicated
than (9). Now trades take place as uncertainty evolves sequentially, and the sequence of
budget constraints must be satisfied for all measurable subsets of M; and t € {1,...,T}.
For notational simplicity, recall we have defined A(t) to be the market value of total
wealth at the beginning of period ¢, which includes financial wealth F(t) as of the beginning
of period t, plus the value of the endowment of leisure, W(t)L(t). Net expenditure in period
t, b(t), is thus defined as:

b(t) = W,(t)G(t) + Wi(1)(2). (14.1)
The household’s budget constraint for period ¢ is:
A(t) = b(t) + F*(t). (14.2)

The individual may not hold negative financial wealth at the end of period ¢t and must thus
satisfy a sequence of (liquidity) constraints:

At)-b()>0, t=1,...,T. (14.3)

That is, with probability one the individual can never run into debt. We will not restrict
trading in assets in any other way. It is possible, in particular, that the individual can short

one asset and long another asset.’

5The results derived by Dybvig and Buang (1988), He and Pagés (1990), and Huang and Pagés (1990)
imply that the alternative conditions that there exist no arbitrage opportunities (i.e., it is not possible to
create wealth by starting out with zero wealth) and that wealth may not become negative (i.e., (14.3) holds)
are equivalent. He and Pagés (1990), in particular, work in a continuous time model with assets whose prices
are assumed to follow standard Brownian motions. They show that the non-negativity of wealth condition
may be expressed equivalently in terms of expectations as follows:

sup E{ o’ _g%% [b(t)—W;.(i)L(t)] dt}gA(o),

where 7 denotes the set of stopping times,® £(t) is the total normalized return to the risky asset, which may



In the remainder of this paper we work from first principles and modify the He-Pagés

approach to analyze the problem of maximizing:

E e ),vj(b(;) WG N TS (15)

subject to a sequence of budget constraints that ensure that the individual may not borrow
against his future income, that is, that he must hold nonnegative wealth. For notational
simplicity, we assume that there exists in every period only one asset, which yields a random
return that is represented by a stochastic process r(t), a random variable adapted to ;. We
assume, in addition, that 1+ r(t) > 0, P — a.s.

The dynamic evolution of A(t) is described as:

At +1) =1+ rt+ 1))AR) - b))+ Wit + 1)L(t + 1), t =0,1,...,T, (16)

where b(t), the period t expenditure, is a decision variable adapted to N;. By using (16) and
(14.1-2), we may rewrite the sequence of liquidity constraints (14.3) equivalently as:

t

t
Fo + Y mWi(k)L(k) > > mb(k), t=0,1,...,T; (17)
k=0 =0

where 7 is stochastic process adapted to A, defined as m2(1+r(1))"1... (1 +r(k))7, k=
1,...,%; mp = 1 ; Fp denotes financial assets as of the beginning of period 0; and A(0) =
Fo+W3(0)L(0). Note that since assets left at the end of the lifetime horizon are not valued by
the individual, (17) implies A(T") = b(T"). The interpretation of constraints (17) is straight-
forward. The present value of the endowment of leisure plus initial financial assets must
not exceed the present value of net expenditure for any realization of the relevant random
variables 7 and W.

Under some mild restrictions existence and uniqueness of the optimal solution may be
established by means of Theorem 6, Arkin and Evstigneev (1987), p.108. Their work con-
stitutes the only contribution in the literature that integrates inequality constraints into the
standard stochastic dynamic programming. Still, they do not explore the supermartingale

properties of the corresponding Lagrange multipliers. Moreover, their theorem says nothing

be interpreted as an implicit Arrow-Debreu contingent-claim price at ¢t = 1 for a unit of purchasing power in
period t; and B(t) the total compounded return to the (locally) riskless asset. [tbid. p.18].

10



about the interesting economic aspects of the problem and it is for this reason, too, that we

turn to a dual formulation.

B. Dual Formulation

We now introduce the dual formulation of the problem of maximizing (15) subject to
constraints (17). Let Y(¢) be Lagrange multipliers corresponding to (17), t = 0,1,...,7.
These Lagrange multipliers are positively valued random variables that are elements of the
dual of the period ¢ constraint space, which is M-adapted. That is, as far as information is
concerned, Y (t) depends only on information available as of time ¢. By adjoining constraints

(17) and by simplifying notation, we may write problem (15) as:

T
s s Bl S L o GO A, L) -
CCEDI O E{,-_Zom,,), ;0GR W0) | A7) + Y O)[Fs + Wa0)£(0) - 4(0)]

T t
+ V() [Fo + Wa(0)L(0) - b(0) + 3 e (Wi (k) L(k) - b(k)] } (18)

t=1 k=1

The term that adjoins the sequence of all constraints in (18) may be rewritten as:

[Wa(0)L(0) - b(0)] [Y(0) + Y (1) + -+ + Y(T)]

m [Wi(1)L(1) = (1)) [Y (1) + -+ + Y(T)]

171 [Wa(T-1)L(T-1) - 5(T-1)][Y(T-1) + Y(T)]
nr [WA(T)E(T) - 5(T))¥(T)}

EO{FU

+ + + +

This allows us to rewrite (18) as follows:
ZT 1
1 . ax : ——— W1 : ...4+Y
P20 (o) Eo{j=0 (1+P)’v’(b(1)’ DIA3) + FolY (0)+ EofY(1) + -+ ¥(D)}]

T
+ > m(Wa@)L(t) - b)) [Y (1) + Ee{Y (1 + 1) + -+ Y(T)}] } (19)

t=0
Let us define the auxiliary variable X(t) in terms of the Lagrange multipliers introduced
in (18):

11



X@) =YW+ E{YE+D+...+Y(T)}, t=1,..,T-1 X(T)=Y(]).

{X(t) | M:} is a non-negatively valued stochastic process adapted to N;. This definition of
X(t) is a very critical step: As the Lagrange multipliers {Y(t) | V;} are non-negative, this
definition implies that {X(t) | V;} is actually a.supermartingale.

3 RESULTS

Our results are summarized in four propositions, which are presented in this section. We start
with a formal statement of the problem, as it has been developed in the previous section:

Proposition 1.

The problem of mazimizing (15) subject to constraints (16) and (17) is equivalently stated as:

T T
fax : Eo {Z(—l*vj(b(j); W) | N;) = X(5)m;(3) + X (0)Fo + ZX(t)WtWh(t)I_J(t)} :

Jj=0 (1 + p)J t=0

(20)

We now explore the saddle point property of the Lagrangean to rewrite Problem (20) as

the problem of finding X = {X(¢);t =0,1,...,T}, a non-negative, predictable supermartin-
gale process, X € D, such that:

T T
pin : E {Z X (G W3E) [N+ ) X(O)mWa(t)L(t) + X(O)Fo} , (21)
€D j=0 t=0

where the profit function ¥;(+;- | A;) is defined as:

5 (X ()W) | N;) 2 max

1 N NN
max: mvj(b(J);W(J)ij) - X(G)mb();  (22)

and D denotes the set of non-negative, predictable supermartingales. Under the assumption
that the indirect utility function v;(b; w) is concave with respect to b, then the profit function

%;(X; w) is convex and decreasing in X.

12



We shall see now how duality simplifies the characterization of the solution of (20). From
duality we have that:

Proposition 2.

If X* is a solution to Problem (21), then

(1) = SO+ p)'rc | A, (23)
is a solution to Problem (20), where f(-|-)" is defined as:

£l | M) = - {bzo; %(b;W)sz}. (24)

Proof: Let £(X™) denote the minimand in (21) as a function of X*. We first show that
the sequence b* = {b*(¢); t = 0,1,...,T }, defined according to (23), is feasible. For any
0 < 7 < T, we define the process X as X¢ = X" +¢ 1[0,7] € D, where ¢ > 0 and 1[0, 7]is a
function defined as equal to 1if 0 < ¢t < 7, and equal to 0 otherwise. Since, by the definition
of X*, L(X*) < L(X*®), we have that:

LX)~ LX) 5

hm su
€l0 P €

This, in turn, implies that:

7=0 € =0

T ~ryrersy. . N Y. . ) t _
N {Z HXGEWG) M) = S GEWO LA | 4o ZmWh(t)L(t)}.
Since, by definition, 3(X;; W; | N;) is decreasing in X, it follows that:
X ()W) N SUX* (@) W) | NG).

Moreover, ¥(.) satisfies:

7 f is the inverse function of a—"%%vl with respect to b.
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J . . . .
X0 HXG); W) | M) = —m;5(5).

Hence we obtain:

sup Eg {Fo + Zkah(k)i(k) - Ewkb*(k)} >0, (25)
T k=0 ' k=0 :
for 0 £ 7 < T. The next step in showing that b* is feasible is to prove a counterpart of
Lemma 1, thid. p. 20. That is, we show that if {b(k)*} is feasible, then we may find a
non-negative wealth process, { A(t) | M;}, satisfying (16) for all .
In order to prove the counterpart of that Lemma we work as follows. Let us define:

I = S mlb(k) - Wak)L(k)).
k=0

From (25) it follows that:

T
Ey {Z ka(k)} < 00,
k=0

Hence, the stochastic process I' is of class D{0,T'}. That is, the sets I'(r), 7 € T are uniformly
integrable, where 7 is the set of stopping times.

Define as V(t) the Snell envelope of I'(t), the smallest supermartingale that majorizes
T(t). See Dellacherie and Meyer (1982), Appendix I, pp.22-23, and Snell (1952) for precise
definitions. By the Doob-Meyer Decomposition Theorem [Doob (1953), p. 296], V(¢) may be

written as:

V(t) = V(0) + M(t) - N(2),
where M is a uniformly integrable martingale under P with M(0) = 0, and N(?) is an
increasing process with N(0) = 0.

From the definition of V as the Snell envelope of T' we have that

V(0)= sup Eo{T(7)}; V(T)=TI(T).
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Condition (25) implies that Fy > V/(0). Since by their definition, V(t) > I'(t) and N(t) > 0,
by adding up, we get:

FR-V(0)+V({#)-T(t)+ N(t) > 0.
By using the Doob-Meyer result that V() + N(t) — V(0) = M(t), the above can written as:
Fo - T(t) +M(t) > 0.
Now define A(t + 1) as follows:
A(t+1) = Wi(t+ 1)L{t + 1) + 73} [Fo - T(¢) + M(2)],

where by the martingale representation theorem, M(t) = Eﬁ:o Pr, with ¢ = 0. Clearly, by
construction, A(t+ 1) is non-negative, P —a.s., and so are both of its individual components.
By substituting in from the definition of I'(¢) and rearranging, we have:

t t t
T At +1)+ ) mbt (k) = Fo+ Y mWa(k)L(k) + meqa Wa(t + DL(E+ 1)+ ) s (26)
k=0 =0 k=0

This is the counterpart of (17) in the form of equality constraints in realization. This com-
pletes the proof of the claim that {b*(k)}, given by (23), is feasible.

We now prove that {b*(k)} is optimal and thus a solution to Problem (20). Since X* is,
by definition, a non-negative supermartingale, then we have that

X*(t) - BEAX*(t+ 1)} 20, (27)

P — a.s. From (26) and the fact that by construction A(t) > 0, P — a.s., we have that

t t t
S meb™(k) < Fo+ meaWa(t+ DI(t+ 1)+ Y mWa(k)L(k) + D ¥
k=0 k=0 k=0

By multiplying both sides of the above by X*(t) ~ E:{X*(t + 1)}, for t, by summing up
over all t’s, by using the fact that M (t) is a uniformly integrable martingale with M(t), and
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by taking expectations as of time 0, we finally obtain an equivalent single lifetime budget

constraint:

T T
X*(0)Fo + Eo {Z X‘(t)mW;.(t)I';(t)} > E, {Z X*(t)w,b‘(t)} . (28)
t=1 t=1

Since it follows from our assumptions that the decision-maker will use up unused slack,
expression (28) actually holds as an equality. The optimality of b* follows from the saddle
point property of the Lagrangean. o

The interpretation of this solution is particularly revealing. Equation (23) is the solution
to the problem of maximizing (15), subject to a single constraint that expresses the trans-
formation of the sequence of constraints (17) into a single one resembling (8). X*(t)m; is
an implicit system of Arrow-Debreu prices (or shadow prices) for this particular individual.
X*(t) is an individual-specific supermartingale which has been defined in terms of the La-
grange multipliers adjoining the liquidity comstraints in realization (17). m;, on the other
hand, is a price. If X*(t)m; are interpreted as Arrow-Debreu state prices and the individual
were allowed to sell his labor at these prices at time ¢t = 0, then the individual’s optimal
consumption decisions would be identical to those of the original problem with liquidity
constraints [c.f. He and Pagés (1990), p. 22].

The relationship of the formulation of the problem according to Proposition 1 is,
rather naturally, closely related to Frisch demand theory. This is established by:

Proposition 3.
The optimal ezpenditure function (23) yields a vector of demand functions for leisure and
other goods that coincide with the Frisch demands.

Proof: For a proof, it suffices to recognize that according to its definition in (22), the profit
function 9(z; W) coincides to the profit function defined by McFadden (1978) for production
settings, and adapted for the underlying system of preferences by Browning, Deaton and Irish
(1985). a

To proceed further and fully characterize existence and uniqueness of the solution to
Problem (21), we use stochastic dynamic programming methods [Bertsekas (1987)]. The
dual problem, defined in (21), may be expressed in terms of the value function in a standard
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stochastic dynamic programming approach as follows:

Jr(X(T-1)) =
X(T)20, Br s (T))<X (T—1) {3r(X(T);W(T) | Nr) + X(T)nrWi(T)L(T)} (29.1)
J(X({t-1) =

rosom Bexn | BEEWO 1N+ XOmFOLO + BI(XW)} 292

Jo(Fo) =
XL, {5o(X (0); W | Ao)) + X (0) Fo + X (0)meWi(0)L(0) + Eo {J1(X(0))}}
= X%g}t‘>0:{X(0)Fg+Jo(X(O))} (29.3)

where the infimum in (29.2) is taken with respect to non-negative supermartingale process
{X(5)}}-i-1, and X (t - 1) is given. This would be a standard stochastic dynamic program-
ming problem, were it not for constraining the unknown function X(t) to be a supermartin-
gale, B, {X ()} < X(¢t - 1).

We now put our results formally in terms of Propositions 4 and 5 below. Proposition 4
may be proven by means of a trivial modification of Theorem 4, He and Pagés, op. cit. Its
proof is omitted here.

Proposition 4.
Under Assumption 1 there ezists a unique solution to Problem (21).

Proposition 5.
The optimal solution to Problem (21) has the following form:

(a) There ezists a unique solution X(t) to (31) below, which is a random variable
adapted to N, such that:

i IFEA{X(t+ 1)} < X(t), ther X(t +1) = Xc(t +1);

i, If E{ Xt + 1)} > X(t), then X(t + 1) = X(t)

17



We say that (i) is the constrained case, with (14.8) holding as an equality and
A(t) = b(t), and (i1) is the unconstrained case, with (14.8) holding as an equality,
and A(t) > b(t).

(b) The threshold values {X(t) | N;} are defined recursively from (81), for t =
T,T—1,... and form a predictable and Ny-measurable random variable and char-

acterize fully the optimal policy.

(¢) To the threshold values {X.(t) | N;} there correspond threshold values for A(t),
A(t), in terms of the state variable of the primal problem, such that b*(t) = A(t),
if A(t) < Ac(t), and b(t) < A(t), otherwise.

Proof: We note first that the minimization problem in the RHS of (29.1) involves a convex

function of X (T') and is subject to a convex constraint. The solution takes the form:

X*(T) X.(T), if Er—i{X.(T)}< X*(T-1)

X*(T) X(T-1), if Er{XAT)}>X*(T-1);

where X (T') is the solution to:

0 -
—_— . W, = (.
BX(T)UT( | N7) + 7 WH(T)L(T) = 0
Clearly, if a solution to the above equation exists, it is unique. Working recursively we
may establish that since ©; is convex and decreasing in X(t), J;4+1(X(t)) is also convex and
decreasing in X (t). Since ¥, is also convex and decreasing in X (t), the optimal value of X (1)

may be expressed as:

X)) = X(t), it Bea{X()}<X(t-1) (30.1)

X*(1) X*(t-1), if E_{X.()}>X*(t-1) (30.2)
where X,(t) is the unique solution to:
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B3 (X3 WD) | M) + 7 L(E) + el g e (X)) =, (31)

and Ji41(X()) has been defined as the dual value function corresponding to (21) and is
defined in (29.2).

Clearly, the threshold value X(t) is conditional on all information available as of time 2.
(30.2) follows from observing that since X*(¢) may not be equal to X(¢) and the minimand
is a convex decreasing function of X (¢), then X *(t) should be set at as low a value as possible,
which is X *(¢t—1). Finally, to show uniqueness of the optimal solution, it suffices to show that
(29.3) implies a unique X(0). Since © and J;(X(0)) are both convex decreasing functions of
X (0) then generically a unique non-negative X (0) exists for which the infimum is attained.

We now recall the properties of the Lagrange multipliers introduced in (18), where Y (%) =
X(t) = E{X(t+1)}. Note that Y (t) = 0 implies that the liquidity constraint is not binding.
Equivalently, this may be stated as X(t) = E;{X (¢t + 1)}. Therefore, (30.1) implies that
A(t) > b(t), that is unconstrained behavior, and (30.2) implies that A(t) = b(t), that is
constrained behavior.

Thus, Parts a and b of Proposition 5 have been proven. To establish Part c, note that from
Proposition 2 and (30.1-2) that the existence of X,(t) implies the existence of b.(t), b(t) =
F(X ()1 + p)imy | Mp) such that if X(t) = X (t), then A (t) = b.(t) = b*(¢). It then follows
from the monotonicity and concavity of v with respect to b that:

b*(t) = A(t), if A(t) < Ac(t); (32.1)
b*(t) < A(t), if A(t) > A(). (32.2)
The proof of Proposition 5 is thus complete. o

The threshold value X.(t) defines a critical boundary in the nonnegative halfspace. This
boundary splits the dual halfspace into two regions, the lower one corresponding to uncon-
strained behavior and the higher one to constrained behavior. Returning to the primal space,
this implies a separation in the space of the market value of wealth in the beginning of each
period, which includes financial assets plus the value of the endowment of leisure. The thresh-
old value of assets need not be 0; in fact, in general, it would not. This is an important result,
as much of the previous literature identified, quite arbitrarily and restrictively, constrained
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behavior with holding no financial assets as of the beginning of the period.®

4 CONCLUSIONS

The simplicity of the optimal solution of the problem of consumption decisions under un-
certainty and liquidity constraints in its dual formulation has eluded researchers for a long
time. In this paper we have suitably modified tools developed by finance theorists to prove
existence and uniqueness and to provide a full characterization of the optimal solution for
a general stochastic, discrete-time version of a proposition known to hold in a deterministic
setting. At the same time, we have been able to interpret the solution in an economically
insightful way. That interpretation alone is sufficiently powerful to warrant further research
into the decision problem of an individual as well as its aggregate implications.

The interpretation of the solution to the liquidity constrained problem in terms of an
equivalent unconstrained problem is seemingly akin to the permanent income hypothesis.
The present value of the lifetime endowment of leisure looks like a linear function of the
endowment of leisure in each period, but it is not. The respective discount factors, that is the
coefficients that multiply each of the terms in the sequence, are themselves functions of initial
assets and of individual characteristics that enter as preference parameters. Furthermore, it
is very important that those same coefficients, which we have interpreted as individualized

implicit Arrow-Debreu prices, are also used in discounting expenditures.

$8ee Deaton (1991) for an exception.
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