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Abstract

We formulate necessary and sufficient conditions for interim ratio-
nalizable trade between two players.



1 Introduction

“No trade” theorems provide sufficient conditions for the absence of equi-
librium trade between asymmetrically informed players.! In this paper, we
examine when trade is rationalizable, i.e., consistent with common knowledge
of rationality. Since rationalizability is a weaker solution concept than equi-
librium, trade is sometimes rationalizable even when there is no equilibrium
trade. We provide a necessary and sufficient condition for rationalizable trade
between two asymmetrically informed players. Our characterization covers
situations where the no trade theorems do not apply, e.g., when there are ex
post gains from trade and there is no common prior. Thus our necessary and
sufficient condition neither implies nor is implied by the standard sufficient
conditions for no equilibrium trade.

We begin by reviewing some known special arguments on rationalizable
trade that our analysis will unify and relate to the general case.

An Example of Rationalizable Trade. Each of two players is handed
a card out of a shuffled deck, and after seeing the card makes the decision to
either deposit $10 in a pot or walk away from the game. Both players make
their decisions simultaneously, without observing the other player’s card or
decision. If either player walks away, the game terminates without any gains
or losses. If neither player walks away, the cards are revealed; if they are
the same color, player one collects the $20 in the pot, otherwise player two
collects the $20.

The decision to accept the trade in this context is to not walk away from
the game. Using a plus or a minus sign to denote a positive ex-post gain
from trading for player one or two, respectively, the ex-post gains from trade
in this game can be summarized by the following sign pattern (the “cross”
pattern), that will play an important role throughout this paper.
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!See Appendix A of Dekel and Gul [6] for a review. For example, a result of Sebenius
and Geanakoplos [15] showed that two asymmetrically informed, risk neutral, players with
a common prior will not trade in equilibrium an object of common ex-post value, unless
they expect zero gains from the trade. Morris [11] provides necessary conditions on players’
priors for such results.



Let [b] be the strategy “accept the trade only if the card is black” and let [r]
be the strategy “accept the trade only if the card is red.” Then [b] is a best
response for player one to strategy [b] of player two; [b] for player two is a best
response to player one choosing [r]; [r] is in turn a best response for player
one to strategy [r] of player two; and [r| for player two is a best response to
player one choosing [b]. Strategies [b] and [r]| are therefore rationalizable for
both players.?

Examples with No Rationalizable Trade. We consider a finite signal
version of the trading envelopes problem studied by Nalebuff [13], Geanako-
plos [9], and others. Each of two players randomly selects an envelope out of
a box containing indistinguishable sealed envelopes. It is common knowledge
between the players that each envelope in the box contains some number of
dollar bills not exceeding some known number, say ten. After the players pri-
vately open their envelopes, they have the option of offering to exchange their
envelope with the other player’s envelope. If both players offer to trade, the
envelopes are swapped; otherwise the players keep their original envelopes.
A simple iterative argument shows that trade is not rationalizable in this
setting. An player who receives an envelope containing ten dollar bills will
clearly not offer to trade. Knowing that, an player who receives nine dollar
bills will also refuse to trade, and so on.

More generally, if trade is zero-sum and each player’s gain is a monotonic
function of both players’ signals, then excluding equilibrium trade (e.g., by
assuming common prior beliefs) also excludes rationalizable trade. This is
because, by monotonicity in best responses (strategic complementarities),
the supremum of all rationalizable strategy profiles is an equilibrium (as
in Milgrom and Roberts [10]). Morris [12] gave sufficient conditions for no
rationalizable trade exploiting such strategic complementarity arguments.

Necessary and Sufficient Conditions. Our results concern interim
rationalizability, where different types of the same player may hold different
conjectures over the opponent’s actions;® we also assume that players reject
trade when they are indifferent and each player has a finite number of possible
signals. In this setting, we show that trade is rationalizable if and only if
the “sign pattern” of the game (constructed in analogy to the cross pattern
of the above card example) contains no cycles. We show that this condition

2 Aumann [1] has argued that rationalizability is prima facie too weak a solution concept,
precisely because it allows gains from trade in zero sum settings such as the above example.
3 Alternative versions of rationalizability are discussed in section 3.
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is in fact very close to each of the three conditions we discussed above. If
exactly one player always gains ex post, there is no rationalizable trade if
and only if any one of the following equivalent conditions holds:

1. No two-by-two subset of the game’s sign pattern has the cross pattern
of the card example.

2. The game’s sign pattern is that of some trading envelopes problem.

3. The game’s sign pattern is that of some monotone zero sum trade;
that is, under some ordering of signal realizations, player 1’s gains are
increasing in both signals and player 2’s gains are decreasing.

The card and trading envelopes examples discussed above are therefore
canonical examples of the possibility and impossibility, respectively, of ratio-
nalizable trade. This characterization is independent of the players’ priors
on signals.

The paper’s characterization is related to results on rational expectations
equilibria (REE) by DeMarzo and Skiadas [7], [8]. For example, Proposition
8 of [7] shows that in finite two-player asymmetric information economies
with one risky asset whose payoffs are contingent on the pooled signals, and
one risk-free asset, the absence of the cross pattern, properly interpreted,
implies the non-existence of partially informative REE, and the uniqueness
of a fully informative REE.

2 The Result

We consider a game between two players, labeled 1 and 2. The players’ prior
beliefs are represented by the probabilities P; and P, respectively, defined on
some measurable space (€2, F). Player i observes the realization of a signal
7; : Q — T;, where T; is a finite set, and P, [r; =t;] > 0 for all ¢; € T; and
i € {1,2}. We use the notation 7 = (71,72) and T' = T} x Ty throughout,
while the expectation operator with respect to P; is denoted FE;.

Based on their information, players make a decision to accept or reject a
trade. If both players accept the trade, player i receives a state-contingent
payoft V; : 2 — R, a P;-integrable random variable. If either player rejects
the trade, the payoff to both players is zero. In contexts in which players are
not risk neutral, V; should be thought of as the ex post utility of player ¢ if
trade occurs minus the ex post utility of player ¢ if no trade occurs.
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A strategy for player i is any function of the form d; : T; — [0,1]. We
interpret d; (¢;) as the probability that player ¢ who observes a signal value
t; will offer to trade. The space of all strategies for player ¢ is denoted D;,
and the no trade strategy (identically equal to zero) is denoted 0. Given any
set of strategies S C D;, we let conv(S) denote the convex hull of S.

Given player two strategy do € D,, player one’s best response is the
strategy Bj (ds) € D defined by

1 ifEl[‘/ldQ(Tg)|’7'1:t1]>O;
0 otherwise.

By (d) (1) = {

The second player’s best response function, Bj, is defined symmetrically.
Implicit in these definitions is the assumption that a trade is rejected if there
is zero expected gain from trade. This assumption is discussed and justified
in section 3.

A strategy profile (dy,ds) € D1 X Dy is an equilibrium if d; = By (dg) and
dy = By (dy). No trade, (0,0), is always an equilibrium of this game. The no
equilibrium trade result gives sufficient conditions for this to be the unique
equilibrium:

Proposition 1 If P, = P, and Vi + Vo < 0, then the no trade equilibrium,
(0,0), is the unique equilibrium.

Proof. Suppose that (dy,ds) # (0,0) is an equilibrium. Then d; = B (d2)
implies E1 [‘/Idl (Tl) dg (TQ)] > 0, and dg = BQ (dl) 1mphes EQ [‘/le (Tl) dg (TQ)] >
0. The two inequalities are clearly inconsistent with the proposition’s assumptions. B

We consider instead the set of strategies that are rationalizable. The set
of rationalizable strategies is identified by iteratively deleting strategies that
are not best responses to remaining strategies of the opponent. So starting
with I? = D;, we recursively define:

I = {dy e If |Vt € Ty : 3dy € conv (If) : dy (1) = By (da) (t1) ],

I = {dy e If |Vt € Ty: 3d € conv (If) : da () = By () (ta) } -

The set of interim rationalizable strategies for player i is I?° = > IF. This
is the interim version of rationalizability because different types of each player



are allowed to hold different conjectures about the opponent’s actions.* The
alternative ex ante version of rationalizability is discussed in section 3.

Write L; for the set of signal profiles where player ¢ expects a strict gain
from trade, i.e.,

Li={teT:E[Vilp_y| >0}, ie{1,2}, (1)

where 17;_;; denotes the random variable that is equal to one on the event
{r =t} and zero otherwise. A n-cycle of (L1, Ls) is any set of the form
{t',¢2,...,t"} C L, such that (tf“,t’;) € Ly forall ke {1,...,n— 1}, and
(t1,t%) € Ly. Thus writing a + for elements of L; and a — for elements of Lo,
the following are examples of a 1-cycle, a 2-cycle, and a 4-cycle, respectively:

ty 13t t

:, ty th t | + —
‘ |+ | — -]+
-1+ t} - |+
¢} - |+

(L1, Ly) is acyclic if there is no n-cycle for any n.

Proposition 2 There is no interim rationalizable trade (I7° = I° = {0}) if
and only if (L1, Ls) is acyclic.

Proof. Starting with T = T;, we recursively define the sets:

THL = {tl € TF : (t1,t5) € Ly for some t, € Tgk},
THL = {t2 € Ty : (t1,t5) € Ly for some t; € Tf},

and we let T7° = Mo T7F. Given any set T C T;, we let D; (T}) denote the
set of all d; € D; such that d; (t;) = 0 if t; ¢ T/. Now we may verify by
induction that I¥ = D, (Tf) for all k; this is true by definition for k£ = 0.

Suppose that it is true for k. Now if ¢; ¢ TF™, then (t1,t,) ¢ L, for all
ty € Tx. Thus E;[Vids| Ty =t1] < 0 for all dy € I} and not offering to

4Bernheim [3] and Pearce [14] defined rationalizability for complete information games.
Incomplete information can always be represented by a move by nature at the beginning
of the game. Applying Pearce’s notion of extensive form rationalizability to that game
gives interim rationalizability.



trade is the best response for player 1 given signal ;. On the other hand, if
t; € TF™, then (t1,t,) € Ly for some t, € T¥. The strategy of accepting only
1,if th, =t
: . AN ) 2 2
given signal ty | dy (1) = { 0. otherwise
best response for player 1 given signal ¢;. But the strategy of never offering
to trade is also in T%. So not offering to trade is also a best response for
player 1 given signal ¢;. Thus IF*' = D, (Tf“). A symmetric argument
implies I§*1 = D, (T§*!). So I* = Di (1), i € {1,2}. Thus there is
interim rationalizable trade if and only if T # ().
Now if (Li, Ly) has a cycle, that cycle clearly survives all steps in the

above elimination, and therefore trade is interim rationalizable.
To prove the converse, observe that

is in T¥. So offering to trade is a

t1 € Tloo = (tl,tg) € L, for some t9 € TQOO,
ty € T5° = (t1,t3) € Ly for some t; € T7°.

Suppose now that t¢ € T7°. Then there exists tJ € T5° such that (¢9,19) €
L. Similarly, there exists t] € Tt° such that (¢{,t9) € L,. Repeating this
argument, we generate a sequence {t’“ ck=0,1,.. } such that (t’f , t’;) el

and (t’f“,t’;) € L, for all k. If (Ly, Ly) is acyclic, then this sequence must
take an infinite number of values, contradicting our assumption that 7T is
finite. W

3 Discussion

PRIORS AND THE SIZE OF EX POST GAINS FROM TRADE
DO NOT MATTER. Players’ prior beliefs over the signal space T are
irrelevant to the existence of interim rationalizable trade; all that matters is
which elements of T each player thinks possible (i.e., assigns positive proba-
bility to). Similarly, the size of the ex post gain from trade E; [ V;|7 =t] is
irrelevant; all that matters is whether it is strictly positive. This implies that
attitudes to risk and endowments are irrelevant to the existence of interim ra-
tionalizable trade as long as trades depend only on the realized signal profile.
Specifically, suppose that player i has a strictly increasing von Neumann-
Morgenstern utility function u;, and an endowment given by the random
variable e;. The proposed dollar trade is given by the function = : T" — R,



where z (t) represents the amount that player two will pay player one on
the event {7 = t}. The implied net utility gains are given by functions V; =
uy (1 +x (7)) —uy (e1) and Vo = ug (e2 — x (7)) —us (e2). But calculating the
Ly and Ly sets for Vi and Vo gives Ly = {t € T : Py [t =t] > 0 and z (¢) > 0}
and Ly = {t € T: Po[7 =1t] >0 and z (t) < 0}. Thus utility functions and
endowments are irrelevant for the existence of interim rationalizable trade.

INFINITE SIGNAL SPACES. The proof of Proposition 2 remains valid
if 77 is finite and T; is countably infinite, but Proposition 2 is not valid if
both 77 and T, are countably infinite. For example, consider a countably
infinite version of the trading envelopes game, where T} = Ty = {1, 2,3, ..},
V=71—7y,and B, (1; > 1|7, =1t;) >0forallt, € T;,i € {1,2}, j #i. In
this case, (L1, Lo) is acyclic, but all strategies are interim rationalizable.?

ALTERNATIVE CHARACTERIZATIONS OF ACYCLICITY. In
the appendix, we report a number of alternative chacterizations of acyclicity.
They imply the three characterizations discussed in the introduction.

Tue TRADING ENVELOPES PROBLEM. We noted that an easy suffi-
cient condition for no interim rationalizable trade is that the trade has the
structure of a trading envelopes problem, i.e., there exist functions f; : T; —
{1,2, ..} with the interpretation that f; (¢;) is the number of dollars in the en-
velope of type t; of player i; and so V; (w) = —V4 (w) = fo (t2 (w))— f1 (L1 (w)).
In fact, (L1, Ls) is acyclic if and only if it could have been derived from a
trading envelopes problem:

Lemma 3 (Lq, L) is acyclic if and only if there exist functions f; : T; —
{1,2, } such thatL1 - {t eT: f2 (tg) > f1 (tl)} CL’deLQ - {t eT: f1 (tl) > f2 (tg)}

MONOTONICITY. Another sufficient condition for no interim rationaliz-
able trade was that the trade was zero sum and monotonic in both players’
signals, i.e., Vi (w) = =V5 (w) = z ({1 (w) , t2 (w)) where x is weakly increasing

®The importance of allowing an infinite number of signals is well known from discussions
of the trading envelopes problem (Nalebuff [13] and Geanakoplos [9]). Bhattacharya and
Lipman [4] showed that trade is possible even in (interim) equilibrium with risk neutral
agents, a common prior and zero sum trades. These assumptions are sufficient to rule out
trade if there are only a finite number of signals, since the assumptions imply no ex ante
gains from trade. But if there are an infinite number of possible signals and unbounded
interim utilities from the trade, ex ante utilities may not be well-defined and the usual
equilibrium no trade argument cannot be applied. They use a version of the trading
envelopes problem to make this point.



in both signals. Again, (L1, L) is acyclic if and only if it could have been
derived from some monotone zero sum trade:

Lemma 4 (Lq, Ly) is acyclic if and only if there exists an ordering of signals
and (under that ordering) a weakly increasing function x : T — R such that

LiC{teT :z(t)>0}and Ly C{teT: :x(t) <0} .

THE Cross PATTERN. A sufficient condition for rationalizable trade
was the simple cross pattern. But the cross pattern is in fact necessary
for rationalizable trade, in the case where exactly one player strictly gains
contingent on each signal realization:

Lemma 5 If (Ly, Ly) is a partition of T, then (L1, L) is acyclic if and only
if (L1, La) contains no 2-cycles.

Notice that (Lq, Lo) will partition 7" whenever trades are zero sum ex
post, they depend only on the vectors of signals observed by the players and
all profiles of signal realizations are possible, i.e., if there exists x : T'— R
such that, for all t € T, E[Vi |1=t] = —E[Vo|T1=1t] = z(t) # 0 and
P, [T =t] # 0 for each i.

INTERIM VERSUS EX ANTE RATIONALIZABILITY. In apply-
ing rationalizability in an incomplete information setting, we face a modelling
choice: should we think of players choosing their actions at the interim stage
- after observing their private signals - in which case it is natural to allow
different types of the same player to have different conjectures over their
opponent’s strategy; or should we think of players choosing their strategies
at the ex ante stage - before observing their private signals - in which case
it is natural to require different types of the same player to have the same
conjecture over their opponent’s strategy? The former leads to the interim
definition of rationalizability that we described earlier. The latter gives the
following definition of ex ante rationalizability. Starting with X? = D;, we
recursively define the strategy sets:

XP = {dy € X} | 3dy € conv (XF) : ¥ty € Ty 2 dy (t2) = By (o) (1)
X5 = {dy e X5 | 3dy € conv (XF) : Wty € Ty 1 dy (t2) = By (d1) (t2)

3
}.



The set of ex ante rationalizable strategies for player i is X = M5 XF.0
The difference between the above recursion and that in the definition of
interim rationalizability is the transposition of the existential and universal
quantifiers. Clearly, X* C IF for all k, and X C I°. So, if (L, Ly) is
acyclic, there is also no ex ante rationalizable trade. On the other hand, the
following example demonstrates that acyclicity of (L;, Ls) is not necessary
for the impossibility of ex ante rationalizable trade.

Example 6 Suppose that, for i € {1,2}, T; = {t}, 3,3}, Pi[r=t] = 1/9
forallt €T, and Vy = =Vo =V, where V is given as a function of types by
the following table:

ty |65 |8
1o |1 |1
2] —1|—¢|e¢
] —-1]le | —¢

If e € (0,1/3), then ex ante rationalizable trade is impossible, even though
(L1, Ls) has a 2-cycle .

However, a partial converse is possible. Suppose that (L;, Ly) has a cycle,
{t',...,t"}. Modifying P; so that P, [T =¢] = 1/2n for all ¢ associated with
that cycle (that is, any ¢ of the form (t’f,t’g) or (tlfﬂ,tlg) or (t1,t2)) while
the conditional probabilities P [- | 7 = t] remain the same,’ it follows easily
that all strategies of the form 1 {ri=t} are ex-ante rationalizable under the

new priors.

REFINEMENTS. We assumed that trade is rejected if a player is indif-
ferent between accepting and rejecting. We have in mind that there is a
small cost associated with accepting trade (whether or not the trade is im-
plemented). All the analysis of this paper would remain the same in the

6Both ex ante and interim rationalizability assume that the players’ priors over the
state space are common knowledge. Battigalli [2] introduced a notion of incomplete infor-
mation rationalizability that does not depend on agents’ prior beliefs about types, and is
in general weaker than interim rationalizability (in static games). But since our charac-
terization of interim rationalizable trade was independent of the prior beliefs, our interim
rationalizability characterization would hold unchaged for Battigalli’s notion. An early
version of Battigalli [2] noted the impossibility of rationalizable trade (in his sense) in the
finite signal trading envelopes example.

"We could also assume that P; [T = ¢] > 0 for all t € T by letting P; [t =t] = 1/2n—¢ >
0 for all ¢ € {t',...,t"}, and sufficiently small & > 0.
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presence of a sufficiently small such cost, which was therefore omitted from
our formal setup. This assumption ensures that a player’s best response to
no trade is no trade. If we did not impose this refinement, anything would
be a best response to no trade, and therefore any behavior would be in-
terim rationalizable. Thus some form of refinement is required to obtain any
interesting results.

Our particular choice of refinement implies that no trade is always in-
terim rationalizable for every type. It is this property that ensures that
the existence of interim rationalizable trade is independent of the players’
prior beliefs about signals. Suppose instead we deleted one round of weak
dominated strategies before iterated deletion of strictly dominated strate-
gies (Dekel and Fudenberg [5]). Then weak dominance considerations would
sometimes require that accepting trade was the only possible best response
by the opponent. This could make a significant difference, as in the following
example.®

Example 7 T\ = {t:}, Tb = {t3,t3}, P,[r =t] = 5 for each i € {1,2} and
teT, and (V1,V3) is given as a function of types by the following table:

t t3
t|—2,1]1,1

Trade is interim rationalizable at (t1,t3), since (t1,t3) is a 1-cycle. However,
deleting weak dominated strategies would imply that both types of player 2
must trade. But now accepting trade cannot be a best response for the unique

type of player 1.

Thus while we believe that our refinement is very natural for this trading
game, it is important to note the subtle role that it plays.
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APPENDIX

In this appendix, we provide a number of alternative characterizations of
acyclicity.

Condition A (L4, L) is acyclic.

Condition B  There exists a partition, (L., L_), of T without cycles such
that L1 C Ly and Ly, C L.

Condition C There exists a partition, (L., L_), of T" without 2-cycles
such that L1 C Ly and Ly C L.

Condition D There exist functions f; : T; — {1,2,...} such that L; C
{t eT: fg (tg) > f1 (tl)} and LQ g {t ceT: f1 (tl) > fg (tg)}

Condition E There exist bijections ¢, : 77 — {1,2,..,n1} and ¢, : Ty —
{1,2,..,n2} and an increasing function, = : {1,..,n1} x{1,...,ns} — R,
suchthat L1 C{t € T : x (¢ (t1), P4 (t2)) > 0} and Lo C{t € T : x (¢; (t1), ¢4 (t2)) < 0}.

Lemma 8 Conditions A through E are all equivalent.

Now condition C gives lemma 5, condition D gives lemma 3 and condition
E gives lemma 4.
Proof. (A= B) Supposethat (L1, Ly)hasnocyclesandt ¢ LiULy. We
claim that either (L, U {t}, Ls) or (L1, Ly U {t}) must then have no cycles,
as well. Intuitively, suppose that attaching ¢ to either L; or L, creates a
cycle. An illustration of this situation appears below.

12
+ —

+
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It is then clear that the union of these two incomplete cycles forms a cycle
without ¢, contradicting the assumption that (L, Ls) contains no cycles.
More formally, suppose that (L, U {t}, L) has the cycle (¢},...,t™), and
(L1, Lo U {t}) has the cycle (s!,...,s"), each chosen to be of minimal car-
dinality. Since (L, Ls) has no cycles, both of these cycles contain ¢, and
since they were chosen to be minimal, they only contain ¢ once. Without
loss in generality, we assume that ¢ = (¢],¢3) = (s],s%). This implies that
(s1,t5") = (t1,t5") € Lo and (1, s§) = (t3,t3) € L. But then the definition of
a cycle implies that (t2,...,t™, st, .., s") is a cycle of (Ly, Ly), a contradiction.
Repeating this procedure, all elements of T can be signed without creating
cycles, confirming condition B.
(B=C) Immediate.
For the next part of this proof, we use an argument similar to that of
Proposition 7 in DeMarzo and Skiadas [7].
(C = D) Let (L4, L_) be a partition of 7" without 2-cycles such that L; C
L, and Ly C L_ (i.e., assume condition C holds). Define the sets

Fi(ti) = {th€Th:(ti,t5) € Ly}, and
Fy(ty) = {t;, € Ty : (t],t,) € Ly for some (t),t2) € L_};

and let f1 (tl) =K -2 |F1 (t1)| and fg (tg) =K-1-2 |F2 (t2)|, for some
large positive integer K (where the notation |F'| represents the cardinality
of the set F'). By definition, (t1,t2) € L_ implies Fj (t1) C Fy(t2); thus
K—fi(ti) =2[F (t)] <2|Fy (f2)] = K—1— fa(t2); so fi (t1) — f2 (t2) > 1.
Also, (t1,t2) € L, implies Fy (t2) C Fi(t1)\{t2} and ¢, € F (t1); thus
K—1—=fo(ts) =2|Fa (t2)| <2(|F7 ()| = 1) = K — fi(t1) — 25 s0 fa(t2) —
fit) > 1.

(D = E) Let fz T — {1,2, .. } satisfy L, C {t eT: f2 (tg) > f1 (tl)}
and Ly C{t € T: f1 (t1) > f2(t2)} (i-e., assume condition D holds). Choose
bijections ¢, : T — {1,2,..,n1} and ¢, : To — {1,2,..,ny} such that
fa(t2) > fa(ty) = &, (t2) > ¢y (85) and f1 (1) > f1 (1) = ¢ (1) < ¢y (t1).
Let @ (i,j) = f2([62) " (7)) = fu ([6d) " (). By construction, (¢y,¢,,)
satisfy condition E.

(E = A) Immediate. ®
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