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ABSTRACT

The simplicial complex K(A) is defined to be the collection of
simplices, and their proper subsimplices, representing maximal lattice free
bodies of the form (x:Ax < b), with A a fixed (n+l) x n matrix. The n
topological space associated with K(A) is shown to be homeomorphic to R,
and the space obtained by identifying lattice translates of these simplices
is homeorphic to the n-torus.
I. Introduction

We study the global topological structure of a simplicial complex
arising naturally in the study of integer programming. The simplices in the
complex consist of maximal lattice free bodies defined in the following
way. Let Z™ be the lattice of integers in Rn, and let A be an (nt+l) x n
matrix, with ith row denoted by a;, and which satisfies the two conditions:

Al. There is a unigue (up to a positive multiple) strictly positive
(n+l) row-vector = such that nA = 0, and

A2. If, for any index i, a;.z = 0 for some integral z, then z = 0.

Condition Al. implies that the n x n minors of A are non-singular and
that for any b the body (x| Ax < b) is bounded. Since, for our purposes,

the rows of A can be normalized arbitrarily, there is no loss in generality

in assuming that # = 1 = (1,...,1). Condition A2. asserts that for any bi
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the hyperplane a;.x = bi contains at most one lattice point in z®. This
condition can be relaxed so that small perturbations of A are also
admissible.

A maximal lattice free body is a body of the form K = (xl Ax < b)
containing no lattice points in its interior, and such that any closed
convex body which properly contains K does have a lattice point in its
interior. It follows from A2. that for each i there is a single lattice
point z1 on the hyperplane a,.x = bi’ that these lattice points are distinct
for different i, and that ai.zj < ai.zi for j » i. Moreover there is no «:
lattice point z such that a;.z < ai.zi for i = 0,1,...,n.

The abstract simplicial complex K(A) consists of all of the formal
simplices (zo,zl,...,zn), oriented in this fashion, and all of their
subsimplices. The complex contains an infinite number of simplices, since
an arbitrary lattice translate of a maximal lattice free body is also
maximal lattice free. It will be shown, however, that Al. implies that the
complex is locally finite in the sense that every lattice point z is a
vertex of a finite number of such simplices [White, 1983]. It can also be
shown that each (n-1) face (zl,...,zi-l,zi+1,...,zn) is incident to
precisely two n-simplices in the complex, with opposite derived
orientations, so that the complex is an orientable pseudo-manifold [Scarf,
1981a].

The simplicial complex K(A), being locally finite, can be provided with
a topology in a natural fashion: Give each simplex in K(A) its customary
topology, and realize K(A) as the disjoint union of its vertices and the

relative interiors of its simplices and subsimplices. A set in the union is

defined to be closed if its intersection with the closure of each simplex in



K(A) is a closed set. The associated topological space will be written as
|k(a)|.

When n = 2, there is a basis, bl,bz, for the lattice 22, such that the
simplices in K(A) are the lattice translates of (O,bl,b1+ b2) and (O,bz,b1+
bz), thereby providing a simple geometric realization of the abstract
complex as RZ. When n > 3, however, the convex hulls of two distinct n-
simplices may contain common interior points, and the global structure of
the complex is no longer transparent. Some indication of this structure is
suggested by the following result which also appears in White [1983].

Assume that the rows of A are permuted so that det{l’,A}] > 0, and for

each simplex S = (zo,zl,...,zn) in K(A), define

index(S) = sign [det(z> - z°,...,2" - 291,
or zero if the determinant vanishes. Then for generic x ¢ Rn,
Z(index(S)[x ¢ convex(S)) = 1.

The result suggests that the natural geometric realization of the
complex K(A) by means of the convex hulls of its simplices may be an
intricate folding of R" into itself; and this is, in fact, our major
conclusion.

Theorem 1. |K(A)| is homeomorphic to R™. !

The group of integers z" acts on K(A), since the lattice translate of a
simplex in K(A) is also a simplex in K(A). We may, therefore, obtain a new
complex, KZ(A), by identifying those simplices or subsimplices of K(A),
which are lattice translates of each other. Local finiteness of K(A)
implies that the new complex has a finite number of simplices of each

dimension j = 0,...,n. 1In particular KZ(A) has a single vertex. KZ(A) is

not a conventional simplicial complex, but is a more general object known as



a CW complex [Massey, 1980].

KZ(A) is realized as the disjoint union of a single vertex and the
relative interiors of the simplices and subsimplices of K(A), with lattice
translates identified. As before, a set in the union is closed if its
intersection with the closure of any simplex is a closed set. The
topological space obtained in this fashion is denoted by IKZ(A)I, and is
clearly homeomorphic to lK(A)|/Zn.

White [1983] contains an additional result, bearing on the structure of
KZ(A). Again assume that the rows of A are permuted so that det[l’,A] > 0.
Then

Z[det(z1 - zo,...,zn - zo)]/n! =1,
with the sum taken over a set of representatives in K(A) of the maximal
simplices in KZ(A). The result states that the sum of the signed volumes of
the simplices in KZ(A) is equal to unity, and is consistent with the
following theorem, conjectured by Lex Schrijver.

Theorem 2. |KZ(A)| is homeomorphic to the n-torus.

The demonstration of Theorem 1. involves the construction of a
simplicial mapping of the vertices of K(A) into Rn+1, such that the convex
hulls of the images of the vertices of two distinct n-simplices no longer
overlap. They form, in fact, the facets of a convex set in Rn+1.

Before presenting the details of this construction it may provide
motivation for the study of K(A) to say a few words about the relationship
between maximal lattice free bodies and integer programming. Consider the
integer program
(1) Min Za ..zj, subject to

0,j

a, ,.z, <b,,i=1,...,n, and z ¢ Zn.
i,j°73 i



Let N(O) be an arbitrary set of lattice points which is symmetric about
the origin. For a particular right-hand side b, a lattice point z is said
to be a local minimum with respect to N(0) if z is a feasible solution to
(1), and if, for every h ¢ N(0), z + h is either infeasible or yields a

higher value of the objective function Za (zj + hj)'

0,j°
Under assumptions Al. and A2., it may be demonstrated that there is a

unique minimal N(0), called the set of neighbors of the origin associated

with the matrix A, for which a local minimum with respect to N(0) is a

global minimum for each integer program obtained by specifying a right hand
side b. The set of neighbors may be shown to consist of precisely those
lattice points h which are contained in some simplex of K(A), another of
whose vertices is the origin [Scarf, 1986]. Alternatively, a lattice point
h is contained in N(0) iff the only lattice points in the body

(xI Ax < b), with bi = max(0, ai.h)
are 0 and h themselves. Geometrically, the set of neighbors are those
lattice points h such that (0,h) is an edge of K(A).

The complex KZ(A) is intimately related to what is known as the
Frobenius problem: Let p = (po,...,pn) be a vector of positive integers
whose greatest common divisor is unity. The Frobenius problem is to find
the largest integer f* which cannot be written as a non-negative integral
combination of the pi. Let A be a matrix of size (n+l) x n, whose columns
generate the n dimensional lattice of integers h satisfying p.h = 0. Then
it has been shown [Scarf and Shallcross, 1992] that

f* = max(p.b|Ax < b is a maximal lattice free body) - Zp, .
Since all maximal lattice free bodies (xI AxX < b} are similar in shape, the

Frobenius number can be obtained by finding that maximal lattice free body



with maximal volume.

II. A Geometric Realization of K(A)

We now begin thgﬂprocess of proving Theorems 1 and 2. Consider the

o

mapping of R" into Rn¥I;given by
(2) y; = exp(tai.x) for i = 0,...,n,
with t a fixed positive real number. Clearly the image of R" under this
mapping is contained in the set M = (y = (yo,...,yn)|yi >0, IIyi = 1) and,
as we shall see, the image is this entire hyperboloid. (Scarf, 1973
contains an earlier but less useful version of this mapping.)

Let V = (v) be the image of the lattice of integers Zn. We can define

1 by taking the coordinate-wise product of two

a multiplication in R
vectors. With this multiplication, M is an Abelian group with identity 1 =
(1,...,1), and V a discrete subgroup. Finally, let C be the convex hull of
V. (For simplicity of notation, we omit explicit reference to the
dependence of V, C and other constructions on the parameter t.)

C is not the convex hull of finitely many points and so it need not be,
and is not, a convex polytope. We can, nevertheless, define faces of C in

the following way. L is a face of C if there is a half-space H C Rn+1 with

bounding hyperplane HO such that C c H and C n Ho = L. The vertices, or

zero dimensional faces of C, are precisely the vectors v ¢ V, since each
such vector is on the boundary of the strictly convex body (y|y > 0, IIyi >
1). The line segment [v,u] will be an edge of C (a one dimensional face) if

and only if the segment [l,vu'l] is also an edge. More generally the facial

structure of C is identical at each vertex; the convex hull of (u,vl,...,vk)

1-1 k -1
vu

will be a face of C if and only if the convex hull of (l1,viu ~,..., } is



also a face of C. (If (y:Zhiyi > h) is the half-space which verifies that
the first convex hull is a face, then (y:ilhiuiy:.L > h) verifies that the
second convex hull is a face, and conversely). As we shall see (Theorem 3),
there is a to such that for t > to, the facets - or faces of dimension n -
of C are simplices and the number of facets containing any particular vertex
is finite. As a consequence, C will have the facial structure of a polytope
at each vertex.

In order to prove Theorem 1. we shall require some preliminary
arguments. We start with three lemmas concerned with the facial structure
of C.

Lemma 1. The image of R" under the mapping (2) is the entire set M =
(yly >0, Iy, = 1).

Proof: Let y be an arbitrary point in M. The n X n minors of A are
non-singular so that there is a solution, x, to the system of equations

a,.x = (1/t)1log ¥ for i =1,...,n.
Since IIyi = 1, the same x satisfies the corresponding equation for i = 0. @

Lemma 2. Let ¢ > 0 be given. Then for each i, there is a v ¢ V with vj
< ¢ for all j = i.

Proof: Take i = 0. From Al., the set (xlaj.x < (1/t)loge, j = 1,...,n)
is a cone with non-empty interior and therefore contains a lattice point.
The argument for other i is similar. @

Lemma 3. Let yo be on the boundary of C and let h = (ho,...,hn) » 0 be
such that h.y = h.y® for all y ¢ C. Then h > 0 for all i.

Proof: yo is in the set (yly > 0, IIyi = 1)}, so that all of its
coordinates are strictly positive. If one of the coordinates of h, say hi’

were < 0, then, as ¢ tends to zero, the vectors v described in Lemma 2. will



lie in C and violate the inequality h.v = h.yo. It follows that h, > 0, and
that h.y0 is strictly positive since the coordinates of h are > 0, but not
all zero, and y0 > 0. But then if hi = 0, these same vectors in V will
violate h.v = h.yo. ®

We now turn to three lemmas concerning the structure of K(A).

Lemma 4. Each lattice point z ¢ Zn is contained in a finite number of
simplices in K(A).

Proof: Let the lattice point be z = 0, with simplex (O,zl,...,zn),
associated with the maximal lattice free body given by (x| Ax < b), where bi
- maxjai.zj > 0. Any particular set of this form contains a finite number
of lattice points; if there were an infinite sequence of such maximal
lattice free bodies, all differing from each other, then in this sequence
one of the coordinates, say bo, would tend to infinity. But this is
impossible since the cone defined by a,.x <0, for i =1,...,n, has a non-
empty interior which contains infinitely many lattice points. ®

N(0), the set of neighbors of the origin, is identical with the set of
(zi - zj), with z1 and zj vertices of a common simplex in K(A). We note
that Lemma 4. implies that N(0) is finite. Lemma 4. has another useful
implication.

Lemma 5. Define §, = min(lai.hl: h ¢ N(O), i = 0,1,...,n}). Let S be a

1
finite set of lattice points and let K = (x| Ax < b), where bi = max(ai.z: z

€ S). Then if K contains a lattice point, it will contain a lattice point ¢

with ai.€ < bi - 81 for all i.

Proof: Let £ ¢ K and let i be an index such that bi - 61 < ai.§ < bi =

i . i . - . i
a.z with z~ a particular lattice point in S. Then § and z~ are not

neighbors. It follows that the smallest body of the form (x| Ax < c)



containing £ and zi, will also contain an interior lattice point. If the
conclusion of Lemma 5 is not valid for this interior lattice point in this
smaller body -- which is strictly contained in K -- we repeat the argument.
But the argument must terminate after a finite number of repetitions, since
each repetition eliminates at least one interior lattice point. @

We have one final Lemma before proceeding to the proof of Theorem 1.

Lemma 6. There is a 62 > 0, such that if (zo,zl,...,zn) is a simplex in
K(A), ordered so that for each i, maxjai.zJ is assumed at zl, and if z is a
. . . 0 1 n i
lattice point different from z ,z",...,z , then a;.z > a;.z + 62 for some

i.

Proof: It is sufficient to demonstrate Lemma 6 for those simplices in
K(A) with z0 = 0, since the general simplex may be reduced to this case by
subtracting z0 from each zi. The number of such simplices is finite and it

is therefore sufficient to find a §, for each simplex and take the smallest

2
of these. But, of course, there is such a 62 for any particular simplex
(0,21,...,zn) in K(A), since otherwise there would be an infinite set of
lattice points, z(¢), satisfying ai.z(e) < ai.z1 + ¢, for i =0,...,n, and ¢

tending to zero. @

III. The Proof of Theorem 1.

Theorem 1. will be demonstrated by means of the following result, which
shows that for large t, the convex hulls of the images of the vertices of
simplices in K(A) provide a geometric realization of the complex.

Theorem 3. There is a to such that for each t > to, the n-facets of C

are simplices. Moreover, for such t, the simplex (zo,zl,...,zn) ¢ K(A) if

. . . . 0 1 n .
and only if the images of its vertices (v ,v ,...,v ) are the vertices of an
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n-facet of C.

Proof: The proof consists of two parts. We begin by letting
(zo,zl,...,zn) be an arbitrary set of nt+l lattice points whose images
(vo,vl,...,vn) lie on an n-facet of C, for some particular t > t1 -
(10g(n+1))/81, and demonstrate that these n+l lattice points form a simplex
in K(A).

Let h be the strictly positive normal to the hyperplane supporting the

facet containing (vo,vl,...,vn), for the particular t in question. We have
(3 Zh exp(ta,.z) = 1,
for any lattice point z, with equality for z = zo,...,zn.

Consider first z = zJ. It follows from the above equality that for

each index 1,

hiexp(tai.z) < 1, so that

N
[
IA

a,

T -(l/t)log(hi), and therefore

3

IA

maxj[ai.z -(l/t)log(hi).

We wish to show that there are no lattice points other than
1 .
I

zo,z ,...,z" in the body (x| Ax =< b), with bi - maxj[ai.z , so that

(zo,zl,...,zn) is a simplex in K(A). Let z be such a lattice point so that
a;.z =< maxj[ai.zj] - 81, for all i, using Lemma 5. But then inequality (3)

implies that there is an index i with

hiexp(tai.z) > 1/(n+l), and

v

a,.z

3 -(1/t)log(h,) -(1/t)log(n+l)

v

maxj[ai.zj] -(1/t)log(ntl), a

contradiction if t > tl - (1og(n+1))/61.

We now turn to the second part of the argument and demonstrate that the

convex hull of the images of the vertices of a simplex (zo,zl,...,zn) in



K(A) form a facet of the boundary of C for large t. Let (vo,vl,...,vn) be

such a set of images and let h satisfy h.vj =1, for j = 0,1,...,n. We will
demonstrate the existence of a t2’ for this simplex, such that h.v = 2, for
all t = ty and for all v which are images of lattice points other than zj.
Assume that the vertices have been permuted so that a.l.zi = maxj[ai.zj].
By Cramer’s rule we have
ho = det N/det[exp(tai.zj)]
with N the matrix obtained by replacing row O by (1,...,1) in the matrix

appearing in the denominator. Let us estimate the denominator first. The
determinant can be written as the sum of (n+l)! terms, each one based on a
permutation of (0,1,...,n). But for each permutation, o, other than the

22y 1T Ghich is

identity, the corresponding term will be [Hexp(ai.
strictly less than

[Mexp(a,.z)]°,
so that for large t this single term will be the asymptotic value of the
determinant in the denominator. A similar analysis tells us that the
numerator is asymptotically equal to the same product with index ranging

from 1 to n, so that h, ~ exp(-tao.zo), in the sense that

0
h0 = (1 + co(t))exp(-tao.zo), with co(t) -+ 0 as t » o,

By a similar argument we obtain

hy = (1+ ci(t))exp(-tai.zl), with e, (t) » 0 as t + =, for all i.

In particular there is a t2 so that for all t 2> t,y, we have
) h, = Zexp(-tai.zi)exp(-t62) for all 1,
with 62 the constant referred to in Lemma 6.
In order to demonstrate that con(vo,vl,...,vn) is a facet of the

boundary of C, we shall show that h.v= 2, for t 2 t and for any image, v,

21
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of a lattice point other than (zj). From (4), we have
i
h.v = ZEexp(t(ai.z - a;.z - 62)) > 2,

for any integral z other than (zj), since, for that z, Lemma 6 states that

there must be at least one index i with a;.z >2a..z + 6§

i 2°
In this argument, the value of t, depends on the particular simplex
(zo,zl,...,zn); in order to complete the proof of Theorem 1 we must show

that a single value suffices for all simplices. But for any t, the image of
(zo,zl,...,zn) is a facet of C if the image of (0,21-20,...,zn-zo) is a
facet. There is a finite number of simplices in K(A) for which z0 = 0, and
we may select the largest value of t, associated with any of these.

The value of t. in the statement of Theorem 3 is the larger of t and

0]
t2. It should be remarked that we have demonstrated that for t > to, the n-
facets of C are simplices. For if the convex hull of (vo,vl,...,vn} is
contained in an n-facet of C, we know that its preimage (zo,zl,...,zn) is a
simplex in K(A), and, consequently, the convex hull of (vo,vl,...,vn) is,

itself, an n-facet. ®
Theorem 3 yields a geometric realization of the complex K(A) as the

boundary of the convex set C, for t > 0 in the following fashion: given a

particular simplex in K(A) with vertices (zo,zl,...,zn), associate the
point x = ZajvJ with the formal convex combination Zasz, for each a =
(ag,...,a) with oy = 0, Zay = 1. With this mapping, F: |K(a)| - ac,

vectors arising from different simplices in K(A), or from the same simplex
but with different formal convex combinations, are mapped to different
points on the boundary of C. Thus F provides a homeomorphism between lK(A)l
and 8C, and Theorem 1 follows from the observation that dC is homeomorphic

n
to R .
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For the proof of Theorem 2, we need an argument from equivariant
topology which we shall state in a somewhat informal way. Consider the
composite mapping obtained by first mapping the formal convex combination
Zajzj to x on the boundary of C, as above, and then mapping x to y in M, by
Yy = xi/[ij]l/n. This composite mapping, T: IK(A)| -+ M, is a realization
of the complex K(A) as the hyperboloid M. Furthermore the mapping T is
compatible with (equivariant for) the actions of Zn on |K(A)| (by
translation) and on M (by coordinatewise multiplication by points in V),
i.e., if (yi) is the coordinate vector associated with the formal convex
combination Eajzj, then the coordinate vector associated with its lattice
translate Zaj(zj + 2z) is (yivi), with v the image of z under the mapping
(2). Therefore, the set of lattice translates of a given point in |K(A)]
corresponds to a single point in M/V, so that T induces a homeomorphism

between |KZ(A)| - IK(A)I/Zn and the quotient space M/V. Theorem 2 follows

from the observation that M/V is homeomorphic to the n-torus Rn/Zn.

IV. Some Remarks

A major limitation of the present analysis is that the number of rows
of the matrix A exceeds the number of variables only by unity, so that the
corresponding integer programming problems possess the same number of
constraints as variables. The simplicial complex of maximal lattice free
bodies can be readily defined for a general matrix A with m > n columns and
n rows, but the complex will contain maximal lattice free bodies with k
vertices for every integer k between (nt+l) and min[m, 2n]. The complex is
no longer given by Rn, and the complex mod (Zn) is not the torus. It would

be a matter of considerable interest to characterize the global structure of
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these simplicial complexes.

Some results are available for dimensions n = 2,3, If n is a 4 x 2
matrix, the maximal lattice free bodies consist of a sequence of
parallelograms of area one, and four triangles; two associated with the
first parallelogram in the sequence and two with the last [Scarf, 1981b].
When A is a 4 x 3 matrix, all of the maximal lattice free bodies lie between
two parallel, adjacent lattice hyperplanes [Scarf, 1985].

The proof of this last result is extremely tedious, and it could
conceivably be simplified by the structural results of the present paper.

We know that the simplicial complex of maximal lattice free bodies, with
lattice translates identified, is the 3-torus. 1Its second homology group,
HZ(K)’ will therefore be generated by three 2-tori. One example of such a
2-torus is obtained from a pair of triangular faces in KZ(A) whose union
forms a planar parallelogram of unit area. The theorem would be quite easy
to prove if the existence of such a pair of triangular faces could be
established.

A possible line of attack is by means of the Fundamental Group, a free
Abelian group with three generators. The Fundamental Group can be presented
in the following way: orient each of the edges (the neighbors of the origin)
of the complex. Each 2-face of the complex will then define a relationship
among its three edges. The homotopy group is then given by the set of words
composed of edges and their inverses, with multiplication given by
concatenation, all modulo this set of relations. But this group is
commutative. An instance of commutativity is provided by a pair of
triangular faces whose union is a parallelogram; is it possible that

commutativity of the homotopy group requires at least one such example?



Knowledge of the lattice hyperplane associated with such a pair of
triangular faces permits a considerable simplification in the 3-variable
integer programming problem defined by the matrix and a particular right
hand side. Let the family of lattice hyperplanes be given by h.z = ho, for

integral h,, and let

0

f(ho) = Min Za .zj, subject to

0.3
Eai’j.zj < bi’ i=1,2,3,
h.z = ho, and z ¢ 23.
This family of 2-variable integer programs (there is a unimodular
transformation so that h.z is one of the new variables) has the property
that f(ho) is unimodal: it has a single local minimum. A global minimum for
the original 3-variable problem is obtaiged by finding a particular hO’ such
that h0 + 1 yield higher values of the objective function.
Is it possible that knowledge of a generator of the n-1 dimensional
homology group Hn_l(K) permits a corresponding reduction in dimension for
the n-variable problem? More generally, can the combinatorial structure of

the simplicial complex K(A) be used effectively in the development of

algorithms for integer programming?
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