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Abstract

This paper considers the problem of choosing the number bootstrap repeti-
tions B to use with the BC, bootstrap confidence intervals introduced by Efron
(1987). Because the simulated random variables are ancillary, we seek a choice of
B that yields a confidence interval that is close to the ideal bootstrap confidence
interval for which B = oo. We specifiy a three-step method of choosing B that
ensures that the lower and upper lengths of the confidence interval deviate from
those of the ideal bootstrap confidence interval by at most a small percentage
with high probability.
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1. Introduction

In this paper, we consider the problem of choosing the number of bootstrap
repetitions B for the BC, bootstrap confidence intervals introduced by Efron (1987).
We propose a three-step method for choosing B that is designed to achieve a desired
level of accuracy. By accuracy, we mean closeness of the BC, confidence interval based
on B repetitions to the ideal bootstrap BC, confidence interval for which B = co. We
desire accuracy of this sort, because we do not want to be able to obtain a “different
answer” from the same data merely by using different simulation draws.

More precisely, we measure accuracy in terms of the percentage deviation of the
lower and upper lengths of the bootstrap confidence interval for a given value of
B, from the lower and upper lengths of the ideal bootstrap confidence interval. By
definition, the lower length of a confidence interval for a parameter ¢ based on a
parameter estimate 6 is the distance between the lower endpoint of the confidence
interval and the parameter estimate 6. The upper length is defined analogously. We
want both lengths, not just the total length of the interval, to be accurate.

The accuracy obtained by a given choice of B is random, because the bootstrap
simulations are random. To determine an appropriate value of B, we specify a bound
on the percentage deviation, denoted pdb, and we require that the actual percentage
deviation is less than this bound with a specified probability, 1 — 7, close to one. The
three-step method takes pdb and 7 as given and specifies a data-dependent method
of determining a value of B, denoted B*, such that the desired level of accuracy
is achieved. For example, one might take (pdb, 7) = (10,.05). In this case, the
three-step method determines a value B* such that the percentage deviation of the
upper and lower confidence interval lengths is less than 10% each with approximate
probability .95.

The idea behind the three-step method is as follows: Conditional on the original
sample, the BC, confidence interval endpoints based on B repetitions are sample
quantiles with random percentage points. We approximate their distributions by
their asymptotic distributions as B — oo. The parameters of these asymptotic
distributions are estimated in the first and second steps of the three-step method.
These estimates include estimates of a density at two points. For this purpose,
we use an estimator of Siddiqui (1960) with an optimal data-dependent smoothing
parameter, which is a variant of that proposed by Hall and Sheather (1988). The
asymptotic distributions evaluated at these estimates are used in the third step to
determine how large B must be in order to attain the desired level of accuracy.

The three-step method is applicable whenever a BC, confidence interval is ap-
plicable. This includes parametric, semiparametric, and nonparametric models with
independent and identically distributed (iid) data, independent and non-identically
distributed (inid) data, and time series data (see Gotze and Kiinsch (1996) regarding
the latter). The method is applicable when the bootstrap employed is the standard
nonparametric iid bootstrap, a moving block bootstrap for time series, a parametric
or semiparametric bootstrap, or a bootstrap for regression models that is based on
bootstrapping residuals. Essentially, the results are applicable whenever the boot-
strap samples are simulated to be iid across different bootstrap samples. (The sim-



ulations need not be iid within each bootstrap sample.)

We examine the small sample performance of the proposed method via simula-
tion for two common applications in the econometrics and statistics literature. The
first application is to a linear regression model. The second is to a correlation coef-
ficient between two random variables. We find that the number of bootstrap repeti-
tions needed to attain accurate estimates of the ideal bootstrap confidence interval is
quite large. We also find that for both applications the proposed three-step method
performs fairly well, although it is overly conservative. That is, the finite sample
probabilities that the percentage deviations of the lower and upper lengths of the
bootstrap confidence intervals are less than or equal to pdb are somewhat greater
than their theoretical value, 1 — 7, for most (a, pdb, T) combinations considered.

The three-step method considered here is closely related to that specified in An-
drews and Buchinsky (2000) for choosing B for bootstrap standard error estimates,
percentile ¢ confidence intervals, tests for a given significance level, p—values, and bias
correction. The results of Andrews and Buchinsky (2000) are not applicable to BC,
confidence intervals, because they only apply to bootstrap sample quantiles for fized
percentage points. Analysis of the performance of the three-step method of Andrews
and Buchinsky (2000) is given in Andrews and Buchinsky (1999).

The asymptotic approximations utilized here are equivalent to those used in Efron
(1987, Sec. 9). We provide a proof of the validity of these approximations. This
proof is complicated by the fact that the sample quantiles in question are from an
underlying distribution that is discrete (at least for the nonparametric distribution)
and the percentage points are random, not fixed.

Note that Hall (1986) considers the effect of B on the unconditional coverage
probabilities of some confidence intervals (but not BC, confidence intervals). The
unconditional coverage probability is the probability with respect to the randomness
in the data and the bootstrap simulations. In contrast, we consider conditional cov-
erage probabilities, i.e., coverage probabilities with respect to the randomness in the
data conditional on the bootstrap simulations. We do so because we do not want to
be able to obtain “different answers” from the same data due to the use of different
simulation draws.

The remainder of this paper is organized as follows. Section 2 introduces no-
tation and defines the BC, confidence intervals. Section 3 describes the three-step
method for choosing B for these confidence intervals. Section 4 presents some Monte
Carlo simulation results that assess the ability of the three-step method to choose
B to achieve the desired accuracy in finite samples. Section 5 describes the asymp-
totic justification of the three-step method. An Appendix provides a proof of the
asymptotic justification.

2. Notation and Definitions

We begin by introducing some notation and definitions. Let X = (X1, ..., X5)'
denote the observed data. Let § = 6(X) be an estimator of an unknown scalar
parameter 0. We wish to construct an equal-tailed confidence interval for 6y of



(approximate) confidence level 100(1 — 2a)% for some 0 < o < 1.

We assume that the normalized estimator n(6 — 6p) has an asymptotic normal
distribution as n — oco. Let O'/Z\ denote its asymptotic variance. We allow for xk # 1/2
to cover nonparametric estimators, such as nonparametric estimators of a density or
regression function at a point.

Define a bootstrap sample X* = (X7,...,X}

) and a bootstrap estimator
0" = 6(X*). Let 0.

- denote the o quantile of 0". Because the bootstrap estimator 0"

has a discrete distribution (at least for the nonparametric bootstrap), there typically

is no constant 5’;2“) that satisfies the equation P* (5* < §Zia)) = « exactly, where

P*(-) denotes probability with respect to the bootstrap sample X* conditional on the
original sample X. Thus, to be precise, we define gia) = inf{k : P* (5* <k)>a}.
The ideal bootstrap equal-tailed percentile confidence interval of approximate
confidence level 100(1 — 2a)% is
~x(a) ~x(l—ar)

0.7, 6. (1)

This confidence interval does not improve upon confidence intervals based on first
order asymptotics in terms of coverage probability. In consequence, Efron (1987)
introduced the bias-corrected and accelerated (BC,) confidence interval that adjusts
the quantiles & and 1 — « in such a way that it exhibits higher order improvements.
(For a detailed discussion of these higher order improvements, see Hall (1988) and
Hall (1992, Sec. 3.10). For an introductory discussion of BC, confidence intervals and
software to calculate them, see Efron and Tibshirani (1993, Sec. 14.3 and Appendix).)

The ideal bootstrap BC, confidence interval of approximate confidence level
100(1 — 2c)% is

Cl, = [5*(0%’“’) 5*(%’“’)}, where

o0 e el

Qoo = P (Zo,oo + (o + @) and

'/Z\O,oo + Z(lia)
1—a(Zoee +20-9) |

Qy oo = [} (20,00 + (2)

Here ®(-) is the standard normal distribution function and 2(*) is the a quantile of
the standard normal distribution. The term Zy o is the “ideal bias correction” and
is defined by

S = 7 (P10 <)), (3)

where ®~!(-) denotes the inverse of the standard normal distribution function.
The term @ in (2) is the “acceleration constant”. It can be defined in different
ways. For example, in iid contexts, it can be defined to equal a jackknife estimate:
"0 —0,)°
a— 2= = bw) - )
6 (S (0) —0)?)
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where 5(1‘) = g(X(i)), X(;) denotes the original sample with the i-th observation
deleted, and 0.y = Y0, 0, /n.

Note that, when the ideal bias correction Zp . and the ideal acceleration constant
@ equal zero, e = ®(2(%)) = a and a0 = ®(2117%) = 1 — a. In this case, the
BC, confidence interval reduces to the equal-tailed percentile confidence interval of
(1).

Analytic calculation of the ideal bootstrap BC, confidence interval is usually
intractable. Nevertheless, one can approximate it using bootstrap simulations. Con-
sider B bootstrap samples {Xj; : b = 1,..., B} that are independent across B, each
with the same distribution as X*. The corresponding B bootstrap estimators are
{6, =6(X;}):b=1,..B}.

Let {5*3717 : b =1,..B} denote the ordered sample of bootstrap estimators. De-

fine the o sample quantile of the bootstrap estimators to be Ej;(a) = 5*37“ B4+1)a) foOr

a <1/2 and @’kB(C“) = agyf(B-H)(ﬂ for @ > 1/2, where |a] denotes the largest integer

less than or equal to a (i.e., the integer part of a) and [a| denotes the smallest integer
greater than or equal to a.

The BC, confidence interval of approximate confidence level 100(1 — 2a)% based
on B bootstrap repetitions is

Clg = [égal’B),éga"’B)], where

~ Zo,8 + 2
= : d
Oy B (zo,B + [ —aGos + 2(0‘)) an

2073 + Z(1-a)
1-— 6(2073 + 2(1704))

Qup = ) (2073 + (5)

The term Zp g is the bias correction based on B bootstrap repetitions and is defined
by

A Y

Zo.8 =2 1<E >0 < 9)> : (6)
b=1

We note that zp p is a random function of the bootstrap estimators {gz :b=1,..B}.

In consequence, oy p and o, g are random functions of {@Z :b=1,...B}. This affects
the three-step method of determining B which is introduced below. We also note
that the acceleration constant a, as defined in (4), does not depend on the bootstrap
estimators. It is a function of the original sample only.

3. A Three-step Method for Determining
the Number of Bootstrap Repetitions
In this section, we introduce a three-step method for determining B for the boot-

strap confidence interval CIg defined above. Our main interest is in determining B
such that CIp is close to the ideal bootstrap confidence interval C'Il. A secondary



interest is in the unconditional coverage probability of CIp (where “unconditional”
refers to the randomness in both the data and the simulations).

Our primary interest is the former, because the simulated random variables
are ancillary with respect to the parameter 6y. Hence, the principle of ancillarity
or conditionality (e.g., see Kiefer (1982) and references therein) implies that we
should seek a confidence interval that has a confidence level that is (approximately)
100(1 — 2a))% conditional on the simulation draws. To obtain such an interval, we
need to choose B to be sufficiently large that Clpg is close to Cl,,. Otherwise, two
researchers using the same data and the same statistical method could reach different
conclusions due only to the use of different simulation draws.

We could measure the closeness of Clg to Cly by considering their relative
lengths. However, these confidence intervals, which are based on the parameter es-
timate 5, are not necessarily symmetric about 6. In consequence, a more refined
measure of the closeness of ClIg to Cly is to consider the closeness of both their
lower and upper lengths. By definition, the lower length of the confidence interval

CIp, denoted Ly(CIp), is the distance between the lower bound 5};%3) and 0. Tts
upper length, denoted L, (ClIp), is the distance from 9 to 5*3(%’3). That is,
Lo(CTg) = 0 — 05" and Lo(CIg) = 05" 7. (7)

The lower and upper lengths of C'I are defined analogously with B replaced by oo.

We measure the closeness of CIg to C'ly by comparing the percentage deviations
of the lower and upper lengths of the two intervals. The percentage deviation of the
upper length of C'Ig from the upper length of Cl is

o — 6

100

8
/ézau,oo) . /0\ ( )
The percentage deviation of the lower length of C'Ig to the lower length of C'l, is
defined analogously.

Let 1 — 7 denote a probability close to one, such as .95. Let pdb be a bound on
the percentage deviation of the lower or upper length of C'Ig to the corresponding
length of C'l. For the upper length, we want to determine B = B(pdb, T) such that

‘g*(au’g) . g*(au}w)’
P* {100 BA*( 72— <pdb | =1-7. (9)
o — 8

For the lower length, we want to determine an analogous value of B with o, g and
a0 Teplaced by ag g and ay o, respectively.

The three-step method of determining B for C'Ig is designed to obtain a specified
desired level of accuracy pdb for both lengths, each with probability (approximately)
equal to 1 — 7.

The three-step method relies on estimators of the reciprocals of two density func-
tions evaluated at two points, which appear in the asymptotic distributions of the



sample quantiles EEQZ’B) and 5*3(%’3). For this, we use Siddiqui’s (1960) estimator

(analyzed by Bloch and Gastwirth (1968) and Hall and Sheather (1988)) with plug-in
estimators of the bandwidth parameters that are chosen to maximize the higher or-
der asymptotic coverage probability of the resultant confidence interval, as calculated
by Hall and Sheather (1988). To reduce the noise of the plug-in estimator, we take
advantage of the fact that we know the asymptotic values of the densities and we use
them to generate our estimators of the unknown coefficients in the plug-in formulae.
The density estimate makes use of the following formula, which is utilized in Step 2

below: 13
(1-a/2)\2 42/, (1—a)
C. — 1.5(z )% (z ) ' (10)
2(z(1-a))2 11

The three-step method is defined as follows:
Step 1. Compute a preliminary number of bootstrap repetitions B; via
By = [10,000 (a(1 - a) = 2a6(=\)/6(0) + 6% (=) /6*(0) ) (1! 77/’
/ (208(=)pdb) ). (1)

Step 2. Simulate B; bootstrap estimators {5;: :b=1,...,By}; order the bootstrap
estimators, which are denoted {9;17(, :b=1,...,B1}; and calculate

~ -1 1 B Sk -~ R 20 By —+ Z(O‘)
Zog, = @ B—Z(Hb <) |, arg =max P 2B, + ’ @) ,.01 5,

i 1 —a(zo,p + 2

207B1 _‘_2(1704)
1-— 6(20731 + z(1-0)

01y, = min {@(2@731 + )) ,.99} , V10 = [(B1+ D)age],

viw = [(B1 + Dary], e = [Cay BY*1,  Miny = [C1 0y BY?1,

0, 0, 0, 0, 0, 40,
Bivieo Bi,viw? Bi,vig—mae> Bi,viet+mae> Biviu—miyr VB b ma,

(12)

Step 3. Take the desired number of bootstrap repetitions, B*, to equal
B* = max{ By, By, Ba, }, where

By = [10,000 (a(1 — ) — 2a6(21) /¢(0) + ¢*(=!*)) /¢*(0) ) (21 7/2))?
B 2 o ~ ~ %
% (215\1116) (031,11144’7?7«12 - 931,1/12*7%12)2/ ((9 o eBlvyle)pdb)Q-‘ and

By = 10,000 (a(1 — a) = 2a6(=()/6(0) + (=) /6*(0)) (=1 7/2))?

(o2 Frenssie P (o~ D)1, ()

2Myy,




Note that (), ¢(-), and ®(-) denote the v quantile, density, and distribution function,
respectively, of a standard normal distribution.

In Step 2, ayp and aq,, are truncated to be greater than or equal to .01 and less
than or equal to .99 respectively. This is done to prevent potentially erratic behavior
of the density estimator in Step 3 if the formulae otherwise would call for estimation
of the density very far in the tail. This truncation implies that the three-step method,
as defined, is suitable only when o > .01.

Having determined B*, one obtains the final BC, confidence interval by simulat-
ing B* — By (> 0) additional bootstrap estimators {gz :b= By +1,..., B*}, ordering
the B* bootstrap estimators, which are denoted {g*B*,b :b=1,...,B*}, and calculat-

.~ ~x (o, ) G C0 R . . .
ing zo p+, Qg p*, Qy B*, O g ,and O “7 ~ using the formulae given in Step 2 with

Bj replaced by B*. The resulting BC, confidence interval, based on B* bootstrap
repetitions, is equal to

Cly = [ G, (14)

where ay g+ and g~ are defined by (5) with B replaced by B*.

Steps 2 and 3 could be iterated with little additional computational burden by
replacing By in Step 2 by B; = max{B1, By, Bo,}, replacing (Bayy, Boy) in Step 3
by (Ba¢, B2y, and taking B* = max{Ba, By, B1}. In some cases, this may lead to
closer finite sample and asymptotic properties of the three-step procedure.

The three-step method introduced here is based on a scalar parameter 6y. When
one is interested in separate confidence intervals for several parameters, say M pa-
rameters, one can apply the three-step method for each of the parameters to obtain
BZ‘I), BE‘Q), e BE‘M) and take B* to equal the maximum of these values.

4. Monte Carlo Simulation

4.1. Monte Carlo Design

In this section, we introduce the design of the simulation experiments. We provide
simulation results for a linear regression model and a correlation coefficient. There
are two purposes of the experiments. The first purpose is to illustrate the magnitudes
of the values of B that are necessary to achieve different levels of accuracy. Here,
accuracy means closeness of the BC, confidence interval based on B repetitions to
the ideal bootstrap BC, confidence interval for which B = co. The second purpose
is to see whether the three-step method yields values of B with the desired level of
accuracy. More specifically, for the upper length of the confidence interval, we want

to see how close P*(lOO\g*B(%’B) —giau’m)\ /(5Ziau’°°) —6) < pdb) is to 1—7 for values
of B specified by the three-step method, for a range of values of («, pdb, 7). We are
also interested in the corresponding results for the lower length. We consider the
performance of By, By, Bay, Bf = max{B1, By}, B, = max{B, Ba,}, as well as

B*.



Linear Regression Model:

The linear regression model is

yi = 2B+, (15)

. " . .
for i =1,...,n, where n = 25, X; = (y;, ;)" are iid over i = 1,...,n, z; = (1, 1, ...,

vs;) € RS, (x14,...,75) are mutually independent normal random variables, x; is
independent of w;, and w; has a t distribution with five degrees of freedom (denoted
t5). The simulation results are invariant with respect to the means and variances of
the random regressors and the value of the regression parameter 3, so we need not
be specific as to their values. (The results also are invariant with respect to changes
in the scale of the errors.)

We estimate 3 by least squares (LS). We focus attention on the first slope coeffi-
cient. Thus, the parameter 6 of the previous sections is 3,, the second element of 3,
and the estimator 8 is the LS estimator of 3,.

Correlation Coefficient:

The correlation coefficient model consists of an iid sample of pairs of random
variables {(x;,y;) : ¢ = 1,...,n} with correlation coefficient 1/2. The random variables
x; and w; have independent t5 distributions, and y; is given by

yi = (1/V3)a; + w;.

The parameter ¢ of the previous sections is the correlation coefficient, p,,, between
x; and y;. That is, 0 = p,, = Cov(z;,y;)/ (Var(a;)Var(y;)) /2. We estimate Pyy USING
the sample correlation coefficient 74,:
i (#i —T)(yi — 7))
- N o\1/2°
(SHs (s — 2) iy (g — 9)2)

where T =Y " x;/nand §= > 1 yi/n.

0 =1y =

Experimental Design:

For each of the two models, we simulate 100 samples. For each of the 100 samples,

we compute 6 and simulate giaé’m) and gziau,oo) using 250,000 bootstrap repetitions.

Here we explicitly assume that 250,000 repetitions is close enough to infinity to accu-
. R CTES) A#(on,0) . A CTS Z#(0tu,00)

rately estimate 6 and 6 . Given 0, 0 , and 0 , we compute the
lower and upper lengths of the ideal bootstrap confidence intervals for each sample.

Next, we compute 2,000 Monte Carlo repetitions for each of the 100 samples,
for a total of 200,000 simulations. In each Monte Carlo repetition, we compute
Bsy, By, and B* for each («, pdb,T) combination for which 1 — 2« is .95 or .90,
pdb is 20%, 15%, or 10%, and 1 — 7 is .975, .95, or .90. For each sample and
(o, pdb, T) combination, we calculate the mean, median, minimum, and maximum
of Byy and Bg, over the 2,000 Monte Carlo repetitions. We report the averages of



these values over the 100 samples. (For example, in column (14) of Table 1, which is
headed “Med,” the numbers provided are the averages of the medians of By, over the
100 samples.) For comparative purposes, we also report the value of B; for each (a,
pdb, 7) combination. These results indicate the magnitudes of the B values needed
to obtain the accuracy specified by different (pdb,T) combinations.

In each Monte Carlo repetition, we also compute 525)%3) for B = By, By, B, and

B* and 5:;(3%’3) for B = By, By, B;, and B*. The calculations are repeated for all
of the («, pdb, T) combinations considered above. For each («, pdb, T) combination

and for each repetition, we check whether gia"’BQ”) satisfies
/éziau,BQu) _ /éziau,oo)
100 o) < pdb. (16)
-0, "~

o

We compute the fraction of times this condition is satisfied out of the 2,000 Monte
Carlo repetitions. Then, we compute the average of this fraction over the 100 samples.
We call this fraction the empirical level for Bs, for the upper length of the BC,
confidence interval. The empirical levels for By, B;, and B* for the upper length
also are calculated. (They are defined as above with By, B, and B* in place of By,
respectively.) In addition, the empirical levels for By, By, Bj, and B* for the lower
length of the BC, confidence interval are calculated. (They are defined analogously
with ¢ in place of u.) Finally, we calculate the joint empirical level for B*, which
is the fraction of times both the upper length condition (16) and the corresponding
lower length condition hold with B* in place of Bs, averaged over the 100 samples.
We report all of the empirical levels for all of the («, pdb, ) combinations.

The empirical levels listed above are subject to three types of error: (i) noisy esti-
mates of the density and/or the upper or lower lengths of the confidence interval used
in Step 3 of the three-step procedure, (ii) inaccuracy of the normal approximation
(even when the density and confidence interval length estimates are accurate), and
(iii) simulation error. To assess the magnitude of the first type of error, we report
empirical levels for the infeasible three-step procedure that uses estimates of the den-
sity and lengths of the confidence intervals in Step 3 that are based on B = 250, 000
rather than B = B;. That is, we calculate all the quantities (except B*) in Steps
2 and 3 with Bj replaced by 250,000. Let By, Bag, and B denote the analogues
of By, Boy, and B* using the “true” density and confidence interval lengths. (By
definition, B} = max{B1, Bas, Bay }.) We calculate the empirical levels for the upper
lengths of the BC, confidence interval that correspond to Bay,; and By, as well as the
empirical levels for the lower lengths that correspond to By and Bjf. In addition,
we calculate the joint empirical level for B}. We call these results the empirical levels
with the “true” density.

4.2. Simulation Results

Table 1 provides the simulation results for the linear regression model. Table 1
only reports results for upper lengths because, by symmetry, the exact finite sample



results for lower lengths are the same as for upper lengths in this model. Table 2
provides the results for the correlation coefficient. The first three columns of Tables
1 and 2 specify the different («, pdb,T) combinations that are considered in the rows
of the Tables. The last five columns of Table 1 and the last nine columns of Table
2 give the values of By and the mean, median, minimum, and maximum values of
By, (and By for the correlation coefficient) averaged over the 100 samples for each
(a, pdb, T) combination. The fourth to eleventh columns of Table 1 and the fourth to
seventeenth columns of Table 2 give the empirical level results for the two models for
each («, pdb, T) combination.

Linear Regression Model:

Column (14) of Table 1 gives the median By, values. The median values
indicate that a large number of bootstrap repetitions is required. For example, the
reasonable choice of (1 — 2a,pdb,1 — 1) = (.90,15,.95) has a median Bs,, value of
2,733. The value does not change much when 1 — 2« is increased to .95. This is
indicative of the general insensitivity of the results to a. On the other hand, the
values of Bs, depend greatly on the magnitudes of pdb and 1 — 7, especially pdb.
As pdb decreases and 1 — 7 increases, the median Bs, values increase significantly.
For example, the combination (1 — 2a,pdb,1 — 7) = (.90, 20,.90) has median Ba,
value of 803, while (.90, 20, .975) has median Ba, value of 1,922, and (.90, 10, .90) has
median Bg, value of 3,934. Although the magnitudes of the B, values is large, the
computation time required for the applications considered here is relatively small;
always less than one minute.

The results of columns (13)—(16) of Table 1 also show that the Bs, values have a
skewed distribution—the median is well below the mean number of bootstrap repeti-
tions. In some cases, the required number of bootstrap repetitions is very large—close
to 30,000, see column (16). Comparison of columns (12) and (14) shows that the me-
dian Bg,, values are much larger than the initial B; values. This suggests that relying
on just the first step of the three-step method, viz., By, is ill-advised. All three-steps
of the three-step method are needed.

Column (4) of Table 1 reports the empirical levels based on Bj for the regression
model. These empirical levels are well below their theoretical counterparts, reported
in column (3), for all (1 — 2a,pdb,1 — 7) combinations. This corroborates the sup-
position above that reliance on the Bp values is ill-advised. The empirical levels
increase significantly when Bs, simulations are employed, see column (5). But the
empirical levels for By, are still below the 1 — 7 values of column (3) in most cases.
The empirical levels for the B values, given in column (6), increase further. In fact,
for all cases in which 1 — 7 is .975 (.95 respectively), the empirical levels are within
.009 (.021 respectively) of the exact 1 — 7 value given in column (3). This indicates
that the three-step method is performing well in terms of matching the finite sample
accuracy with the desired theoretical accuracy.

The empirical levels for B* are given in column (7). These empirical levels are
higher than the empirical levels for B} for the upper length. As it turns out, it is
either difficult to accurately estimate the upper length of the confidence interval or
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the lower length. In consequence, one of the two sides of the confidence interval
usually requires a relatively large number of bootstrap repetitions. As a result, the
empirical levels based on B* are quite high, well above their theoretical counterparts
for some (1 — 2, pdb, 1 — 7) combinations. The joint empirical levels for B*, given
in column (8), are somewhat lower than the upper empirical levels for B*. But, they
still tend to be conservative; i.e., greater than 1 — 7.

The empirical levels with the “true” density are reported in columns (9)—(11).
For most (1 —2«, pdb, 1 —7) combinations, these results do not differ very much from
the results discussed above. However, when 1 — 7 is .900, which generates relatively
small B values, there is a noticeable difference. These results indicate that estimation
of the density and the confidence interval length is not a large source of inaccuracy
of the three-step method unless 1 — 7 is relatively small.

Correlation Coefficient:

The results for the correlation coefficient are reported in Table 2. The general
picture for the lower length results in Table 2 is very similar to that for the upper
length for the regression model in Table 1 (which is the same for the upper length by
symmetry). However, there is a significant difference between the two experiments.
First, the By, values are much smaller than the By, values for the correlation co-
efficient experiment. Second, the empirical levels for the upper length based on By
repetitions are quite high for the correlation coefficient experiment. These features
are a consequence of the fact that the correlation coefficient is bounded between -1
and 1, the true value is p,, = 1/2, and, hence, an asymmetry occurs between the
results for the lower and upper lengths. The “density” of the bootstrap distribution
of 6 is much larger at the 1 — o quantile than at the o quantile, which yields much
smaller By, values than By, values.

Table 2 indicates that even for a simple statistic, such as the correlation coefficient,
the required number of bootstrap repetitions can be quite large. For example, for a
95% confidence interval estimated with pdb = 10 and 1 —7 = .95, the median number
of bootstrap repetitions required is over 6,400.

The empirical levels for the lower confidence intervals are quite similar to those
reported for the upper confidence interval for the regression model. The B; values
for the upper confidence intervals are too large, however, which leads to the upper
empirical levels for By, B;;, and B* that are too high. In consequence, the three-step
method is conservative. It produces larger numbers of bootstrap repetitions than are
required for the specified (pdb,T) combinations.

The empirical levels with the “true” density show a similar pattern as in the
regression model. But, somewhat more of the inaccuracy of the three-step method
is attributable to the estimation of the density and confidence interval length in the
correlation coefficient experiment.

11



5. Asymptotic Justification of the Three-step
Method

We now discuss the justification of the three-step method introduced above. The

three-step method relies on the fact that 5};%3) and 52%’3) are sample quantiles

with data-dependent percentage points based on an iid sample of random variables
%k

each with distribution given by the bootstrap distribution of 6 . If the bootstrap

distribution of §* was absolutely continuous at g*B(a), then B1/? (E*B(O‘) —gia)) would be

asymptotically normally distributed as B — oo for fixed n with asymptotic variance

given by a(1 — a)/f? (gia)), where f(-) denotes the density of 0" (Here and below,
we condition on the data and the asymptotics are based on the randomness of the
bootstrap simulations alone.)

But, the bootstrap distribution of 8 is a discrete distribution (at least for the
nonparametric bootstrap, which is based on the empirical distribution). In conse-
quence, the asymptotic distribution of B/ 2(5*3(04) - gia)) as B — oo for fixed n is a
pointmass at zero for all a values except for those in a set of Lebesgue measure zero.
(The latter set is the set of values that the distribution function of 6" takes on at its
points of support.)

Although 9" has a discrete distribution in the case of the nonparametric bootstrap,
its distribution is very nearly continuous even for small values of n. The largest
probability 7, of any of its atoms is very small: 7, = n!/n® ~ (2an)'/2e "™ provided
the original sample X consists of distinct vectors and distinct bootstrap samples X*
give rise to distinct values of 8 (as is typically the case); see Hall (1992, Appendix
I). This suggests that we should consider asymptotics as n — oo, as well as B — oo,
in order to account for the essentially continuous nature of the distribution of 0. 1f
we do so, then BY 2(57;” - 5’;2“)) has a nondegenerate asymptotic distribution with
asymptotic variance that depends on the value of a density at a point, just as in the
case where the distribution of 8" is continuous. This is what we do. It is in accord
with Hall’s (1992, p. 285) view that “for many practical purposes the bootstrap
distribution of a statistic may be regarded as continuous.”

We note that the (potential) discreteness of 0" significantly increases the com-
plexity of the asymptotic justification of the three-step method given below and its
proof.

The asymptotic justification of the three-step method also has to take account
of the fact that the confidence interval endpoints depend on oy p and «, g, which
depend on the simulation randomness through the bootstrap bias correction zp p =

o1 (Zszl(@Z <) / B) . The quantities oy p and oy, p are correlated in finite samples

and asymptotically with §*B(C“) for any «. In fact, the randomness of ay p and g is
sufficiently large that it is responsible for more than half of the asymptotic variances

of Bl/Q(’é*é‘%,B) _/éio‘)) and Bl/2(§*§0‘u,3) . ’éil—a)).
We now introduce a strengthening of the assumption of asymptotic normality of

the normalized estimate n(6 — 6p) that is needed for the asymptotic justification of
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the three-step method. We assume: For some £ > 0 and all sequences of constants
{xy, : n > 1} for which z,, — agz(o‘) or T, — 052(1*0‘), we have

P(n"™(0 —by) < xp) = P(0;Z < xp) + O(n=%) as n — oo and
P*(n*(0" —0) < xp) = P(0;Z < xp) + O(n™%) as n — o0, (17)

where Z ~ N(0,1). (The assumption on n” (5* —6) is assumed to hold with probability
one with respect to the randomness in the data, i.e., with respect to P(-).)

Assumption (17) holds whenever the normalized estimator n®(f — 6y) and the
normalized bootstrap estimator n"‘(g* — 5) have one-term Edgeworth expansions.
This occurs in a wide variety of contexts, e.g., see Bhattacharya and Ghosh (1978),
Hall (1992, Sec. 2.4, 4.4, and 4.5), and Hall and Horowitz (1996). In particular,
it holds in any context in which a BC, confidence interval yields a higher order
improvement in the coverage probability, see Efron (1987) and Hall (1988). When
k = 1/2, then (17) typically holds with £ = 1/2. When k < 1/2, as occurs with
nonparametric estimators 6, then (17) typically holds with £ < 1/2; see Hall (1992,
Ch. 4) and references therein.

The discussion above considers letting B — oo. This is not really appropriate
because we want B to be determined endogenously by the three-step method. Rather,
we consider asymptotics in which the accuracy measure pdb — 0 and this, in turn,
forces B — o0. Thus, the asymptotic justification of the three-step method of choosing
B* is in terms of the limit as both pdb — 0 and n — oc.

We assume that pdb — 0 sufficiently slowly that

pdb X n* — 00 as n — oo, (18)

where £ is as in (17).
We assume that
a—0 asn— o0 (19)

with probability one with respect to the randomness in the original data. This as-
sumption holds for any appropriate choice of acceleration constant a.
The asymptotic justification of the three-step method is that

‘/9\*(041',3*) _ A*(aj}w)‘
P* [ 10022 persy ;O <pdb| —-1—7 as pdb— 0 and n — oo, for j = ¢, u.
j,00

(20)
As above, the probability P*(-) denotes probability with respect to the simulation
randomness conditional on the infinite sequence of data vectors. Under the assump-
tions above, this conditional result holds with probability one with respect to the
randomness in the data. The proof of (20) is given in the Appendix of Proofs.

Equation (20) implies that the three-step method attains precisely the desired
level of accuracy for the lower and upper lengths of the confidence interval using
“small pdb and large n” asymptotics.

13



Appendix of Proofs

We prove (20) for j = u. The proof for j = ¢ is analogous. First we show that
(20) holds with B* replaced by the non-random quantity B;. Note that B; — oo as
pdb — 0 and B; does not depend on n.
Define the 1 — a sample quantile of the normalized bootstrap estimates to be

~ s ax(l—a) -~ K ~
)\l—a,B =n (GB — 9) =n (937[(3_‘_1)(1_&)] — 9) for a < 1/2 (21)
Let leoz,oo denote the 1 —a quantile of n"‘@* —@) That is, leoé,oo = nk (@il_a) _§)

Note that the percentage deviation of the upper length of CIz to the upper length
of Cl, given in (8), can be written as

Xa _Xoc 0
100/ A0mnB = Aol (22)

Aau,oo,oo

~

We establish the asymptotic distribution of Bi/ 2(/\%} BB~ Xau’w’oo) as pdb — 0
and n — o0, using an argument developed for proving the asymptotic distribution of
the sample median based on an iid sample of random variables that are absolutely
continuous at their population median; e.g., see Lehmann (1983, Thm. 5.3.2, p. 354).
(In contrast, 3\%, 5,,B1 1S the sample au, p, quantile of By iid observations each with
the bootstrap distribution of n* @* — 5), which depends on n and may be discrete,
where o, g, is random and data-dependent.)

We have: For any « € R,

* /2,73 N * N A N 1/2
P (Bl/ ()\au,BlvBl_)\au,oopo) S x) =r (nﬁ(9317((31+1)au’31“ _9) S )\Olu,oo700+x/Bl/ )
(23)

Let Sp be the number of n”(gz —8)s for b=1, ..., B that exceed S‘au,oo,oo + x/Bll/Q.

Here, we consider Sp,. Below, we consider Sg«. (In both cases, the cutoff point
Xaum,oo + l‘/Biﬂ depends on B;.) We have

O, f(5r 41005, —0) < Aawsecot@/By'? if and only if Sp, < Bi—[(Bi+1)ow,p,].

(24)
The random variable Sp, has a binomial distribution with parameters (B1,pp, n),
where

PBin =1 = P00, = 0) < Aay oo +2/B1%). (25)
The probability in (23) equals
P (SBl <B; - ’_(Bl + 1)0‘%31-‘)
= (Bl_l/2(SBl - BlpBLn) + B%/Q(a%Bl - O‘U,OO)

< 311/2(1 —PBin— O‘u,OO) - Bfl/Qau731 + O(l)> : (26)

We now determine the limits of the terms in the right-hand side probability of (26).
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Using the assumptions of (19) and (17), we have a = o(1),

Zoo = 07! (P*(@* < 5)) =& 1 (P(Z < 0)+0(1)) = o(1), and

20,00 + Z(lia)

1= a(Z000 + 20-9)

Qoo = P (20700 + ) = (z(l_o‘)> +o(l)=1—a+o0(1),

(27)
where Z ~ N(0,1). These results and the assumption of (17) yield
Moo = IF{A s P07 —0) < A) >aue0)
= inf{\: P(0;Z < A) +o(1) >1 — a}

= (752(170‘) +0o(1) as n — oc. (28)
Next, we have

311/2(1 —PBin — Oy oo)

= BYP(P'(n"(0" = 0) < My oo + 7/ BY?) = P*(07(0" = ) < Ay e o0)

= BY? (P(05Z < Rayeo + 2/ BY*) = P(037 < Ny o) ) + (1)

= ¢(Cpyn/0og)T/05+ 0(1)

— ¢(z(1_a))w/05 as pdb — 0 and n — oo. (29)

The first equality of (29) holds by the definitions of pp, , and Xau’w’oo. The second
equality holds by (17) and (18) using the fact that the latter and the definition of
By imply that B%/Q = O(1/pdb) = n*O(1/(pdb x n%)) = o(nf). The third equality
holds for some (g, ,, that lies between Xaum,oo +z/ Bi/ % and Xau’m’oo by a mean value
expansion. The convergence result of (29) holds by (28).

Note that (27) and (29) imply that pg, n — « as pdb — 0 and n — oo.

Now, we have

BY*%5, _BW( - ( Zl 9b<9) 1(1/2))
B3
B 1

B <¢>(0)(1+op ) i/QZ( (0, <0) —1/2)

:<¢>(0)(110p ) 1/22( (6 < 8) = P(8, <8)) +0p(1), (30)
1

where the second equality holds by a mean value expansion and the third equality
holds because (17) and (18) imply that Bi/Q(P*(QZ <0)—1/2) = 0.
Next, we have

1/2
Bl/ (au,Bl - au,oo)
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Zo.p, + 20179 20,00 + 217
_ 52 (g3 20,8, Y P 00
1 ( (ZO’Bl + 1-— a(20731 + 2(1*0‘)) 20,00 T 1-— 6(20700 + 2(1*04))

= ¢(z(17) (1 + 0,(1)) By"?
20,8, + Z(1-) e 20,00 + Z(1-a)
1—a(zom + 25 9) % 1-a(Z0,00 + 20-9)

o ¢( (1-« ) 1/2 (220 By — 220 — z(l_a)a(EO,Bl - 20,oo)> (1 + Op(1)>
= 262! )B1/ 20 31(1 +0p(1)) +0p(1)

20(211 RPN
B ( $(0) ) 172 Z( (B, < 8) = P*(6, < 9)) (14 0p(1)) +0p(1), (31)

X (20,31 -+

where the second equality holds by the mean value theorem because zpp, —, 0,

20,00 —p 0, and @ — 0, the third equality holds because @ — 0, the fourth equality

holds because Bl/ Zo.B, = Op(1) by (30) and the Lindeberg central limit theorem,

@ — 0, and Bi*200 = BIA(@ (P (n"(B; — 0) < 0)) — 1(1/2)) = 0,(1) by a

mean value expansion, (17), and (18), and the fifth equality holds using (30).
Equation (31) gives

By *(Sp, - BlpBl, ) + Bl (a5, — Quco)

= (14 0p(1) 1/22<( 9b—9 >)\auoo,oo—|—x/B )—thn
+ (2017 /(0 >) (1@, — 9) < 0) = P*(n"(8, — 8) < 0)) ) + 0p(1)
‘ oy g S )
N(O,a(l ) —2 oo ¢2(0)> (32)

as pdb — 0 and n — oo, where the convergence result holds by the Lindeberg central
limit theorem and the fact that pp, , — @ and P*(n*(0, —0) <0) — 1/2.
Equations (23), (26), (29), and (32) yield

P*(B1* Ca., 51 — A maroo) < T)

— x z(a) oo | a(l —a) — a¢(2(a)) (;52(,2(0‘)) v 1
(D( d)( )/( 9( (1 ) 2 ¢>(0) + ¢2(0) and

1/2 /% N
Bl/ (Aau,BlyBl - A0411.,00700)

Ay g2z
4N (0, o2 <a(1 —a) - 2a¢§)(0) ) 4 ¢’¢(Q(O) )> /¢2<z<a>)> (33)

as pdb — 0 and n — oc.
This result, (11), (22), and (28) imply that

A*(au,Bl) _ A*(Oéu,oo)
P+ [100!%5 boo | < pdb
%0, 00 ) _ /é

o0
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¢(0) ¢*(0)

Q00,00

L(1-7/2) 1
(coam) Garmp)r )

— 1—17 as pdb — 0 and n — oo. (34)

/):Oé _Xoc o0 () 2( () 1/2
_ p (100| wop b “dawmosl 00 <a(1—a) PGl B C )>

Thus, (20) holds with B* replaced with Bj.
Next, we show that

Boy/ By 2,1 as pdb — 0 and n — oo (35)

(with respect to the simulation randomness conditional on the data). By an analogous
argument Byy/By —;, 1 as pdb — 0 and n — co. These results imply that

B*/B; £ 1 as pdb — 0 and n — oo. (36)

Equation (35) follows from

0505, 10— 0) = M(Bra1)(1—a)]/(Bit1).Br 2 55217 and

1
$(652179/55) /55

as pdb — 0 and n — oo. The former holds by the argument of (28) and (33) using
the fact that a1, — 1 — a (provided 1 — o < .99) as pdb — 0 and n — oo because
Zo,3, — 0 by (30) and @ — 0 by (19). The latter holds by an analogous argument
to that given in Andrews and Buchinsky (2000, Appendix, Proofs for the Confidence
Interval, Confidence Region, and Test Applications Section).

Now we use equation (36) and the above proof that (20) holds with the random
quantity B* replaced by the non-random quantity B to establish (20) as is.

First, we have: For any = € R,

Bl 2 Sk -~ ~k ~\ 2
(3 ) (7 @b, =0 =" @y 2 = 0) (37)

~

P*(Bi/Q(Aau}B*,B* - onu’oo,oo)

= P*(nﬁ(g*B*,[(B*-&-l)auyB*] -0) <

<z)
Aovuorno + /By, (38)

(Note that we take the normalization factor to be By not B*.) Let Sp+ be as defined
above. By the same argument as used in (24), the probability in (38) equals

P*(Sps < B* = [(B* + 1)ay, p+])
= P* ((B*)_1/2(SB* - B*pB1,n) + (B*)I/Q(au,B* - au,oo)

< (B)2(1 = ppyn — o) = (BY)ape +0(1)) (39)

By the same argument as given in (27)—(32), we obtain
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(B*)_I/Q(SB* - B*pB1 n) (B*)I/Q (au,B* - O‘u,OO)
= (1+0p(1 B* (Bx\1/2 Z (( eb - 9 >\Olu,OO7OO + x/Bi/Q) ~ PBin
+ (20(217) /(0 >) ( (n" (8, —0) < 0) = P*(n"(6, — ) < 0)) ) +0p(1)

A 6 ¢2<z<a>>)
N (0, a(l—a) — 2a 5(0) + 2200) (40)
as pdb — 0 and n — oo. The convergence result holds by the central limit theorem of
Doeblin-Anscombe (e.g., see Chow and Teicher (1978, Thm. 9.4.1, p. 317)) because
(i) the convergence result holds when B* is replaced by the non-random quantity B
and (ii) B*/By —p 1 by (36).

Now, by the argument of (33) and (34), (20) holds as stated, which concludes the
proof.

We finish by showing that the formula given in (10) for C,, which is used to
determine the bandwidth parameters mq, and mq, for with the Siddiqui estimator,
corresponds to that given by Hall and Sheather (1988). In our notation, Hall and
Sheather’s formula is

1—a/2)\2 p4 1/3
1.5(2( /)) fHq1-a) )) ’ (41)

Co” <3f’(q1_a)2 — f(q1-a) " (q1-a

where f(-) denotes the density of the iid random variables upon which the sample
quantile is based, f'(-) and f”(-) denote the first two derivatives of f(-), q1—o denotes
the population quantile, and z(1=%/2) is as above. In our case, we use the asymptotic
analogues of f(-) and q1—q, viz., ¢(-/55) /55 and (7'52(1_0‘), respectively, in the formula.

Note that ¢/(z) = —z¢(z) and ¢"(2) = (2” — 1)¢(x). Thus, f(q1-a) = ¢(z1'~) /75,

fl(q1-a) = ¢(z117%)) /5%, and f"(q1-a) = ((z1'7¥)? = 1)¢(2(=*)) /72. Plugging these
formulae into (41) gives the definition of the constant Cy, in (10).
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Table 1. Simulation Results for the Regression Model

Empirical Levels Based Empirical Levels
on Three-step Method with “true” density | Bj Boy,
1—2a | pdb | 1—7 Upper Joint Upper Joint
By | By | B B* B* | Bow | Bf Bf Mean | Med | Min Max

O 1216 [GH]6) O | @] 6 |9 |00 0 | 12)| 13)| (14| (15| (16)

950 |20 | .975 | .850 | 949 [ 983 | .995 | .990 | .937 | 989 | .976 368 | 2,697 | 1,767 102 | 31,302
950 | 15 | 975 | .868 | .947 | 984 | .998 | .996 | .937 | .990 | .980 655 | 5,312 | 3,996 389 | 31,409
950 | 10 | 975 | .883 | .944 | 981 | .997 | 993 | .937 | 990 | 982 | 1,474 | 7,831 | 7,133 | 1,345 | 24,997

950 |20 |.950 | .799 | .925 | .965 | .985 | .972 | .910 | .980 | .957 281 | 1,789 | 1,129 51 | 28,957
950 | 15 | .950 | .818 | .929 [ .971 | .995 | .991 | .908 | .981 | .961 501 | 4,042 | 2,810 203 | 32,679
950 | 10 | .950 | .834 | .922 [ .967 | .994 | 989 | .909 | 981 | 966 | 1,127 | 7,849 | 6,962 | 1,030 | 27,109

950 |20 |.900 | .727 | .873 | 917 | .953 | 914 | .B64 | .962 | 917 198 890 588 16 | 17,843
950 | 15 | .900 | .740 | .895 | .942 | .981 | .965 | .863 | .961 | .923 352 | 2,504 | 1,633 96 | 30,702
950 | 10 | .900 | .761 | .890 | .943 | .989 | 979 | .862 | .961 | .929 794 | 6,219 | 4,997 527 | 30,316

900 |20 | .975 | .902 | 957 | 982 | .997 | 995 | .949 | 991 | .982 386 | 2,795 | 1,945 171 | 26,115
900 | 15 | 975 | 912 | 954 | 981 | .996 | .992 | .948 | .991 | .984 686 | 3,946 | 3,192 425 | 20,080
900 | 10 | 975 | .920 | 952 | .979 | 995 | 990 | .948 | 992 | 985 | 1,544 | 5,632 | 5,232 | 1,382 | 17,121

900 |20 |.950 | .856 | .939 [ .969 | .995 | .990 | .923 | .982 | .964 295 | 2,159 | 1,409 98 | 25,625
900 | 15 | .950 | .868 | .934 | .966 | .993 | .986 | .922 | 983 | .967 524 | 3,525 | 2,650 278 | 23,192
900 | 10 | .950 | .878 | .929 [ .962 | .989 | .980 | .922 | 983 | 969 | 1,181 | 4,864 | 4,391 | 1,005 | 17,266

900 |20 |.900 | .779 | .908 [ .943 | 985 | 973 | .878 | 962 | .926 207 | 1,417 865 51 | 24,549
900 | 15 | .900 | .794 | .902 [ .939 | .986 | .974 | .B78 | .962 | .931 369 | 2,680 | 1,842 156 | 26,555
900 | 10 | .900 | .807 | .892 | .930 | .978 | .960 | .877 | .962 | .934 831 | 4,189 | 3,546 991 | 18,837

Note: The reported numbers are averages over 100 samples of the simulation results for each sample. Each sample consists of 25

observations. For each sample, 2,000 Monte Carlo repetitions are used.



Table 2. Simulation Results for the Correlation Coefficient

Empirical Levels Based on Three-step Method Empirical Levels with “true” density
1—2a | pdb | 1—7 Lower Upper Joint Lower Upper Joint
By, | By | Bf | B* | By | Baw | By, | B* B* | Boy | Bf | Bawt | Bf Bf

O | @G [ [6) |6 @] [00)) 0| (12 |(13) |04 | 15 | (16)| A7)

950 |20 | .975 | .B83 | .959 | 987 | .993 | 977 | 926 | .995 | 998 | 991 | .928 | 972 | .919 | .998 970
950 | 15 | .975 | .901 | .959 | .988 | .996 | .981 | .924 | .995 | .999 | .995 | .938 | .978 | .919 | .997 976
950 | 10 | 975 | 917 | 956 | .986 | .993 | 987 | .925 | .995 | .999 | .992 | .944 | 981 | .920 | .998 979

950 |20 |.950 | .837 | .936 | .970 | .979 | .958 | .900 | .985 | .995 | .974 | .893 | .950 | .886 | .994 .946
950 | 15 | .950 | .853 | 941 | .977 | .990 | .963 | .899 | .989 | .998 | .988 | .908 | .959 | .886 | .994 .954
950 | 10 | .950 | .874 | 936 | 974 | 988 | 972 | .896 | .988 | .998 | .986 | .917 | .964 | .887 | .994 959

950 |20 |.900 | .772 | .884 | .925 | .938 | 922 | .851 | .959 | .983 | .923 | .837 | .908 | .836 | .986 .897
950 | 15 | .900 | .779 | 908 | .948 | .967 | 928 | .857 | .969 | .991 | .959 | .855 | .922 | .834 | .985 911
950 | 10 | .900 | .804 | 906 | .951 | .976 | .938 | .852 | .971 | .994 | 972 | .869 | .932 | .832 | .984 919

900 |20 | .975 | .920 | .968 | .986 | .992 | 982 | .934 | .992 | .999 | .993 | .955 | 983 | .933 | .998 982
900 | 15 | .975 | 931 | 966 | .985 | .992 | 985 | .935 | .992 | 998 | 991 | .959 | 985 | .934 | .998 984
900 | 10 | 975 | 938 | 965 | .983 | .994 | 987 | 936 | .992 | .998 | .990 | .961 | .987 | .934 | .998 985

900 |20 |.950 | .873 | .952 | .974 | .979 | .963 | 907 | .983 | .997 | .986 | .929 | .967 | .902 | .995 963
900 | 15 | .950 | .B88 | .949 | .972 | .980 | .968 | .906 | .982 | .996 | .983 | .935 | 971 | .902 | .995 967
900 | 10 | .950 | .899 | .946 | .969 | .981 | .972 | 906 | .981 | .996 | .978 | .938 | .973 | .901 | .995 .969

900 |20 |.900 | .799 | .923 | .949 | .971 | .920 | .865 | .960 | .990 | .963 | .881 | .933 | .849 | .985 923
900 | 15 | .900 | .818 | .921 | .948 | .968 | .931 | .860 | .960 | .991 | .966 | .892 | .941 | .849 | .985 930
900 | 10 | .900 | .833 | 913 | .941 | .965 | .938 | .856 | .956 | .988 | .955 | .899 | .946 | .850 | .985 934




Table 2. (Continued)

1 -2« pdb 1—71 B1 Bgl Bgu

Mean | Med | Min Max | Mean | Med | Min | Max
1 1@ |G (18) | (19) | (20) | (21) | (22) | (23) | (24) | (25) | (26)
.950 20 | .975 368 | 1,804 | 1,322 92 | 17,725 503 403 34 | 3,648
.950 15 | .975 655 | 3,901 | 3,033 324 | 25,184 | 1,000 839 | 106 | 6,159
.950 10 | .975 1,474 | 6,136 | 5,539 | 1,118 | 22,519 | 1,760 | 1,611 | 382 | 6,627
.950 20 | .950 281 | 1,200 857 45 | 14,424 358 279 18 | 2,925
.950 15 | .950 501 | 2,785 | 2,101 192 | 22,046 726 597 67 | 4,763
.950 10 | .950 1,127 | 6,440 | 5,591 835 | 24,500 | 1,728 | 1,515 | 277 | 7,940
.950 20 | .900 198 634 464 14 | 6,948 216 165 8 1,738
.950 15 | .900 352 | 1,667 | 1,220 82 | 16,811 470 376 31 | 3,320
.950 10 | .900 794 | 4,772 | 3,840 448 | 26,259 | 1,235 | 1,056 | 148 | 6,947
.900 20 | .975 386 | 2,249 | 1,644 165 | 20,640 598 4K2 65 | 4,601
.900 15 | .975 686 | 3,568 | 2,879 424 | 19,187 | 1,040 890 | 159 | 6,006
.900 10 | .975 1,544 | 5,301 | 4,888 | 1,265 | 16,959 | 1,797 | 1,667 | 493 | 5,826
.900 20 | .950 295 | 1,678 | 1,188 97 | 18,756 458 358 40 | 4,057
.900 15 | .950 524 | 2,998 | 2,311 279 | 21,086 807 672 | 109 | 5,286
.900 10 | .950 1,181 | 4,577 | 4,069 911 | 17,131 | 1,553 | 1,385 | 344 | 6,555
.900 20 | .900 207 | 1,064 735 45 | 14,133 311 235 22 | 2,979
.900 15 | .900 369 | 2,146 | 1,561 150 | 19,907 571 459 61 | 4,287
.900 10 | .900 831 | 3,913 | 3,271 545 | 18,192 | 1,228 | 1,065 | 207 | 5,942

Note: The reported numbers are averages over 100 samples of the simulation results for each sample.

Each sample consists of 25 observations. For each sample, 2,000 Monte Carlo repetitions are used. The true

correlation coefficient is p,,, = .5.



