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A

This paper derives second-order expansions for the distributions of the Whittle

and profile plug-in maximum likelihood estimators of the fractional difference para-

meter in the ARFIMA(0, d, 0) with unknown mean and variance. Both estimators

are shown to be second-order pivotal. This extends earlier findings of Lieberman

and Phillips (2001), who derived expansions for the Gaussian maximum likelihood

estimator under the assumption that the mean and variance are known. One im-

plication of the results is that the parametric bootstrap upper one-sided confidence

interval provides an o (n−1 lnn) improvement over the delta method. For statistics

that are not second-order pivotal, the improvement is generally only of the order

o n−1/2 lnn .

Key Words: ARFIMA; Bootstrap; Edgeworth expansion; Fractional differencing;

Pivotal statistic.
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1.

We consider the model

(1−B)d (Xt − µ) = εt, t = 1, ..., n, (1)

where B is the backshift operator, d ∈ (0, 1/2), εt iid∼ N (0,σ2) and µ, σ2 are un-

known. In the canonical case with knownmean and variance, Lieberman and Phillips

(2001, henceforth, LP) showed that the distribution of normalized Gaussian maxi-

mum likelihood estimator (MLE) of d, δ̂n =
√
n d̂n − d , admits the expansion

H̃
(1),A

δ̂n
(x/
√
κn,1,1) = Φ (x) +

ζ(3)√
nζ3/2 (2)

φ (x) x2 + 2 , (2)

where Φ (·) and φ (·) are the standard normal cdf and pdf respectively, ζ (·) is the
Riemann-zeta function and κn,1,1 is the variance of the score function. The expansion

is uniform and valid in the sense that

sup
x∈R

sup
d∈D∗

Pd0 δ̂n ≤ x/√κn,1,1 − H̃(1),A

δ̂n
(x/
√
κn,1,1) = o n

−1/2 ,

where d0 is the true value of d and D∗ is any compact subset of (0, 1/2).

To our knowledge, the formula (2) is the only explicit expansion known in a

parametric long-memory context. It shows that δ̂n is second-order pivotal. This

feature seems rare in time series contexts. In contrast, for example, even the as-

ymptotic distribution of the first order serial correlation coefficient depends on the

autoregressive parameter in a stationary AR(1).

While the results for the canonical model may be interesting from a theoretical

view point, they are of limited practical use, since the mean and variance are assumed

known. While still specialized, the model with unknown µ and σ2 is popular and

has been applied in a number of disciplines, including economics and finance, so it

is of interest to extend the higher order analysis to this case. For applications of the

model, see Geweke and Porter Hudak (1983) and Baillie (1996) and the references

therein.
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The main result of the present paper is that for the model (1) with unknown

mean and variance, the second-order expansion for the distribution of either the

Whittle MLE (WMLE) or the profile-plug-in MLE (PPMLE) of d is of the same

form as (2). Thus, these estimators of d are second order pivotal when the mean

and variance are unknown.

A few remarks on context are in order. First, as far as we know, there are

presently no explicit expansions for the WMLE in the long-memory literature, even

for simple models like (1), although Taniguchi developed expansions under short

memory (see Taniguchi and Kakizawa’s review (2000, Ch 4)). Second, we show that

the WMLE and PPMLE expansions have terms which generally differ by O(n−
1
2
+δ),

∀ δ > 0. The comparison between higher order expansions of the two estimators

is novel, refining earlier work confirming the asymptotic equivalence of the two

estimators. Finally, the implication of the second-order pivotal result is that the

improvement of the parametric bootstrap upper confidence interval for d over the

delta method upper confidence interval is of the order o (n−1 ln (n)), compared with

an improvement of the order o(n−1/2 ln (n)) for non-pivotal statistics. See Andrews

and Lieberman (2002a). This result shows that there is some practical import in

the second order expansion.

The work in this paper continues some recent literature on higher order the-

ory for fractional Gaussian processes. Validity of the Edgeworth expansion for the

distribution of the Gaussian MLE and the WMLE under strong dependence was

established in Lieberman, Rousseau and Zucker (2003) and Andrews and Lieber-

man (2002b), respectively. Those papers prove validity but were not concerned

with developing explicit expansions. Lieberman and Phillips (2001) found explicit

expansions in the canonical ARFIMA(0, d, 0) model and Andrews and Lieberman

(2002a) used results on Edgeworth expansions to prove higher order improvements

of the parametric bootstrap under strong dependence. In a recent article, Lieber-

man and Phillips (2002) established the error rate of the integral limit of matrix

product functionals of unbounded spectra and this result is used extensively in the

development of the expansions in the present paper. In particular, the results are

used in the investigation of the difference between the expansions for the WMLE
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and the PPMLE. The above results relate to parametric long memory models. In

a semi-parametric framework, Giraitis and Robinson (2003) gave an Edgeworth ex-

pansion for the local Whittle estimator of the memory parameter. The error rate

in the semiparametric expansion is slower than the parametric rate and depends on

the number of frequencies (m) used in estimation, where it is assumed that m→∞
so slowly that the bias effect is smaller than m−1/2. Giraitis and Robinson found

the Whittle estimator to be independent of d to order m−1/2, which is analogous

to the pivotal property found for the parametric estimator in the present paper on

parametric estimation.

The plan for the rest of the paper is as follows. In Section 2 we identify ‘exact’

and ‘approximate’ expansions for the distribution of the WMLE. By ‘exact’, it is

meant that the terms in the Edgeworth expansions depend on n and are O (1) (see,

e.g., Durbin (1980, eq’n (28))) and by ‘approximate’ it is meant that the limits of

these terms have been taken. Section 3 develops similar expansions for the PPMLE.

The approximate WMLE and PMLE expansions are identical to second-order and

agree with the one found by LP in the canonical case. However, the exact expansions

differ. Final remarks are given in Section 4.

2. S - W

This section provides second-order Edgeworth expansion for the distribution of

the WMLE and shows that this expansion is identical to the one obtained in LP

for the exact Gaussian MLE in the canonical case, giving the second order pivotal

property of theWMLE of d. Using Szegö’s identity, we express theWhittle likelihood

as a summand of two terms, with dependence on d only through the second term in

the summand, which is a scaled quadratic form in Gaussian long memory variables.

The decomposition reveals that the solution to theWMLE, as well as its distribution,

are independent of the scale parameter and µ.

Let θ = (d,σ2). The spectral density of the process is given by

fθ(λ) =
σ2

2π
1− eiλ −2d

.
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Denote the covariance matrix by Tn(fθ). The Whittle log-likelihood is given by

LWn (θ) = −
n

4π π

log fθ(λ) +
In(λ)

fθ(λ)
dλ , (3)

where

In(λ) =
1

2πn

n

j=1

eiλj(Xj − X̄n)
2

, X̄n = n
−1ΣXj.

We can write the second summand in (3) as

−1
2

n

j,k=1

(Xj − X̄n)(Xk − X̄n) 1

4π2 Π

f−1θ (λ)ei(j−k)λdλ = −1
2
xnMnTW,nMnxn,

whereMn = In−Pn, Pn = n−11n1n, 1n is an n-vector of 1’s, xn = (X1, . . . , Xn) and

TW,n = Tn
1

4π2fθ
.

Thematrix TW,n is theWhittle approximation to T−1n (fθ). TheWhittle log-likelihood

is thus given by

LWn (θ) = −
n

4π Π

log fθ(λ)dλ− 1
2
xnMnTW,nMnxn.

Write fd(λ) = 1
2π
1− e−iλ −2d

. Szegö’s identity

log σ2 =
1

2π Π

log (2πfθ(λ)) dλ,

implies

Π

log (2πfd(λ)) dλ = 0.

Thus,

LWn =
n

2
log(2π)− n

2
log σ2 − 1

2σ2
xnMnT

d
W,nMnxn,

and the WMLE of d solves

∂LWn
∂d

= − 1

2σ2
xnMnṪ

d
W,n(d̂W,n)Mnxn = 0,
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where T dW,n is the Whittle matrix of the ARFIMA(0, d, 0) model with a unit vari-

ance and d̂W,n is the WMLE of d. Evidently, the solution for d̂W,n depends on d

through the quadratic form only. More generally, Szegö’s identity implies that for

any ARFIMA(p, d, q) model, the Whittle likelihood depends on all the parameters

apart from σ2 through the quadratic form only. This is not the case with the ex-

act likelihood, where there is dependence on the ARFIMA parameters through the

logarithm of the determinant of the covariance matrix. In other words, unlike the

exact Gaussian MLE, the solution for d̂W,n does not depend on σ2 or on µ.

To proceed, we recall Theorem 6 of LP, which gives a formal second-order ex-

pansion for the density of δ̂n. The expansion is

h̃
(1)

δ̂n
(u; d) = φ u;κ−1n,1,1 (d) {1 +

1√
n
[C∗n,1 (d)u+ C

∗
n,3 (d) u

3]}, (4)

for terms κ−1n,1,1 (d), C
∗
n,1 (d), and C

∗
n,3 (d) which are functions of expected values of

Gaussian log-likelihood derivatives under the known mean and variance assumption

and are defined through eq’ns (10)-(12) of LP. It is clear from the proof of Theorem

6 of LP that the general form of (4) extends to the Whittle likelihood, but with

terms κ−1W,n,1,1 (d), C
∗
W,n,1 (d), and C

∗
W,n,3 (d) replacing their analogues in (4). In other

words, to identify the expansion for δ̂W,n =
√
n(d̂W,n − d0), we need to find terms

κ−1W,n,1,1 (d), C
∗
W,n,1 (d), and C

∗
W,n,3 (d) which are precisely the same functions of the

Whittle likelihood derivatives as κ−1n,1,1 (d), C
∗
n,1 (d), and C

∗
n,3 (d) are of the Gaussian

log-likelihood derivatives. To do so, we define

LW,n,j = − 1

2σ2
x Mn

∂j

∂dj
T dW,n Mnxn, j = 1, 2, 3

ZW,n,j =
1√
n
(LW,n,j −Eθ(LW,n,j)), j = 1, 2 .

We find:

κW,n,1,1 = Var(ZW,n,1) =
1

2n
tr MnṪ

d
W,nMnT

d
n

2

(5)
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C∗W,n,1 = −2µW,n,3 + 4κW,n,1,2 + κW,n,1,1,1

2κW,n,1,1
(6)

C∗W,n,3 =
κW,n,1,1,1

6
+
µW,n,3
2

+ κW,n,1,2 (7)

µW,n,3 =
1

n
Ed(LW,n,3)

= − 1
2n
tr Mn

...

T
d

W,n MnT
d
n (8)

κW,n,1,2 = cov(ZW,n,1, ZW,n,2)

=
1

2n
tr MnṪ

d
W,nMnT

d
nMnT̈

d
W,nMnT

d
n (9)

κW,n,1,1,1 =
1

n
tr MnṪ

d
W,nMnT

d
n

3

. (10)

With (5)—(10), the exact second-order expansion for the density of δ̂W,n is

h̃
(1)

δ̂w,n
(u; d) = φ(u;κ−1W,n,1,1(d)) 1 +

1√
n
C∗W,n,1(d)u+ C

∗
W,n,3(d)u

3 . (11)

The expansion (11) is exact in the sense that the terms in it involve exact expec-

tations of Whittle likelihood derivatives. The terms κ−1W,n,1,1, C
∗
W,n,1(d), C

∗
W,n,3(d)

depend on n and are O (1). Edgeworth expansions with coefficients depending on

n are standard in the literature. See, for example, Durbin (1980, eq’n (28)). The

expansion is a nonlinear function of d through these terms. We proceed to obtain an

approximate expansion by seeking limits of κ−1W,n,1,1, C
∗
W,n,1(d), C

∗
W,n,3(d) as n→∞.

It turns out that these limits do not depend on d. Hence, it turns out that δ̂W,n is

second-order pivotal.

Define C (λ) = log[2 (1− cosλ)] and note that for any j ∈ N ,

∂jf−1d (λ)
∂dj

=
Cj(λ)

fd(λ)
= O |λ|2d−δ as λ→ 0,∀δ > 0. (12)

We know from Theorem 3 of Andrews and Lieberman (2002b), which holds under

(12), that

1

n
tr Mn

∗
T
d

W,n MnT
d
n

h

=
1

n
tr

∗
T
d

W,n T
d
n

h

+O n−1+δ ,∀δ > 0,
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where h is any finite positive integer and the ∗ on T dW,n denotes any number of
derivatives. Applying Theorem 5 of Lieberman and Phillips (2002), which also

holds under (12), we get

1

n
tr

∗
T
d

W T d
h

− (2π)2h−1
Π

∂jf−1d (λ)
∂dj

f(λ)
h

dλ = O n−1+2δ , ∀ δ > 0 ,

where j is the number of dots (derivatives) signified in ∗. Using the results (e.g., p.
13 of LP):

Π

C2(λ) =
2π3

3
,

Π

C3(λ) = −24πξ(3),
Π

C4(λ) = 228πξ(4) .

We obtain

κW,n,1,1 =
1

2n
tr MnṪ

d
W,nMnT

d
n

2

=
1

2n
tr Ṫ dW,nT

d
n

2

+O n−1+δ

=
1

4π Π

ḟd(λ)

fd(λ)

2

dλ+O n−1+2δ

=
1

4π Π

C2(λ)dλ+O n−1+2δ

=
π2

6
+O n−1+2δ . (13)

Set

κW,1,1 =
π2

6
. (14)

Further,

κW,n,1,1,1 =
1

n
tr MnṪ

d
W,nMnT

d
n

3

=
1

n
tr Ṫ dW,nT

d
n

3

+O n−1+δ

=
1

2π Π

ḟd(λ)

fd(λ)

3

dλ+O n−1+2δ

= − 1
2π Π

C3(λ)dλ+O n−1+2δ

= 12ξ(3) +O n−1+2δ .
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Set

κW,1,1,1 = 12ξ(3) . (15)

κW,n,1,2 =
1

2n
tr Ṫ dW,nT

d
n T̈

d
W,nT

d
n +O n−1+δ

=
1

4π Π

∂f−1d (λ)
∂d

∂2f−1d (λ)
∂d2

f2(λ) dλ+O n−1+2δ

=
1

4π Π

C3(λ)dλ+O n−1+2δ

= −6ζ (3) +O n−1+2δ .

Set

κW,1,2 = −6ξ(3) . (16)

Also,

µW,n,3 = −
1

2n
tr

...

T
d

W,n T
d
n +O n−1+δ .

The third-order derivative of f−1d (λ) is

∂3f−1d
∂d3

= −6f−4d ḟ3d + 6f−3d ḟdf̈d − f−2d
...

fd .

So,

µW,n,3 = − 1
4π Π

−6 ḟ
3
d (λ)

f3d (λ)
+ 6

ḟd(λ)f̈d(λ)

f2d (λ)
−

...

fd (λ)

fd(λ)
dλ+O n−1+2δ

= − 1
4π Π

C3(λ)dλ+O n−1+2δ

= 6ξ(3) +O n−1+2δ .

Set

µW,3 = 6ξ(3) . (17)
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Using (5)—(10) and (13)-(17),

C∗W,n,1 = − 12ξ(3)− 24ξ(3) + 12ξ(3)
2π

2

6

+O n−1+2δ

= O n−1+2δ (18)

and

C∗W,n,3 =
12ξ(3)

6
+
6ξ(3)

2
− 6ξ(3) +O n−1+2δ

= −ξ(3) +O n−1+δ . (19)

Using (13)-(19) in (11), the approximate second-order expansion to the density of

δ∗W,n =
√
κW,n,1,1δ̂W,n is given by

h̃
(1),A
δ∗W,n

= φ (u) 1− ξ(3)√
nζ3/2 (2)

u3 , (20)

which is identical to the approximate expansion for the density of δ∗n =
√
κn,1,1δ̂n,

given in Corollary 7 of LP. Thus, the same pivotal result, with the same coefficients,

holds for the Gaussian MLE in the ARFIMA(0, d, 0) model with known mean and

variance and the WMLE in the same model but with σ2 and µ unknown. Further-

more, it follows from the proof of Theorem 8 of LP that

sup
x∈R

sup
d∈D∗

Pd0 δ̂W,n ≤ x/√κW,n,1,1 − H̃(1),A

δ̂W,n
(x/
√
κW,n,1,1) = o n

−1/2 ,

where

H̃
(1),A

δ̂W,n
(x) =

x

−∞
h̃
(1),A

δ̂W,n
(u)du.

In other words, the distribution expansion based on the integral of the density

expansion (20) is a valid asymptotic expansion.

2. E

The Gaussian log-likelihood is given by

Ln(θ, µ) = −n
2
log 2π − n

2
log σ2 − 1

2
log detT dn −

1

2σ2
(xn − µ1n) T−1n (fd)(xn − µ1n).
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We reduce the dimensionality of the problem by projecting µ out and profiling the

resulting plug-in log-likelihood wrt σ2. Replacing µ by x̄n then, we obtain

Ln(d,σ
2; x̄n) = −n

2
log 2π − n

2
log σ2 − 1

2
log detT dn −

1

2σ2
xnMnT

−1
n (fd)Mnxn.

We could replace µ by any n
1
2
−d-consistent estimator but the choice of x̄n is the

most popular in applied work and leads to tractable results. See Dahlhaus (1989).

Set Qn = xnMnT
−1
n (fd)Mnxn. The plug-in score is

∂Ln(d,σ
2; x̄n)

∂d
= −1

2
tr(T−1n (fd) Ṫ

d
n) +

1

σ2
xnMnA

d
n,1Mnxn

with

Adn,1 = −
1

2

∂T−1n (fd)

∂d

and the plug-in MLE (PMLE) of σ2 is

σ̂2 =
Qn
n
.

So, the profiled-plug-in score is

∂Ln(d; σ̂
2, x̄n)

∂d
= −1

2
tr(T−1n (fd) Ṫ

d
n) +

xnMnA
d
n,1Mnxn

Qn/n
.

The PPMLE of d is a solution to the estimating equation

Ln,1(d) = −1
2
CnQn + xnMnA

d
n,1Mnxn = 0, (21)

with

Cn =
1

n
tr T−1n (fd) Ṫ

d
n .

Equation (21) differs from the score in the canonical case in that the latter does

not involve Qn and Mn. Moreover, (21) is not a proper score but rather it is an

estimating equation. Nevertheless, it is easy to see that the general form of (4) is

also valid for the estimator based on (21). For simplicity, we do not distinguish the

notation between the MLE and the PPMLE. We shall write

Ln,j+1 =
∂jLn,1
∂d

, j = 1, 2

11



δ̂n =
√
n(d̂n − d0)

and set

Zn,1 =
1√
n
[Ln,1 −E(Ln,1)]

Zn,2 =
1√
n
[Ln,2 −E(Ln,2)]

Zn = (Zn,1, Zn,2)

κn,1,1 = Ed(Z
2
n,1)

µn,3 =
1

n
Ed(Ln,3(d))

Dn = Adn,1 −
1

2
CnT

−1
n (fd) .

For the exact expansion, the analogue of (4), we need the following terms:

κn,1,1 = Ed(Z
2
n,1) (22)

=
2

n
tr(MnDnMnT

d
n)
2,

κn,1,2 =
2

n
tr(MnDnMnT

d
nMnDnMnT

d
n),

κn,1,1,1 =
8

n
tr(MnDnMnT

d
n)
3,

µn,3 =
1

n
Ed[Ln,3(d)]

=
1

2n
tr(4 T−1n (fd) Ṫ

d
n

3

− 3T−1n (fd) Ṫ
d
nT

−1
n (fd) T̈

d
n).

Substituting the last expressions into C∗n,1 and C
∗
n,3, which are of the same form as

(6)-(7), we obtain the expansion (4). Simplification of the last terms is required to

achieve the approximate expansions, with coefficients not depending on n. In (22),

2

n
tr(MnDnMnTn)

2 =
2

n
Σ tr

2

j=1

(−Pn)χjDn(−Pn)ξjTn (23)

12



where χj, ξj are either zero or one and satisfy 0 ≤ 2
j=1 (χj + ξj) ≤ 4. The summa-

tion in (23) is over all possible 24 = 16 configurations (χ1, ξ1,χ2, ξ2) and P 0n = I.

From Theorem 7 of Lieberman and Phillips (2002) and the fact that

Π

ḟd(λ)

fd(λ)
dλ = 0,

we see that

Cn = O n−
1
2
+δ ,∀δ > 0.

The leading term in (23), corresponding to Σ(χj + ξj) = 0, is therefore

2

n
tr(DnTn)

2 =
2

n
tr Adn,1 −

1

2
CnT

−1
n (fd) T dn

2

=
2

n
tr

1

2
T−1n (fd) Ṫ

d
n

2

+
1

4
C2nI −

1

2
T−1n (fd) Ṫ

d
n Cn

= O(1) +O n−1+2δ +O n−1+2δ

= O(1).

So,

2

n
tr(DnT

d
n)
2 =

1

2n
tr(T−1n (fd) Ṫ

d
n)
2 +O n−1+2δ .

Now, consider the configuration (1, 0, 0, 0). This gives 2
n
tr Pn(DnT

d
n)
2 . We have

DnTn =
1

2
T−1n (fd) Ṫ

d
n −

1

2
CnI,

and

2

n
tr Pn(DnT

d
n)
2 =

2

n2
1

1

2
(T−1n (fd) Ṫ

d
n)
2 +

1

4
C2nI −

1

2
(T−1n (fd) Ṫ

d
n)Cn 1. (24)

Now,

1 T−1n (fd) Ṫ
d
n

2

1 = 1 T−1/2n (fd)T
−1/2
n (fd) Ṫ

d
nT

−1
n (fd) Ṫ

d1/2
n Ṫ d1/2n 1

≤ 1 T−1n (fd) 1 1 Ṫ dn1 T
− 1
2

n (fd) Ṫ
d
nT

−1
n (fd) Ṫ

d 1
2

n .

Using Theorem 5.2 of Adenstedt (1974),

1 T−1n (fd) 1 ≤ Kn(1−2d+δ)/2.
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For (1 Ṫ dn1), we use the fact that

∂fd(λ)

∂d
= C(λ)fd(λ) = O |λ|−2d−δ ,

as λ→ 0. Hence,

1 Ṫ dn1 ≤ Kn(1+2d+δ)/2.

Finally,

T
− 1
2

n (fd) Ṫ
d
nT

−1
n (fd) Ṫ

1
2
n (fd) ≤ T

−1
2

n (fd) Ṫ
1
2
n (fd) Ṫ

1
2
n (fd)T

− 1
2

n (fd) T
− 1
2

n (fd) Ṫ
1
2
n (fd)

≤ Kn3δ,

by Lemma 5.3 of Dahlhaus. So, the first term in (24) is

2

n2
1

1

2
T−1n (fd) Ṫ

d
n

2

1 ≤ Kn−1+2δ.

The second term in (24) is

2

n2
1

1

4
C2nI 1 =

1

2n
C2n = O n−2+2δ ,

and the last term is

2

n2
Cn
1

2
1 T−1n (fd) Ṫ

d
n1 ≤ Kn−2+δ.

Similarly, we can show that terms involving more than one P are of smaller order

of magnitude. Returning to (22), we have

κn,1,1 =
2

n
tr Mn An,1 − 1

2
CnT

−1
n (fd) MnT

d
n

2

=
1

2n
tr T−1n (fd) Ṫ

d
n

2

+O(n−1+2δ)

=
π2

6
+O(n−1/2+δ).

so that the leading term is as in the canonical case. Continuing

κn,1,2 =
2

n
tr(MnDnMnT

d
nMnDnMnT

d
n)

=
2

n
tr Adn,1T

d
nA

d
n,1T

d
n +O n−1+2δ

= −6ζ (3) +O n−1/2+δ .

14



The further terms needed in C∗n,1 and C
∗
n,3 are

κn,1,1,1 =
8

n
tr(AnDnMnT

d
n)
3

=
8

n
tr(Adn,1T

d
n)
3 +O n−1+2δ

= 12ζ (3) +O n−1/2+δ ,

and

µn,3 =
1

n
Ed[Ln,3(d)]

=
1

2n
tr(4T−1n (fd) Ṫ

d
n − 3T−1n (fd) Ṫ

d
nT

−1
n (fd) T̈

d
n) +O n−1+2δ

= 6ζ (3) +O n−1/2+δ .

So, the approximate Edgeworth expansion for the PPMLE is identical to (2).

C

The results here show agreement between the second-order distributions of the

WMLE and the PPMLE. To highlight the higher-order difference between the two,

it is sufficient to compare the terms

κW,n,1,1 =
1

2n
tr MnṪ

d
W,nMnT

d
n

2

and

κn,1,1 =
2

n
tr Mn An,1 − 1

2
CnT

−1
n MnTn

2

.

Note that κn,1,1 and κW,n,1,1 are the inverses of the variances of the normal leading

terms of the distributions of the WMLE and PPMLE, respectively. Their common

limit is π2/6, which is the inverse of the variance of the asymptotic distribution.

Their difference is given by

|κW,n,1,1 − κn,1,1| = 1

2n
tr T dW,nṪ

d
n

2

− 1

2n
tr T d−1n Ṫ dn

2

+O(n−1+2δ)

= O n−1/2+δ .

That is, the difference is dominated by the error of the Whittle approximation to

T dn , and not by the addition of the Mn matrix or the fact that the PPMLE is not

15



a solution to a standard score. Similar analysis extends to the other terms in the

exact expansion. Hence, the exact PPMLE and WMLE second-order Edgeworth

expansions differ by o n−1/2 .

The t statistic for the hypothesis H0 : d = d0 is

tn (d0) = π
n

6
d̂n − d0 .

The upper one-sided 100 (1− α)% confidence interval (CI) for d0 is defined by

∆CIup d̂n = [d̂n − zα
√
6/ π

√
n ,∞), (25)

where zα is the (1− α) quantile of the normal distribution. By Theorem 1(c) of

Andrews and Lieberman (2002a),

sup
d0∈D∗

Pd0 d0 ∈ ∆CIup d̂n − (1− α) = O n−1/2 ,

giving a uniform error rate. The upper one-sided bootstrap 100 (1− α)% CI for d0

is defined as

∆CI∗up d̂n = [d̂n − z∗t,α
√
6/ π

√
n ,∞),

where z∗t,α is the (1− α) quantile of the parametric bootstrap t statistic, t̃∗n d̃n ,

and d̃n is a bootstrap generating estimator, such as the WMLE or the PPMLE. Our

second-order pivotal result implies that

sup
d0∈D∗

Pd0 d0 ∈ ∆CI∗up d̂n − (1− α) = o n−3/2 ln(n) , (26)

see Theorem 2(b) and Comment 5 of Andrews and Lieberman (2002a). In contrast,

for the non-pivotal statistics, the right side of (26) is only o (n−1 ln (n)).
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