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Abstract

A new panel data model is proposed to represent the behavior of economies in transition

allowing for a wide range of possible time paths and individual heterogeneity. The model has

both common and individual specific components and is formulated as a nonlinear time varying

factor model. When applied to a micro panel, the decomposition provides flexibility in idiosyn-

cratic behavior over time and across section, while retaining some commonality across the panel

by means of an unknown common growth component. This commonality means that when the

heterogeneous time varying idiosyncratic components converge over time to a constant, a form of

panel convergence holds, analogous to the concept of conditional sigma convergence. The paper

provides a framework of asymptotic representations for the factor components which enables

the development of econometric procedures of estimation and testing. In particular, a simple

regression based convergence test is developed, whose asymptotic properties are analyzed under

both null and local alternatives, and a new method of clustering panels into club convergence

groups is constructed. These econometric methods are applied to analyze convergence in cost

of living indices among 19 US. metropolitan cities.
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1 Introduction

In the past decade, the econometric theory for dynamic panel regressions has developed rapidly

alongside a growing number of empirical studies involving both macro, international, regional and

micro economic data. This rapid development has been stimulated both by the availability of

new data sets and by the recognition that panels help empirical researchers to address many new

economic issues. For example, macro aggregated panels such as the Penn World Table (PWT) data

have been used to investigate growth convergence and evaluate the many diverse determinants of

economic growth. Durlauf and Quah (1999) and Durlauf, Johnson and Temple (2005) provide

excellent overviews of this vast literature and the econometric methodology on which it depends.

Similarly, micro panel data sets such as the PISD have been extensively used to analyze individual

behavior of economic agents across section and over time. - see Ermisch (2004) and Hsaio (2003)

for recent overviews of micro panel research. A pervasive finding in much of this empirical panel

data research is the importance of individual heterogeneity. This finding has helped researchers to

build more realistic models that account for heterogeneity, an example being the renewed respect

in macroeconomic modeling for micro foundations that accommodate individual heterogeneity - see

Browning, Hansen and Heckman (1999), Krusell and Smith(1998), Givenen (2005), and Browning

and Carro (2006).

Concerns about capturing heterogeneous agent behavior in economic theory and modeling this

behavior in practical work have stimulated interest in the empirical modeling of heterogeneity in

panels. One popular empirical model involves a common factor structure and idiosyncractic effects.

Early econometric contributions of this type analyzed the asymptotic properties of common factors

in asset pricing models (e.g. Chamberlain and Rothschild, 1983; and Connor and Korajczyk, 1986,

1988). Recent studies have extended these factor models in several directions and developed theory

for the determination of the number of common factors and for inference in panel models with

nonstationary common factors and idiosyncratic errors (e.g., Bai and Ng, 2002, 2004; Stock and

Watson, 1999; Moon and Perron, 2004; Phillips and Sul, 2006). There is much ongoing work in the

econometric development of the field to better match the econometric methods to theory and to

the needs of empirical research.

To illustrate some of the issues, take the simple example a single factor model

Xit = δiμt + it, (1)

where δi measures the idiosyncratic distance between some common factor μt and the systematic

part of Xit. The econometric interpretation of μt in applications may differ from the prototypical

interpretation of a ‘common factor’ or aggregate element of influence in micro or macro theory.

The factor μt may represent aggregated common behavior of Xit but it could also be any common
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variable of influence on individual behavior, such as an interest rate or exchange rate. The model

then seeks to capture the evolution of the individual Xit in relation to μt by means of its two

idiosyncratic elements: the systematic element (δi) and the error ( it).

The present paper makes two contributions in this regard. First, we extend (1) in a simple man-

ner by allowing the systematic idiosyncractic element to evolve over time, thereby accommodating

heterogeneous agent behavior and evolution in that behavior by means of a time varying factor

loading coefficient δit. We further allow δit to have a random component, which absorbs it in (1)

and allows for possible convergence behavior in δit over time in relation to the common factor μt,

which may represent some relevant aggregate variable or possible representative agent behavior.

The new model has a time varying factor representation

Xit = δitμt, (2)

where both components δit and μt are time varying and there may be some special behavior of

interest in the idiosyncratic element δit. For example, heterogeneous discount factor models typically

assume that the heterogeneity is transient and that the discount factors become homogeneous in

the steady state (e.g., Uzawa, 1968; Lucas and Stockey, 1982; Obstfeld, 1990; Schmidt-Grohe and

Uribe, 2003; Choi, Mark and Sul, 2005). In such cases, δit contains information relating to these

assumed characteristics. The parameter of interest is then δit and particular attention is focused

on its temporal evolution and convergence behavior.

The second contribution of the paper addresses this latter issue and involves the development

of an econometric test of convergence for the time varying idiosyncratic components. Specifically,

we develop a simple regression based test of the hypothesis H0 : δit → δ for some δ as t→∞. The

approach has several features that make it useful in practical work. First, the test does not rely

on any particular assumptions concerning trend stationarity or stochastic nonstationarity in Xit

or μt. Second, the nonlinear form of the model (2) is sufficiently general to include a wide range

of possibilities in terms of the time paths for δit and their heterogeneity over i. Third, when Xit

and μt are stochastically nonstationary, our approach to convergence testing is very different from

conventional applications of unit root and cointegration concepts. Cointegation posits that a long

run equilibrium relation exists between the variables Xit and Xjt for i 6= j and that there is some

common I (1) component μt. In this case, it is easy to see that if δit = δi, then Xit and Xjt are

cointegrated with cointegrating vector (−δi, δj). Here cointegration does not mean convergence
because δi 6= δj implies that there is no convergence between the individual behavior of Xit and

Xjt, just a form of parallel evolution over time. Instead, convergence requires an eventual (i.e. as

t→∞) homogeneity restriction on δit and a test of whether Xit−Xjt is stationary. However, under

such conditions, there may be a substantial period of transition in which δit 6= δjt and conventional

cointegration tests will break down and be unreliable indicators of eventual cointegration and
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convergence. By focussing on δit our approach delivers information about the transition path of

δit and allows for the important case in practice where individual behavior may be transitionally

divergent.

The remainder of the paper is organized into eight sections. Section 2 motivates our approach

in terms of some relevant economic examples of factor models in macroeconomic convergence,

labor income evolution, and stock returns. A major theme in our work is the analysis of long run

equilibrium and convergence by means of a transition parameter, hit. This parameter is constructed

directly from the data Xit and is a functional of δit that provides a convenient relative measure

of the temporal evolution of δit. Under certain regularity conditions, we show in Section 3 that

hit has an asymptotic representation in a standardized form that can be usefully interpreted as a

relative transition path for economy i in relation to other economies in the panel.

Section 4 introduces a new regression test of convergence and a procedure for clustering panel

data into clubs with similar convergence characteristics. We call the regression test of convergence

the log t test because it is based on a time series linear regression of a cross section variance ratio of

the hit on log t. This test is very easy to apply in practice, involving only a simple linear regression

and a one sided regression coefficient test with standard normal critical values. The asymptotic

properties of this test are obtained and a local asymptotic power analysis is provided. The regression

on which this test is based also provides an empirical estimate of the speed of convergence. This

section provides a step by step procedure for practical implementation of this test and its use as

a clustering algorithm to find club convergence groups. An analysis of the statistical properties of

the convergence test and club convergence clustering algorithm is given in the Appendix.

Section 5 reports the results of some Monte Carlo experiments that evaluate the performance

of the convergence test in finite samples. The experiments are set up to include some practically

interesting and relevant data generating processes.

Section 6 contains two empirical examples. The first involves testing convergence in the cost

of living across 19 metropolitan U.S. cities using consumer price indices. The empirical results

reveal no convergence in cost of living among U.S. cities. Apparently, the cost of living in major

metropolitan cities in California is increasing faster than in the rest of the U.S., while the cost

of living in Saint Louis and Houston is decreasing relative to the rest of the U.S. The second

example concerns an empirical test of international risk sharing. Using a panel of real per capita

consumption data for 66 countries over 38 years, we find that there is no empirical evidence for

overall risk sharing, but there is empirical support for club convergence involving 4 subgroups.

Section 7 concludes the paper. Section 8 contains Appendices of technical material and proofs.
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2 Time Varying Factor Representation and Convergence

Panel data Xit are often usefully decomposed as

Xit = git + ait, (3)

where git embodies systematic components, including permanent common components that give

rise to cross section dependence, and ait represents transitory components. For example, the panel

Xit could comprise log national income data such as the PWT, regional log income data such as

the 48 contiguous U.S. state log income data, regional log consumer price index data, or personal

survey income data among many others. We do not assume any particular parametric specification

for git and ait at this point and the framework includes many linear, nonlinear, stationary and

nonstationary processes.

As it stands, the specification (3) may contain a mixture of both common and idiosyncratic

components in the elements git and ait. To separate common from idiosyncratic components in the

panel, we may transform (3) to the form of (2), viz.,

Xit =

µ
git + ait

μt

¶
μt = δitμt, for all i and t. (4)

where μt is a single common component and δit a time varying idiosyncratic element. For example,

if μt represents a common trend component in the panel, then δit measures the relative share in μt
of individual i at time t. Thus, δit is a form of individual economic distance between the common

trend component μt and Xit. The representation (4) is a time varying factor model.

The following examples illustrate how the simple econometric representation (4) usefully fits in

with some micro and macro economic models that are commonly used in applied work.

Economic Growth Following Parente and Prescott (1994), Howitt and Mayer-Foulkes(2005),

and Phillips and Sul (2005), and allowing for heterogeneous technology progress in a standard

neoclassical growth model, log per capita real income, log yit, can be written as

log yit = log y
∗
i + (log yi0 − log y∗i ) e−βit + logAit = ait + logAit, (5)

where log y∗i is the steady state level of log per capita real effective income, log yi0 is the initial

log per real effective capita income, βit is the time varying speed of convergence rate, and logAit

is the log of technology accumulation for economy i at time t. The relationship is summarized in

(5) in the terms ait and logAit, where ait captures transitional components and logAit includes

permanent components. Introducing a common growth component μt across economies, we have

log yit =

µ
ait + logAit

μt

¶
μt = δitμt,
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corresponding to (4). Phillips and Sul (2006) call δit a ‘transition parameter’ and μt a ‘common

growth component’. Both components are of interest in this example. In the analysis of possible

growth convergence or divergence over time and in the study of heterogeneous transition paths

across economies, the time varying component δit is especially important.

Labor Income In labor economics (e.g., Karz and Autor, 1999; Moffitt and Gottschalk, 2002),

personal log real income, log yit within a particular age group is commonly decomposed into com-

ponents of permanent income, git, and transitory income, ait, so that

log yit = git + ait

Typically, transitory income is interpreted as an idiosyncratic component and permanent income is

regarded as having some common (possibly stochastic) trend component. Again, this model may be

rewritten as in (4) by factoring out the common stochastic trend component. The main parameter

of interest then becomes the time profile of the personal factor loading coefficient δit. The evolution

of this parameter may then be modeled in terms of individual attributes and relevant variables,

such as education, vocational training, or job experience.

Stock Return Factor Modeling Models with a time varying factor structure have been popular

for some time in Finance. For example, French and Fama (1993, 1996) modeled stock returns Xit

as1

Xit = δ1,itμ1t + δ2,itμ2t + δ3,itμ3t + it (6)

where the μst are certain ‘common’ determining factors for stock returns, while the δs,it are time

varying factor loading coefficients that capture the individual effects of the factors. It has often

been found convenient in applied research to assume that the time varying loading coefficients are

constant over short time periods. Ludvigson and Ng (2005), for instance, recently estimated the

number of common factors in a model of the form (6) based on time invariant factor loadings. On

the other hand, Adrian and Franzoni (2005) relaxed the assumption and attempted to estimate

time varying loadings by means of the Kalman filter under the assumption that the factor loadings

follow an AR(1) specification.

Alternatively, the model (6) may be embedded in the framework (4) by writing

Xit =

µ
δ1,it + δ2,it

μ2t
μ1t

+ δ3,it
μ3t
μ1t

+
it

μ1t

¶
μ1t.

1Similarly, Menzly, Santos and Veronesi (2002) modeled stock prices as in (3).
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If the common trend elements in (6) are drifting I(1) variables of the form

μjt = mjt+
tX

s=1

ejs, for j = 1, 2, 3, with m1 6= 0,

then

μjt
μ1t

=
mjt+

Pt
s=1 js

m1t+
Pt

s=1 1s

=
mj

m1
+ op (1) ,

and we have

δit = δ1,it +

½
δ2,it

m2

m1
+ δ3,it

m3

m1

¾©
1 + op (1)

ª
, μt = μ1t.

2.1 Long Run Equilibrium and Convergence

An important feature of the time varying factor representation is that it provides a new way of

thinking about and modeling long run equilibrium. Broadly speaking, time series macroeconomics

presently involves two categories of analysis, involving long run equilibrium growth on the one hand

and short run dynamics on the other. This convention has enabled extensive use of cointegration

methods for long run analysis and stationary time series methods for short run dynamic behavior.

In the time varying factor model, the use of common stochastic trends conveniently accommodates

long run co-movement in aggregate behavior without insisting on the existence of cointegration,

and it further allows for the modeling of transitional effects. In particular, idiosyncratic factor

loadings provide a mechanism for heterogeneous behavior across individuals and the possibility of

a period of transition in a path that is ultimately governed by some common long run stochastic

trend.

If two macroeconomic variables Xit and Xjt have stochastic trends and are thought to be in

long run equilibrium, then the time series are commonly hypothesized to be cointegrated and this

hypothesis is tested empirically. Cointegration tests are typically semiparametric with respect to

short run dynamics and rely on reasonably long time spans of data. However, in micro panels

such long run behavior is often not empirically testable because of data limitations that result in

much shorter panels. In the context of the nonlinear factor model (4), suppose that the loading

coefficients δit slowly converge to δ over time but the data available to the econometrician is

limited. The difference between two time series in the panel is given by Xit −Xjt = (δit − δjt)μt.

If μt is unit root nonstationary and δit 6= δjt, then Xit is generally not cointegrated with Xjt.

But since δit and δjt converge to some common δ as t → ∞, we may think of Xit and Xjt as

being asymptotically cointegrated. However, even in this case, if the speed of divergence of μt is

faster than the speed of the convergence of δit, the residual (δit − δjt)μt may retain nonstationary

characteristics and standard cointegration tests will then typically have low power in detecting the
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asymptotic co-movement. Hence, for economists to analyze co-movement and convergence in the

context of individual heterogeneity and evolution in the heterogeneity over time and across groups,

some rather different econometric methods are needed.

Accordingly, a simple but intuitive way of defining relative long run equilibrium or convergence

between such series is in terms of their ratio rather than their difference. That is, relative long run

equilibrium exists among the Xit if

limk→∞
Xit+k

Xjt+k
= 1 for all i and j. (7)

In the context of (4), this condition is equivalent to convergence of the factor loading coefficients

limk→∞δit = δ. (8)

2.2 Relative Transition

In the general case of (4), the number of observations in the panel is less than the number of

unknowns in the model. It is therefore impossible to estimate the loading coefficients δit directly

without imposing some structure on δit and μt. Both parametric and nonparametric structures are

possible. For example, if δit evolved according to an AR(1), while μt followed a random walk with

a drift, it would be possible to estimate both δit and μt by a filtering technique such as the Kalman

filter. Alternatively, as we show below, under some regularity conditions, it is possible to use a

nonparametric formulation in which the quantities of interest are a transition function (based on

δit) and a growth curve (based on μt). Some further simplification for practical purposes is possible

by using a relative version of δit as we now explain.

Since μt is a common factor in (4), it may be removed by scaling to give the relative loading or

transition coefficient

hit =
Xit

1
N

P
Xit

=
δit

1
N

P
δit

, (9)

which measures the loading coefficient δit in relation to the panel average at time t. Like δit, hit still

traces out a transition path for economy i but now does so in relation to the panel average. The

concept is useful in the analysis of growth convergence and measurement of transition effects, as

discussed in some companion empirical work (Phillips and Sul, 2006) where hit is called the relative

transition parameter.

Some properties of hit are immediately apparent. First, the cross sectional mean of hit is unity

by definition. Second, if the factor loading coefficients δit converge to δ, then the relative transition

parameters hit converge to unity. In this case, in the long run, the cross sectional variance of hit
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converges to zero, so that we have

σ2t =
1

N

NX
i=1

(hit − 1)2 → 0, as t→∞. (10)

Later in the paper, this property will be used to test the null hypothesis of convergence and to

group economies into convergence clusters.

3 Asymptotic Relative Transition Paths

In many empirical applications, the common growth component μt will have both deterministic

and stochastic elements, such as a unit root stochastic trend with drift. In that case, μt is still

dominated by a linear trend asymptotically. In general, we want to allow for formulations of

the common growth path μt that may differ from a linear trend asymptotically, and a general

specification allows for the possibility that some individuals may diverge from the common growth

path μt, while others may converge to it. These extensions involve some technical complications

that can be accommodated by allowing the functions to be regularly varying at infinity (that is,

they behave asymptotically like power functions). We also allow for individual standardizations

for Xit, so that expansion rates may differ, as well as imposing a common standardization for

μt. Appendix A provides some mathematical details of how these extensions and standardizations

can be accomplished so that the modeling framework is more general. The present section briefly

outlines the impact of these ideas and shows how to obtain a nonparametric formulation of the

model (4) in which the quantities of interest are a nonparametric transition function δ (·) and a
growth curve μ (·) .

In brief, we proceed as follows. Our purpose is to standardize Xit in (4) so that the standardized

quantity approaches a limit function that embodies both the common component and the transition

path. To do so, it is convenient to assume that there is a suitable overall normalization of Xit for

which we may write equation (4) in the standardized form given by (11) below. Suppose the

standardization factor for Xit is diT = T γiWi (T ) , for some γi > 0 and some slowly varying

function2 Wi (T ) , so that Xit grows for large t according to the power law tγi up to the effect of

Wi (t) and stochastic fluctuations. We may similarly suppose that the common trend component

μt grows according to t
γZ (t) for some γ > 0 and where Z is another slowly varying factor. Then,

we may write

1

diT
Xit =

1

T γiWi (T )

µ
ait + git

μt

¶
μt = δiT

µ
t

T

¶
μT

µ
t

T

¶
+ o (1) , (11)

2That is Wi (aT ) /Wi (T )→ 1 as T →∞ for all a > 0. For example. the constant function, log (T ), and 1/ log (T )

are all slowly varying functions.
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where we may define the sample functions μT and biT as

μT

µ
t

T

¶
=

µ
t

T

¶γ Z
¡
t
T T
¢

Z (T )
, and δiT

µ
t

T

¶
=

µ
t

T

¶γi−γ Wi

¡
t
T T
¢
Z (T )

Wi (T )Z
¡
t
T T
¢ , (12)

as shown in Appendix A.

Now suppose that t = [Tr] , the integer part of Tr, so that r is effectively the fraction of the

sample T corresponding to observation t. Then, for such values of t, (11) leads to the following

asymptotic characterization

1

diT
Xit ∼ δiT

µ
[Tr]

T

¶
μT

µ
[Tr]

T

¶
∼ δiT (r)μT (r) . (13)

In (13), μT (r) is the sample growth curve, δiT (r) is the sample transition path (given T observa-

tions) for economy i at time T. It is further convenient to assume that these functions converge in

some sense to certain limit functions as T → ∞. For instance, the requirement that δiT and μT

satisfy

μT (r)→p μ (r) , δiT (r)→p δi (r) , uniformly in r ∈ [0, 1] , (14)

where the limit functions μ (r) and δi (r) are continuous or, at least, piecewise continuous, seems

fairly weak. By extending the probability space in which the functions δiT and μT are defined, (14)

also includes cases where the functions may converge to limiting stochastic processes3. The limit

functions μ (r) and δi (r) represent the common steady state growth curve and limiting transition

curve for economy i, respectively. Further discussion, examples and some general conditions under

which the formulations (13) and (14) apply are given in Appendix A.

Combining (13) and (14), we have the following limiting behavior for the standardized version

of Xit

1

diT
Xit →p Xi (r) = δi (r)μ (r) . (15)

With this limiting decomposition, we may think about μ (r) as the limiting form of the common

growth path and δi (r) as the limiting representation of the transition path of individual i as this

individual moves towards the growth path μ (r) . The representation (15) is sufficiently general to

allow for cases where individuals approach the common growth path in a monotonic or cyclical

fashion, either from below or above μ (r).

To illustrate (15), when μt is a stochastic trend with positive drift, we have the simple stan-

dardization factor diT = T and then

T−1μt=[Tr] = m
[Tr]

T
+Op

³
T−1/2

´
→p mr,

3For example, if μt is a unit root process, then under quite general conditions we have the weak convergence

T−1/2μ[Tr] = μT (r) ⇒ B (r) to a limit Brownian motion B (e.g., Phillips and Solo, 1992). After a suitable change

in the probability space, we may write this convergence in probability, just as in (14).
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for some constant m > 0. Similarly, the limit function δi (r) may converge to δi as T → ∞.

Combining the two factors gives the limiting path Xi (r) = δimr for individual i, so that the long

run growth paths are linear across individuals. When there is convergence across individuals, we

have limit transition curves δi (r) each with the property that δi (1) = δ, for some constant δ > 0,

but which may differ for intermediate values (i.e., δi (r) 6= δj (r) for some and possibly all r < 1).

In this case, each individual may transition in its own way towards a common limiting growth path

given by the linear function X (r) = δmr. In this way, the framework permits a family of potential

transitions to a common steady state.

Next, we consider the asymptotic behavior of the relative transition parameter. Taking ratios to

cross-sectional averages in (11) removes the common trend μt and leaves the following standardized

quantity

hiT

µ
t

T

¶
=

d−1iT Xit

1
n

Pn
j=1 d

−1
jTXjt

=
δiT

¡
t
T

¢
1
n

Pn
j=1 δjT

¡
t
T

¢ , (16)

which describes the relative transition of economy i against the benchmark of a full cross sectional

average. Clearly, hiT depends on n also but we omit the subscript for simplicity because this

quantity often remains fixed in the calculations. In view of (14), we have

hiT

µ
[Tr]

T

¶
→p hi (r) =

δi (r)
1
n

Pn
j=1 δj (r)

, as T →∞, (17)

and the function hi (r) then represents the limiting form of the relative transition curve for the

individual i.

For practical purposes of implementation when the focus of interest is long run behavior in the

context of macroeconomic data, it will often be preferable to remove business cycle components

first. Extending (4) to incorporate a business cycle effect κit, we can write

Xit = δitμt + κit.

Smoothing methods offer a convenient mechanism for separating out the cycle κit, and we can

employ filtering, smoothing and regression methods to achieve this. In our empirical work with

macroeconomic data, we have used two methods to extract the long run component δitμt. The first

is the Whittaker-Hodrick-Prescott (WHP) smoothing filter4. The procedure is popular because of

its flexibility, the fact that it requires only the input of a smoothing parameter, and does not require

prior specification of the nature of the common trend μt in Xit. The method is also suitable when

the time series are short. In addition to the WHP filter, we employed a coordinate trend filtering
4Whittaker (1923) first suggested this penalized method of smoothing or ‘graduating’ data and there has been a

large subsequent literature on smoothing methods of this type (e.g. see Kitagawa and Gersch, 1996). The approach

has been used regularly in empirical work in time series macroeconomics since Hodrick and Prescott (1982/1997).
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method (Phillips, 2005). This is a series method of trend extraction that uses regression methods

on orthonormal trend components to extract an unknown trend function. Again, the method does

not rely on a specific form of μt and is applicable whether the trend is stochastic or deterministic.

The empirical results reported in our applications below were little changed by the use of

different smoothing techniques. The coordinate trend method has the advantage that it produces

smooth function estimates and standard errors can be calculated for the fitted trend component.

Kernel methods, rather than orthonormal series regressions, provide another general approach to

smooth trend extraction and would also give standard error estimates. Kernel methods were not

used in our practical work here because some of the time series we use are very short and comprise as

few as 30 time series observations. Moreover, kernel method asymptotics for estimating stochastic

processes are still largely unexplored and there is no general asymptotic theory to which we may

appeal, although some specific results for Markov models have been obtained in work by Phillips

and Park (1998), Guerre(2004), Karlsen and Tj /ostheim (2001), and Wang and Phillips (2006).

Using the trend estimate θ̂it = dbitμt from the smoothing filter, the estimates

ĥit =
θ̂it

1
n

Pn
i=1 θ̂it

(18)

of the transition coefficients hit = δit/
¡
n−1

Pn
i=1 δit

¢
are obtained by taking ratios to cross-sectional

averages. Assuming a common standardization5 diT = dT for simplicity and setting t = [Tr] we then

have the estimate ĥi (r) = ĥi[Tr] of the limiting transition curve hi (r) in (17). We can decompose

the trend estimate θ̂it as

θ̂it = θit + eit =

∙
δit +

eit
μt

¸
μt, (19)

where eit is the error in the filter estimate of θit. Since μt is the common trend component, the

condition eit
μt
→p 0 uniformly in i seems reasonable6. Then,

ĥi (r) =

h
δi[Tr] +

ei[Tr]
μ[Tr]

i
1
n

Pn
i=1

h
δj[Tr] +

ej[Tr]
μ[Tr]

i = δiT
¡
t
T

¢
1
n

Pn
j=1 δjT

¡
t
T

¢ + op (1)→p
δi (r)

1
n

Pn
j=1 δj (r)

= hi (r) ,

so that the relative transition curve is consistently estimated by ĥi (r).
5Alternatively, if the standardizations diT were known (or estimated) and were incorporated directly into the

estimates θ̂it then ĥit = θ̂it/ n−1 n
i=1 θ̂it would correspondingly build in the individual standardization factors.

Accordingly, ĥit is an estimate of hit = hiT
t
T

as given in (16).
6Primitive conditions under which eit

μt
→p 0 holds will depend on the properties of μt and the selection of the

bandwidth/smoothing parameter/regression number in the implementation of the filter. In the case of the WHP

filter, this turns on the choice of the smoothing parameter (λ) in the filter and its asymptotic behavior as the sample

size increases. For instance, if μt is dominated by a linear drift and λ→∞ sufficiently quickly as T →∞, then the

WHP filter will consistently estimate the trend effect. Phillips and Jin (2002) provide some asymptotic theory for

the WHP filter under various assumptions about λ and the trend function.
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4 Modeling and Testing Convergence

A general theory for the calculation of asymptotic standard errors of fitted curves of the type ĥi (r)

that allow for deterministic and stochastic trend components of unknown form is presently not

available in the literature and is beyond the scope of the present paper. Instead, we will confine

ourselves to the important special case where the trend function involves a dominating stochas-

tic trend (possibly with linear or polynomial drift) and the transition coefficient hit is modeled

semiparametrically. Our focus of attention is the development of a test for the null hypothesis of

convergence and an empirical algorithm of convergence clustering.

As condition (8) states, under convergence, the cross sectional variation of ĥi (r) converges to

zero as t → ∞. We note, however, that decreasing cross sectional variation of ĥi (r) does not in

itself imply overall convergence. For example, such decreasing cross sectional variation can occur

when there is a local convergence within subgroups and overall divergence. Such a situation is

plotted in Fig. 1.

1

hir

r

Sub 1

Sub 2

Figure 1: Stylized Club Convergence with Two Subgroups

To design a statistical test for convergence, we need to take such possibilities of local subgroup

convergence into account. The approach we use is semi-parametric and assumes the following

general form for the loading coefficients δit.

δit = δi + σitξit, σit =
σi

L (t) tα
, t ≥ 1, σi > 0 for all i. (20)

where the components in this formulation satisfy the following conditions.

A1 ξit is iid (0, 1) with finite fourth moment μ4ξ over i for each t, and is weakly dependent and

stationary over t with autocovariance sequence γi (h) = E
¡
ξitξit+h

¢
satisfying

P∞
h=1 h |γi (h)| <∞.

Partial sums of ξit and ξ2it − 1 over t satisfy the panel functional limit laws

1√
T

[Tr]X
t=1

ξit ⇒ Bi(r) as T →∞ for all i (21)

1√
T

[Tr]X
t=1

¡
ξ2it − 1

¢
⇒ B2i(r) as T →∞ for all i, (22)

13



where Bi and B2i are independent and form independent sequences of Brownian motions with

variances ωii and ω2ii, respectively, over i.

A2 The limits

lim
N→∞

N−1
NX
i=1

σ2i = v2ψ, lim
N→∞

N−1
NX
i=1

σ4i = v4ψ,

lim
N→∞

N−1
NX
i=1

σ2iωii = ω2ξ , lim
N→∞

N−1
NX
i=1

σ4iω2ii = ω2η,

lim
N→∞

N−2
NX
i=2

i−1X
j=1

σ2iσ
2
j

∞X
h=−∞

γi (h) γj (h)

all exist and are finite.

A3 Sums of ψit = σiξit and σ2i
¡
ξ2it − 1

¢
over i satisfy the limit laws

N−1/2
NX
i=1

σiξit ⇒ N
¡
0, v2ψ

¢
(23)

N−1/2
NX
i=1

σ2i
¡
ξ2it − 1

¢
⇒ N

¡
0, v4ψ

¡
μ4ξ − 1

¢¢
, (24)

as N →∞ for all t, and the following joint limit laws

T−1/2N−1/2
TX
t=1

NX
i=1

σiξit ⇒ N
¡
0, ω2ξ

¢
(25)

T−1/2N−1/2
TX
t=1

NX
i=1

σ2i
¡
ξ2it − 1

¢
⇒ N

¡
0, ω2η

¢
, (26)

T−1/2
TX
t=1

N−1
NX
i=2

i−1X
j=1

σiσjξitξjt ⇒ N

⎛⎝0, lim
N→∞

N−2
NX
i=2

i−1X
j=1

σ2iσ
2
j

∞X
h=−∞

γi (h) γj (h)

⎞⎠ (27)

hold as N,T →∞.

A4 The function L (t) in (20) is slowly varying (SV), increasing and divergent at infinity. Possible

choices for L (t) are log(t+ 1), log2(t+ 1) or log log (t+ 1)) .

Panel functional limit laws such as (21) and (22) in A1 are known to hold under a wide set

of primitive conditions and are explored in Phillips and Moon (1999). These conditions allow

for the variances ωii to be random over i, in which case the limit in (21) is the mixture process

Bi(r) = ω
1/2
ii Vi (r) where Vi is standard Brownian motion. The central limit results (23) and (24)

hold under A1 and A2 and also for cases where the components ξit are not identically distributed

provided a uniform moment condition, such as supiE
¡
ξ4it
¢
<∞, holds. The joint limit laws (25) -

14



(27) are high level conditions that hold under primitive assumptions of the type given in Phillips

and Moon (1999).

In A4, the slowly varying function L (t) → ∞ as t → ∞. In applications, it will generally be

convenient to set L (t) = log (t+ 1) or a similar increasing slowly varying function. The presence

of L (t) in (20) ensures that δit →p δi as t→∞ even when α = 0. Thus, when δi = δ for all i, the

null hypothesis of convergence is the weak inequality constraint α ≥ 0, which is very convenient
to test. In view of the fact that δit →p δi as t → ∞, we also obtain a procedure for analyzing

subgroup convergence. The presence of L (t) also assists in improving power properties of the test,

as we discuss below.

The conditions for convergence in the model can be characterized as follows:

p lim k→∞δit+k = δ if and only if δi = δ and α ≥ 0
p lim k→∞δit+k 6= δ if and only if δi 6= δ or α < 0

Note that there is no restriction on α under divergence when δi 6= δ. However, we have a particular

interest in the case of divergence with δi 6= δ and α ≥ 0, as this allows for the example considered in
Fig. 1 where there is the possibility of local convergence to multiple equilibria. This case is likely to

be important in empirical applications where there is evidence of clustering behavior, for example

in individual consumption or income patterns over time. In such cases, we may be interested in

testing whether elements in a panel converge within certain subgroups.

The remainder of this section develops an econometric methodology for testing convergence in

the above context and provides a step by step procedure for practical implementation. In particular,

we show how to test the null hypothesis of convergence, develop asymptotic properties of the test,

including a local power analysis, and provide an intuitive discussion of how the test works. We also

discuss a procedure for detecting panel clusters. Proofs and related technical material are given in

the Appendix.

4.1 A Regression Test of Convergence

The following procedure is a regression t− test of the null hypothesis of convergence

H0 : δi = δ and α ≥ 0,

against the alternative HA : δi 6= δ for all i, or α < 0.

Step 1: Construct the cross sectional variance ratio H1/Ht where

Ht =
1

N

NX
i=1

(hit − 1)2 , hit =
Xit

N−1PN
i=1Xit

. (28)
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Step 2: Run the following regression and compute a conventional robust t− statistic tb̂ for the
coefficient b̂ using an estimate of the long run variance of the regression residuals:

log

µ
H1

Ht

¶
− 2 logL (t) = â+ b̂ log t+ ût, for t = [rT ] , [rT ] + 1, ..., T with r > 0 (29)

In this regression we use the setting L (t) = log(t + 1) and the fitted coefficient of log t is b̂ = 2α̂

where α̂ is the estimate of α in H0. Note that data for this regression start at t = [rT ] , the integer

part of rT for some fraction r > 0. We recommend r = 0.3.

Step 3: Apply an autocorrelation and heteroskedasticity robust one-sided t− test of the inequality
null hypothesis α ≥ 0 using b̂ and a HAC standard error. At the 5% level, for example, the null

hypothesis of convergence is rejected if tb̂ < −1.65.
Under the convergence hypothesis, hit → 1 and Ht → 0 as t→∞ for given N. In Appendix B

it is shown in (62) and (65) that Ht then has the logarithmic form

logHt = −2 logL (t)− 2α log t+ 2 log
vψN
δ
+ t, (30)

with

t =
1√
N

ηNt

v2ψN
− 2

δ

1

tαL (t)
ψt +

1

δ2
1

t2αL (t)2
ψ2t +Op

µ
1

N

¶
, (31)

where v2ψN = N−1 ¡1−N−1¢PN
i=1 σ

2
i → v2ψ as N → ∞, ηNt = N−1/2PN

i=1 σ
2
i

¡
ξ2it − 1

¢
, and

ψt = N−1PN
i=1 σitξit. From (30) we deduce the simple regression equation

log
H1

Ht
− 2 logL (t) = a+ b log t+ ut, (32)

where b = 2α, ut = − t and the intercept a = logH1 − 2 log vψN
δ = −2 logL (1) + u1 does not

depend on α.

Under convergence, log (H1/Ht) diverges to ∞, either as 2 logL (t) when α = 0, or as 2α log t

when α > 0. Thus, when the null hypothesis H0 applies, the dependent variable diverges whether
α = 0 or α > 0. Divergence of log (H1/Ht) corresponds to Ht → 0 as t → ∞. Thus, H0 is
conveniently tested in terms of the weak inequality null α ≥ 0. Since α is a scalar, this null can be
tested using a simple one sided t test.

Under the divergence hypothesis HA, for instance when δi 6= δ for all i, Ht is shown in Appendix

B to converge to a positive quantity as t→∞. Hence, under HA, the dependent variable log H1
Ht
−

2 logL (t) diverges to −∞ in contrast to the null H0, under which log (H1/Ht) diverges to ∞. The

term −2 logL (t) in (32) therefore serves as a penalty which helps the test on the coefficient of the
log t regressor to discriminate the behavior of the dependent variable under the alternative from

that under the null. In particular, when α = 0 and δi 6= δ for some i, the inclusion of logL (t)
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produces a negative bias in the regression estimate of b since log t and −2 logL (t) are negatively
correlated. The t statistic for b̂ then diverges to negative infinity and the test is consistent even in

this (boundary) case where α = 0.

Discarding some small fraction r of the time series data helps to focus attention in the test on

what happens as the sample size gets larger. The limit distribution and power properties of the test

depend on the value of r. Our simulation experience indicates that r = 0.3 is a satisfactory choice

in terms of both size and power. Appendix B provides details of the construction of the regression

equation under the null and alternative and derives the asymptotic properties of the log t test.

4.2 Asymptotic Properties of the log t Convergence Test

The following result gives the limit theory for the least squares estimate b̂ of the slope coefficient b

in the log t regression equation (32) and the associated limit theory of the regression t test under

the null H0.

Theorem 1 (Limit Theory under H0) Let the panel Xit defined in (2) have common factor

μt and loading coefficients δit that follow the generating process (20) and satisfy conditions A1-A4.

Suppose that the convergence hypothesis H0 holds and the regression equation (32) is estimated with
time series data over t = [Tr] , ...T, for some r > 0. Suppose further that if α > 0, T 1/2

T 2αL(T )2N1/2 → 0,

and if α = 0, T 1/2

N → 0 as T,N →∞.

(a) The limit distribution of b̂ is

√
NT

³
b̂− b

´
⇒ N

¡
0,Ω2

¢
, (33)

where Ω2 =
ω2η
v4ψ

n
(1− r)−

³
r
1−r

´
log2 r

o−1
, ω2η = limN→∞

1
N

PN
i=1 σ

4
iω2ii, and v

2
ψ = limN→∞

1
N

PN
i=1 σ

2
i .

(b) The limit distribution of the regression t−statistic is

tb̂ =
b̂− b

sb̂
⇒ N (0, 1) ,

where s2
b̂
=dlvarr (ût) ∙PT

t=[Tr]

³
log t− 1

T−[Tr]+1
PT

t=[Tr] log t
´2¸−1

, and dlvarr (ût) is a conventional
HAC estimate formed from the regression residuals ût = log H1

Ht
− 2 logL (t) − â − b̂ log t for t =

[Tr] , ...T. The estimate TNs2
b̂
is consistent for Ω2 as T,N →∞.

Remark 1: As shown in Appendix B, to avoid asymptotic collinearity in the regressors (the

intercept and log t) the regression (32) may be rewritten as

log
H1

Ht
− 2 logL (t) = a∗ + b log

t

T
+ ut, (34)
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where a∗ = a+ b logT. The estimate b̂ then has the form

b̂− b =

⎛⎝ TX
t=[Tr]

τ tut

⎞⎠⎛⎝ TX
t=[Tr]

τ2t

⎞⎠−1 ,
involving the demeaned regressor τ t =

³
log t

T − log
t
T

´
= log t − 1

T−[Tr]+1
PT

t=[Tr] log t,where

log t
T =

1
T−[Tr]+1

PT
t=[Tr] log

t
T .

Remark 2: The convergence rate for b̂ under the null of convergence is O
³√

NT
´
and is the

same for all α ≥ 0. Although the regression is based on only O (T ) observations (specifically,

T − [Tr] observations), the convergence rate is faster than
√
T because the dependent variable

logHt involves a cross section average (28) over N observations and this averaging affects the order

of the regression error ut = − t, as is apparent in (31). In particular, the leading term of t is

Op

¡
N−1/2¢ when the relative rate condition T1/2

T2αL(T )2N1/2 → 0 holds for α > 0 or when T 1/2

N → 0

holds if α = 0. These rate conditions require that N does not pass to infinity too slowly relative to

T. Otherwise the limit distribution (33) involves a bias term, as discussed in Appendix B.

Remark 3: The quantity Ω2u = ω2η/v
4
ψ in the asymptotic variance formula is the limit of a

cross section weighted average of the long run variances ω2ii of ηit = ξ2it − 1. Appendix B shows
how this average long run variance can be estimated by a standard HAC estimate, such as the

truncated kernel estimate dlvarr (ût) =PM
l=−M

1
T−[Tr]

P
[Tr]≤t,t+l≤T ûtût+l given in (87) and formed

in the usual way from the residuals ût with bandwidth (truncation) parameter M. Of course, other

kernels may be used and the same asymptotics apply for standard bandwidth expansion rates for

M such as M√
T
+ 1

M → 0, as discussed in Appendix B.

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1

r

Figure 2: The precision curve (1− r)−
³

r
1−r

´
log2 r

Remark 4: The precision of the estimate b̂ is measured by the reciprocal of Ω2 and depends on

the factor

(1− r)−
µ

r

1− r

¶
log2 r →

(
1 r → 0

0 r → 1
.
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So the asymptotic variance of b̂ diverges as r → 1, corresponding to the fact that the fraction of

the sample used in the regression goes to zero in this event. The precision curve is graphed in Fig.

2

Remark 5: We call the one-sided regression t test based on tb̂ the log t test. To test the hypothesis

b = 2α ≥ 0 we fit the regression model (32), or equivalently (34), over t = [Tr] , ..., T and compute
the t- statistic tb = b̂/sb̂. As the following result shows, this test is consistent against alternatives

where the idiosyncratic components δit diverge (i.e., when b = 2α < 0) as well as alternatives

where the δit converge, but to values δi that differ across i. Both cases seem important in practical

applications and it is an advantage of the log t test that it is consistent against both.

Theorem 2 (Test Consistency under HA) Suppose the alternative hypothesis HA holds and

the other conditions of Theorem 1 apply.

(a) If α ≥ 0 and δi ∼ iid
¡
δ, σ2δ

¢
with σ2δ > 0, then,

b̂→p 0, tb̂ =
b̂

sb̂
→ −∞,

as T,N →∞.

(b) If γ = −α > 0, δi = δ for all i, and Tγ−1/2√
NL(T )

+ 1
T +

1
N → 0 then

√
NTL (T )

T γ

³
b̂− b

´
⇒ 2

δ
N
¡
0, Q2ξ

¢
,

whereQ2ξ = ω2ξ

∙R 1
r

n
log s− 1

1−r
R 1
r log pdp

o2
s2γds

¸ h
(1− r)−

³
r
1−r

´
log2 r

i−1
, and tb̂ =

b̂
sb̂
→

−∞.

(c) If γ = −α > 0, δi = δ for all i, and
√
NL (T )T−γ + T−1 +N−1 → 0, then

b̂→p 0, tb̂ =
b̂

sb̂
→ −∞.

In all cases the test is consistent.

Remark 6: The alternative hypothesis under (a) involves δi ∼ iid
¡
δ, σ2δ

¢
so that δi 6= δ for all i.

As is clear from the proof of Theorem 2, it is sufficient for the result to hold that δi 6= δ for i ∈ G,

some subgroup of the panel, and for NG = # {i ∈ G} , the number of elements in G, to be such that
NG
N → λ > 0 as N → ∞. Test consistency therefore relies on the existence of enough economies

with different δi. The condition will be satisfied, for instance, in cases like that shown in Fig. 1

where there are two convergence clubs with membership proportions λ and 1 − λ. Obviously, the
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convergence null does not hold in this case but the cross sectional variation of the relative transition

parameters measured by Ht may well decrease over time. Calculation reveals that

lim
N→∞,t→∞

Ht =
λ (1− λ) (δA − δB)

2

(λδA + (1− λ) δB)
2 := HAB,

where δA = limi∈A,t→∞ δit, δB = limi∈B,t→∞ δit for two subgroups GA and GB with membership

shares λ = limN→∞
NGA
N and 1 − λ = limN→∞

NGB
N . Clearly HAB will be close to zero when the

group means δA and δB are close.

Remark 7: In part (a) of Theorem 2, b̂→p 0. The heuristic explanation is that, when α ≥ 0 and
δi ∼ iid

¡
δ, σ2δ

¢
, Ht tends to a positive constant, so that the dependent variable in (32) behaves like

−2 logL (t) for large t. Since logL (t) is the log of a slowly varying function and grows more slowly
than log t, its regression coefficient on log t is expected to be zero. More specifically, the regression

of −2 logL (t) on log
¡
t
T

¢
produces a slope coefficient that is negative and tends to zero like − 2

logT ,

as is shown in (96) in the Appendix. Since sb̂ →p 0 also and at a faster rate, the t− ratio tb̂ then
diverges to negative infinity and the test is consistent.

Remark 8: In part (b), b̂ is consistent to b = 2α < 0 but at a reduced rate of convergence. The

test is again consistent because tb̂ =
b̂−b
sb̂
+ b

sb̂
→ −∞ by virtue of the sign of b.

Remark 9: In part (c), we again have b̂ →p 0. In this case the δit have divergent behavior

and Ht = Op (N) . Hence, in the time series regression (32), the dependent variable behaves like

−2 logL (t) for large t, and the slope coefficient is negative and tends to zero like − 2
logT , just as in

part (a).

It is also interesting to analyze the local asymptotic properties of the log t test. The following

result analyzes the asymptotic consistency of the test for local departures from the null of the form

HLA : δi ∼ iid
¡
δ, c2T−2ω

¢
. (35)

Such departures measure deviations from the null H0 in terms of a distance |δi − δ| that is local to
zero and of magnitude Op (T

−ω) for some parameter ω > 0. This local consistency result turns out

to be useful in the clustering algorithm developed below.

Theorem 3 (Local Asymptotic Consistency) Suppose the local alternative hypothesis HLA

holds and the other conditions of Theorem 1 apply.

(a) Under (35) with ω ≤ α, b̂→p 0, and tb̂ =
b̂
sb̂
→ −∞ as T,N →∞. The test is consistent and

the rate of divergence of tb̂ is O
¡
(log T )T 1/2/M1/2

¢
for all choices of bandwidth M ≤ T.
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(b) Under the local alternative (35) with ω > α and when T2(ω−α)√
NL(T )2

→ 0 as T,N →∞

b̂− b = − c2

v2ψN
h (r)

L (T )2

T 2(ω−α)
{1 + op (1)}→p 0,

tb̂ →
(
∞ for b = 2α > 0

−∞ for b = 2α = 0
,

where h (r) =
hR 1

r

n
log s− 1

1−r
R 1
r log pdp

o
s2αds

i h
(1− r)−

³
r
1−r

´
log2 r

i−1
.

Remark 10: In the proof of part (a), it is shown that

b̂ = − 2

logT
+Op

µ
1

log2 T

¶
, tb̂ = −

2

log T
×Op

Ã¡
log2 T

¢
T 1/2

M1/2

!
,

and so both b̂ and the t ratio tb̂ have the same asymptotic behavior as in the case of fixed alternatives

of the form δi ∼ iid
¡
δ, σ2δ

¢
considered in part (a) of Theorem 2. The reason for this equivalence is

that under (35) the idiosyncractic effects have the form

δit = δi + σitξit = δ +
ξi
Tω

+
σiξit
L (t) tα

,

where the ξi are iid
¡
0, c2

¢
. When ω ≤ α, the final term is of smaller order than δi = δ + ξi

Tω and

so the log t regression has the same discriminatory power in detecting the departure of δi from δ

as it does in the case where the δi are iid
¡
δ, σ2δ

¢
. We say that the test is locally consistent in the

sense that it is consistent against local departures from the null of the form (35).

Remark 11: When ω > α > 0, the test has negligible power to detect alternatives of the form

(35). Since ω > α, this is explained by the fact that the alternatives are closer to the null than the

convergence rate, so they elude detection. However, when ω > α = 0, the convergence rate of the

idiosyncratic effects δit is 1/L (t) and is slower than any power rate. In this case, remarkably the test

is consistent, although the divergence rate of the statistic is only Op

³
T 1/2

M1/2

´
which diverges when

M
T → 0 (i.e., for standard bandwidth choices in HAC estimation). The consistency is explained by

the fact that, even though the alternatives δi 6= δ are still very close to the null in (35), the rate of

convergence of δit is so slow that the test is able to detect the local departures from the null.

Remark 12: Theorem 3 may be interpreted to include the case where there are additional indi-

vidual effects in the formulation of the nonlinear factor model. For instance, suppose the panel Xit

involves an additive effect so that

X∗
it = Xit + ai =

µ
ai
μt
+ δit

¶
μt = δ∗itμt,
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with δ∗it = δi +
ai
μt
+ σiξit

L(t)tα := δ∗i +
σiξit
L(t)tα . Suppose the additive effect is common and ai = a

for all i. Then, if δi = δ for all i and if the common trend μt = Op

¡
tθ
¢
with θ > α, we have

δ∗it = δ + σiξit
L(t)tα + op

³
1

L(t)tα

´
, in which case Theorem 1 holds when α > 0. If δi = δ for all i and

ai ∼ iid
¡
0, c2

¢
, then the model is equivalent to that considered in Theorem 3, in which case the

presence of the individual effects may be detectable, depending on the relative magnitudes of the

decay parameters, θ and α.

Remark 13: Appendix B provides some discussion of the choice of the slowly varying function

L (t) in terms of the induced asymptotic power properties. It is shown there that among choices

such as L (t) = log t, log2 t = log log t, log3 t = log log log t, etc., and where t is large, the choice

L (t) = log t is preferred in terms of asymptotic power. This choice was also found to work well in

simulations and is recommended in practice.

4.3 Club Convergence and Clustering

Rejection of the null of convergence does not imply there is no evidence of convergence in subgroups

of the panel. Many possibilities exist as we move away from a strict null of full panel convergence.

Examples include the possible existence of convergence clusters around separate points of equilibria

or steady state growth paths, as well as cases where there may be both convergence clusters and

divergent members in the full panel. If there are local equilibria or club convergence clusters, then

it is of substantial interest to be able to identify these clusters, determine the number of clusters,

and resolve individuals into respective groups.

Perhaps the simplest case for empirical analysis occurs when subgroups can be suitably cat-

egorized by identifying social or economic characteristics. For example, gender, education, age,

region, or ethnicity could be identifying attribute variables. Under clustering by such covariates,

convergence patterns within groups may be conducted along the lines outlined above using log t

regressions. For instance, if the convergence null for individual consumption behavior in a partic-

ular region (or age group) were rejected, and it was suspected that gender or ethnicity differences

were a factor in the rejection, log t convergence tests could be rerun for different panels subgrouped

according to gender and ethnicity to determine whether convergence was empirically supported

within these subgroups.

Alternatively, if convergence subgroups can be determined by an empirical clustering algorithm,

then it becomes possible to subsequently explore links between the empirical clusters and various

social and economic characteristics. In this case, the club convergence grouping becomes a matter

for direct empirical determination. A simple algorithm based on repeated log t regressions is

developed here to provide such an empirical approach to sorting individuals into subgroups.

To initiate the procedure, we start with the assumption that there is a "core subgroup" GK
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with convergence behavior, that this subgroup contains at least K members, and that the subgroup

is known. Below we discuss a method for detecting the initial core subgroup. Next we consider

adding an additional individual (K +1, say) to GK . To assess whether the new individual belongs

to GK , we perform a log t test. If K + 1 belongs to GK , the point estimate of b in the log t test

will not be significantly negative and the null hypothesis will be supported in view of Theorem 1.

Otherwise, the point estimate of b will depend on the size of K and the extent of the deviation

from the null. To see this, set δi = δA for i = 1, ..,K, and δi = δB for i = K + 1. The variation of

δi in the augmented subgroup is given by

σ2 =
1

K + 1

K+1X
i=1

¡
δi − δ̄

¢2
=

K

(K + 1)2
(δA − δB)

2 , (36)

where δ̄ = 1
K+1

PK+1
i=1 δi =

KδA
K+1 +

δB
K+1 . As K →∞, σ2 = O

¡
K−1¢→ 0 and δ̄ → δA.

An asymptotic analysis of club convergence patterns in such cases can be based on local alter-

natives of the form

δi ∼ iidN
¡
δ, c2K−1¢ . (37)

Appendix C provides such an analysis. It is shown there that, when c2 > 0 and K
T 2α
→ 0 as

T → ∞, the procedure is consistent in detecting departures of the form (37) for all bandwidth

choices M ≤ T. Given that σ2 = O
¡
K−1¢ in (36), this analysis also covers the case where δi = δA

for i = 1, ...,K and δK+1 = δB 6= δA. On the other hand, when δi = δA for i = 1, ...,K+1, the null

hypothesis holds for N = K + 1 and tb̂ =
b̂−b
sb̂
⇒ N (0, 1) , as in Theorem 1.

When T2α

K → 0, the alternatives (37) are very close to the null, relative to the convergence rate

except when α = 0. This case is analogous to case (b) of Theorem 3 and, as that theorem shows, the

test is inconsistent and unable to detect the departure from the null when α > 0. However, when

α = 0 the convergence rate is slowly varying under the null, and Theorem 3 shows that the test

is in fact consistent against local alternatives of the form (37). In effect, although the alternatives

are very close (because K is large), the convergence rate is so slow (slower than any power rate)

and this suffices to ensure the test is consistent as T →∞.

We now suggest the following method of finding a core subgroup GK . When there is evidence

of multiple club-convergence as T → ∞, this is usually most apparent in the final time series

observations. We therefore propose that the panel be clustered initially according to the value

of the final time series observation (or some average of the final observations). After ordering

in this way, size k subgroups, Gk = {1, ..., k} for {k = 2, ..., N}, may be constructed based on
panel members with the k highest final time period observations. Within each of these subgroups,

we may conduct log t regression tests for convergence, denoting by tk the test statistic from this

regression using data from Gk. Next, we choose k∗ to maximize tk over all values for which tk > c for
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k = 2, ...,N and where c is some critical value. A precise algorithm based on these ideas is contained

in the following step by step procedure to determine the clustering pattern and to provide a stopping

rule for the calculations.

Step 1 (Last Income Ordering): Order individuals in the panel according to the last obser-

vation in the panel. In cases where there is substantial time series volatility in Xit, the ordering

may be done according to the time series average, (T − [Ta])−1
PT

t=[Ta]+1Xit, over the last fraction

(f = 1− a) of the sample (for example f = 1/3 or 1/2).

Step 2 (Core Group Formation): Selecting the first k highest individuals in the panel to form

the subgroup Gk for some N > k ≥ 2, run the log t regression and calculate the convergence test
statistic tk = t (Gk) for this subgroup. Choose the core group size k∗ by maximizing tk over k

according to the criterion:

k∗ = argmaxk {tk} subject to min {tk} > −1.65 , (38)

The condition min {tk} > −1.65 plays a key role in ensuring that the null hypothesis of convergence
is supported for each k. However, for each k there is the probability of a type I error. Choosing

the core group size so that k∗ = argmaxk {tk} then reduces the overall type I error probability
and helps ensure that the core group Gk∗ is a convergence subgroup with a very low type I error

probability7. Our goal is to find a core convergence group in this test and then proceed in Step

3 to evaluate additional individuals for membership of this group. If there is a single convergence

club with all individuals included, then the size of the convergence club is N ; when there are two

or more convergence clubs, each club necessarily has membership less than N. If the condition

min {tk} > −1.65 does not hold for k = 2, then the highest individual in Gk can be dropped from

each subgroup and new subgroups G2j = {2, .., j} formed for 2 ≤ j ≤ N. The step can be repeated

with test statistics tj = t (G2j) . If the condition min {tj} > −1.65 is not satisfied for the first j = 2,
the step may be repeated again, dropping the highest individuals in Gj and proceeding as before.

If the condition does not hold for all such sequential pairs, then we conclude that there are no

convergence subgroups in the panel. Otherwise, we have found a core convergence subgroup, which

we denote Gk∗ .
7We might consider controlling the critical value based on the distribution of the maxk {tk} statistic over the

cross section. However, since this distribution changes according to the true size and composition of the actual

convergence subgroup (which is unknown), this approach is not feasible. Instead, the maxk tk rule is designed to be

very conservative in its selection of the core subgroup so that the type I error is very small. Note that the rule (38)

is used to determine only the membership of this core group. Subsequently, we apply individual log t regression tests

to assess membership of additional individuals. The performance of this procedure is found to be very satisfactory

in simulations that are reported in Section 5.
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Step 3 (Sieve Individuals for Club Membership) Let Gc
k∗ be the complementary set to the

core group Gk∗ . Adding one individual in Gc
k∗ at a time to the k

∗ core members of Gk∗ , run the log t

test. Denote the t−statistic from this regression as t̂. Include the individual in the convergence club
if t̂ > c where c is some chosen critical value. We will discuss the choice of the critical value below

and in the Monte Carlo section. Repeat this procedure for the remaining individuals, and form the

first sub-convergence group. Run the log t test with this first sub-convergence group and make sure

tb̂ > −1.65 for the whole group. If not, raise the critical value, c, to increase the discriminatory
power of the log t test and repeat this step until tb̂ > −1.65 with the first sub-convergence group.

Step 4 (Stopping Rule) Form a subgroup of the individuals for which t̂ < c in Step 3. Run

the log t test for this subgroup to see if tb̂ > −1.65 and this cluster converges. If so, we conclude
that there are two convergent subgroups in the panel. If not, repeat step 1 through step 3 on this

subgroup to determine whether there is a smaller subgroup of convergent members of the panel. If

there is no k in Step 2 for which tk > −1.65, we conclude that the remaining individuals diverge.
The applications in Section 6 provide practical details and illustrations of the implementation

of this algorithm. Table 4, in particular, lays out the sequence of steps involved in a specific

application where there are multiple clusters.

5 Monte Carlo Experiments

The data generating process (DGP) is given by

Xit = δitμt, μt = a+ μt−1 + et, et ∼ iidN (0, 1) (39)

δit = δi + δ0it, δ0it = ρiδ
0
it−1 + it, V ( it) = σ2iL (t+ 1)

−2 t−2α

for t = 1, ..., T. Note that L (t+ 1) = log (t+ 1) , so that the slowly varying function L (t+ 1)−1 is

well defined for t ≥ 1. We set it ∼ iid N
³
0, σ2iL (t+ 1)

−2 t−2α
´
and ρi ∼ U [0, ρ] for ρ = 0.5, 0.9.

To ensure that δit ≥ 0 for all i and t, we control the range of σi by setting σi ∼ U [0.02, 0.28] so

that the 97.5% lower confidence limit for δit at t = 1 is greater than zero and then discard those

trajectories which involve negative realizations.

The simulation treats δi and ρi as random variables drawn from the cross section population, so

that for each iteration new values are generated. When α = 0 and ρ = 0, the DGP in (39) becomes

a panel of random walks with drift. The value of the drift coefficient a does not affect simulation

performance and a is set to be zero.

For all cases, we set T = 10, 20, 30, 40 and N = 50, 100, 200. The number of replications was

R = 2000. We consider the following four cases.

25



Case 1: (Pure Convergence) To check the size of the test, we set δi = 1 for all i and α =

0.01, 0.05, 0.1, 0.2. When α > 0.2, the test size is zero for all T and N. To measure the bias

in the estimate of the speed of convergence, b̂, we used α = 0.05, 0.1, and 0.5.

Case 2: (Divergence) We set δi ∼ U [1, 2].

Case 3: (Club Convergence) We considered two equal sized convergence clubs in the panel

with numbers S1 = S2 = 50 and overall panel size N = 100. For the first panel we set

δ1 = 1, and for the second panel, δ2 = [1.1, 1.2, 1.5] to allow for different distances between

the convergence clubs.

Case 4: (Sorting Procedure) Two convergence clubs as in Case 3, but with δ1 = 1 and δ2 = 1.2.

We consider various convergence rates with α = (0.01, 0.05, 0.1, 0.2) and with ρ = 0.5.

Table 1 gives actual test size. The nominal size is fixed to be 5%. When the speed of convergence

parameter α is very close to zero, there is size distortion for small T. However this distortion

diminishes quickly when T increases or as α increases.

Table 2 shows the mean values of b̂. When α is small, there is a somewhat mild downward bias

for small T, which arises from the correlation between the log t regressor and the second order terms

in ut. The direction of the correlation is negative since in the expansion the second order term of

ut, L (t)
−2 t−2αψ2t/δ

2, is negatively correlated with L (t) . The bias is dependent on the size of T

and α rather than N, just as the asymptotic theory predicts, when α is small. This downward bias

quickly disappears for larger T or as α increases.

Table 3 shows the power of the test without size adjustment. For case 2, the power becomes

one irrespective of the values of α, T and N. For case 3, the log t test distinguishes well whether

there is club convergence or not, even with small T and α, except when δ1 is very close to δ2. For

δ1 − δ2 = 0.1, the rejection rate is more than half with α = 0.01 for T = 10, and increases rapidly

as T or N grows.

Figure 3 shows how the empirical clustering procedure suggested in the previous section works.

Overall the results are encouraging. Panels A and B in Figure 3 display the size and power of the

clustering test across various critical values with α = 0 and α = 0.2, respectively. When α > 0,

the size of the clustering test — measuring the failure rate of including convergence members in the

correct sub-convergence club — goes to zero asymptotically since tb̂ tends to positive infinity under

the null of convergence as T →∞. Meanwhile, even when α = 0, the size of the clustering test also
goes to zero if k∗/Sl → 0 for all l as N,T → ∞ where Sl is the size of the l’th convergence club.

This outcome occurs because the core group is chosen by maximizing tk in Step 2 and sequential

tests are subsequently used to sieve through the remaining individuals to assess club membership.
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Figure 3: Effect of Nominal Critical Value Choice on Test Performance

As asymptotic theory predicts, the size of the clustering test goes to zero as T increases in this

case. Meanwhile, the power of the clustering test — the success rate in excluding non-convergence

members from the correct sub-convergence club — goes to unity asymptotically regardless of the

critical values used. However, in finite samples, test power is less than unity and, as larger critical

values are employed in the selection procedure, we do find higher power in the test. Panels C and

D show the sum of the type I and II errors in this procedure against various significance levels when

α = 0 and α = 0.2, respectively. As T increases, the size and the type II error of the clustering test

both go to zero. There is some trade-off between the type I and II errors, and in finite samples, the

power gain by using higher significance level seems to exceed the size loss. Hence, for both cases

α = 0 and α = 0.2, the use of a sign test (that is, a test in which the critical value is zero at the

50% significance level) minimizes the sum of the type I and II errors for small T (that is, T = 20, 50

in Panel C). For larger values of T (T = 100, 200 in Panel C), a lower nominal significance level
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minimizes the sum of the two errors when α = 0 (In Panel C, these nominal significance levels are

40% for T = 100 and 20% for T = 200 and these cases are marked in the chart). When α = 0.2,

the sign test minimizes the sum of the type I and type II errors for all values of T, as is clear in

Panel D.
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Figure 4: Performance of the Max t Rule in Core Group Selection

Figure 4 shows the finite sample performance of the core group selection procedure based on

the maxk tk rule. Panel A in Figure 4 shows the false inclusion rates of non-convergence members

into a core group. As T increases or as α increases, the max t rule appears to sieve individuals

very accurately. Even when α = 0, more than 99% of the time the max t rule does not include

any non-convergence member into a core group when T ≥ 100. Panel B in Figure 4 shows the

size of the core groups selected for various values of α and T. As α and T increase, the size of the

core group increases steadily and approaches the true size of the convergence club (50) for some

configurations.

6 Empirical Examples

We provide two empirical examples to illustrate the usefulness of the time varying nonlinear factor

model and the operation of the log t regression test for convergence and clustering. The first

example shows how to calculate a proxy for cost of living indices by using 19 consumer price indices

for U.S. metropolitan areas. The second example re-examines international risk sharing conditions

by utilizing real per capita final household expenditure data over 66 countries and explores the

presence of convergence clubs in this expenditure data.
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6.1 Calculating the Cost of Living

Measuring the cost of living by statistical indices has been a long-standing problem of econometrics

with many different contributions and much controversy.8 A number of commercial web sites

now provide various online cost of living indices. From a strict economic perspective, the most

appropriate calculations for cost of living indices take account of the changing basket of commodities

and services over time as well as non-consumer price information such as local taxation, health and

welfare systems, and economic infrastructure. But while relevant, such matters are beyond the

scope of many studies, including the present analysis. Here we constrain ourselves to working with

cost of living indices obtained directly from commonly available consumer price information for 19

different metropolitan areas.

Our goal is to measure the relative cost of living across various metropolitan areas in the US

and illustrate our empirical approach by examining evidence for convergence in the cost of living.

Our approach is to use the relative transition parameter mechanism to model individual variation,

writing individual city CPI as

logP o
it = δoit logP

o
t + eit, (40)

where logP o
it is the log CPI for the ith city, logP

o
t is the common CPI trend across cities, and eit

contains idiosyncratic business cycle components. We use 19 major metropolitan U.S. cities from

1918 to 2001 in our application. The Data Appendix has a detailed description of the data set.
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Figure 5: Min, Max and Median of Consumer Price Indices

It is well known that consumer price indices cannot be used to compare the cost of living across

U.S. cities because of a base year problem. For example, if the base year were taken to be the

last time period of observation, then the CPI indices would seem to converge because the last

observations are identical. To avoid such artificial forms of convergence, we take the first observation

8See the Journal of Economic Perspectives Vol. 12, No. 1 for a recent special issue dealing with cost of living

indices.
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as the base year and rewrite the data as logPit = log (P o
it/P

o
i1) = logP

o
it − logP o

i1, from which we

obtain logPit = [δoit − δoi1 (logP
o
1 / logP

o
t ) + (eit − ei1) / logP

o
t ] logP

o
t = δit logP

o
t . The common

price index P o
t usually has a trend component, so that we have logP

o
t = Op (t

α) for some α > 0.

For instance, if logP o
t follows a random walk with drift, we have logP o

t = a + logP o
t−1 + t =

at+
Pt

s=1 s = Op (t) . Then logP o
1 / logP

o
t = op (1) , and (eit − ei1)/ logP

o
t = op (1) ,for large t, so

the impact of the initial condition on δit disappears as t → ∞, and more rapidly the stronger the

trend (or larger α). Cyclical effects are also of smaller magnitude asymptotically. Of course, these

effects may be smoothed out using other techniques such as various filtering devices.
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Figure 6: Relative Transition Curves (Relative Cost of Living)

Fig. 5 shows the maximum, minimum and median of the log consumer price indices for 19 U.S.

cities. Due to the initial base year, the CPIs in 1918 are identical. But the initial effect is eliminated

rapidly as is apparent in Fig. 10. To avoid the base year effect in our own calculations, we discard

the first 42 annual observations. The relative transition parameters for 8 major metropolitan cities

are plotted in Fig. 6 after smoothing the CPIs using the WHP filter. The transition parameter

curves provide relative cost of living indices across these metropolitan areas.

As is apparent in Fig. 6, San Francisco shows the highest cost of living, with Seattle in second

place. Chicago has the median cost of living among the 19 cities with little transition effect over

time, and Atlanta has the lowest cost of living, again with little transition. Also apparent is that

the cost of living indices in Houston and St. Louis have declined relatively since 1984 while those in

New York, Seattle and San Francisco have increased. The estimated equation for the log t regression

with r = 1/3 is

log
H1

Ht
− 2 log log t = 0.904 − 0.98 log t,

(14.3) (−51.4)

which implies that the null hypothesis of convergence in the relative cost of living is clearly rejected

at the 5% level.
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Table 4: Club Convergence of Cost of Living Indices among 19 U.S. Metropolitan Cities.

Last T Name t value

Order Step1 Step2/3

1 SF0 base core S1 tS1

2 SEA 6.1 core S1 =

4 NYC 1.4 0.7 S1 0.71 Step1 Step2/3

3 CLE -0.7 -0.7 CLE base core S2 tS2 =

5 MIN -7.8 -51.0 MIN 1.0 core S2 8.18

6 LAX -12.2 LAX -1.7 -1.7

7 POR -2.4 POR 5.3 S2

8 BOS -3.7 BOS 13.9 S2

9 CHI -14.9 CHI 6.1 S2

10 BAL -28.8 tSc1 BAL -19.9

11 PHI -12.0 = PHI 7.6 S2

12 PIT -35.6 −54.6 PIT -1.6

13 CIN -46.9 CIN -18.1

14 STL -50.3 STL -34.6 tSc2 =

15 DET -124.4 DET -4.9 −0.68
16 WDC -16.7 WDC -12.3

17 HOU -134.6 HOU -28.0

18 KCM -116.5 KCM -14.1

19 ATL -20.7 ATL -67.2

Next, we investigate the possibility of club convergence. Following the steps suggested in the

previous section, we order the CPIs based on the last time series observation (Step 1), and display

these in the first column of Table 4. Note that for further convenience (based on the convergence

results we obtain below), we change the order between New York (NYC) and Cleveland (CLE)

metro. Based on this ordering, we choose San Francisco as the base city in the ordering, run the

log t regression by adding further cities one by one, and calculate the t-statistics until the t statistic

is less than -1.65 (Step 2). Proceeding in this way, we find that tk = 6.1,−0.7, 1.4, and −7.8 for
k = {1, 2} , {1, 2, 3} , {1, 2, 3, 4} and {1, 2, 3, 4, 5} , respectively. When we add Minnesota, the tk-
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statistic becomes tk = −7.8, and we stop adding cities. The tk statistics are maximized for the
group k = {1, 2} and so the core group is taken to be San Francisco and Seattle. Next, working from
this core group, we add a city at a time and print out its t statistic in the third column of Table 4.

We use the 50% critical value (or sign test), based on our findings in the Monte Carlo experiments.

Only when New York (NYC) is added to the core group, is the t statistic still positive. The log t

regression with these three cities gives a t-statistic of 0.71, and the null hypothesis of convergence

cannot be rejected. Hence the first convergence club, S1, includes SF0, SEA and NYC.

For the remaining 16 cities (Sc
1), the log t test rejects the null of convergence even at the 1%

level (tSc1 = −54.6). Hence, we further analyze the data for evidence of club convergence among
these 16 cities. Repeating the same procedure again, we find the next core group as Cleveland

(CLE) and Minnesota (MIN), and select 4 other cities (POR, BOS, CHI and PHI) for the second

subgroup, S2. The log t test with these 6 cities does not reject the null of convergence (tS2 = 8.2).

Further, the log t test with the remaining 10 cities does not reject the null either (tSc2 = −0.68) at
the 5% level. Hence with the last group, there is rather weak evidence for convergence.

Figure 7 shows the relative transition parameters with the cross sectional means of the three

convergence clubs. The transition curves indicate that the three clubs show some mild evidence

of convergence until around 1982 but that after this there is strong evidence of divergence. In

sum, the evidence is that the relative cost of living across 19 major U.S. metropolitan areas does

not appear to be converging over time. However, there is some evidence of recent convergence

clustering among three different metropolitan subgroups: one with a very high cost of living, one

with a moderate cost of living, and one that is relatively less expensive than the other two groups.
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Figure 7: Relative Transition Curves across Clubs

6.2 International Risk Sharing

In a model with heterogeneous economic agents if asset markets are complete there exists a mech-

anism in the financial system to pool idiosyncratic risk. In this event, risk sharing across heteroge-
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neous economic agents is diversified in the sense that heterogeneous economic agent consumption

moves one-for-one with aggregate or representative economic agent consumption. A number of

empirical studies have examined financial markets for the presence of such international or regional

risk sharing conditions (e.g., Cochrane, 1991; Mace, 1991; Asdrubali, Sorensen and Yosha, 1996;

Hess and Shin, 2000; Kalemli-Ozcan, Sorensen and Yosha, 2003).

Risk sharing of this type may be modeled econometrically in the form

logCit = δit logCt + eit,

where logCit is the log real consumption of the ith individual or country at time t, logCt is the

log real consumption of an aggregate or representative country, eit is an idiosyncratic business

cycle component, and δit is a time varying idiosyncratic loading coefficient where the source of the

idiosycratic fluctuation or uncertainty arises from heterogeneous income risk.

Writing the idiosyncratic factor δit in transition form following (20) as δit = δi + ξit, the null

hypothesis of convergence in risk sharing is H0 : δi = δ, ∀i, and α ≥ 0, which together imply that
(national) consumption converges relative to common (world) consumption in the steady state, so

that limt→∞ (logCit/ logCjt) = 1 for all i 6= j. As discussed in section 2, this convergence condition

does not necessarily imply absolute or level convergence of the form logCit− logCjt → 0. However,

observe that

∆ logCit −∆ logCjt = (∆δit −∆δjt) logCt + (δit−1 − δjt−1)∆ logCt + (∆eit −∆ejt) .

Moreover, in view of (20) and for L (t) = log t, calculation reveals that∆δit−∆δjt = Op

³
(log t)−1 t−1−α

´
,

and under the null δit−1− δjt−1 = Op

³
(log t)−1 t−α

´
. Hence, if logCt is an integrated process with

drift, we deduce that, under the null of relative convergence, the long run consumption growth

rates of the i’th and j’th economies are the same up to a stationary error. We further note that

the rejection of the null of relative convergence does not necessarily imply divergence of national

consumption because of the existence of financial and border restrictions.

To determine whether there is empirical evidence of international risk sharing, we use a panel of

66 countries taken from the World Development Indicators with data for 38 annual per capita final

household consumption from 1975 to 2002. (The Data Appendix provides details of the dataset and

the countries included). The choice of countries used in the study is based on data availability. We

used the WHP filter to eliminate business cycle components, ran the log t tests with WHP filtered

data with the full 66 countries, and obtained the following regression

log
H1

Ht
− 2 log log t = 0.06 − 0.77 log t.

(19.8) (−857)
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These results show that among the full 66 countries, there is no evidence for relative convergence

and so we proceed with the application of the clustering algorithm.

Figure 8 summarizes the results. We found evidence to support 5 relative convergence clubs, but

the first two clubs are weakly integrated and, taking these together, there are 4 clubs. Two coun-

tries, Burundi and Madagascar, are not included in any clubs, so these countries form a separate

group. More detailed explanations of each cluster are as follows. First, Club A has 19 members,

and these are all industrialized or very rapidly growing countries. Among them, eight countries,

written in italic in Fig. 13, are selected as the core group. From the core group base, the log t

regressions produce positive estimates of b̂ when augmented with 11 other countries. Only when

China is added to the core group does the estimate b̂ become negative, but in this case is not

significantly different from zero. On the other hand, the log t regression based on the core group of

Club A and any of the 6 members in Club B always gives significantly negative b̂. Club B consists

of 4 core and 2 non-core members. The core members in Club B are all developed but less well

performing countries compared with the 19 counties in Club A. The non-core members in Club

B are not rapidly growing countries like Hong Kong or Korea. Similarly, the log t regression with

the 4 core members of Club B and China produces a non-significantly negative estimate b̂. Hence,

China can be included both in Club A and Club B. We test jointly if the aggregate of the two clubs

are converging, and obtain b̂ = −0.03, tb̂ = −0.70, so there is weak evidence of relative convergence
among these two clubs.

Australia, Austria , Belgium, Canada,  
Denmark , Finland, France, Hong Kong , 
Ireland, Italy, Japan , Korea, Netherlands, 
Norway , Singapore, Sweden, Switzerland , 
UK, USA

Chile, Greece, New Zealand , 
Portugal, Spain , ThailandChina

Club A
0.05(1.27)

Club B
0.04(0.67)

Club 1
-0.03(-0.70)

Brazil, Colombia, Costa Rica, Dominican Rep., El 
Salvador, Gabon, Guatemala, Indonesia, Malaysia, 
Mexico, Morocco, Paraguay, Trinidad & Tobago, 
Tunisia, Uruguay

Peru, Ecuador, Philippines, Algeria, 
Pakistan, Honduras, India, Lesotho

Bangladesh, Benin, Burkina Faso, Cameroon, Congo, Rep., Cote 
d'Ivoire, Ghana, Kenya, Malawi, Nicaragua, Rwanda, Senegal, 
Togo, Zambia, Zimbabwe

Burundi, 
Madagascar

Club 2: 0.20(2.51) Club 3: 0.17(4.21)

Club 4: 0.18(3.01)

Figure 8: Club Convergence and International Risk Sharing Patterns in National Consumption
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The remaining 40 countries form three convergence clubs and one small non-convergence club.

Club 1 can be characterized as either industrialized or rapidly growing countries. Club 2 includes

most of the Latin American countries and some eastern Asian countries, and these are middle

income countries. Clubs 3 and 4 include the remaining countries in the panel except for the

two non-convergent countries mentioned above. The individual characteristics of Club 3 and 4

may be less interesting than possible sequential convergence between these clubs. To investigate

this possibility, we discard the top half of the richest (respectively, poorest) countries in Club 1

(respectively, 2), form another subgroup, and run the log t regression test with this subgroup. If

there is sequential convergence between Clubs 1 and 2, then the log t test should not reject the null

hypothesis for this mixed subgroup. The results obtained in this regression are b̂ = −0.43, and
tb̂ = −19.5, which leads to a strong rejection of the null hypothesis of relative convergence. In other
words, there is no statistical evidence of relative convergence in consumption behavior between the

rich and middle income countries. Moreover, we cannot find any evidence of sequential convergence

in similar exercises undertaken between Clubs 2 and 3 (b̂ = −0.05, tb̂ = −4.16), and between Clubs
3 and 4 (b̂ = −0.17, tb̂ = −1.90).

These results imply that international risk sharing occurs only within developed or rapidly

developing countries, and there is no evidence of risk sharing between developed and developing

countries. These empirical findings are particularly interesting when compared with the cross

country income convergence results obtained in our companion paper on transition and economic

growth (Phillips and Sul, 2006). That paper found 4 convergence clusters in real per capita income

across 88 PWT countries and that among these 4 clubs there was some strong empirical evidence

of sequential convergence. The present findings indicate that with real per capita consumption

data there is only partial evidence of sequential convergence. The new empirical evidence from

consumption patterns given here implies that risk sharing has been occurring mainly among the

industrialized countries and the fast growing countries where the financial system is relatively well

developed compared with the rest of the world.

7 Conclusion

This paper has proposed a new mechanism for modeling and analyzing economic transition behavior

in the presence of common growth characteristics. The model is a nonlinear factor model with

a growth component and a time varying idiosyncratic component that allows for quite general

heterogeneity across individuals and over time. The formulation is particularly useful in measuring

transition towards a long run growth path or individual transitions over time relative to some

common trend, representative or aggregate variable. The formulation also gives rise to a simple

and convenient time series regression test for convergence. This log t convergence test also provides

35



the basis for a stepwise clustering algorithm that is proposed for finding convergence clusters in

panel data and analyzing transition behavior between clusters. The tests have good asymptotic

properties, including local discriminatory power, and are particularly easy to apply in practice.

Simulations show that the proposed log t test and the clustering algorithm both work very well

for values of T and N that are common in applied work. Empirical applications to two different

empirical examples reveal some of the potential of these new procedures. .

Some extensions of the procedures seem worthwhile pursuing in later work. In particular, the

procedures are developed here for panels of a scalar variable and will need to be extended when

there are many variables. For example, to analyze issues of convergence and clustering in the

context of potential relationships between two panel variables such as personal expenditure and

income, the concepts and methods in the paper must be modified, possibly by working with panel

regression residuals or through panel vector autoregression and error correction formulations.
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Table 1: Size of The log t Test (5% Nominal Size)

ρ ∈ [0, 0.5] ρ ∈ [0, 0.9]
T N α=0.01 α=0.05 α=0.1 α=0.2 α=0.01 α=0.05 α=0.1 α=0.2

10 50 0.30 0.21 0.13 0.04 0.25 0.18 0.10 0.03

10 100 0.40 0.26 0.12 0.02 0.32 0.22 0.10 0.01

10 200 0.56 0.32 0.12 0.01 0.41 0.24 0.08 0.00

20 50 0.15 0.09 0.03 0.00 0.13 0.07 0.03 0.00

20 100 0.18 0.08 0.01 0.00 0.14 0.05 0.01 0.00

20 200 0.23 0.07 0.01 0.00 0.17 0.04 0.00 0.00

30 50 0.09 0.05 0.01 0.00 0.10 0.04 0.01 0.00

30 100 0.14 0.03 0.00 0.00 0.10 0.02 0.00 0.00

30 200 0.14 0.02 0.00 0.00 0.10 0.01 0.00 0.00

40 50 0.09 0.03 0.01 0.00 0.07 0.03 0.00 0.00

40 100 0.09 0.02 0.00 0.00 0.08 0.02 0.00 0.00

40 200 0.11 0.01 0.00 0.00 0.08 0.01 0.00 0.00

Table 2: Mean Values of the Estimated Speed of Convergence

ρ ∈ [0, 0.5] ρ ∈ [0, 0.9]
T N b=0.1 b=0.2 b=1.0 b=0.1 b=0.2 b=1.0

10 50 -0.09 0.00 0.84 -0.06 0.05 0.96

10 100 -0.11 0.00 0.84 -0.06 0.05 0.96

10 200 -0.10 0.00 0.84 -0.06 0.05 0.95

20 50 0.01 0.12 0.93 0.06 0.15 1.06

20 100 0.02 0.12 0.93 0.06 0.17 1.06

20 200 0.02 0.12 0.93 0.05 0.16 1.06

30 50 0.06 0.16 0.96 0.07 0.18 1.04

30 100 0.05 0.15 0.95 0.07 0.18 1.04

30 200 0.05 0.15 0.96 0.07 0.18 1.04

40 50 0.07 0.17 0.97 0.08 0.18 1.02

40 100 0.07 0.16 0.97 0.08 0.18 1.02

40 200 0.07 0.17 0.97 0.08 0.18 1.02
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Table 3: The Power of the log t test

(5% Test)

δ1=1

T N α δi − U [1, 2] δ2=1.5 δ2=1.2 δ2=1.1

10 50 0.01 1.00 1.00 0.93 0.57

10 100 0.01 1.00 1.00 0.99 0.77

10 200 0.01 1.00 1.00 1.00 0.92

20 50 0.01 1.00 1.00 0.99 0.61

20 100 0.01 1.00 1.00 1.00 0.82

20 200 0.01 1.00 1.00 1.00 0.97

30 50 0.01 1.00 1.00 1.00 0.69

30 100 0.01 1.00 1.00 1.00 0.89

30 200 0.01 1.00 1.00 1.00 0.99

40 50 0.01 1.00 1.00 1.00 0.78

40 100 0.01 1.00 1.00 1.00 0.95

40 200 0.01 1.00 1.00 1.00 1.00

10 50 0.05 1.00 1.00 0.93 0.59

10 100 0.05 1.00 1.00 1.00 0.77

10 200 0.05 1.00 1.00 1.00 0.91

20 50 0.05 1.00 1.00 0.99 0.64

20 100 0.05 1.00 1.00 1.00 0.81

20 200 0.05 1.00 1.00 1.00 0.96

30 50 0.05 1.00 1.00 1.00 0.73

30 100 0.05 1.00 1.00 1.00 0.91

30 200 0.05 1.00 1.00 1.00 0.99

40 50 0.05 1.00 1.00 1.00 0.84

40 100 0.05 1.00 1.00 1.00 0.96

40 200 0.05 1.00 1.00 1.00 1.00
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8 Appendix

8.1 Appendix A: Standardizing Growth Components

This Appendix analyses how the growth components in the decomposition

Xit = ait + git =

µ
ait + git

μt

¶
μt = δitμt

may be standardized to yield the transition and growth curves discussed in Section 3. We let t → ∞ and

characterize the limiting behavior of the components δit and μt.

We first proceed as if the growth components were nonstochastic. Suppose git = fi (t) is regularly varying

at infinity with power exponent γi (e.g., see Seneta, 1976, for a discussion of regularly varying functions) so

that

fi (t) = tγiWi (t) , (41)

where Wi (t) is slowly varying at infinity, viz. Wi (λt) /Wi (t) → 1 as t → ∞ for all λ > 0. For example,

we might have Wi (t) = log t, log
2 t, or log log t. Similarly, let μt be regularly varying at infinity with power

exponent γ > 0 so that

μt = tγZ (t) (42)

for some slowly varying function Z (t) . The regular variation requirement means that fi (t) and μt both

behave asymptotically very much like power functions for large t. In the simplest case where the common

growth component is a linear drift (i.e., μt = t) and git/t→ m for all i as t→∞, there is growth convergence

and we have γi = γ = 1 and Wi (t) = Z (t) = 1. Conditions (41) and (42) allow for a much wider variety

of asymptotic behavior, including the possibility that individual i economy’s growth may deviate from the

common path (when γi 6= γ) and that there may be a slowly varying component in the growth path. For

example, if γ = 0 and Z (t) = log t, then μt evolves logarithmically with t and growth is therefore slower

than any polynomial rate.

Set t = [Tr] for some r > 0 representing the fraction of the overall sample T corresponding to observation

t. Then under (41)

T−γigit = T−γi [Tr]γi
Wi (Tr)

Wi (T )
Wi (T ) ∼ rγiWi (T ) , (43)

and

T−γμt = T−γ [Tr]γ
Z (Tr)

Z (T )
Z (T ) ∼ rγZ (T ) .

We deduce from this asymptotic behavior and (4) that

T−γiXit =
ait + git
T γi

=
ait
T γi

+
git
T γi
∼ rγiWi (T ) ,

T−γμt ∼ rγZ (T ) = μ (r)Z (T ) .
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where μ (r) = rγ . Writing, as in (4), µ
ait + git

μt

¶
μt = δitμt,

we then have

1

T γi

µ
ait + git

μt

¶
μt =

ait
T γi

+
git
T γi

T γ

μt

³ μt
T γ

´
= o (1) +

git
T γi

T γ

μt

³ μt
T γ

´
∼

©
rγi−γJi (T )

ª
{rγZ (T )}

= δJiT (r)μ
Z
T (r) ,

where the ratio Ji (T ) = Wi (T ) /Z (T ) is also slowly varying at infinity. Thus, the functions δ
J
iT (r) and

μZT (r) are regularly varying and behave asympotically like the power functions r
γi−γ and rγ , at least up to

slowly varying factors.

Next set diT = T γiJi (T )Z (T ) = T γiWi (T ) , so that the slowly varying components are factored into

the standardization. Then, for t = [Tr] , we have

1

diT
Xit =

1

T γiJi (T )Z (T )

µ
ait + git

μt

¶
μt

=
ait

T γiWi (T )
+

git
T γiWi (T )

µ
T γZ (T )

μt

¶µ
μt

T γZ (T )

¶
= o (1) +

git
T γiWi (T )

µ
T γZ (T )

μt

¶µ
μt

T γZ (T )

¶
= o (1) + δiT

µ
t

T

¶
μT

µ
t

T

¶
(44)

∼ δiT (r)μT (r) . (45)

In (44) we define

μT

µ
t

T

¶
=

μt
T γZ (T )

=
μt

tγZ (t)

µ
tγZ (t)

T γZ (T )

¶
=

µ
t

T

¶γ Z
¡
t
T T
¢

Z (T )
, (46)

and in a similar manner

δiT

µ
t

T

¶
=

µ
t

T

¶γi−γ Wi

¡
t
T T
¢
Z (T )

Wi (T )Z
¡
t
T T
¢ . (47)

Then, for t = [Tr] we have

δiT (r)→ δi (r) = rγi−γ , (48)

and

μT (r)→ μ (r) = rγ . (49)
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Relations (45) to (49) lead to a nonstochastic version of the stated result (14). For a stochastic version,

we may continue to assume that the standardized representation (45) applies with an op (1) error uniformly

in t ≤ T and require that

δiT (r) → p δi (r) = rγi−γ ,

μT (r) → p μ (r) = rγ ,

uniformly in r ∈ [0, 1] , so that the limit transition function δi (r) and growth curve μ (r) are non random

functions.

More generally, the limit functions δi (r) and μ (r) may themselves be stochastic processes. For example,

if the common growth component μt in log yit is a unit root stochastic trend, then by standard functional

limit theory (e.g., Philllips and Solo, 1992) on a suitably defined probability space

T−1/2μ[Tr] = μT (r)→p B (r) , (50)

for some Brownian motion B (r) . In place of (41), suppose that fi (t) = git/μt is stochastically regularly

varying at infinity in the sense that fi (t) continues to follow (41) for some power exponent γi but withWi (t)

stochastically slowly varying at infinity, i.e., Wi (λt) /Wi (t)→p 1 as t→∞ for all λ > 0. Then, in place of

(43) we have

1

T γi

git
μt
=
[Tr]

γi

T γi

Wi (Tr)

Wi (T )
Wi (T ) ∼ rγiWi (T ) .

Setting diT = T γi+1/2Wi (T ) , t = [Tr] and working in the same probability space where (50) holds, we have

d−1iT Xit =
ait

T γi+1/2Wi (T )
+

1

T γiWi (T )

µ
git
μt

¶µ
μt√
T

¶
= op (1) + δiT (r)μT (r)→p δi (r)B (r) ,

with δi (r) = rγi . In this case the limiting common trend function is the stochastic process μ (r) = B (r) and

the transition function is the non random function δi (r) = rγi .

8.2 Appendix B: Asymptotic Properties of the log t Convergence Test

8.2.1 Derivation of the log t Regression Equation

We proceed with the factor model (2) and the semiparametric representation (20), written here as

δit = δi + σitξit = δi +
σiξit
L (t) tα

:= δi +
ψit

L (t) tα
, (51)

for some σi > 0, t ≥ 1 and where the various components satisfy Assumptions A1 - A4. From (23) we have

ψNt :=
√
Nψt =

1√
N

NX
i=1

ψit ⇒ N
¡
0, v2ψ

¢
= ξψt, say, (52)
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where v2ψ = p limN→∞N−1
PN

i=1 ψ
2
it = limN→∞N−1

PN
i=1 σ

2
i . So ψt = Op

¡
N−1/2

¢
and

ψ2t = N−1ψ2Nt = N−2
NX
i=1

ψ2it +N−2
X
i6=j

ψitψjt

= N−2
NX
i=1

σ2i +N−2
NX
i=1

σ2i
¡
ξ2it − 1

¢
+ 2N−2

NX
i=2

i−1X
j=1

ψitψjt = Op

¡
N−1

¢
. (53)

From (2) and the definition of hit, we have

hit − 1 =
δit − 1

N

P
i δit

1
N

P
i δit

=
δi − δ̄ + 1

L(t)tα (ψit − ψt)

δ̄ + 1
L(t)tαψt

, (54)

where δ̄ = N−1
P

i δi. Under the null H0 of a homogeneous common trend effect, we have δi = δ for all i,

and

hit − 1 =
1

L (t) tα
ψit − ψt

δ + 1
L(t)tαψt

.

Then

(hit − 1)2 =
(ψit − ψt)

2

ψ2t + L (t)2 t2αδ2 + 2δL (t) tαψt
,

and

Ht =
1

N

NX
i=1

(hit − 1)2 =
1
N

PN
i=1 (ψit − ψt)

2

ψ2t + L (t)2 t2αδ2 + 2δL (t) tαψt
. (55)

Let σ2ψt = N−1
PN

i=1 (ψit − ψt)
2 = N−1

PN
i=1 ψ

2
it − ψ2t , so that by A2, A3 and (53) we have

σ2ψt = N−1
NX
i=1

σ2i ξ
2
it −N−2

NX
i=1

σ2i −N−2
NX
i=1

σ2i
¡
ξ2it − 1

¢
− 2N−2

NX
i=2

i−1X
j=1

ψitψjt

=
N − 1
N2

NX
i=1

σ2i +
N − 1
N2

NX
i=1

σ2i
¡
ξ2it − 1

¢
− 2

N2

NX
i=2

i−1X
j=1

ψitψjt

= v2ψN +N−1/2ηNt −N−1η2Nt, (56)

where v2ψN = N−1
¡
1−N−1

¢PN
i=1 σ

2
i → v2ψ as N → ∞, ηNt = N−1/2

¡
1−N−1

¢PN
i=1 σ

2
i

¡
ξ2it − 1

¢
, and

η2Nt = 2N
−1PN

i=2

Pi−1
j=1 ψitψjt. In view of (24), we have

ηNt ⇒ N
¡
0, v4ψ

¡
μ4ξ − 1

¢¢
:= ξ2ψt, say, as N →∞,

so that ηNt = Op (1) as N →∞. Further, since the limit variate ξ2ψt depends on
©¡
ξ2it − 1

¢ª∞
i=1

, it retains

the same dependence structure over t as
¡
ξ2it − 1

¢
. Indeed, expanding the probability space in a suitable

way, we may write ηNt = ξ2ψt + op (1) , and partial sums over t satisfy a functional law

T−1/2
[Tr]X
t=1

ξ2ψt ⇒ V2 (r) ,
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where V2 is Brownian motion with variance limN→∞N−1
PN

i=1 σ
4
iω2ii, which is a sequential functional

convergence version of (26). A3 requires that the following central limit law hold jointly as both N,T →∞

T−1/2N−1/2
TX
t=1

NX
i=1

σ2i
¡
ξ2it − 1

¢
⇒ N

Ã
0, lim

N→∞
N−1

NX
i=1

σ4iω2ii

!
. (57)

Primitive conditions for this result may be developed along the lines of Phillips and Moon (1999). Note

also that, in view of (26), N−1T−1
PT

t=1

PN
i=1 σ

2
i

¡
ξ2it − 1

¢
has asymptotic mean squared error of order

O
¡
N−1T−1

¢
, so that

T−1
TX
t=1

σ2ψt = v2ψN +Op

³
N−1/2T−1/2

´
. (58)

Finally, we observe that in view of the independence of the ξit across i, it follows by standard weak conver-

gence arguments that

η2Nt = 2N
−1

NX
i=2

i−1X
j=1

ψitψjt ⇒ 2

Z 1

0

Ut (r) dUt (r) , (59)

where Ut (r) is a Brownian motion with variance v2ψ = limN→∞N−1
PN

i=1 σ
2
i . Thus, η2Nt = Op (1) as

N →∞. Further, in view of (27), we have the joint convergence

T−1/2
TX
t=1

N−1
NX
i=2

i−1X
j=1

ψitψjt ⇒ N

⎛⎝0, lim
N→∞

N−2
NX
i=2

i−1X
j=1

σ2iσ
2
j

∞X
h=−∞

γi (h) γj (h)

⎞⎠ ,

as N,T →∞.

We now proceed with the derivation of the regression equation for Ht. Under H0, we can write

Ht =
σ2ψt

ψ2t + L (t)2 t2αδ2 + 2δL (t) tαψt
=

Ã
1

L (t)2 t2α

!
σ2ψt/δ

2

1 + L (t)−2 t−2αψ2t/δ
2 + 2L (t)−1 t−αψt/δ

, (60)

and

H1 =
σ2ψ1

ψ21 + L (1)
2
δ2 + 2δL (1)ψ1

,

which is independent of α. Let logH1 = h1. Taking logs yields

log
H1

Ht
= logH1 − logHt = h1 − logHt, (61)

and, using (56), we have

logHt = log

"
v2ψN +N−1/2ηNt −N−1η2Nt

δ2

#
− 2 logL (t)− 2α log t

− log
n
1 + L (t)−2 t−2αψ2t/δ

2 + 2L (t)−1 t−αψt/δ
o

= −2 logL (t)− 2α log t+ log
(
v2ψN

δ2

)
+ t, (62)
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where

t = log

"
1 +

N−1/2ηNt

v2ψN
− η2Nt

Nv2ψN

#
− log

n
1 + L (t)

−2
t−2αψ2t/δ

2 + 2L (t)
−1

t−αψt/δ
o
. (63)

Even if α = 0, we can still expand the logarithm in the second term of the above expression for t since

the slowly varying factor L (t)−1 → 0 for large t. Define λt = L (t)−1 t−αψt/δ, ζt = λ2t + 2λt, and using the

expansion log (1 + ζt) = ζt − 1
2ζ
2
t + o

¡
ζ3t
¢
and (53), we get

log (1 + ζt) = λ2t + 2λt −
1

2

¡
λ2t + 2λt

¢2
+ op

³
L (t)

−3
t−3αψ3t

´
= 2λt −

1

2
λ4t − 2λ3t − λ2t + op

³
L (t)−3 t−3αψ3t

´
= 2L (t)−1 t−αψt/δ − L (t)−2 t−2αψ2t/δ

2 +Op

Ã
1

L (t)3 t3αN3/2

!
,

so that since N →∞

t = log

(
1 +

N−1/2ηNt

v2ψN
− η2Nt

Nv2ψN

)

−2L (t)−1 t−αψt/δ + L (t)−2 t−2αψ2t/δ
2 +Op

Ã
1

L (t)
3
t3αN3/2

!
(64)

=

(
N−1/2

ηNt

v2ψN
+ εNt

)
− 2L (t)−1 t−αψt/δ + L (t)

−2
t−2αψ2t/δ

2 +Op

Ã
1

L (t)3 t3αN3/2

!
, (65)

where

εNt = − η2Nt

Nv2ψN
− 1

2N

η2Nt

v4ψN
+Op

³
N−3/2

´
= − 1

2N

E
¡
ξ22ψt

¢
v4ψN

− η2Nt

Nv2ψN
− 1

2N

ξ22ψt −E
¡
ξ22ψt

¢
v4ψN

+Op

³
N−3/2

´
. (66)

Expressions (61) and (62) lead to the following empirical regression equation

log
H1

Ht
− 2 logL (t) = a+ b log t+ ut, (67)

where

a = h1 − 2 log
vψN
δ

, b = 2α, ut = − t. (68)

For t ≥ [Tr] and r > 0, we may write

L (t)
−1

t−α =
1

TαL (T )

L (T )

L (t)

1¡
t
T

¢α = 1

TαL (T )

1¡
t
T

¢α {1 + o (1)} ,

and then
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ut = − 1√
N

1

v2ψN
ηNt − εNt +

2

δ

1

tαL (t)
ψt −

1

δ2
1

t2αL (t)
2ψ

2
t +Op

Ã
1

L (t)
3
t3αN3/2

!

= − 1√
N

1

v2ψN
ηNt − εNt +

2

δ

∙
{1 + o (1)}
TαL (T )

¸
1¡
t
T

¢αψt
− 1
δ2

"
{1 + o (1)}
T 2αL (T )2

#
1¡
t
T

¢2αψ2t +Op

Ã
1

L (t)3 t3αN3/2

!
. (69)

Since ψt = Op

¡
N−1/2

¢
, εNt = Op

¡
N−1

¢
, and L (T )→∞, the first term of (69) dominates the behavior of

the regression error ut when α ≥ 0.

8.2.2 Proof of Theorem 1

In developing the limit theory, it is convenient to modify the regression equation (67) to avoid the singularity

in the sample moment matrix that arises from the presence of an intercept and log t in (67). Phillips (2007)

provides a discussion and treatment of such issues in quite general regressions with slowly varying regressors

that includes cases such as (67). It is simplest to transform to the following equation

log
H1

Ht
− 2 logL (t) = a∗ + b log

t

T
+ ut, (70)

where a∗ = a+ b log T. This transformation clearly does not affect the estimator of b.

Define the demeaned regressor

τ t =

µ
log

t

T
− log t

T

¶
,

where log t
T = 1

T−[Tr]+1
PT

t=[Tr] log
t
T . Then, empirical regression of (70) over t = [Tr] , [Tr] + 1, ..., T for

some r > 0 yields

b̂− b =

PT
t=[Tr] τ tutPT
t=[Tr] τ

2
t

.

Note that
TX

t=[Tr]

τ2t =
TX

t=[Tr]

µ
log

t

T
− log t

T

¶2

= T

(Z 1

r

µ
log s− 1

1− r

Z 1

r

log pdp

¶2
ds+ o (1)

)

= T

(Z 1

r

log2 sds− 1

1− r

µZ 1

r

log pdp

¶2
+ o (1)

)

= T

½
(1− r)−

µ
r

1− r

¶
log2 r + o (1)

¾
, (71)

by Euler summation and direct evaluation of the integralZ 1

r

log2 sds− 1

1− r

µZ 1

r

log pdp

¶2
= (1− r)−

½
r

1− r

¾
log2 r.
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Using (69) we have

b̂− b = − 1

v2ψN

1√
NT

PT
t=[Tr] τ tηNt +

1
T

PT
t=[Tr] τ tεNt

T−1
PT

t=[Tr] τ
2
t

+
2

δ

1
T

PT
t=[Tr] τ t

1
tαL(t)ψt

T−1
PT

t=[Tr] τ
2
t

− 1

δ2

1
T

PT
t=[Tr] τ t

1
t2αL(t)2

ψ2t

T−1
PT

t=[Tr] τ
2
t

+Op

Ã
1

L (T )
3
T 3αN3/2

!
. (72)

Next observe that

1√
T

TX
t=[Tr]

τ tηNt =
1√
T

1√
N

TX
t=[Tr]

τ t

NX
i=1

σ2i
¡
ξ2it − 1

¢
=

1√
T
√
N

NX
i=1

TX
t=[Tr]

µ
log

t

T
− log t

T

¶
σ2i
¡
ξ2it − 1

¢
⇒ N

Ã
0, ω2η

Z 1

r

µ
log s− 1

1− r

Z 1

r

log pdp

¶2
ds

!

= N

µ
0, ω2η

½
(1− r)−

µ
r

1− r

¶
log2 r

¾¶
, (73)

in view of (25), where ω2η = limN→∞N−1
PN

i=1 σ
4
iω2ii, and ω2ii is the long run variance of ξ

2
it. Also noting

the fact that E
¡
ξ22ψt

¢
is constant over t and

PT
t=[Tr] τ t = 0, we find that

1

T

TX
t=[Tr]

τ tεNt = − 1

v2ψN

1

NT

TX
t=[Tr]

τ tη2Nt −
1

2v4ψN

1

NT

TX
t=[Tr]

τ t
¡
ξ22ψt −E

¡
ξ22ψt

¢¢
+Op

³
N−3/2

´
= Op

µ
1√
TN

+
1

N3/2

¶
, (74)

since both T−1/2
PT

t=[Tr] τ tη2Nt and T−1/2
PT

t=[Tr] τ t
¡
ξ22ψt −E

¡
ξ22ψt

¢¢
are Op (1) .

Further,

√
TN

T

TX
t=[Tr]

τ t
1

tαL (t)
ψt

=
1√
TN

NX
i=1

TX
t=[Tr]

τ t
1

tαL (t)
ψit

=
1√
TN

NX
i=1

TX
t=[Tr]

τ t

"
1

TαL (T )

L (T )

L (t)

1¡
t
T

¢αψit
#

=

½
1

TαL (T )
{1 + op (1)}

¾
1√
TN

NX
i=1

TX
t=[Tr]

µ
log

t

T
− log t

T

¶µ
t

T

¶−α
ψit

∼ 1

TαL (T )
N

Ã
0, ω2ψ

Z 1

r

(µ
log s− 1

1− r

Z 1

r

log pdp

¶2
s−2αds

)!
= Op

µ
1

TαL (T )

¶
(75)
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and, when α > 0, we have

1

δ2

√
TN

T

TX
t=[Tr]

τ t
1

t2αL (t)2
ψ2t

=
1

δ2

√
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T
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τ t

"
1
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⎫⎬⎭
=

√
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δ2
1

T

TX
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"
1

T 2αL (T )2

µ
L (T )

L (t)

¶2
1¡
t
T

¢2α
#

v2ψN
N {1−N−1}

+
1

δ2N

1√
T

TX
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"
1

T 2αL (T )
2

µ
L (T )

L (t)

¶2
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t
T

¢2α
#
1√
N

NX
i=1

σ2i
¡
ξ2it − 1

¢
1

δ2N1/2

1√
T
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t=[Tr]

τ t

"
1

T 2αL (T )
2

µ
L (T )

L (t)

¶2
1¡
t
T

¢2α
#
1

N

NX
i,j=1; i6=j

ψitψjt

=
v2ψN
√
T {1 + o (1)}

δ2
√
NT 2αL (T )2

1

T

TX
t=[Tr]

τ t

µ
t

T

¶−2α
(76)

+
{1 + o (1)}

δ2NT 2αL (T )
2

1√
T

TX
t=[Tr]

τ t

µ
t

T

¶−2α
1√
N

NX
i=1

σ2i
¡
ξ2it − 1

¢

+
{1 + o (1)}

δ2N1/2T 2αL (T )
2
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T
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τ t

µ
t

T

¶−2α⎛⎝ 1

N
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ψitψjt

⎞⎠ (77)

=
v2ψ

δ2
T 1/2

T 2αL (T )
2
N1/2
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r

½µ
log s− 1

1− r

Z 1

r

log pdp

¶
s−2αds

¾
{1 + op (1)}

+Op

Ã
1

T 2αL (T )
2√

N

!
, (78)

since

1√
T

TX
t=[Tr]

τ t

µ
t

T

¶−2α
1√
N

NX
i=1

σ2i
¡
ξ2it − 1

¢
= Op (1) ,

1√
T

TX
t=[Tr]

τ t

µ
t

T

¶−2α⎛⎝ 1

N

NX
i,j=1; i6=j

ψitψjt

⎞⎠ = Op (1) ,

in view of (26) and (27). When α = 0, it is apparent that

TX
t=[Tr]

τ t

µ
t

T

¶−2α
v2ψ =

TX
t=[Tr]

τ tv
2
ψ = 0

in line (76) of the earlier argument, in which case the first term of (78) is zero and the second term dominates

giving

1

δ2

√
TN

T

TX
t=[Tr]

τ t
1

L (t)2
ψ2t = Op

Ã
1

L (T )2
√
N

!
. (79)
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From (72) we have

√
NT

³
b̂− b

´
= − 1

v2ψN

1√
T

PT
t=[Tr] τ tηNt +

√
N√
T

PT
t=[Tr] τ tεNt

T−1
PT

t=[Tr] τ
2
t

+
2

δ

√
N√
T

PT
t=[Tr] τ t

1
tαL(t)ψt

T−1
PT

t=[Tr] τ
2
t

− 1

δ2

√
N√
T

PT
t=[Tr] τ t

1
t2αL(t)2

ψ2t

T−1
PT

t=[Tr] τ
2
t

+Op

Ã √
T

L (T )3 T 3αN

!
, (80)

and it then follows from (74) - (78) that when α > 0

√
NT

³
b̂− b

´
= − 1

v2ψN

1√
T

PT
t=[Tr] τ tηNt

T−1
PT

t=[Tr] τ
2
t

+Op

Ã
1

N1/2
+

√
T

N

!

+Op

µ
1

TαL (T )

¶
+Op

Ã
T 1/2

T 2αL (T )
2
N1/2

!
+Op

Ã √
T

L (T )
3
T 3αN

!

⇒ 1

v2ψ
N

Ã
0, ω2η

½
(1− r)−

µ
r

1− r

¶
log2 r

¾−1!
, (81)

as T,N →∞ provided T 1/2

T2αL(T )2N1/2 → 0. When α = 0, we have, using (79),

√
NT

³
b̂− b

´
= − 1

v2ψN

1√
T

PT
t=[Tr] τ tηNt

T−1
PT

t=[Tr] τ
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+Op

Ã
1
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+

√
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!

+Op

µ
1

L (T )

¶
+Op

Ã
1

L (T )2
√
N

!
+Op

Ã √
T

L (T )3N

!
,

and precisely the same limit theory as (81) applies provided T1/2

N → 0.

It follows that in both cases we have
√
NT

³
b̂− b

´
⇒ N

¡
0,Ω2

¢
, where

Ω2 =
ω2η
v4ψ

½
(1− r)−

µ
r

1− r

¶
log2 r

¾−1
, (82)

and ω2η = limN→∞N−1
PN

i=1 σ
4
iω2ii, v

2
ψ = limN→∞N−1

PN
i=1 σ

2
i , and where ω2ii is the long run variance

of ξ2it. This gives the required result (a).

When the relative rate condition T 1/2

T2αL(T )2N1/2 → 0 does not hold, the third term of (80) enters into the

limit theory as a bias term. In particular, we have

√
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⎧⎨⎩³b̂− b
´
+
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1
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1
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⎫⎬⎭ = − 1
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t=[Tr] τ tηNt +

√
N√
T

PT
t=[Tr] τ tεNt
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PT
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+Op

Ã √
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+Op
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+
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!
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and using (81) we have

√
NT

⎧⎨⎩³b̂− b
´
+
1

δ2

1
T

PT
t=[Tr] τ t

1
t2αL(t)2

ψ2t

T−1
PT

t=[Tr] τ
2
t

⎫⎬⎭⇒ N
¡
0,Ω2

¢
,

provided
√
T
N → 0. In this case, there is an asymptotic bias of the form

−
v2ψ

δ2
1

T 2αL (T )2N

Z 1

r

½µ
log s− 1

1− r

Z 1

r

log pdp

¶
s−2αds

¾
in the estimation of b. This bias is of O

³
T−2αL (T )−2N−1

´
and will generally be quite small when α > 0.

The bias is zero when α = 0 because
R 1
r

³
log s− 1

1−r
R 1
r
log pdp

´
ds = 0, explaining the milder rate condition

in this case.

8.2.3 Asymptotic Variance Formula

Since the regressor in (70) is deterministic, we may consistently estimate the asymptotic variance Ω2 in a

simple way by estimating of the long run variance of ut using the least squares residuals ût. In particular,

we may use the following variance estimate

V
³
b̂
´
=dlvarr (ût)

⎡⎣ TX
t=[Tr]

τ2t

⎤⎦−1 ,
where dlvarr (ût) is a consistent estimate of N−1 ³ δ2

v2ψ

´2
ω2η. To construct dlvarr (ût) we may use a conventional

HAC estimate, as we now show.

We start by working directly with ut and its autocovariance sequence. From (69) we have

√
Nut = − ηNt

v2ψN
+ 2

{1 + o (1)}
TαL (T )

1¡
t
T

¢α√Nψt + op (1) (83)

= − 1
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+ op (1) , (84)

where ηit = ξ2it − 1, whose long run variance is ω2ii. The serial autocovariances of the leading term wt =
1√
N

PN
i=1 σ

2
i ηit are E (wtwt+l) = N−1

PN
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, and as M →∞ it follows that
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where limN→∞N−1
PN

i=1 σ
4
iω2ii. Contributions to the long run variance of

√
Nut from the second and higher

order terms of (83) are of O
³
L (T )

−2
T−2α

´
for t ≥ [Tr] and r > 0. Hence, the long run variance of

√
Nut

is given by

lvar
³√

Nut

´
= lim

N→∞

1

v4ψN

1

N

NX
i=1

σ4iω2ii =
ω2η
v4ψ

:= Ω2u, say.

Thus, the asymptotic variance formula (82) is

Ω2 =
Ω2un

(1− r)−
³

r
1−r

´
log2 r

o2 .
The denominator can be directly calculated or estimated in the usual manner with the moment sum of

squares

TX
t=[Tr]

τ2t ∼ T

½
(1− r)−

µ
r

1− r

¶
log2 r

¾
,

as shown in (71) above. The numerator, Ω2u = limN→∞
δ4

v4ψN

1
N

PN
i=1 σ

4
iω2ii, is the limit of a weighted average

of long run variances. As we next investigate, it may be estimated using a long run variance estimate with

the residuals of the regression, viz. Ω̂2u =dlvarr (ût).
8.2.4 Estimation of the Weighted Average Long Run Variance

The sample serial covariances of the leading term wt of the regression error ut (using the available observations

in the regression from t = [Tr] , ..., T ) have the form

1

T

X
[Tr]≤t,t+l≤T

wtwt+l =
1

N

NX
i,j=1

σ2iσ
2
j

1

T

X
[Tr]≤t,t+l≤T
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1
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ηitηit+l

+
1√
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⎡⎣ 1√
N
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i=1

σ2i

⎧⎨⎩ 1√
NT

NX
j 6=i

σ2j
X

[Tr]≤t,t+l≤T
ηitηjt+l

⎫⎬⎭
⎤⎦

=
1

N

NX
i=1

σ4i

⎧⎨⎩ 1T X
[Tr]≤t,t+l≤T

ηitηit+l

⎫⎬⎭+Op

µ
1√
T

¶
. (85)

By virtue of the usual process of HAC estimation for M →∞ as T →∞, we have

MX
l=−M

⎧⎨⎩ 1T X
[Tr]≤t,t+l≤T

ηitηit+l

⎫⎬⎭→p (1− r)ω22ii,

where the factor (1− r) reflects the fact that only the fraction 1− r of the time series data are used in the

regression. For M satisfying M√
T
+ 1

M → 0 as T → ∞, we find from (85) and standard HAC limit theory
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that

MX
l=−M

1

T

X
[Tr]≤t,t+l≤T

wtwt+l =
1

N

NX
i=1

σ4i

⎧⎨⎩
MX

l=−M

1

T

X
[Tr]≤t,t+l≤T

ηitηit+l

⎫⎬⎭+ op (1) (86)

=
1

N

NX
i=1

σ4i
©
(1− r)ω22ii + op (1)

ª
+ op (1)

→ p (1− r) lim
N→∞

N−1
NX
i=1

σ4iω2ii.

Since the scaled regression residuals
√
Nût consistently estimate the quantities − 1

v2ψN
wt in (84), we corre-

spondingly have

dlvar³√Nût

´
→p (1− r)

1

v4ψN
lim

N→∞
N−1

NX
i=1

σ4iω2ii = (1− r)Ω2u.

If we use a standardization of 1/ (T − [Tr] + 1) rather than 1/T in the sample serial covariances in (86), we
have

MX
l=−M

1

T − [Tr] + 1
X

[Tr]≤t,t+l≤T
wtwt+l →p Ω

2
u,

and the corresponding estimate (where the subscript r signifies the use of the scaling factor 1/ (T − [Tr] + 1)
in the sample covariance formulae)

dlvarr ³√Nût

´
=

MX
l=−M

N

T − [Tr] + 1
X

[Tr]≤t,t+l≤T
ûtût+l →p Ω

2
u, (87)

with the same behavior for other HAC estimates constructed with different lag kernels.

Then, the asymptotic variance estimate of b̂ is

s2
b̂
= dlvarr (ût)

⎡⎣ TX
t=[Tr]

τ2t

⎤⎦−1

=
1

N
dlvarr ³√Nût

´⎡⎣ TX
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∼ 1
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(1− r)−

µ
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¶
log2 r

¾−1
=

1

NT
Ω2,

and NTs2
b̂
→p Ω

2 as N,T →∞. Accordingly, the t- ratio tb̂ =
b̂−b
sb̂
⇒ N (0, 1) , and result (b) follows.

8.2.5 Proof of Theorem 2

Case (a): α ≥ 0 We assume δi ∼ iid
¡
δ, σ2δ

¢
and let δ̄ = N−1

PN
i=1 δi. Under this alternative, we have

from (54)

hit − 1 =
δi − δ̄ + 1

L(t)tα (ψit − ψt)

δ̄ + 1
L(t)tαψt

,
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so that

Ht =
σ2

δ̄
2

1 +
³
σ2ψt/σ

2
´
L (t)−2 t−2α + 2

¡
σδψt/σ

2
¢
L (t)−1 t−α

1 + L (t)
−2

t−2αψ2t/δ̄
2
+ 2L (t)

−1
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(88)

where σ2 = N−1
P¡

δi − δ̄
¢2 →p σ

2
δ as N →∞,

σδψt = N−1
NX
i=1

¡
δi − δ̄

¢
(ψit − ψt) = N−1/2ςNt +Op

¡
N−1

¢
, (89)

where ςNt = N−1/2
PN

i=1

¡
δi − δ̄

¢
σiξit = Op (1) , and σ2ψt = v2ψN +N−1/2ηNt +Op

¡
N−1

¢
from (56) above.

Note that Ht → σ2

δ̄2
> 0 as T,N →∞.

Taking logs in (88) and assuming σ2 > 0 (otherwise the null hypothesis holds) we have

logHt = 2 log
σ

δ̄
+ t,

where

t = log
n
1 +

³
σ2ψt/σ

2
´
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2
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L (t)−1 t−α

o
− log
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2
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o
. (90)

The generating process for log H1

Ht
therefore has the following form under the alternative

log
H1

Ht
− 2 logL (t) = logH1 − 2 log

σ

δ̄
− 2 logL (t)− t, (91)

while the fitted regression is

log
H1

Ht
− 2 logL (t) = â∗ + b̂ log

µ
t

T

¶
+ residual, (92)

so that

b̂ = −
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2
t
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Note that t = Ta for some a > 0 and for L (t) = log t, we have

logL (t) = logL (Ta) = log {log T + log a} = log
∙
log T
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!
,

giving
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log t

T − log
t
T

log T
− 1
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T
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µ
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log3 T

¶
, (95)
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and PT
t=[Tr] τ t logL (t)PT

t=[Tr] τ
2
t

=
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t=[Tr] τ t

n
logL (t)− logL (t)

o
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where

g (r) =
2 (log r) r2 −
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log3 r

¢
r + 2
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¢
r − 2 (log r) r − 4 (1− r)2

(1− r)2 − r log2 r
.

Hence, under the alternative, we have
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Next consider
PT

t=[Tr] τ t t. Note that σδψt = N−1/2ςNt + Op
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= Op
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¢
from (89), ψt =
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It follows that
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=
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s−2αds {1 + o (1)}

+Op

µ
1√

NL (T )Tα

¶
=

v2ψN
σ2

r∗ (α)

L (T )
2
T 2α

+Op

µ
1√

NL (T )Tα

¶
, (99)

where
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. (100)

Hence, from (97) and (71) we obtain
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where

r (α) =
r∗ (α)

(1− r)−
³

r
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´
log2 r

. (102)

When α ≥ 0 and L (T ) = log T, the second term in (101) dominates and we have

b̂ = − 2

log T
+
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log2 T
−
Ã
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+Op
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log3 T

¶
. (103)

Thus, b̂ →p 0 in this case. Heuristically, this outcome is explained by the fact that Ht tends to a positive

constant, so that the dependent variable in (92) behaves like −2 logL (t) for large t. Since logL (t) is the
log of a slowly varying function at infinity, its regression coefficient on log t is expected to be zero. More

particularly, the regression of −2 logL (t) on a constant and log
¡
t
T

¢
produces a slope coefficient that is

negative and tends to zero like − 2
logT , as shown in (96).

Next consider the standard error of b̂ under the alternative. Writing the residual in (92) as ût, the long

run variance estimate has typical form

dlvarr ³√Nût
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In view of (91) and (92), and with L (t) = log t we deduce from (95) and (96) that
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using (101) and because, from (98),
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In view of (105) we have, for |l| ≤M, M
T → 0, and t ≥ [Tr] with r > 0,
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Then
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uniformly in l when L (T ) = log T and α ≥ 0. Hence, (104) becomes
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Using (103) and (108), we deduce that see that the t- ratio tb̂ has the following asymptotic behavior under

the alternative

tb̂ =
b̂

sb̂
= − 2

log T
÷Op

Ã
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log2 T
¢
T 1/2

!
= − 2

log T
×Op
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!
→ −∞ (109)

for all α ≥ 0 and all bandwidth choices M ≤ T. It follows that the test is consistent. The divergence rate is

O
¡
(log T )T 1/2/M1/2

¢
.

Case (b): α < 0 We consider the case where α < 0 and δi = δ for all i. The case α < 0 and δi 6= δ for

all i may be treated in the same way as case (a) and is therefore omitted. Set γ = −α > 0.
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When δi = δ for all i, (67) and (68) continue to hold but with α < 0 and
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If Tγ√
N
→ 0, then both logarithmic terms of t may still be expanded as T,N →∞, but now the second term

dominates rather than the first. Thus, in place of (69), we get
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The limit theory proceeds as in the proof of Theorem 1, but we now have
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Thus, if Tγ−1/2√
NL(T )

→ 0, b̂ is still consistent, but at a reduced rate in comparison with the null and provided

γ = −α is not too large.
The behavior of the estimated standard error can be obtained in a similar manner to the derivation

under the null, given above. In particular, in view of (111),
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The sample quantity is

1

T − [Tr]
X
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which gives
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Similarly, we find that
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´
=

MX
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N

T − [Tr] + 1
X

[Tr]≤t,t+l≤T
ûtût+l

=
4
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and then
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⎡⎣ TX
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´⎡⎣ 1
T

TX
t=[Tr]

τ2t

⎤⎦−1

=
4

NTδ2
T 2γ

L (T )
2

1− r1+2γ

(1 + 2γ) (1− r)
ω2ξ

½
(1− r)−

µ
r

1− r

¶
log2 r

¾−1
(1 + op (1)) .

61



It follows that

tb̂ =
b̂

sb̂
=

³
b̂− b

´
sb̂

+
b

sb̂
=

b

sb̂
+Op (1) ,

and so, under the alternative with b = 2α < 0, we have

b

sb̂
=
2α
n
(1− r)−

³
r
1−r

´
log2 r

o1/2
n

4
N2Tδ2

T2γ

L(T )2
1−r1+2γ

(1+2γ)(1−r)ω
2
ξ

o1/2 → −∞.

confirming consistency of the test in this case. The divergence rate is O
¡
L (T )T 1/2−γN

¢
.

Case (c): Finally, consider the case where γ = −α is such that Tγ√
NL(T )

→∞. Again, (67) holds so that

log
H1

Ht
− 2 logL (t) = a+ b log t+ ut, (112)

and the second term of (110) dominates but now, for t ≥ [Tr] , we have

ut = − t = log
n
1 + L (t)−2 t2γψ2t/δ

2 + 2L (t)−1 tγψt/δ
o
+Op

³
N−1/2

´
= log

⎧⎪⎨⎪⎩ t2γ

L (t)2N

³√
Nψt

´2
δ2

⎫⎪⎬⎪⎭+Op

Ã√
NL (T )

T γ
+

1√
N

!

= −2 logL (t) + 2γ log t− logN − log δ2 + log
³√

Nψt

´2
+ op (1)

= −2 logL (t) + 2γ log t− logN − log δ2 + log
n
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³
N−1/2

´o2
+ op (1)

= −2 logL (t) + 2γ log t+AN + ξwt + op (1)

where ξwt = log ξ
2
ψt −E

©
log ξ2ψt

ª
, and AN = E {ξwt}− logN − log δ2. Hence, (112) is equivalent to

log
H1

Ht
− 2 logL (t) = aN + wt, wt = −2 logL (t) + ξwt + op (1) , (113)

where aN = a + AN and the term in log t drops out because 2γ = −2α = −b. The error (wt) in equation

(113) therefore diverges to −∞ as T → ∞ and aN , AN = O (− logN) → −∞ as N → ∞. This behavior is

consistent with the fact (easily deduced from (55)) that Ht = Op (N) in this case.

In view of (113), the fitted regression (92) behaves like a regression of −2 logL (t) on log t, so that just
as in case (a) and (103) above, we have

b̂ =

PT
t=[Tr] τ t {−2 logL (t) + ξwt + op (1)}PT

t=[Tr] τ
2
t

= − 2

log T
+O

µ
1

log2 T

¶
.

So b̂→p 0, as in case (a).
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Next consider the standard error. When L (t) = log t, logL (t)− logL (t) = log t
T −log

t
T

log T +O
³

1
log2 T

´
from

(95) , so that

ût = −
¡
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¢
− 2
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o
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T
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¡
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µ
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log2 T

¶
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¢
+O

µ
1

log2 T

¶
.

Assuming the long run variance of ξwt exists and writing ω
2
ξω
=
P∞

k=−∞E
¡
ξwtξwt+k

¢
, we have

dlvarr (ût) =
MX

l=−M

1

T − [Tr] + 1
X

[Tr]≤t,t+l≤T
ûtût+l

= ω2ξω {1 + op (1)} .

and then
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⎡⎣ TX
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=
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½
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µ
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¶
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¾−1
.

Hence

tb̂ =
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sb̂
=

½
− 2

log T
+O

µ
1

log2 T

¶¾
÷
(
ω2ξω
T

½
(1− r)−

µ
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1− r

¶
log2 r

¾−1)1/2

= − 2
√
T

log T

n
(1− r)−

³
r
1−r

´
log2 r

o1/2
ωξω

{1 + o (1)}→ −∞,

and again the test is consistent. The divergence rate is O
¡
T 1/2/ log T

¢
.

8.2.6 Proof of Theorem 3

Case (a) Under the local alternative (35), we have

δi ∼ iid
¡
δ, c2T−2ω

¢
for α ≥ ω > 0. (114)

Under this alternative the dgp for log H1

Ht
has the same form as in case (a) of the proof of theorem 2 but with

δ̄ = δ and

σ2 = N−1
X

(δi − δ)2 = c2T−2ω
n
1 +Op

³
N−1/2

´o
= Op

µ
1

T 2ω

¶
(115)

σδψt = N−1
NX
i=1

(δi − δ) (ψit − ψt) = N−1/2T−ωςTNt {1 + op (1)} = Op

³
N−1/2T−ω

´
, (116)
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as N,T →∞. Thus, as in (88), we have

Ht =
1

δ2
σ2 + σ2ψtL (t)

−2 t−2α + 2
¡
σδψt

¢
L (t)−1 t−α

1 + L (t)−2 t−2αψ2t/δ
2 + 2L (t)−1 t−αψt/δ

(117)

=
1
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¡
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L (t)−1 t−α

1 + L (t)−2 t−2αψ2t/δ
2 + 2L (t)−1 t−αψt/δ

= Op

¡
T−2ω

¢
,

since ω ≤ α. It follows that Ht →p 0 as T → ∞ for t ≥ [Tr] and r > 0. So, the model leads to behavior in

Ht local to that under the null hypothesis. More explicitly, we have, using (91), (90), and (117)

log
H1

Ht
− 2 logL (t) = logH1 − 2 log

σ

δ
− 2 logL (t)− t,

= logH1 − 2 log
c

δ
+ 2ω log T − 2 logL (t)− t, (118)

where

t = log
n
1 +
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2
´
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σδψt/σ

2
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L (t)−1 t−α

o
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n
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t−2αψ2t/δ̄

2
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o

=
³
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2
´
T 2ωL (t)−2 t−2α +Op

Ã
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L (T )4 T 4(α−ω)
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!
. (119)

The fitted regression is again

log
H1

Ht
− 2 logL (t) = â† + b̂ log

µ
t

T

¶
+ residual (120)

where now â† = logH1 − 2 log c
δ + 2ω log T, and, as in (97),

b̂ = −
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t=[Tr] τ t {2 logL (t) + t}PT
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2
t
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t=[Tr] τ t tPT
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2
t
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log T
+

g (r)

log2 T
+Op

µ
1

log3 T

¶
.

Next,

1

T
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τ t t =
v2ψN
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1
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2
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2
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=
v2ψN
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1
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Z 1

r

½
log s− 1
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r

log pdp
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=
v2ψN
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where r∗ (α) =
R 1
r

n
log s− 1

1−r
R 1
r
log pdp

o
s−2αds is given in (100) above. We deduce that
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−
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+Op
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¶
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where r (α) is given in (102), so that b̂→p 0 as T,N →∞. The result is therefore comparable to that under

case (a) of Theorem 2.

Next consider the standard error of b̂ under the local alternative. Writing the residual in (120) as ût, the

long run variance estimate has typical form

dlvarr ³√Nût

´
=
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l=−M

N

T − [Tr] + 1
X

[Tr]≤t,t+l≤T
ûtût+l.

In view of (119), (121) and (122), we have
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,

using (106). Then, for |l| ≤ M, M
T → 0, and t ≥ [Tr] with r > 0, we have as in case (a) of the proof of

Theorem 2

ût+l = − ( t+l − ¯)− b̂

½
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¶
= ût {1 + o (1)} ,

so that, just as in (107), we find
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1
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X
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uniformly in l and when L (T ) = log T and α ≥ ω > 0. The remainder of the proof follows that of case (a)

in the proof of theorem 2. In particular, we have

dlvarr ³√Nût

´
= Op

µ
NM

log4 T

¶
,

s2
b̂
=dlvarr (ût)
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and
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!
→ −∞,

for all α ≥ ω > 0 and all bandwidth choices M ≤ T. Again, the divergence rate is Op

¡
(log T )T 1/2/M1/2

¢
.

Thus, the test is consistent against all local alternatives of the form (114) with ω ≤ α.

Case (b) When ω > α, the alternative involves

δi ∼ iid
¡
δ, c2T−2ω

¢
for ω > α ≥ 0, (123)

so that δi = δ +Op (T
−ω) = δ + op (T

−α) and the alternatives are closer to the null than in case (a). Now

we have
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and (117) becomes
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so that the behavior of Ht is asymptotically the same as under the null - c.f. (60). Taking logarithms, we

have

logHt = −2 logL (t)− 2α log t
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where
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These formulae lead to the empirical regression equation

log
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Ht
− 2 logL (t) = a+ b log t+ ut,

where a = h1 − 2 log vψN
δ , b = 2α, ut = − t, just as in (67) and (68), but now
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The first term of (124) dominates the behavior of the regression error ut when ω > α ≥ 0 and T 2(ω−α)√
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→ 0

as T,N →∞. It follows that
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we have

b̂− b = − c2

v2ψN
h (r)

L (T )
2

T 2(ω−α)
{1 + o (1)} , (125)

where
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Since ω > α, b̂→p b and b̂ is consistent.
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Next, the regression residual has the form
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As earlier, we find ût+l = ût {1 + o (1)} for |l| ≤M, and then
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uniformly in |l| ≤M. Hence,

dlvarr (ût) = MX
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û2t {1 + o (1)} = Op
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T 4(ω−α)

!

and so

s2
b̂
= dlvarr (ût)
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It follows that
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.
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Thus, when α > 0, the test has no power to detect alternatives of the form (123), whereas when ω > α = 0,

the test is consistent. In both cases, the alternatives δi 6= δ are close to the null because ω > α, but when

α = 0 the rate of convergence of δit is slow (at a slowly varying rate) and the test is therefore able to detect

the local departures from the null.

8.2.7 Power and the Choice of the L (t) function

This section provides a short discussion on the choice of the L (t) function. Since the class of possible L (t)

functions is vast, it is convenient to consider the following restricted class of logarithmic and higher order

logarithmic functions

L (t) = logk t for integer k ≥ 1, (126)

where log1 t = log t, log2 t = log (log t) , and so on. Since our concern is with situations where t is large in

the regression asymptotics, L (t) and L (t)
−1 are both well defined. Note that k can be any positive integer,

but we confine attention below to the primary cases of interest where k = 1, 2. Higher order cases can be

deduced by recursion.

From (126), we can rewrite (94) and (96) as

logL (t) = logL
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extending (95). Correspondingly, under the alternative α ≥ 0 and δi ∼ iid
¡
δ, σ2δ

¢
considered in case (a) of

Theorem 2, the choice of L (t) affects the bias formula in (103). SincePT
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we find that
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Proceeding as in the proof of Theorem 2 (case (a)) we find that
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and then

tb̂ =
b̂

sb̂
=

⎧⎪⎪⎨⎪⎪⎩
− 2
logT ×Op

µ
(log2 T)T 1/2

M1/2

¶
k = 1

− 2
logT ×Op
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(log22 T)T 1/2

M1/2

¶
k = 2

.

So, the divergence rate and discriminatory power of the log t test reduces as we change L (t) from log t to

log2 t = log log t. The test is still consistent for k = 2, provided

M log T

T log22 T
→ 0.

8.3 Appendix C: Asymptotic Properties of the Clustering Procedure

Section 4 develops a clustering procedure based on augmenting a core panel withK individuals where δi = δA

for i = 1, ...,K with additional individuals one at a time for which δK+1 = δB, say. This Appendix provides

an asymptotic analysis of that procedure. We assume that the size of the core group K → ∞ as N → ∞.

The variation of the δi is then

σ2 =
1

K + 1

K+1X
i=1

¡
δi − δ̄

¢2
=

K

(K + 1)2
(δA − δB)

2 = O
¡
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¢
, (127)

where

δ̄ =
1

K + 1

K+1X
i=1

δi =
KδA
K + 1

+
δB

K + 1
= δA +O

¡
K−1

¢
,

as in (36), and σ2 depends on K. More generally, we can consider a panel with idiosyncratic coefficients

δi ∼ iid
¡
δ, c2K−1

¢
where

K

T 2α
→ 0 and α > 0, (128)

so that K is small relative to T. In this case, σ2 = c2K−1, analogous to (127). In the same way as in (118)

and (119), under this alternative the dgp for log H1

Ht
has the form

log
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− 2 logL (t) = logH1 − 2 log
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− 2 logL (t)− t,
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.

The fitted regression can now be written as

log
H1

Ht
− 2 logL (t) = â† + b̂ log

µ
t

T

¶
+ ût,
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where â† = logH1 − 2 log c
δ + logK. and, as in (122) but with K

T 2α → 0, we find that

b̂ = − 2

log T
+

g (r)

log2 T
−

v2ψN
c2

r (α)K

L (T )2 T 2α
+Op

µ
1

log3 T

¶
.

Proceeding as in the proof of Theorem 3, we find that

s2
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=dlvarr (ût)

⎡⎣ TX
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τ2t

⎤⎦−1 = Op

Ã
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and
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log T
÷Op
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!
= − 2

log T
×Op
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log2 T

¢
T 1/2

M1/2

!
→ −∞,

for all α > 0, for K satisfying K
T2α → 0, and all bandwidth choices M ≤ T. The test is therefore consistent

against local alternatives of the form (128). In view of (127), this includes the case where δi = δA for

i = 1, ...,K with δK+1 = δB 6= δA. On the other hand, when δi = δA for i = 1, ...,K, the null hypothesis

holds for N = K and tb̂ =
b̂−b
sb̂
⇒ N (0, 1) , as in Theorem 1.

When T 2α

K → 0, the alternatives ((128) are very close to the null, relative to the convergence rate except

when α = 0. This case may be treated as in the proof of case (b) of Theorem 3. Accordingly, the test is

inconsistent and unable to detect the departure from the null when α > 0. However, when α = 0 and the

convergence rate is slowly varying under the null, the test is consistent against local alternatives of the form

(128) just as in case (b) of Theorem 3. In effect, although the alternatives are very close (because K is

large), the convergence rate is so slow (slower than any power rate) and this suffices to ensure the test is

consistent as T →∞.

8.4 Appendix D: Data Appendix

8.4.1 Cost of Living Index Example:

Data Source: Bereau of Labor Statistics

Data: 19 U.S. Cities CPI

Time Period: 1918-2001 (84 annual observations)

List of Cities: New York (NYC), Philadelphia (PHI), Boston (BOS), Cleveland (CLE), Chicago (CHI),

Detroit (DET), Washinton D.C. (WDC). Baltimore (BAL), Houston (HOU), L.A. (LAX), San Fran-

cisco (SF0), Seattle (SEA), Portland (POR), Cincinnati (CIN), Altanta (ATL), St. Louis (STL),

Minneapolis (MIN), Milwaukee (KCM)
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8.4.2 International Risk Sharing Example:

Data Source: World Development Indicators.

Data: Household final good consumption (constant, US$, based year = 2000)

Time Period: 1960-2002 (43 annual observations)

List of Countries: Algeria, Australia, Austria, Bangladesh, Belgium, Benin, Brazil, Burundi, Cameroon,

Chile, China, Colombia, Congo Rep, Costa Rica, Cote d’Ivoire, Denmark, Dominican Republic,

Ecuador, El Salvador, Finland, France, Gabon, Ghana, Greece, Guatemala, Honduras, Hong Kong,

Iceland, India, Indonesia, Ireland, Italy, Japan, Kenya, Korea, Lesotho, Madagascar, Malawi, Malaysia,

Mexico, Morocco, Netherlands, New Zealand, Nicaragua, Norway, Pakistan, Paraguay, Peru, Philip-

pines, Portugal, Rwanda, Senegal, Singapore, South Africa, Spain, Sweden, Switzerland, Thailand,

Togo, Trinidad and Tobago, United Kingdom, United States, Uruguay, Zambia
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