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SOME RELATIONSHIPS BETWEEN DISCRETE AND CONTINUOQUS MODELS

OF AN URBAN ECONOMY

by

Richard P. McLeanl and Thomas J. Muench2

In a classic article by Beckmann and Koopmans [10] (B-K), it is
shown that in a class of location-assignment shipping models, there does
not necegsarily exist a set of decentralizing prices. This is due to the
indivisibility or discreteness of agents, i.e., one and only one agent can
be assigned to a location. In a more recent book by Mills [12], it is
shown that in a simple urban setting with a continuum of agents, there
are decentralizing prices. However, Mills allowed fractional allocations
of agents.

In order to compare these results,it is necessary to set up a Mills
type B-K prbblem. It can be easily shown that this discretized Mills
problem has the B-K property of no decentralizing prices in Mills' "inte-
grated" city case (where there are actual fractional allocations). Now
we can think of a continuum city as a limit of a seuqence of cities with
a finite number of locations and agents. Thus the above two results
indicate a kind of discontinuity in the limit for location problems.

The purpose of this paper is to reconcile the B-K and Mills results

(for the integrated city case) and thus eliminate this discontinuity.

1Cowles Foundation for Research in Economics, Box 2125, Yale Station,
New Haven, CT 06520.

2Department of Econmomics, SUNY at Stony Brook, Stony Brook, NY 11794.



In particular we show that, first, the Mills optimal allocation is the
limit of a sequence of (approximately optimal) allocations in a sequence
of B-K problems and, second, that the Mills decentralizing prices are
approximately decentralizing for a sequence of B-K problems when a natural
cutting plane is added to each., The dual variable associated with this
extra constraint can be interpreted as a subsidy to commuting (of workers).
This is not needed in the limit because fractional allocations mean
(formally) that no commuting takes place. It does, however, appear in

the limit in the relationships between the regular dual prices.

Thus Mills solution hides an important component of the decentralizing
mechanism (in any finite realization of the Mills city) while the B-K
model usually has no such decentralizing prices. Our reconciliation brings
out the full implications of both the B-K and Mills results.

Although we have handled only a special case of the class of problems
covered by B-K, we believe our paper indicates an extremely useful method
of getting economic insight from B-K problems in general. (i)} Look at
sequences of B-K problems which have a "limit." (ii) Find natural cutting
planes which approximately decentralize the allocation problem.

Though we will use the duality theory of linear programming, we
will not emply any duality results for integer programming. For an
interesting discussion of the economic aspects of duality in integer
programming, see the paper by Gomory and Baumol [5]. Also, we will not
discuss any specific solution procedures here. For a treatment of
algorithms for the quadratic assignment problem, the Interested reader
is referred to Lawler [11], Hillier and Connors [%], and Graves and

Whinston [6]. For a gemeral bibliography on location problems, see [4].



We now proceed to discussion of the mathematical models of Mills and

Koopmans and Beckmann.

The Koopmans-Beckmann Problem

The quadratic assignment problem may be described as follows.
It is necessary to assign n facilities to n locations so as to minimize
the sum of location costs and total interplant transportation costs.
Define the cost coefficients and parameters as follows. Let cij be
the cost of shipping one unit of a commodity from location i to location
j . Let bSt be the known requirement of plant t for the output of
plant s . Finally, let aij be the cost of locating plant i on site

j .« Define the location variable x as

1]

1, 1f plant 1 1locates at site j
xij =
Q, if plant { does not locate at site j

In additjon, each site can accommodate only one plant and each plant must
be allocated to a site. We then have the following quadratic assignment

problem:
minimize ; ;aijxij + §_§ ; gcijbstxsixtj
subject to zxij = 1
;xij =1
xij £ {0,1} .

Koopmans and Beckmann reformulate the problem as an equivalent

linear mixed integer program by letting b and adding

st¥si®ty = Yatij



materials balance constraints at each location. The modified problem

is presented as:

minimize } Zaijxij + § § é %cijstyijst

ii
subject to Zx . = 1
i
(PO) §x1j =1

With the introduction of the binary locatilon variables xij , we
are confronted by the most intractable of non-convexities, that of indivi-
sibility. Indeed, Koopmans and Beckmann provide a very simple example
in which no decentralizing prices exist that will lead each firm to maximize
profit at the location it chooses and leave no firm with an incentive to
move to another location. In the jargon of linear programming, we cannot

find values for the dual variables to problem (P (considered as a

o)
linear programming problem) which, together with the optimal integer
assignment, will satisfy the complementary slackness conditions. This
i1s certainly not unusual for integer programming problems which are usually
solved by complicated combinatorial procedures precisely because their
non-convex feasible sets preclude the use of more standard mathematical
programming techniques.

Qur purpose in this paper 1s to investigate certain equilibrium

problems of a location theoretic nature of which the Koopmans-Beckmann

problem 1s an example. More recently, Mills discusses a model of location



in the context of an urban economy and we shall briefly describe some

of his results.

The Mills Urban Model

A central delivery point is specified and the surrounding land
is available for the production of two commodities, an output good (i =
which must be shipped to the central delivery point and a housing good

(i =2) . Define

Li(u) = land allocated to the production of good i at a
distance u units from the central delivery point;
Xi(u) = production of commodity { at a distance u units

from the center.

A simple fixed coefficients technology is assumed with land as the only
input to housing and production of the output good scaled so that each
unit of output good requires one worker. If XO i1s the known exogenous

requirement of the output good, then we may summarize these assumptions

as follows:

Xl(u) = alLl(u) » O <

IA
&

1A
el

IA
e

n
£

X,(u) = a,L,(u) , 0

Li(u) + LZ(U) = 2mu, 0 gu

A
el

u u
joxl(u)du==j;k2(u)du =X, -

Here, u 1s the radius of the city and feasibility requires that

u = (Z(al-+a2)X0/ala2H)1/2

1

Note that land and production are considered



perfectly divisible so that Xl R X2 s L1 s L2

It 18 desired that we allocate firms and workers so as to minimize the

are density functioms.

gsum of commuting costs and shipping costs. An elementary argument indi-
cates that no outward commuting will take place, i.e., the "number" of
firms at a distance u units from the center is at least as great as

the number of workers residing u units from the center, for all distances

0

A

u < u . If t, is the cost of shipping a unit of output good one

1

unit distance and t, is the cost of round trip of commuting, then the

2

model is

a .
minimize tlfouxl(u)du + tzjofo[xl(u').-Xz(u')]duvdu

subject to Xl(u) = alLl(u) sy 0zux u
Xp(u) = a)l,(u) , Ogugu
Li(w) +Ly(w) =2, Ogugu
u u
[ X ()du = [ X,(u)du = X,
0 0
>0, 0susu

u
fo[Xl(u')-Xz(u')]du' >

If commuting costs are sufficlently high relative to shipping costs,
the so called integrated solution obtains. Specifically, if

(al/{al-faz])tl 5ty » then the optimal solution is

21ra2 .
Ll(u)=m—'u, 0gugu

1 2

Znal _
Ly =g gt Osusue

1 "2



Mills shows that the decentralizing prices that could be used to achieve

this allocation in a competitive market are given by:

0_ . = (price of output good at delivery

P1 tlu T point)

4182 —
R(u) = Ezf;zz'tl(u-u) (price of land)
pplw) =W+ tl(ﬁ;u) (price of output good)

8, _
Pz(u) = ;Iqj;; tl(u-u) (price of housing)
a; _

W(u) =W + ;Itr;; tl(u-U) (wage rate)

If (all[a1-+az])tl 2ty then a '"segregated'" solution results. This
case will not be analyzed in detail in this paper, so we refer the

interested reader to Mills [11], pp. 87-92 for a discussion of this case.

A Simple Linear City

Before proceeding directly to the discretized model, we will discuss
a one-dimensional version of a Mills type Koopmans-Beckmann model which
lends insight to the solution of the more complex model. Consider the
following simple location problem in which n workers and n firms desire
to arrange themselves on a one-dimensional plot of land with 2n possible
locations so as to minimize combined shipping and commuting costs. We
may visualize the land as a line segment divided inte 2n cells with

0 designated as the city center (see Figure 1):
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FIGURE 1

Let tl be the cost of shipping one unit of output good and t, be the
round trip commuting cost. Each firm requi;es one unit of land and one
worker for each unit of output good produced. Each unit of housing re-
quires one unit of land and each house contains one worker. Also, the
number of firms k units from the center must be at least as great as

the number of houses at the same distance from the center. (Note that

these are Mills conditions.) Define

it

xXg number of workers residing at site 1

number of firms at site 1

I

Y1
so the model may be stated as:

2n 2n k
minimize t, F iy, +t, } § (y, -x,)
ha Tt st d

subject to X, vy s 1

20, k=1, 2n-1

T~
~
]

[
|
L]
i
~—
A

2n
T (y,-x,) =0
1=1 i i

X;s ¥y ® {0,1} .



k
We modify the problem by defining 2z, = ) (y;-%;) as the excess of
i=1

jobg over available workers. The variable z, may be interpreted as
the number of commuters who must pass from site k+l to site k on thelr
way to work. Note that we are not concerned with determining which com-

nuters but only how many. Making this substitution we have:

2n 2n
minimize tlizliyi + tszIZk

subject to Xy + v = 1 (Ri)
2n
izlyi = n (pg)
YT X T (W)

(Pl) Yy ~ % + zk_i =z k=2,..., 2n-1 (Nk) ()

Y2n ~ *on + Zn-1 " 0 (w2n)

X;5 ¥y € fo,1} , =z, >0

where Ri s pO . Wi represent the associated dual variables. If we

replace the integer restrictions with simple non-negativity constraints

we have a linear program whose associated dual is:

T
maximize np, - R
) 1=1 i
subject to p, - R, - W, < it (Yl) (1)
W, -R 20 (x;) (2)
(Dl)
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where Yy » Xy, 2Z; are the associated dual varilables. We interpret
Py as the price of the output good at the city center, Ri as the price

of land at site i and Wi as the wage rate at site i . The dual
constraints (and associated complementary slackness conditions) have the
following interpretations. Equation (1) states that potential profits

must be non-positive and that in order for a firm to locate at site i ,
profit at site 1 must be zero (profit = Py - Ri - Wi - itl ). Equation
(2) says simply that wages net of commuting costs are less than rent at
site 1 and if someone resides at site i , then they are equal. Finally,
equation (3) states that as one moves closer to the city center, the dif-
ference in wages cannot exceed the cost of commiting. If one or more

workers actually commutes from site k+l to site k , the difference

in wages at the two sites must exactly offset the cost of commuting.

The Integrated Case

What additional restrictions, if any, must be put on (Pl) S0
that the optimal solution to the unrestricted linear program satisfies
the binary integer constraints? First, let us try an analog of Mills'
integrated solution, f.e., we want x; = 1 for all even 1 , ¥y = 1
for all odd i , and zk =1 1if k odd, 2y =0 if k even. In order
for this solution to be supported by decentrallzing prices (i.e., in order
for the dual variables of (Dl) to have values that complement the proposed
values of x, v, z ), the followlng complementary slackness conditions
must be satisfied:

= even

P R, + W, +1t, , 1f 1
0 . 17" 1 odd
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hd odd
W1 Ri , 1f i
= even
- odd
Wi - W1+1 , 1if i .

HaA

even

We now propose the following solution to this system of linear inequalities:

(.2n-i)tl
Ry =—5——, ¥ )
(2n—i)t1
W, =——=, ¥ (5)
PO = 2nt1 . (6)

This solution 1is valid if and only if t, = t1/2 . Now it is easy to

verify that z, = 0, x; = 1/2 , vy = 1/2 , ¥i , 1is the optimal solu-
tion to the unrestricted linear program and (4)-(6) constitute the optimal
solution to the dual linear program if and only if t, 2 tl/2 . (This is
Mills integrated solution.) Furthermore, we can show that no integer
solution exists for the unrestricted linear program if t, > t1/2 , and
the general procedures which exist for solving such integer programming
problems yield no insight to the economic problem at hand. Indivisibility
has created a problem for the competitive market mechanism analogous to
those resulting from externalities.

To attack the problem, we make a simple observation. In the model
(Pl) , each facility and each worker must be located on different sites
80 that in any optimal assignment of firms and workers to sites, someone

must commute. This means that the =z cannot all be zero, something which

i

is true in the optimal solution to the relaxed linear program. In the
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simple model (Pl) , an alternating arrangement of firms and workers

requires that z, = 0 1f {1 is evenand z, =1 1if i is odd, so that

i i
total distance travelled by commuters must he at least n . Let us add

Zn-1
the constraint (g) Z z, = 1 {(with dual variable s ) to (Pl)
k=1

The equations of the dual remain the same except for the last which becomes:

+s:st,. (7)

With this new constraint, equations (4), (5), (6) will solve the dual

problem if t, > t1/2 . In this case, W, - W = t1/2 and the final

2 i 1+1

constraint states that

t

t1/2 + s 2

, 1f 1 1s odd

t1/2 + 3 ty » if 1 4is even.

na

Hence, s = t, - t1/2 is to be interpreted as a suhsidy to commuters
equal to the difference between the cost of commuting from site kil
to site k and the increment to wages between site kt+l and site k .

The externality caused by lumpy land and people is attacked by means of

a subsidy to commuting.

The Segregated Case

Before discussing the complex model, we shall give the results which
correspord to Mills' segregated solution which holds when t, < t1/2 R
i.e., when shipping costs are sufficiently high relative to commuting

costs. In this case, the solution to model (Pl) is
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0, ntl < i< 2n
1, ntl <1 < 2n
= 4 -
b4
i 0, 0gign
1, 1 = 20-1
2, 1= 2n-2

It is easy to verify that the following values for the dual variables,
obtained by mimicking the Mills continuum solution, are the complements

of the constraints given above:

Py = nt1 + 2nt2

nt2 + (tl-—tz)(n—i) , 1i=1,...,n

t2(2n~i) , 1=n+l, ..., 2n

Wi. t2(2n-i) , 1i=1,...,2n .

By laboring through the complementary slackness conditions, it can also
be shown that these conditions hold at the optimal solution if and only

if ty 2 tl/2 , which {s precisely Mills' condition for the segregated
2n-1

solution. Note that we do not need the extra condition Z z, -
k=1 =

n
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because the firms will "bunch up' as close to the delivery point as possible,
thus filling up the first n spaces and leaving no spaces for workers

to occupy. Thus, the condition is ineffective and s =0 .

The City on a Plain

Formulation

We shall now present a more realistic discretization of Mills'
model. Instead of density functions to describe the distribution of agents
over a disk, consider the following grid of available sites of land

(Figure 2):

FIGURE 2

Each square (i.e., each site) is labelled by two coordinates. We use
a metric which gives the distance between square (i,]J) and square
(s,t) as

a¢t) = 18| + [3-¢]

All squares at a distance u wunits from the center form a ring, each

of whose labels satisfies |[1] + || =u . Let I(u) = {(i,3) 1|+ 5| =u}
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be the set of indices of the squares on a ring wuw units from the center.

Define the following variables:

1
yij

2
yij
xij

rij

Y(13) (st)

portion of site (i,j) devoted to production of the

output good;

portion of site (i,j) devoted to the housing good;

= amount of output good produced at (i,3j) ;

number of workers who live at (4,j) :

= number of people who live at (i,3)

but work at site

For simplicity, suppose that each house can accommodate neo more

than one worker and each factory can produce no more than one unit of

output. The discretized model may be written as follows:

minimize tl Z d(iJ) t

(19 (00)™1]

1 2

subject to yij + Yij =1

(P

z Z (ij)
(i i) (sht) (st)? (13) (st)

X.:. =X
(ij) ij 0

1
*33 7 Y44

_ 2
Ti3 T Y13

) Y(st)(d3) ~ ) Y(15) (st) " yij -
CROM ] (s,t) ‘HI/L8
Jod a1y

Wy (soey 87 (i3) (st) 2
: ; e {0,1}

Y130 Vi3 *130 T130 Y(13) (st)

1]

(s,t)

(8)

&)

1
Pij (10)

P

(11)

W 3 (12)

S

(13)
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where
t, = cost per unit distance of shipping one unit of output
good to the center;
t, = cost per unlt distance of one round trip of commuting;
Xq = exogenously determined requirement for the output good;
my = minimum amount of commuting that must be undertaken;

n = the number of pairs of rings.

The dual variables are listed with their respective equations. Equation
(8) says that the entirety of site (i,j) 1is used for housing and pro-
duction. Equation (9) indicates that the total production over all gites
must equal the exogenously determined demand for output. Equations (L0)
and (11) are "production functions' for output and workers. Specifically,
(1) says that production at site (i,j) must equal productive capacity
at that gite and (11) says that the number of residents at (i,j) cannot
exceed the capacity of the housing available at (1i,j) . Recall that,

in the interest of simplicity, we have scaled the problem so that cne
unit of productive capacity results in one unit of output and each unit
of housing can accommodate no more than one resident. Equation (12) is

a generalization of equation (a) 1in the simple model of the previocus
section. It says that the supply of labor at site (i,j) must equal

the demand for labor there. A remark is in order. In Mills' continuum

model, no outward commuting i1s possible due to the constraint that says

“ 1 1yy4.1

f [xl(u )-—x2(u Y1du™] >0 . 1In the discrete analog,we do not prove this
0

at the outset but rather leave that as a result of optimization. Finally,
equation (13) is a cutting plane constraint, analogous to equation (B)

in the simple model, which requires that the total distance commuted
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exceed some known minimum.

This constraint requires some justification. 1In the discrete prob-
lem, the fact that firms and workers must occupy different squares means
that some commuting must take place. The minimum total distance that
workers must cover in commuting to their jobs is denoted m, - The con-

. L (13) =
figuration of agents that results in (izj) ( Zt)d(st)y(ij)(st) = m,

may not be the optimal solution to P2 » but this constraint does not
exclude any feasible integer solutions for an integer program with only
equations (8) to (12) as constraints. As in the simple model, the dual
variable assoclated with this cutting plane 1s interpreted as a subsidy
to commuting and in the limit results that will be described, it is this
subsidy that accounts for the discrepancy in changes in wages between
locations and travel costs between locations.

Problem (PZ) , without equation (13) is a Koopmans-Beckmann problem

. _ 1 _ .2
in a slightly modified form. If we let Xey = yij and riy = yij then
P, may be restated as:
(i) 1 (13)
minimize t, ) d yi; Tty deatyY (199 (st
Ligygy @77 2Ty (o0 (90760
1 2
subject to yij + Y44 1
) Yzltj = %
(1,3)
7y - )y =y, -y
| : i
Yenan T byTaneo T Ty T Y

(s,t

1 2
yij’ Yij: y(ij)(st) £ {O’l} .

Note that by summing the last constraint over all (i,j) , we obtain
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E y2 = X, . Such a model corresponds to a quadratic assignment
@iy’ @) T o
>

problem with two types of plants, "firms" and "workers." Fach firm re-

quires one unit of output of the workers and each worker requires zero

units of output of each firm. We shall show that this Koopmans-Beckmann

model can be approximately decentralized by Mills' optimal continuum prices.
Let (_é) denote problem (PZ) without the integer restriction,

i.e. (?é) is a linear program. To obtain qualitative results, we must

examine the dual to (?ﬁ) . This may be written:

maximize x,p. + m.s - R,.
0" 0 Q P |
(1,3)
subject to p1 -R,, ~W,, <0 ( L ) (14)
R TRTE 13
2 2
Piy = Ry SO (vi) %)
W,, - p2, <0 (r,)  (16)
i] ij = ij
®,)
1 1 (i3)
Po = Piy £ 19(00) () AN
3 (13) (i)
Voo Wij +sd 1) & t2d(st) (y(ij)(st)) (18)
1 2 R W 1 unrestricted
Pij» Piy> Ryg0 Wiy Pg in sign
820

where y1 , y2 . s X P
i3 1] 1] i) (11) (st)

varlables associated with the appropriate dual constraints. The dual

are the natural primal

varlables have the same interpretation as their counterparts in Mills'
medel except they hold by site rather than within rings. Equation (14)

states that profit to producers of the output good must be non-positive
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at each site and zero i1f a plant is actually built. Equation (15) says
that profit to producers of housing services must be non-positive and
zero if housing services are provided there. Equation (16) means that
housing prices must not be less than the wage rate at each site and they
nust be equal if someone lives at that site. From equation (17), we see
that unless the price Pij of output good at site (i,j) equals the
"net"” price pé - tldgég; of the good at the center, none of it will

be shipped to the center. Finally, equation (18) states that in order
for someone to live at (4,j) and work at (s,t) , the difference in
wages plus the subsidy to commuting must exactly equal the cost of
commuting.

In this two dimensional framework, it is not immediately clear
what kind of solution is the discrete analog of the Mills' continuous
integrated solution. We could alternate firms and workers arcund each
ring and have each worker commute to the firm an his right. Thus, no
interring commuting would take place as in Mills' model. However, we
do not make that assumption here. Instead, we consider alternate rings
of firmg and workers in which "most' workers commute one space inward
on their jobs. The word "most" is important here because we cannot evenly
distribute firms and workers in such a way that each worker need only
commute one space to his job. We assume an even number of rings and we
propose the following solution.

1, (1,1) ¢ I(WUI*(u+l) , u odd

(19)
0, otherwise

1, (1,1) ¢ TN\I*(u) , u even
= (20)
0, otherwise
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F 1, (4,3) & I(uw)\I*(u) , u even and
(s,t) = (1,j41) if j < 0 or
(s,t) = (1,3-1) 1f j > 0 ;
Yaysty =11 (50 € T*@) , v even and (21)
(i,j) = (s~1,1) if s > 0 and
(i,j) = (s+l,-1) if s < 0
| 0 , otherwise

where I#%{u) = {(i,j)[li[mth j=0} . Now consider the following proposal

for a dual solution:

py = 2nt, (22)
Wiy = t;/2(2n-u) ,  (1,3) e L(w) (23)
Ryy = £/2Q2mw) ,  (4,3) € () 24)
Ppy = £y 2nw) L () & T 25)
Pl = 6/2@nw) , (L3) & TG (26)

§=t, - t,/2. (27)

The expressions are obtained by assuming that constraints (14)-(17) of
the dual (Dl) hold with equality everywhere and solving the resulting
system of simultaneous linear equations. This solution is not exact,

however; not all dual constraints are satisfied. To see this, consider

- - a1 _ (13) .
Wij Voo Sd(st) t2d(st) . If (1,3) and (s,t) are in the same
ring, then our dual solution implies that s = t, - However, if (i,3j)

and (s,t) lie in adjacent rings, then s = t, - t1/2 . We show in the



21

next section that it is an approximate solution, the advantages of which

are two-fold. First, the resulting dual solution is an exact analog to

the solution obtained by Mills for the continuous case, Second, the

approximation is "good'" in the sense that it works almost everywhere.

Only at the corners {the elements of I*(u) ) do we encounter a difficulty

in the sense that complementary slackness conditions are not satisfied.
One goal of this paper 1s to link the discrete location problem

to the continuous. The approach we shall use is to study the limiting

behavior of an urban economy as the number of rings increases but the

size of the city remains constant. Note the contrast to limit theorems

for the core and various treatments of Edgeworth's conjecture. 1In these

problems, the number of agents grows large but each agent's consumption

and demand sets are subsets of a commodity space of fixed dimension.

In the problem at hand, the dimension of the problem changes at each stage.

In addition, certain right hand side constants in the constraints of

(PZ) are growing. Specifically, Xq and m. are dependent on n .

0

In order to obtain our results we require that x, = 4n(2n+l) and

0
my = 2n(2n+l) . Clearly, any feasible integer solution must satisfy

(11)
d y > 2n(2n+l) where 2n(2n+l) is the number of
(11) (e r) 87D (st)

workers in the economy. This is true since each worker must commute at

least one space to work.

Approximate Equilibria for Large Cities

Before proceeding to the limit theorems we must discuss some pre-

liminary ideas from mathematical programming. Let 8 = {x e RiIAlx = bl’

e § and let (Al, 12) e R~ xR be

Ayx 2 by, x4 € {0,1}} . Let x +

0
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given. Note that Alxo - bl = 0 . Suppose that

ch* = min ch .

xe8

Then the following sequence of inequalities must hold:

T & T T _ T _ "
cxg zexk > x* + Al(b1 Alx*) + A?_(b2 AQx )
T T T
2 minfe x+A1(bl —Alx) +J\2(b2-A2x)]
xe8
> min [ch-I‘)\T(b - A x) +)\T(b -Ax)]
= 1'1 1 2v2 Y2
xis{O,l}
. T r. T T T
min [(c-—AlAl-AZAZ) X+ y;by +y,yb,
xiE{O,l}
T T
T T T T
- (c—Al)\l-AZAz) g + (c—AlAl—AZAZ) XO]
! T T T T T
= min [(c-—Alkl-AZAZ) (x-—xo)]-+c xo-kyz(bz-Azxo)
xi;{O,l}
_ T
=c x0 + Al -+ Az
where
T
A, = min (c-ATA —AT)\ ) (x-x.)
i x 11 272 0
xle{O,l}
and

T
8y = yy(by = Ayx,)

The motivation for this analysis is as follows. We are confronted in
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our problem by a set of constraints of the form Alx = bl (equations
(8)~(12)) and Ax 2 b, (equation (13)). 1In the model presented here,
Azx 2 b2 consists only of a minimum travelling constraint. More gen-
erally, A2x > b2 might include a system of cutting planes designed to
close the duality gap that occurs in the presence of integer constraints.
We have hypothesized a feasible solution X, and a set of dual variables

(ll, AZ) with certain desirable properties. Specifically (ll, )\

2)
is a non-negative vector where Al corresponds to the prices and Az

is the subsidy. However, (xo, Ays Az) does not constitute an optimal
solution to the pair of dual linear programs (?é, D2) s 1.e., X, is

not a solution to the location problem considered as a linear program.
Unfortunately, X, is not the same as x* and we may be unable to find

x* without recourse to certain integer programming techniques that do

not have standard economic interpretations. Ideally, we would like to

show that our problem falls in that class of linear programming models

whose constraint sets have integer extreme points (e.g. transportation
problems). Attempts in this direction have not been successful except

in the one dimensional problem where the introduction of a cutting plane
seems to make the problem work. In higher dimensions, however, this one
extra constraint does not suffice due to certain irregularities (which

we do not see how to remedy) in the structure of our urban economy. Hence

a different approach is required and we shall employ a limiting argument.
Consider a sequence of discrete cities of fixed area but increasingly many
rings (hence Increasingly many sites). As each plot of land becomes smaller,
the discrete city will begin to resemble its perfectly divisible counter-

part. Each city is characterized by 2n rings and ring u contains

4u plots of land for u=1, ..., 2n . Such a city will be called a
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clty of size n . The costs of traversing a unit distance will remain
tl and t2 . The metric, however, expressed as a function of the indice

(i,j) becomes di; =-%;(|i~s]-+|j-t|) . In all sums over agents, the

agents are weighted by ﬁ-[én(2n+1)]—l m x (number of agents)

We remark here that this way of connecting the continuum model with
the discrete model is a standard approach. Another (equivalent) approach
would be to allow the city to grow larger and keep the distance between
rings constant. Any aggregate quantities obtained in the first (fixed
area) approach would thus be average (per capita) values of the analogous
quantities obtained in the second (fixed interring distance) approach.

In particular, convergence in the former approach would be per capita
convergence in the latter.

For each n , a vector An of prices is proposed. Specifically,
we propose the values of the dual variables given by equations (22) to
(27) with u and u replaced by u/2n and u/2n respectively. These
particular values imply that the number of non-zero components in the
vector c - A$A1 - Aglz is small relative to the total number of components.
In addition, we choose x, as given by equations (19) to (21) so that
A2x0 - b2 = ) . Thus, the complementary slackness conditions are satisfied
at almost every location so that (xo, ll’ 12) is "almost" optimal.

It is necessary to formulate the notion of almost in the sense that it
ig used here.
The previous system of inequalities shows ch 2 ch* 2 minF(x,Al, Az)

XeS
where

T T T
F(x, Al’ Az) = ¢'x + Al(bl-Alx) + lz(bz-Azx)
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Using min F(x, Al’ 12) as a lower bound is undesirable because it is

xeS _
no easier to compute than e Txx However, min F(x, A Ay) s
X
xiE{O,l}
very easy to calculate and min F(x, Al, 12) has been decomposed
X
xiE{O,l}
g0 that:
min  F(x, Ay, A)) = cix. + A, + 4
< * 1 2 0 1 2
xie{O,l}

T
where A min F(x, ll, 12) - F(xo, Al’ AZ) and A, = A2(b2-A
xiE{O,l}

%0’

We would like to show that |ch*—-ch0| approaches zero as the number

of sites becomes large. This is equivalent to showing that Al + A2
approaches zero. Such an idea has been used to great advantage in general
equilibrium theory where it is useful to examine the relationship between
large, finite economles and an economy with a continuum of agents. These
approaches generally entail defining a measure of non-competitiveness

and then proceeding to show that this measure is bounded by a number that
is independent of the number of agents in the economy. As the economy
grows large, the average value of non-competitiveness goes to zero. In
most limit type results, this measure is the number of agents for whom

the continuum price system works poorly. We shall prove that the number

of locations for which the continuum price system works poorly has measure
zero in the limit ecomomy. In addition, we show that the proposed allo-
catlon-price pair is (average) optimal in the limit. Both of these results
depend on the idea that non-competitiveness is linear im n but the number

of agents is quadratic Iin n . (The number of sites is 4n(2Zn+l) with
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2n(2n+l) each of firms and workers.) That 1s, for fixed n , we must
prove that Al + A2 is8 linear in n . For a treatment of pure exchange

economies with indivisible commodities, see Dierker [3].

2 4
For notational convenience, let x € Rién +16n and
2
(Aps Ap) € Rf‘n I e defined as
- 1 2
X ((yij), (yij)’ (xij), (rij)’ (y(ij)(st))) ’

1 2 1
M= (Reg), (gy)s (5y)s (), (BR))
and

AZ = S L]

Lemma 1: If (x, Al,_Az) is the proposed primal-dual solution described

by equations (19) through (27), then A, + A2 is a linear function of n .

1
Proof: 1Is 1s necessary to compute the difference Al = min F{(x, Al, Az)
X
xiE{Osl}
- F{x., A Aa) Now, A, = min (c-—ATA -ATA )T(x—x )} and we
-0 "1 T20 T ! 1 % 171 272 Q
xia{O,l}

T T
have chosen (Al, Az) so that ¢ - Alxl - AZAZ > 0 . Hence, 4y must

be minimized by making Xy~ Xy as small as possible whenever

(c-A{ll-Agkz)i > 0 where (c-AiAl-Agkz). denotes the ith component
i

of ¢ - AEAI - Agxz . This can be accomplished by making X, = 0 whenever
Xgy = 1 and P 0 whenever Xo4 = (0 . In the latter case X; ~ Xgy T 0

80
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=1
T
2

%01

A A

1 AL>0

T
c-A1 2

In the problem at hand, equations (14) to (17) are equalities so we need

) (13 _, ;(i3)
only be concerned with equation (18): Wij Wst Sd(st) - tZd(st)
So the only component of c¢ - AIAl - Aglz that could be positive is

13 _ . (1) (1)
dsr) T F29st) T M3 T Yar T %d(st)

Now s = t, - t1/2 50

[}

(11 (13)
aigr) = Wiy < Wer T 1/2 404

_ 3] _ . (st) (1)
tl/Z[Zn d(oo)] tl/Z[Zn d(OO)J + t1/2 d(st)

i (st) | (if) _,(41)
tl/z[d(OO)'*d(st) d(OO)]

(st) (13) (13}
(00) + d(St) - d(OO) > 0 and

y(ij)(st) = 1 . In our model, any interring commuting occurs between

We are interested in the case when d

(st) (13) _ ,(3) _
Thus degoy + dese) ~ d¢op) = O

and y(ij)(st) = 1 in these cases. The remaining commuting occurs at

adjacent squares in an inward direction.

the "corners" of the economy. Specifically, = 1 for

V(1) (st)
(s,t) € I*(u) , (1,§) = (u-1,1) , (i,j) = (l-u,~1) and u even.

In this case, dESS; + dgzi; - dgéé; = 2 g0 that
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2n
b= ] ) (t,/2)(2)
u=1 (s5,t)eI*{u)
u even {1i,j)=(u-1,1)
(1,3)=(1-u,-1)

2n

- I (/22 (2)
u=1

u even

—(Ztl) (l’l)

-2nt1 .

Now Ayx, = 20(2n#l) + 20, so 0 3 Ay(b,=-Ayx,) = A

2%0 2%
|A2| $ 2ns . Hence [A;+4,| g 2nt; + 208, a linear function of n .

9 2 -g2n , so

Q.E.D.

Theorem 1: Let (xn, Mn? AZn) be the proposed primal-dual solution
for an economy of size n . Then (xn, Mo Azn) is average limit optimal

i.e.

letx* - eTx |
no LIS 0 as n > w
#E

where x: is optimal for the economy of size n .
2n
Proof: The total number of agents in E is X 4u = 4n(2n+l) = #En .
u=1
Now 0 > cix* - cix > A, + A, so
nn n'n 1 2
T*_ _
c xy-c x| ) |8, +2,] i 2t;n + 2n(t, - t,/2)
= {#HE = #En 4n(2n+l)

and the result follows.
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This result is not surprising since the number of agents for whom

our proposed price system does not work is small relative to the total

number of agents in the economy and this ratio goes to zero as the number

of agents becomes large.

We present some convergence results. To relate the sequence of

discrete problems to the continucus Mills' economy, it is necessary to

describe the continuous representation of an economy of size = .

T = {x ¢ R?|||x[l; s 1} where [-||, is the &, normon R’

1
define Tij(n) as follows:

2 1,1 3 1

Tij(n) = {x e R

i .1 < X, < 5+ 5 - — <X
2Zn 4n = 71 2n  4n’ 2n 4n = T2

Define

Next,

=

N
2n + 4n

for i and j ranging over -Z2n, ..., 2n . Geometrically, Tij(n) is

a small square centered at (i/2n, j/2n) with area 1/4n2 whose top

and right hand side are missing. Now define two functions from T to R
as follows:
1 1
o (x) = Ty (mx (x)
U @ider M Ty ™
2 2
ec(x) = ] yi.(nx (x)
B @ fder M Ty @
1, xe 8
where xs(x) = , the characteristic function of S .
0, x#¢5

The @'s define step functions on T and we may define set functions

1

1 and wi as follows: wi(S) = f Gi(x)dp where 1 is Lebesgue measure
S

on the measurable space (T,B(T)) . Here B(T) denotes the c-~algebra

of Borel sets of T .
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The set functions thus defined are measures (Halmos [7], pp. 97-98)
that express the number of firms and homes in a Borel subset § of T .
In Mills' continuum problem, the optimal number of firms, workers, etc.,

is expressed in terms of a density function. Specifically, the number

T
of firms in a disk of radius r 1is f mudu = wr2/2 if the Euclidean
0

metric 1s used and a, = a, = 1 . More generally, we shall interpret
the Mills' integrated continuum solution to be ome in which the "number"
of firms and the number of workers in any Borel subset S5 of T are
equal. To be precise, the number of firms and workers in S is u(8)/2
where 1 is Lebesgue measure. This means that throughout T , firms
and workers are present Iin equal amounts and they are completely mixed.
This corresponds directly to Mills' idea of an integrated solution. We
would like to be able to show that our sequence of proposed solutions

to the discrete problems converges (in an appropriate sense) to the optimal
continuum solution, This requires the notion of weak convergence of
measures. A sequence of measures {Wn} on a metric space T 1is said
to converge weakly to a measure v on T i1if and only if ffd\)n 5 ffdv
for every continuous, bounded function f ¢ T » R . Equivalently Vo
converges weakly to v 1f and only if vn(S) + v(8) for any subset §
of T with v{3S) = 0, where 235 denotes the boundary of 5 . (See

Parthasarathy [13] or Billingsley [2].) We now state:
Theorem 2: wn converges to /2 weakly on T .

The proof of Theorem 2 has been reduced to a series of lemmas. First
define Jn(S) as the subset In such that (1,j) ¢ Jn(S) if Tij <Ss.

Let ZH(S) - ] Tij(n) . We call In(S) an inner approximation
(isj)EJn(S)

te § .



n >n* and (x,y) & Ti j (n)
n’“n

follows that

max{la—xl, |b—x]}

(LN

s

ot

<

Therefore, (a,b) ¢ Ti (n) C
n’jn

Lemma 3: Let m be a positive

denotes the closure of A .
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Lemma 2: Let S be open In T . Then for all points =x in 3

E|n*3Vn > n% 3 (1,3) e I 3 x efij(n)c__:-s .

Proof: Let x = (a,b) £ 8§ . Then there exists ¢ > 0 such that

BE(a,b) = {(xl, X,) € T|max{|a-xl|, |b-x2|} < e} £ S because 5 is

open. That is, BE(a,b) is an open square centered at (a,b) which is

completely contained in S . Now TC v Tij(n) , ¥n so there
(1,3)el

exists a sequence {Ti'j (n)}oo such that (a,b) € Ti j (n) , ¥n .

n'n n=1 n’“n
Hence, max{|a-in/2n|,lb-—jn/ZnI} < 1/4n . Let n* > 1/2e . Choose

Then by the triangle inequality, it

integer. Then Zm N fgm = zm

Q.E.D.

where A
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Proof: Note that if (i,]) ¢ L S then (51, 5j) ¢ ISm and these coor-
dinates determine the same point in T (that is, (i/2m, j/2m)

= (5i/10m, 53/10m) ). Let T, 3 (m) be an arbitrary element of Zm
m~'m

and let Q = {(1,3) € Ismlmax{ISim-iI, |5jm-j[} < 2} . We shall prove

the lemma by demonstrating that

U T,,(m) =T, , (m) .
(1, 4)eq M 1 odm

Suppose (Xx,¥) € U Elj(Sm) . Then (x,y) ¢ Ea*j*(Sm) for some
(isj)EQm

(i*,3*) Qm . Applying the triangle inequality we have

i y o
- _m g S _Jx
max{ |Xx =5—1, |y ZmI < max{ x=voml> 1Y " Tom }
54
i* m j* _53
T M T0n " T0m|’ |10m 10
L, 2
= 20m ° 10m
=—--l—
4m 7
So (x,¥) € Ti j (m) .
m-m
Now suppose (x,y) ¢ U Elj(5m) and recall that |al - |b] < [a—b] .
(isj)EQm

It (1,3) ¢ ISm , then
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51 53
m 4 m__J L i g
“x{ 10m  10m|’ |10m ~ I0m } max{ Tom ~ *|’ IIOm Y‘}
51 5
< pardom_ |
= 10m * |10m Y[ °
If (x,y) ¢ v (Sm) , then (x,¥) ¢ T*A(Sm) means that

(1, j)EQm

max{|51m—i|, |51 -3} 23 so max{|5i /10m-1/10m|, |55 /10m-3/10m|} > 3/10m .
Also -max{|i/10m—x|, Iﬁ/lOm—yI} > -1/10m . Combining these results
we have 3/10m - 1/20m = 1/4m < max{|51m/10m-—xl, |5jm/10m-y|} . Now
suppose 1/4m = max{|5im/10m—x|, |5j /10m-y|} . Without loss of gen-
erality, let 1/4m = max{|51m/10—x|, I5;| /10m-~-y|} = 54 /10m . If

X > Sim/lOm , then x - Sim/lt}m = 1/4m . This can be rewritten as
x=-[(54 +2)/10m) =1/20m . If x < 5i /i0m , 51 /10m - x = 1/4m . This
may be rewritten as [(51m~2)/10m] -x=1/20m . Now |5jm/10m-y| < 1/4m

implies [(5jm—2)/1m] -1/20m gy [(Sjm+2)/10m] +1/20m so x >5i /10m

means that (x,y) belongs to the boundary of some ij (5m} with
max{ |Sim-i|, ]5jm-j |} = 2, thus contradicting the hypothesis that
(x,y) £ V) ij(5m) . Hence, 1/4m < max{|5im/10m—x[, |5jm/10m—y|}
(i:j)EQm
i.e., (x,¥) é’fi . (m) . Now v [ U (Sm)] Z C s
n’Im m (i, j)EQm
Tij (m)sz
m'm
50 y U (5m) CZ so J. NJ =7 .
m (i, J)EQm ij 5m ) 5m m m
Ty el Q.E.D.
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Lemma 4: Let S ST be open. Then ¥e > 0 Hnl and Zm 3 p(S\Zm) < e,
where u denotes Lebesgue measure.

Proof: By Lemma 2, there exists k , an integer such that Zk # @8 and

T < ® -
zk < 8 . By Lemma 3, there exists a sequence {Zm}m=1 of inner approxi

mations such that E; < Zm+1 € S . (For example take Zm = me1 ‘)
_ (5™ X (k)
Clearly, ! Zm € 8 . According to Lemma 2, x ¢ S5 = |m* a ¥m > m* ,
N m=1 o o
X E z . Thus S <) Zm . So §= U] . The conclusion of the lemma
n T m=1 m=l "

follows from Halmes, Theorem D, p. 38.
The following result 1s the main lemma.

Lemma 5: Let m. be a positive integer and let A € {T, (m.)|(i,j) ¢ I_1} .
—_— 0 = ijvo Ty

Then ¥e >0, Ja2¥a>a, [p (-l <c.

Proof: Let Zn be an inner approximation to A and consider one of
the elements of A, say A . Now fix i at, say 1, and define
= = <
K, (1) = {(1,1) e I |1 =1, and Tyy(n) S A} d.e. K (i) is the set
of indices associated with a column of small squares of the inner approxi-

mation which are completely contained in a (generally) larger square A

in A.
If io is odd and (10, k) and (iO, k+1) ¢ KA(io) , then
1 1 - 1
yio,k + yio,k+l 1 where yij corresponds to the proposed solution

for an economy of size n given by equation (19). (Note that we have

1
ij

1 - 1 - = »
(yio,k 172) + (yiO'k+l 1/2) = 0 . Thus if #K,(1,) 1is even, then

suppressed the dependence of y on n .} Hence

| ) (yl,j-llz)l =0 and #K odd implies

o)
(1,1) 6K, (15)
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(yij—1/2)| =1/2 .

(1,3) ek, (1)
Now suppose io is even. 1In this case, we encounter the possibility
1 1 = = " "
that yio’k + yio,k+1 2 (e.g. if k =0) due to the "extra" firms

that are located in the even numbered rings. If :|'.0 is even, then

0 ;1D < | I Gi-12)]
(1L, 9)ek, (1) d,Dek, ()
3>0
+ | I G -unl o+ byl -2
(1,1)eK, (1) 3 to+°
3<0

It is easy to verify that the right hand side of this inequality cannot
exceed 3/2. We observe that each column of squares in A have no more
than 4m0-+1 elements of A . This enables us to put a bound on certain

vertical sums in A . Specifically, io even Implies

1 1
I oympl=tl 1 opymls
e ) T i @ ek B

i=iO

o

(4m0 +1)

and, similarly, i0 odd implies that

(yi,j -'1/2)| = I X

1 1
(y; +~1/2)| g 5(4my+1)
ASA (i)ngKA(io) i,j 2 0

(1,3)ed_(A)
i=i0

We now combine these results. Choose @ so that (4m0+l)(4ﬁ+1)/2ﬁ2 < gf2
and u(AKZn) < £ . {The latter is possible by Lemma 4.) Let n > n .
Then we have the following sequence of inequalities in which the dependence

of T on n suppressed:

ij
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oA =@ = | Tyl DA -]

(1,5)el

1
A -ZuAN U T )]
ij 2 (i,j)sln ij

]
1
g
[N
b
~
]

| (L - 1/2)u(T,, NA) |
(i,_]z)eln 1,4 1]

Sk

.= 1/2)u(T, . NA)
(1,3)€3_(A) »J ij

+ | ) vh . - 1/2)u(T,, NAY |
(1,3)eI \J_(A) 1,] 1

A

1 1 1
) (y; 4 -1/2)| +5] ) (T, OA) |
an® (1,37ed_A) Paperg @

=5 ] I 412

4n i (iyj) eJn(A)
i odd

A

* ;-l-zl L TG0 -] + A
n i j
1 even

(is.j)EJn (A)

1 1 3 €
7 ; "2"(411104"1)] + Z?[ :Ei:. 5(4m0+1)] + )
i odd i even

1
4n2
2(4m0+1)(4n+1)
€
) 2 *t7
4n

)

4m +1
~—£L—}(4n+i) +-L~{§](4m0+l)(4n+l) + &

HA

2 4n2 2 2

[ £
)
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We are at last ready to prove:
Theorem : ¢, converges weakly to u/2 on T .

Q
Proof: Let S e B(T) and u(3S) =0 . If S =@, then § £38 so
=)
wn(s) =0, ¥n and %u(s) = 0 so the result follows. If S # ¢, then
-] ° -1
S =81 (8\S) 80 u(8) = u(8) because S\§ S 35 . Now choose
4 1
m 3 u(S\Zm) < g¢f/3 . Also choose n* 3 ¥n > n* , [wn(zm)-iu(zm)| < ef2

as in Lemma 5. Then we have

10,(8) ~3u(®) | = v &) -1

LI

s 1
[, () =0 (T |+ v, () = 2u )|
+ ) -2 (8|
o 1 1

= IIJn(s\zm)-+lwn(zm)-_Eu(zm)'‘Fiu(s\zm)
<u\L) + £+ )

1
<%+%+5

£
3

Thus ¥n > n¥ , Iwn(S)-véu(S)] < E .

Q.E.D.

We have proved the theorem for the case of wi but a completely analogous
result holds for wi with the obvious modifications. Suppose we define
a continuous representation of the dual prices on T . Using the wage

rate as an example, let
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t, d(ij)
e =512 d@ine U 1

(1,1)el(u)

Let W(x) = (t1/2)(l— Hx”l) be the Mills' continuum price. We can easily

show

Theorem: W, converges to W uniformly on T .

Proof: sup|W (x)-W(x)| = max sup [W_(x) ~W(x) |
—_——— n n
xeT 1gug<2n xe u Tij(u)
(i,3)el(u)
1
= max H
1<u<2n
_a
4n

and the uniform convergence of {Wn} obtains,

Q.E.D.

For the sake of completeness, we shall briefly discuss the segre-
gated solution for the discretized Mills' model. In this case, the optimal
configuration will consist of three parts. Specifically, the "boundary"
ring will separate a disk and an annulus. The disk will be filled with
firms, and the annulus will be filled with workers. The separating ring
will contain firms and workers. The analog of Mills' continuum optimal
solution for the segregated case can be shown to decentralize the con-
figuration just described everywhere except in the "boundary" ring. How-
ever, the number of sites In the bouﬁdary ring is linear in n so the set

of sites at which the continuum prices do not work has measure zero in

the limit economy.
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