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Abstract

This paper introduces a rank-based test for the instrumental variables regression
model that dominates the Anderson-Rubin test in terms of Þnite sample size and
asymptotic power in certain circumstances. The test has correct size for any distrib-
ution of the errors with weak or strong instruments. The test has noticeably higher
power than the Anderson-Rubin test when the error distribution has thick tails and
comparable power otherwise. Like the Anderson-Rubin test, the rank tests considered
here perform best, relative to other available tests, in exactly-identiÞed models.

Keywords: Aligned ranks, Anderson-Rubin statistic, categorical covari-
ates, exact size, normal scores, rank test, weak instruments, Wilcoxon
scores.
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1 Introduction

The Anderson-Rubin (1949) (AR) test has a long history in econometrics. It was
introduced over Þfty years ago, but it has seen a resurgence of popularity in the last
decade due to increased concern with the quality of inference in the presence of weak
instruments (IVs). The AR test has the property that it has exactly correct size in
the IV regression model with normally distributed errors regardless of the properties
of the IVs. Few other statistics have this property. Furthermore, in exactly-identiÞed
models, the AR test is asymptotically best unbiased under weak IV asymptotics and
asymptotically efficient under strong IV asymptotics.2

In this paper, we introduce a rank-based statistic that is similar to the AR sta-
tistic, but has improved Þnite sample size and asymptotic power in certain circum-
stances. Its size properties are improved because it has exact size for any distribution
of the errors, not just normal errors. Its asymptotic power properties are improved
because it has equal asymptotic power under normal errors and considerably higher
power for thick-tailed error distributions. This holds under both weak and strong IV
asymptotics. These advantages occur in IV regression models in which the IVs are
independent of the errors (not just uncorrelated) and (i) are simple, i.e., have no co-
variates, (ii) have IVs that are independent of the covariates, or (iii) have categorical
covariates.

Type (i) and (iii) models are used regularly in the applied literature, e.g., both
are used in Angrist and Krueger (1991) and Dußo and Saez (2003). The rank tests
for these models have exact size for any error distribution. In type (iii) models, the
rank tests allow the error distribution to differ across the covariate categories.

Type (ii) models arise frequently in applications utilizing natural or randomized
experiments, e.g., see Angrist and Krueger (1991), Levitt (1997), Angrist and Evans
(1998), Dußo (2001), and Angrist, Bettinger, Bloom, King, and Kremer (2002). The
tests have exact size for any error distribution and allow the errors to be conditionally
heteroskedastic given the covariates. We handle covariates in these models by �align-
ing� the ranks. This method has been used widely in the statistics literature, e.g.,
see Hodges and Lehmann (1962), Koul (1970), and Hettmansperger (1984). Unlike
most results in the statistics literature, however, our aligned rank tests are exactly
distribution free, not just asymptotically distribution free.

In over-identiÞed models, the conditional likelihood ratio (CLR) test of Moreira
(2003) has superior power to the AR test, see Moreira (2003) and Andrews, Moreira,
and Stock (2004). In such models, the CLR test also has higher power than the
rank tests introduced here unless the errors are thick-tailed. Nevertheless, there are
numerous applications in the natural and randomized experiments literature with
exactly-identiÞed models�typically with one IV and one endogenous regressor. For
example, all the empirical papers referenced above include such model speciÞcations.
For exactly-identiÞed models, the rank tests considered here are the most powerful
that are available.

Under weak and strong IV asymptotics, we show that the rank statistics are as-

2The weak IV asymptotic result can be shown using the Þnite sample results in Moriera (2001).
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ymptotically non-central chi-squared with the same non-centrality parameter as the
AR statistic up to a scalar constant. This constant is the same as arises with rank
tests for many other testing problems, such as two-sample problems, and with rank
estimators for location and regression models. For the normal scores rank test, the
noncentrality parameter is at least as large as that of the AR statistic for any sym-
metric error distribution and equals it for the normal distribution. Our asymptotic
results make use of asymptotic results of Koul (1970) and Hájek and Sidák (1967)
for general rank statistics.

We carry out some Monte Carlo power comparisons of the AR, normal scores
rank, and Wilcoxon rank tests. The results indicate that the normal scores rank test
essentially dominates the AR test. Its power is essentially the same as that of the
AR test for symmetric non-thick-tailed distributions, slightly higher for asymmetric
non-thick-tailed distributions, and considerably higher for thick-tailed distributions.
The Wilcoxon rank test has power that is quite similar to that of the normal scores
rank test, but is somewhat more powerful for thick-tailed distributions and a bit less
powerful for non-thick-tailed distributions. The comparative power performance of
the three tests is remarkably similar over different sample sizes, strengths of IVs,
correlations between the errors, and numbers of IVs. Given that the normal scores
test dominates the AR test in terms of power, we prefer the normal scores test to the
Wilcoxon test.

The rank tests introduced above share several useful Þnite-sample robustness
properties that the AR test enjoys. These include robustness to excluded IVs and to
the speciÞcation of a model for the endogenous variables, see Dufour (2003).

The exact rank tests introduced here can be used to construct exact conÞdence
intervals (CIs). The rank tests introduced here also yield conservative tests for subsets
of the parameters on the endogenous regressors and covariates via the projection
method, see Dufour and Jasiak (1991).

For the case of a simple regression model, IV rank tests have been discussed by
Bekker (2002). However, Bekker (2002) does not analyze the power properties of the
rank tests and does not allow for covariates in the model. Dealing with covariates
with rank tests is more difficult than with the AR test. Theil (1950) considers a
rank-based method of constructing CIs in the model considered here. His method
delivers conservative CIs and is quite different from the method considered here.

Rosenbaum (1996, 2002), Greevy, Silber, Cnaan, and Rosenbaum (2004), and
Imbens and Rosenbaum (2005) consider rank tests that are similar to the rank tests
considered, but are based on randomization inference. The probabilistic set-up con-
sidered in these papers takes the IVs to be randomized and every quantity that does
not depend on the randomized IVs to be Þxed. In this context, the tests are exact. In
contrast, the present paper considers inference based on a population model, which
is typical in econometrics, and shows that the tests are exact given certain conditions
on the model. When the same test statistic is considered, the two approaches yield
the same asymptotic critical values, but different Þnite sample critical values. (For
example, population model critical values depend on the IVs, whereas those based
on randomization inference do not). Our population model approach allows us to
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compare the power of rank tests with typical tests in the econometric literature such
as the AR test. No theoretical power results are given in the randomization inference
papers referenced above. We view our results to be complementary to those based
on randomization inference.

In ongoing research, the Þrst author and Gustavo Soares are pursuing a rank
analogue of the CLR test for over-identiÞed models based on the rank tests introduced
here. Such tests are not exact.

There is a huge literature on rank tests in statistics, e.g., see Hájek and Sidák
(1967) and Hettmansperger (1984). For a review of rank tests econometrics, see
Koenker (1996). An alternative approach to aligning rank tests for dealing with
covariates is to use regression rank scores, see Gutenbrunner and Jureÿcková (1992).
We do not pursue this approach here because aligned rank tests are simpler and have
comparable theoretical properties.

One could construct M-estimator versions of the AR test, but such tests would
have the following drawbacks: (i) their overall asymptotic power properties for non-
normal errors would not be as good as for rank tests�just as in the standard regres-
sion model, (ii) their asymptotic power for normal errors would be less than that of
the AR and normal scores rank tests, (iii) their size would not be exact, and (iv)
they would require simultaneous estimation of scale, which would require iterative
computational methods.

The paper is organized as follows. Section 2 considers aligned rank tests for models
with covariates that need not be categorical. Section 3 considers within-group rank
tests for models with categorical covariates. Section 4 presents Monte Carlo power
results. An Appendix contains proofs.

2 IV Regression with Covariates

2.1 IV Regression Model

We consider the following linear IV regression model:

y1i = α+ y
!
2iβ +X

!
iθ + ui (2.1)

for i = 1, ..., n, where y1i ∈ R, y2i ∈ R!, and Xi ∈ Rd are observed dependent,
endogenous regressor, and covariate variables, respectively, α ∈ R, β ∈ R!, and
θ ∈ Rd are unknown parameters, and ui is an unobserved scalar error. We also
observe a k-vector of IVs Zi (that does not include elements of Xi or a constant).

The hypotheses of interest are:

H0 : β = β0 and H1 : β "= β0 for some β0 ∈ R!. (2.2)

Assumption 1. {(ui,Xi) : i ≥ 1} are iid.
Assumption 2. {Zi : i ≥ 1} is a Þxed sequence of k-vectors.

In place of Assumption 2, one could treat the IVs as random. In this case, the IVs
would be assumed to be independent of the errors and covariates. As is, Assumption
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2 is consistent with random IVs provided one conditions on the IVs. Assumptions 1
and 2 are violated if the distribution of either ui or Xi depends on the IV vector Zi.
This is a strong assumption concerning the exogeneity of the IVs.

Assumptions 1 and 2 allow for correlation between the endogenous regressor y2i
and the error ui.Assumptions 1 and 2 place no restrictions on the dependence between
the endogenous regressor y2i and the IV Zi. The tests and CIs introduced here have
correct size and coverage probability even if the distribution of y2i does not depend
on Zi. Of course, the power of the tests and the lengths of the CIs depend on whether
y2i and Zi are related.

Assumptions 1 and 2 allow for the distribution of ui to depend on that of Xi.
Hence, arbitrary forms of heteroskedasticity are allowed. In fact, Assumptions 1 and
2 even allow for correlation between ui and Xi.

2.2 Aligned Rank IV Tests and CIs

The rank statistics that we consider are based on a sample covariance k-vector:

Sn = n
−1

n!
i=1

(Zi − Zn)ϕ(Ri/(n+ 1)), (2.3)

where Ri is the rank of y1i−y!2iβ0−X !
i
"θn in {y11−y!21β0−X !

1
"θn, ..., y1n−y!2nβ0−X !

1
"θn},"θn is a null-restricted estimator of θ, Zn = n−1#n

i=1 Zi, and ϕ : [0, 1)→ R is a non-
stochastic score function.3 The ranks {Ri : i ≤ n} are referred to as aligned ranks
due to the aligning by the term X !

i
"θn. We consider the null-restricted least squares

(LS) estimator of θ:

"θn = $ n!
i=1

(Xi −Xn)(Xi −Xn)
!
%−1 n!

i=1

(Xi −Xn)(y1i − y!2iβ0). (2.4)

Estimators other than the LS estimator could be considered, but the LS estimator is
convenient because it is easy to compute.

Different score functions ϕ : (0, 1)→ R yield different rank statistics. The two of
greatest interest are the normal (or van der Waerden) score function and the Wilcoxon
score function:

ϕNS(x) = Φ−1(x) and ϕWS(x) = x, (2.5)

where Φ−1(·) is the inverse standard normal distribution function (df).
The rank test statistic, Bn, is a quadratic form in Sn:

Bn = nSn
!WnSn, where

Wn =

$
n−1

n!
i=1

(Zi − Zn)(Zi − Zn)! ·
& 1

0
[ϕ(x)− ϕ]2dx

%−1
(2.6)

3 If there are any ties in the ranks, then we determine a unique ranking by randomization. For
example, if y1i−y!2iβ0−X !

i
"θn = y1j−y!2jβ0−X !

j
"θn for some i "= j and these observations are the #-th

largest in the sample, then Ri = # with probability 0.5, Ri = #+ 1 with probability 0.5, Rj = #+ 1
if Ri = #, and Rj = # if Ri = #+ 1. Ties only occur with positive probability if F is not absolutely
continuous. In consequence, in practice one is not likely to have to deal with ties very often.
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and ϕ =
' 1
0 ϕ(x)dx. For normal scores, the statistic B

NS
n is

BNSn =

$
n!
i=1

(Zi − Zn)Φ−1
(
Ri
n+ 1

)%!$ n!
i=1

(Zi − Zn)(Zi − Zn)!
%−1

×
$

n!
i=1

(Zi − Zn)Φ−1
(
Ri
n+ 1

)%
. (2.7)

For Wilcoxon scores, the deÞnition of BWS
n is the same but with the multiplicative

constant 12 added and with Φ−1(·) deleted.4 In contrast to alternative statistics,
such as the AR, LM, and LR statistics, the rank statistic Bn does not require any
error variance estimation.

The rank test rejects H0 if Bn exceeds a critical value cτ , deÞned below. The
intuition behind the test is as follows. If the null hypothesis is true, {Zi − Zn :
i ≤ n} are not be related to the ranks {Ri : i ≤ n} because the ranks depend on
y1i− y!2iβ0−X !

i
"θn = ui−X !

i(
"θn− θ) and the distribution of (ui,Xi) does not depend

on the IVs. Hence, Sn should be close to the zero vector under H0. On the other
hand, under the alternative, if {Zi − Zn : i ≤ n} are related to {y2i : i ≤ n}, then
{Zi − Zn : i ≤ n} are related to {ui + y!2i(β − β0) − X !

i(
"θn − θ) : i ≤ n} and to

their scored ranks {ϕ(Ri/(n + 1)) : i ≤ n}. (Here β denotes the true value of the
parameter.) In this case, the test will have power greater than its size under H1.

Under H0, we have

ηi = y1i − y!2iβ0 −X !
i
"θn

= α+ ui −X !
i

 n!
j=1

(Xj −Xn)(Xj −Xn)
!
−1 n!

j=1

(Xj −Xn)uj (2.8)

and {ηi : i ≤ n} are exchangeable. The ranks of exchangeable random variables have
the same distribution as the ranks of iid random variables because the probability of
the ranks taking on any given vector is the same for all vectors and, hence, equals
1/n!. This leads to the following result.

Theorem 1 Suppose Assumptions 1 and 2 hold. Then, under the null hypothesis,
the distribution of Bn does not depend on α, θ, β0, the distribution of (ui,Xi), or the
distribution of the endogenous variables {y2i : i ≤ n}. The null distribution of Bn is
the same when covariates Xi appear in the model and the ranks are aligned as in the
same model but with no covariates Xi and no aligning of the ranks.

Comments. 1. Theorem 1 indicates that the test statistic Bn is exactly pivotal un-
der H0 (and, hence, yields a similar test) for any underlying distribution of (ui,Xi).

4The scalar constant
' 1
0
[ϕ(x)−ϕ]2dx in the deÞnition of the weight matrixWn of the statistic Bn

is a convenient normalization because with this constant included Bn has a χ2k distribution under
the null hypothesis, see Section 2.3 below. If desired, this constant can be omitted when exact Þnite
sample critical values or p-values are employed.
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Hence, the null behavior of the statistic is completely robust to thick-tailed, thin-
tailed, and skewed errors. In contrast, the AR statistic is exactly pivotal under H0
only with homoskedastic normally distributed errors. The CLR test is only asymp-
totically pivotal under H0 and for this it requires Þnite variance errors.

2. The statistic Bn is exactly pivotal under H0 without any requirement on how
the endogenous variables {y2i : i ≤ n} are related to the IVs {Zi : i ≥ 1}. They could
be unrelated or related in a linear or nonlinear way.

3. The conditional distribution of Bn given Xi and the Þxed IVs is not pivotal.
Whether one considers this a drawback is a philosophical issue. In any event, the
conditional distribution is asymptotically pivotal.

4. Under the assumptions, aligning of the ranks is not necessary for the statistic
Bn to be exactly pivotal under H0. But, if the ranks are not aligned the power of the
test typically suffers, see below.

The signiÞcance level τ rank test based on Bn rejects H0 if

Bn > cτ , (2.9)

where cτ is chosen so that the test has signiÞcance level τ ∈ (0, 1).5 When the
observed test statistic takes the value bob, the exact p-value, p, of the test is deÞned
by P (Bn > bob) = p.

The exact critical value, cτ , and p-value, p, depend on the IVs, {Zi : i ≤ n},
and, hence, need to be generated on a case by case basis. This can be done easily
and quickly by simulation. One simulates n iid uniform (0,1) random variables, say
{uri : i = 1, ..., n}, and calculates

Bnr = nS
!
nrWnSnr, where Snr = n−1

n!
i=1

(Zi − Zn)ϕ(Rri/(n+ 1)) (2.10)

and Rri is the rank of uri among {ur1, ..., urn}.6 One repeats this for r = 1, ..., RS .
The simulated critical value csim,τ is the 1−τ sample quantile of {Bnr : r = 1, ..., RS}.
The simulated p-value is p = R−1S

#RS
r=1 1(Bnr > bob).

The matrix programming languages GAUSS and Matlab have very fast built-in
procedures for Þnding the ranks of a given vector. For example, the GAUSS procedure
rankindx can compute a critical value using 40,000 simulation repetitions in a matter
of seconds for sample sizes n up to 500 and numbers of IVs k up to 10 using a typical
PC. The computation time increases with n roughly proportionally and much less
than proportionally in k. Hence, even for data sets with sample sizes in the thousands,
computation of critical values is fast and accurate.

5Because Bn has a discrete distribution, it may not be possible to Þnd cτ such that the test has
exact signiÞcance level τ for arbitrary values of τ . In practice, this is not a serious problem because
the discrete distribution of Bn is very nearly continuous for values of n that typically arise in practice.
The probability of any given value of Bn is 1/n!.

6Because the distribution of the ranks under H0 does not depend on F, we can compute the
critical value by simulating from any distribution that is convenient, such as uniform (0, 1).
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We construct exactly distribution-free CIs (or conÞdence regions if ' > 1) for β by
inverting the test statistic Bn. For clarity, we write the rank statistic Bn for testing
H0 : β = β0 as Bn(β0). The CI is given by

CIn,1−τ = {β0 : Bn(β0) ≤ cτ}. (2.11)

Because the critical value cτ does not depend on β0, one does not have to compute
a new critical value for each value of β0. To compute CIn,1−τ , one just needs to
compute Bn(β0) for a grid of values β0 and compute cτ once.

Rank tests for testing H0 : β = β0 also apply to the nonlinear model:

g(y1i, y2i,β) + α+X
!
iθ = ui, (2.12)

where g(·, ·, ·) is a known function. In this case, {Ri : i ≤ n} are the ranks of
{g(y1i, y2i,β0) + X !

i
"θn : i ≤ n} and "θn is deÞned as in (2.4) but with y1i − y!2iβ0

replaced by g(y1i, y2i,β0). Otherwise, Bn and its critical value or p-value are the same
as above. Theorem 1 holds with y1i− y!2iβ0−X !

i
"θn replaced by g(y1i, y2i,β0)+X !

i
"θn.

2.3 Asymptotic Power of Aligned Rank IV Tests

In this section, we determine the asymptotic power of the Bn rank test and
compare it to that of the AR test. We consider two asymptotic frameworks. One
consists of 1/n1/2 local alternative parameter values coupled with strong IVs, which
is the standard asymptotic set-up. The other consists of Þxed alternatives coupled
with weak IVs, which is the weak IV set-up of Staiger and Stock (1997).

The score function ϕ is required to satisfy the following mild assumption.

Assumption 3. (a) ϕ : (0, 1)→ R is absolutely continuous and bounded with two
derivatives that exist almost everywhere and are bounded.

(b)
' 1
0 [ϕ(x)− ϕ]2dx > 0.

Assumption 3 holds for normal scores with
' 1
0 [ϕ(x)−ϕ]2dx = 1. It holds for Wilcoxon

scores with
' 1
0 [ϕ(x) − ϕ]2dx = 1/12. Assumption 3(b) holds provided ϕ(x) is not

constant almost everywhere on [0, 1).
Next, we state the assumptions concerning the IVs {Zi : i ≥ 1}.

Assumption 4. (a) n−1
#n
i=1(Zi − Zn)(Zi − Zn)! → ΣZ pd as n→∞.

(b) max1≤i≤n ||Zi − Zn||2/n→ 0 as n→∞.
(c)

#∞
i=1 ||Zi − Zn||1+δ/i1+δ <∞ for some δ > 0.

Assumption 4 holds with probability one if {Zi : i ≥ 1} is a realization of an
iid sequence with pd variance matrix and 2 + δ moments Þnite for some δ > 0, see
Lemma 2 of the Appendix. Hence, Assumption 4 is not very restrictive.

We assume that the covariates {Xi : i ≥ 1} satisfy:
Assumption 5. (a) E||Xi||2+δ <∞ for some δ > 0.

(b) ΣX = E(Xi −EXi)(Xi −EXi)! is pd.
Next we state the assumptions concerning the alternative data generating process.
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Assumption 6. (a) y1i = α+y!2iβn+X
!
iθ+ui for i ≥ 1, where βn ∈ R! is a constant

for n ≥ 1.
(b) y2i = µ+ πnZi+ΛXi+ vi for i ≥ 1, where πn is an '× k matrix of constants

for n ≥ 1, µ is an '-vector of constants, Λ is an '× d matrix of constants, and vi is
an '-vector of random variables.

(c) {ui : i ≥ 1} are independent of {Xi : i ≥ 1}, and Eu2i <∞.
The parameter πn indexes the strength of the IVs relation to the endogenous

regressors. The difference βn − β0 indexes the distance of the alternative from the
null. These parameters differ in the weak and strong IV cases, as speciÞed below.

Let I(f) denote Fisher�s information of an absolutely-continuous density f . That
is, I(f) =

'
[f !(x)/f(x)]2f(x)dx, where f ! denotes the derivative of f.

For weak IVs, we consider Þxed alternatives and πn that is local to zero.

Assumption 7W. (a) βn = β0 + γ for some γ ∈ R!.
(b) πn = C/n1/2 for some '× k-matrix of constants C.
(c) {(vi, ui) : i ≥ 1} are iid and independent of {Xi : i ≥ 1} , and E (vi(2 <∞.
(d) v!iγ+ui has an absolutely-continuous strictly-increasing dfG and an absolutely-

continuous and bounded density g that satisÞes I(g) <∞.
For strong IVs, we consider local alternatives and a Þxed value of πn.

Assumption 7S. (a) βn = β0 + γ/n1/2 for some γ ∈ R!.
(b) πn = π for all n for some '× k-matrix of constants π.
(c) vi = εi + ρui for i ≥ 1, where εi is a random '-vector and ρ ∈ R! is a vector

of constants.
(d) {εi : i ≥ 1} are iid and independent of {ui : i ≥ 1}, and 0 < E (εi(2+δ < ∞

for some δ > 0.
(e) ui has an absolutely-continuous strictly-increasing df F and an absolutely-

continuous and bounded density f that satisÞes I(f) <∞.
Assumption 7W allows for arbitrary dependence between vi and ui. Assumption

7S allows for arbitrary dependence between Xi and εi. Assumption 7S(c) and 7S(d)
make explicit the form of the dependence between the main equation error ui and the
reduced form error vi. This facilitates the determination of the asymptotic non-null
properties of Bn.

For a score function ϕ and a density f , deÞne

ξ(ϕ, f) =

.' 1
0 ϕ(x)ϕ(x, f)dx

/2
' 1
0 [ϕ(x)− ϕ]2dx

, where ϕ(x, f) = −f
!(F−1(x))
f(F−1(x))

(2.1)

for x ∈ (0, 1). For normal and Wilcoxon scores,

ξ(ϕNS , f) =

(&
f2(x)

φ(Φ−1(F (x)))
dx

)2
and ξ(ϕWS , f) = 12

(&
f2(x)dx

)2
. (2.2)

where φ and Φ denote the standard normal density and df, respectively, and F ! = f.
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Let χ2k(δ) denote a noncentral chi-squared distribution with k degrees of freedom
and noncentrality parameter δ.

The following theorem establishes the asymptotic distribution of Bn in the weak
IV/Þxed alternative and strong IV/local alternative scenarios.

Theorem 2 (a) Under Assumptions 1-6 and 7W,

Bn →d χ
2
k(δW ), where δW = γ!CΣZC !γξ(ϕ, g).

(b) Under Assumptions 1-6 and 7S,

Bn →d χ
2
k(δS), where δS = γ

!πΣZπ!γξ(ϕ, f).

Comments. 1. The results of Theorem 2 show that the statistic Bn, which is based
on aligned ranks using the estimator "θn, has the same asymptotic distribution as
when the true value θ is used in place of "θn.

2. The results of the Theorem continue to hold when the restricted LS estimator"θn is replaced by any estimator θ∗n that satisÞes n1/2(θ∗n− θ−Λ!(βn−β0)) = Op(1).7
3. If the statistic Bn is constructed without aligning the ranks, then its asymp-

totic distribution is given by Theorem 2, but with g and f being the densities of
X !
iθ0 + v

!
iγ + ui and X

!
iθ0 + ui, respectively. Typically this increases the constants

ξ(ϕ, g) and ξ(ϕ, f) because the addition of X !
iθ0 increases the dispersion of the ran-

dom variables. Note that ξ(ϕ,σ−1f(·σ−1)) = σ−2ξ(ϕ, f) for all f, see Hájek and
Sidák (1967, Lemma I.2.4e, p. 21). Hence, a scale increase by σ reduces the noncen-
trality parameter by the factor σ−2. For example, if Xi, vi, and ui are jointly normal
and the addition of X !

iθ0 doubles the variance, then the noncentrality parameter is
reduced by a factor of two. This multiplicative effect is the same for the AR and rank
tests. In sum, aligning the ranks typically increases the power of tests.

For the AR statistic, ARn× k→d χ
2
k(δ

AR
W ) and ARn×k →d χ

2
k(δ

AR
S ) under weak

and strong IV asymptotics, respectively, where

δARW = C !ΣZCγ2/σ2g,

δARS = π!ΣZπγ2/σ2f , (2.3)

and σ2g and σ
2
f denote the variances corresponding to the densities g and f, respec-

tively, under the assumptions above plus Eu2i <∞.
Hence, the noncentrality parameters of the rank IV tests can be compared to

those of the AR test by comparing ξ(ϕ, g) to 1/σ2g for weak IVs and ξ(ϕ, f) to 1/σ
2
f

for strong IVs. SpeciÞcally, the asymptotic relative efficiency (ARE) of the rank IV
test to the AR test is given by

AREf (Bn, AR) = ξ(ϕ, g)σ2g for weak IVs and

AREf (Bn, AR) = ξ(ϕ, f)σ2f for strong IVs. (2.4)

7The term Λ!(βn − β0) arises here because y1i − y!2iβ0 = α + y!2i(βn − β0) + X !
iθ + ui = α +

Z!2iπ
!
n(βn − β0) +X!

i(θ + Λ
!(βn − β0)) + v!i(βn − β0) + ui by Assumption 6.
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(An ARE greater than one means that the rank IV test has higher power than the
AR test.)

Comparisons of this type have been considered extensively in the literature be-
cause they are exactly the same comparisons that arise when computing the ARE of
a rank test compared to the usual t-test in a simple location model with error density
g or f . They are also the same as the comparisons that arise when comparing the
ARE of a rank estimator with the sample mean in the location model. Note that the
ARE�s considered here are all independent of the location and scale of g or f.

For normal scores, ϕNS(x) = Φ−1(x), the ARE is

AREf (NS,AR) = σ
2(f)

(&
f2(x)

φ(Φ−1(F (x)))
dx

)2
. (2.5)

A result due to Chernoff and Savage states that AREf (NS,AR) ≥ 1 for all symmetric
distributions f (about some point not necessarily zero), see Hettmansperger (1984,
Thm. 2.9.2, p. 110). Hence, the asymptotic power of the normal scores rank IV test
is greater than or equal to that of the AR test for any symmetric distribution for
weak or strong IVs.

For Wilcoxon scores, ϕWS(x) = x and a density f, the ARE of the rank IV test
to the AR test is

AREf (WS,AR) = 12σ
2
f

(&
f2(x)dx

)2
. (2.6)

For the normal distribution φ, AREφ(WS,AR) = .955. For the double exponential
distribution fde, AREfde(WS,AR) = 1.50. For a contaminated normal distribution
fε(x) = (1 − ε)φ(x) + εφ(x/3)/3, AREfε(WS,AR) = 1.196, 1.373, and 1.497 for
ε = .05, .10, and .15, respectively, see Hettmansperger (1984, pp. 71-2). A result
due to Hodges and Lehmann states that AREf (WS,AR) ≥ .864 for all symmetric
distributions f (about some point not necessarily zero), see Hettmansperger (1984,
Thm. 2.6.3, p. 72). Hence, the noncentrality parameter of the Wilcoxon scores
rank IV test is almost as large as that of the AR test for the normal distribution, is
signiÞcantly larger than that of the AR test for heavier tailed distributions, and is
not much smaller for any symmetric distribution.

For any densities f1 and f2 symmetric about zero, AREf1(WS,NS) ≤
AREf2(WS,NS) whenever the tails of f1 are lighter than the tails of f2 in the
sense that F−12 (F1(x)) is convex for x ≥ 0, see Thm. 2.9.5 of Hettmansperger (1984,
p. 116). Hence, the comparative power of Wilcoxon scores to normal scores tests in-
creases as the tail thickness of the distribution increases. For any symmetric density
f , AREf (WS,NS) ∈ (0, 1.91), see Hettsmansperger (1984, Thm. 2.9.3, p. 115).

3 IV Regression with Categorical Covariates

3.1 Model and Test

In this section, we consider a regression model with categorical covariates. In
contrast to the model in Section 2, the covariates and IVs may be related. The
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model is
y1i = D

!
iα+ y

!
2iβ + ui (3.1)

for i = 1, . . . , n, where y1i is an observed scalar dependent variable, y2i is an observed
'-vector of endogenous variables, Di = (Di1, . . . ,DiJ)

! is an observed J-vector of
dummy variables, and α = (α1, . . . ,αJ)

! and β ∈ R! are unknown parameters. We
also observe a k-vector of IVs Zi (that does not include elements of Di or a constant).
The dummy variable Dij equals 1 if observation i is in group j; otherwise, it equals
0. We assume that

#J
j=1Dij = 1 for all i = 1, . . . , n.

The basic assumptions of the model are:

Assumption C1. {ui : i ≥ 1} are independent random variables with ui ∼ Fj when
Dij = 1 for some df�s {Fj : j = 1, . . . , J}.
Assumption C2. {Di : i ≥ 1} is a Þxed sequence of J-vectors.
Assumption C1 allows for different error distributions across the J groups.

In addition, we assume that Assumption 2 holds, i.e., the IVs {Zi : i ≥ 1} are
Þxed k-vectors. As above, random IVs can be treated by conditioning on the IVs. In
this case, the distribution of the IVs can differ across covariate categories and, hence,
the IVs and covariates can be related.

We want to test H0 : β = β0 versus H1 : β "= β0 while leaving α unspeciÞed. Or,
more generally, we might be interested in the alternative hypothesis where β may
differ across groups and is different from β0 in at least one group. The distribution
of a test statistic based on the ranks of y1i − y!2iβ0 in the entire sample depends on
the nuisance parameters (α1, . . . ,αJ), which is problematic. However, one can divide
the sample into the J homogeneous sub-samples and use the ranks within the sub-
samples to achieve invariance with respect to the nuisance parameters. This approach
was used in the two sample location problem (without IVs) by van Elteren (1960).

It is convenient to rewrite the model in (3.1) as follows. Let nj be the size of group
j (i.e., nj =

#n
i=1Dij). As deÞned,

#J
j=1 nj = n. Next, deÞne y1,ij , y2,ij , and Zij

to be the dependent, endogenous regressor, and instrumental variables, respectively,
that belong to group j for i = 1, ..., nj , for j = 1, ..., J . Then, the model in (3.1) can
be rewritten as

y1,ij = αj + y
!
2,ijβ + uij . (3.2)

Let Rij denote the rank of y1,ij − y!2,ijβ0 in {y1,1j − y!2,1jβ0, . . . , y1,njj − y!2,njjβ0} for
j = 1, . . . , J .

We introduce the following test statistic:

BCn = nSCn
!WCnSCn, where

SCn =
J!
j=1

wnjSCnj , SCnj = n
−1

nj!
i=1

(Zij − Znj)ϕ(Rij/(nj + 1)), Znj = n−1j
nj!
i=1

Zij ,

WCn =

n−1 J!
j=1

nj!
i=1

w2nj(Zij − Znj)(Zij − Znj)!
& 1

0
[ϕ(x)− ϕ]2dx

−1 , (3.3)
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where {wn1, . . . , wnJ} are non-random weights assigned to the J groups. (The weights
may depend on n and at least one weight must be non-zero.) Optimal weighting
schemes are discussed in Section 3.2 below. In general, we recommend using constant
weights: wnj = 1 for all j = 1, . . . , J .

The ranks {Rij : i = 1, . . . , nj} are the ranks of {αj + y!2,ij(β − β0) + uij : i =
1, . . . , nj} (where β denotes the true value). Since ranks are invariant under location
shifts and we rank the errors within the homogenous location groups, the ranks are
not affected by the unknown nuisance parameters (α1, . . . ,αJ). This holds under H0
and H1.

In consequence, if the null hypothesis is true, {Rij : i = 1, . . . , nj} equal the ranks
of {uij : i = 1, . . . , nj} for each j. Hence, the null distributions of SCn1, . . . , SCnJ ,
and SCn do not depend on (α1, ...,αJ), β0, or the distribution of {y2,ij : i ≤ nj , j =
1, ..., J}. Furthermore, Assumptions C1 and C2 and randomization in the case of ties
in ranks, combined with the exchangeability argument given in Section 2, imply that
the distributions of SCn1, . . . , SCnJ , and SCn do not depend on {F1, . . . , FJ} under
H0. The null distributions of these statistics do depend on the IVs and the group
structure, but both of these are observed.

The following analogue of Theorem 1 holds.

Theorem 3 Suppose Assumptions C1, C2, and 2 hold. Then, under H0, the distri-
bution of BCn, deÞned in (3.3), does not depend on {αj : j = 1, ..., J}, β0, {Fj : j =
1, ..., J}, or the distribution of the endogenous variables {y2,i : i ≤ nj , j = 1, ..., J}.

One rejects the null if BCn is sufficiently large. The desired exact critical value
can be calculated by simulation. First, one simulates n iid uniform (0,1) random
variables, say {ur,ij : i = 1, . . . , nj , j = 1, . . . , J} and calculates

SCn,r =
J!
j=1

wnjn
−1

nj!
i=1

(Zij − Znj)ϕ(Rr,ij/(nj + 1)), (3.4)

where Rr,ij is the rank of ur,ij among {ur,1j , . . . , ur,njj} for j = 1, . . . , J . Next, one
computes BCn,r and repeats the process for r = 1, . . . , RS . The critical value for
signiÞcance level τ is the 1− τ sample quantile of {BCn,r : r = 1, . . . , RS}. Given an
observed value, bob, of the test statistic, the p-value is p = R

−1
S

#RS
r=1 1(BCn,r > bob).

As in (2.11), CIs can be constructed by inverting the test based on BCn.
The BCn test for H0 : β = β0 generalizes to nonlinear models of the form

gj(y1,ij , y2,ij ,β) + αj = uij . For this model, {Rij : i ≤ n} are deÞned to be the
ranks of {gj(y1i, y2i,β0) : i ≤ n}. Otherwise, the test statistic BCn and its critical
value are the same as above.

3.2 Asymptotic Power

In this section, we study the power properties of the BCn rank test in the model
with categorical covariates. As in Section 2.3, we consider Þxed alternatives combined
with weak IVs and local alternatives combined with strong IVs.
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We make the following assumptions concerning the model.

Assumption C3. For all j = 1, ..., J,
(a) n−1j

#nj
i=1(Zij − Znj)(Zij − Znj)! → ΣZj pd as n→∞.

(b) max1≤i≤nj ||Zij − Znj ||2/nj → 0 as n→∞.
Assumption C4. (a) y1,ij = αj + y!2,ijβnj + uij , where βnj ∈ R! is a constant for
all n and j.

(b) y2,ij = µj + πnjZij + vij , where πnj is an '× k matrix of constants, µj is an
'-vector of constants, and vij is a random '-vector.

Assumption C5. limn→∞ nj/n = bj > 0 for all j = 1, . . . , J .

Assumption C5 guarantees that all groups are non-negligible in the limit.
We assume the weights are chosen to satisfy:

Assumption C6. limn→∞wnj = wj for all j = 1, . . . , J for some constants {wj :
j = 1, ..., J} at least one of which is non-zero.

For the case of weak IVs, we assume:

Assumption C7W. For all j = 1, ..., J,
(a) βnj = β0 + γj for all n for some γj ∈ R!.
(b) πnj = Cj/n1/2 for some Cj ∈ R!×k.
(c) (vij , uij) are iid across i = 1, . . . , nj and independent across j = 1, . . . , J.
(d) v!ijγj+uij has absolutely-continuous strictly-increasing df Gj and absolutely-

continuous and bounded density gj that satisÞes I(gj) <∞.
Assumption C7W(a) allows the true β vector to vary across groups, which covers

more general alternatives than H1 : β "= β0. For the alternative H1 : β "= β0, one
has γj = γ for all j = 1, ..., J for some γ ∈ R!. Assumption C7W(b) implies that
the correlation between the covariates and the IVs may vary across the groups, but
it is of the same order of magnitude for all j = 1, . . . , J . Assumption C7W places no
restriction on the dependence between the main equation error uij and the reduced
form error vij .

For the case of strong IVs, we assume:

Assumption C7S. For all j = 1, ..., J,
(a) βnj = β0 + γj/n1/2 for some γj ∈ R!.
(b) πnj = πj for all n and some πj ∈ R!×k.
(c) vij = εij + ρjuij , where εij is a random '-vector and ρj is a constant '-vector.
(d) {εij : i ≥ 1} are iid across i ≥ 1, independent across j = 1, . . . , J, and

independent of {uij : i ≥ 1, j ≤ J} and E||εij ||2+δ <∞ for some δ > 0.
(e)

#∞
i=1 ||Zij − Znj ||1+δ/i1+δ <∞ for some δ > 0.

(f) uij has an absolutely-continuous strictly-increasing df Fj and an absolutely-
continuous and bounded density fj that satisÞes I(fj) <∞.

Assumption C7S(a) implies that the distance from the null γj may vary with j,
but its order of magnitude is the same for all groups.

The proof of Theorem 2 can be used to obtain the following:

13



Corollary 1 (a) Under Assumptions C1-C6, C7W, 2, and 3, BCn →d χ
2
k (δW ) ,

where

δW =

0000000
 J!
j=1

w2j bjΣZj

−1/2 J!
j=1

wjbjΣZjC
!
jγjξ(ϕ, gj)


0000000
2

.

(b) Under Assumptions C1-C6, C7S, 2, and 3, BCn →d χ
2
k (δS) , where

δS =

0000000
 J!
j=1

w2j bjΣZj

−1/2 J!
j=1

wjbjΣZjπ
!
jγjξ(ϕ, fj)


0000000
2

.

Comments. 1. Corollary 1 shows that the statistic BCn has a non-central χ2k
distribution under the alternative with non-centrality parameter that depends on the
weights wj , the group sizes bj , the variability of the IVs ΣZj , the strength of the IVs
Cj or πj , the score function ϕ, and the density gj of v!ijγj + ui or the density fj of
uij .

2. When gj does not depend on j, then ξ(ϕ, gj) scales out of δW and the differ-
ence between the noncentrality parameters of the BCn rank test and an analogous
�categorical AR� test is the same as in Section 2.3. Hence, ARE of a categorical rank
test versus the categorical AR test is the same as the ARE of the rank and AR tests
given in Section 2.3. The same is true under strong IV asymptotics if fj does not
depend on j.

One can compute the asymptotically optimal weights by maximizing δW or δS
with respect to the weights w1, . . . , wJ . In general, the optimal weights depend on
the values of ΣZj , γj , bj , Cj , and ξ(ϕ, gj) with weak IVs and ΣZj , γj , bj , πj , and
ξ(ϕ, fj) with strong IVs. But, if k = ' = 1, the optimal weights do not depend on
ΣZj or bj and equal wj = C !jγjξ(ϕ, gj) with weak IVs and wj = π!jγjξ(ϕ, fj) with
strong IVs. If these quantities do not depend on j, then equal weights are optimal.

In the absence of information about how the quantities in the previous paragraph
vary with j, as is usually the case in practice, it is reasonable to employ a test that
is invariant to permutations of these quantities across groups. This leads to taking
wnj = 1 for all j = 1, . . . , J . This is the weighting scheme that we recommend.

4 Monte Carlo Results

4.1 Experimental Design

In this section, we report simulated power comparisons of the BWn , B
NS
n , and AR

tests. We take the model to be essentially as in Assumption 6 and 7S(c) with β being
a scalar (' = 1):

y1i = α+ y2iβ +X
!
iθ + ui,

y2i = Z !iπ +X
!
iΛ+ (1− ρ2)1/2εi + ρui, (4.1)
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for i = 1, ..., n, where Zi = (Zi1, ..., Zik)!, Xi = (Xi1, ...,Xip)!, and Zij ,Xis, ui, εi are
iid with distribution F for all j = 1, ..., k, s = 1, ..., p, and i = 1, ..., n.

The test statistics considered are invariant with respect to α, θ, Λ, and the location
and scale of F. Hence, without loss of generality we take α, θ, and Λ to be zero and
we take F to have mean zero (if its mean is well deÞned), center of symmetry zero
(if it is symmetric), and variance one (if its variance is well deÞned).

The parameter vector π, which determines the strength of the IVs, is taken to be
proportional to a k-vector of ones:

π =
ρIV

k1/2(1− ρ2IV )1/2
(1, ..., 1)! for some ρIV ∈ [−1, 1], (4.2)

where, by construction, ρIV is the correlation between the reduced form regression
function, Z !iπ, and the endogenous variable y2i (provided F has a Þnite variance).
The parameter ρIV can be related to a parameter λ which directly measures the
strength of the IVs (and is closely related to the so-called concentration parameter):

λ =
nρ2IV
1− ρ2IV

= nπEZiZ
!
iπ ≈ π!Z !Zπ, (4.3)

where the Þrst equality deÞnes λ, the second equality holds provided Zi has a Þnite
variance, and ≈ means �is approximately equal for large n.�

As above, the hypotheses of interest are H0 : β = β0 and H1 : β "= β0. The true
parameter β is taken so that the AR test with signiÞcance level .05 has power around
.4 for the given choice of λ, ρ, n, k, p, and F = Φ.

We provide results for selected subsets of the cases for which n = 50, 100, 200;
k = 1, 5, 10; p = 0, 5; and F is normal, tr with r degrees of freedom (df) for r = 1−10,
difference of independent log-normals (DLN), uniform, absolute value of a normal,
logistic, double exponential (DE), and log-normal (LN). The t distributions exhibit
heavy tails for small values df (e.g., r = 1 yields the Cauchy distribution) as do the
DLN and LN distributions and to a lesser extent the DE distribution. The uniform
distribution exhibits thin tails. The absolute value of a normal and LN distributions
exhibit skewness.

4.2 Power Comparisons

We compare the power of the .05 signiÞcance level rank tests BWn and BNSn to
the AR test for a variety of cases. We report size-corrected power for the AR test
when the errors are non-normal, where the size-correcting critical values are obtained
using 10, 000 simulation repetitions. The power results are based on 5, 000 Monte
Carlo simulations.

We Þrst consider a Base Case in which λ = 9, ρ = .75, β−β0 > 0, n = 100, k = 1,
p = 5, and F equals the normal, t1, t2, t3, t10, or DLN distribution. This case exhibits
moderately weak IVs, moderately strong endogeneity, and exact identiÞcation. Then,
we consider a number of variations of the Base Case to illustrate the effect of changes
in the distribution F, strength of IVs λ, level of endogeneity ρ, sign of β−β0, sample
size n, and number of IVs k.
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Table I reports the results. The results of the Base Case show that for the
normal distribution the power of the normal scores (NS) test is within simulation
error of equaling that of the AR test, whereas the power of the Wilcoxon scores
(WS) test is slightly lower. For thick-tailed non-normal distributions, on the other
hand, the NS and WS tests are much more powerful than the AR test. For thick-
tailed distributions, the NS and WS tests have quite similar power, although that
of the WS test is somewhat higher, especially for the DLN distribution. For the t10
distribution, which has moderate tails, the NS, WS, and AR tests have similar power.

Case 2 differs from the Base Case only in terms of the distribution F. Case 2
shows that for a t4 distribution the rank tests have higher power than the AR test,
but for a t6 distribution the three tests have roughly equal power. For the uniform
distribution, which has thin tails, the NS and AR tests have essentially equal power,
whereas that of the WS test is somewhat lower. For the absolute value of a normal
distribution, which is highly skewed, the NS test is somewhat more powerful than
the WS and NS tests. The results for the DE distribution are quite similar to those
for the t4 distribution. The rank tests have higher power than the AR test. For
the log-normal distribution, which is both skewed and thick-tailed, the rank tests
outperform the AR test and the WS test outperforms the NS test.

These results, combined with those of the Base Case, suggest that NS and WS
tests have considerably higher power than the AR test for thick-tailed distributions,
but the tails have to be quite thick for this advantage to appear. For non-thick-tailed
distributions, the NS test has power that is at least as high as that of the AR test
and the WS test has power that is equal to or close to the power of the AR test.

Cases 3-11 exhibit power comparisons for variations of the Base Case. The general
pattern exhibited in the Base Case, as discussed above, is observed in all of these
additional cases to a remarkable degree. Hence, the general pattern is found to be
robust to negative deviations β − β0 (Case 3), strong IVs (Case 4), weak IVs (Case
5), high endogeneity (Case 6), no endogeneity (Case 7), Þve IVs (Case 8), ten IVs
(Case 9), smaller sample size, n = 50 (Case 10), and larger sample size, n = 200
(Case 11).

To conclude, the power simulations reported above show that the NS rank test,
BNS , essentially dominates the AR test in terms of Þnite sample power. It has much
higher power for thick-tailed distributions and essentially equal power (or in some
cases slightly higher power) for non-thick-tailed distributions. The WS rank test,
BW , has Þnite sample power quite similar to that of the NS test, but it is slightly
more powerful for thick-tailed distributions and often slightly less powerful for non-
thick-tailed distributions. Hence, the WS test does not dominate the AR test, but is
close to doing so.
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5 Appendix of Proofs

The asymptotic results of the paper are proved using the following Lemma. Part
(a) of the Lemma is an extension of Theorem 2.1 and Lemma 2.3 of Koul (1970) from
scalar constants ci and di to vectors. As Koul (1970, p. 1280) notes, his proof of
these results goes through for this extension with virtually no changes. Part (b) of
the Lemma follows from part (a). Part (c) of the Lemma is a standard result giving
the asymptotic normality of a suitably normalized weighted average of rank scores
based on iid random variables, e.g., see Theorem V.1.6a of Hájek and Sidák (1967, p.
163) (extended from scalar constants ci to vectors using the Cramér-Wold device).
Condition (V.1.6.2) of Hájek and Sidák (1967, p. 163) holds under Assumption 3.

Lemma 1 Let Ψn(t) = n−1
#n
i=1 (ci − cn)ϕ(ri(t)/(n + 1)), where (i) ri(t) is the

rank of Qi − d!it among {Qj − d!jt : 1 ≤ j ≤ n} for a constant vector t ∈ Rδd ,
(ii) {Qi : i ≥ 1} is a sequence of iid random variables with absolutely-continuous
strictly-increasing df H and absolutely-continuous and bounded density h that satisÞes
I (h) <∞, (iii) {ci : i ≥ 1} and {di : i ≥ 1} are Þxed sequences of δc-vectors and δd-
vectors, respectively, that satisfy limn→∞max1≤i≤n ||ci − cn||2/

#n
i=1 ||ci − cn||2 = 0

and limn→∞ n−1
#n
i=1 ||ci − cn||2 <∞ and likewise with ci − cn replaced by di − dn,

where cn = n−1
#n
i=1 ci and dn = n

−1#n
i=1 di, and (iv) the score function ϕ satisÞes

Assumption 3. Then, (a) for all ε > 0 and b > 0,

lim
n→∞P

$
sup
't'≤b

n1/2
111Ψn(tn−1/2)−Ψn (0)− n−1/2 úAn(0)t111 > ε% = 0,

where

úAn(0) = −n−1
n!
i=1

(ci − cn) (di − d̄n)!
& 1

0
ϕ(x, h)ϕ(x)dx,

(b) for any sequence of random δd-vectors {"τn : n ≥ 1} for which n1/2"τn = Op(1),
n1/2Ψn("τn) = n1/2Ψn (0) + úAn(0)n

1/2"τn + op(1),
(c) provided Σc = limn→∞ n−1

#n
i=1(ci − cn)(ci − cn)! is pd,

n1/2Ψn (0)→d N(0,Σc

& 1

0
[ϕ(x)− ϕ]2dx).

Comments. 1. The expression for úAn(0) on p. 1277 of Koul (1970) is correct,
but the expression for úAn(0) given on p. 1278 (which is of the form given above)
contains a typo�a minus sign is missing. Also, the proof of Theorem 2.1 of Koul
(1970) contains a typo that could be confusing to the reader. The term ϕ(qn) that
appears at the end of the expression on the Þrst two lines of the Þrst equation on p.
1276 should be ϕ!(qn) in both places.

2. We do not require ϕ to satisfy the second condition of (i) on p. 1274 of Koul
(1970) because this is a normalization condition that implies that ϕ(1/2) = 0 which
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is not needed for his Theorem 2.1 or Lemma 2.3. It is needed for his n1/2Sn(0) to
have an asymptotic normal distribution. We do not require it for n1/2Ψn (0) to have
an asymptotic normal distribution because we consider demeaned constant vectors
ci − cn, which yields n1/2Ψn (0) invariant to additive constants in ϕ, whereas Koul
(1970) does not.

The following Lemma gives sufficient conditions for an iid sequence to satisfy
Assumption 4(b) a.s.

Lemma 2 Suppose {ξi : i ≥ 1} is an iid sequence of non-negative random variables
with Eξ1+δi < ∞ for some δ > 0. Then, (a)

#∞
i=1 ξ

1+δ
i /i1+δ < ∞ a.s. and (b)

maxi≤n ξi/n→ 0 a.s.

Proof of Lemma 2. Part (a) holds because E
#∞
i=1 ξ

1+δ
i /i1+δ = Eξ1+δ1

#∞
i=1 i

−(1+δ)

<∞ implies that
#∞
i=1 ξ

1+δ
i /i1+δ <∞ a.s. Part (b) holds because the result of part

(a) and Kronecker�s Lemma (e.g., see Chow and Teicher (1978, p. 111)) imply that
n−1−δ

#n
i=1 ξ

1+δ
i → 0 a.s. Hence, n−1−δmaxi≤n ξ1+δi ≤ n−1−δ#n

i=1 ξ
1+δ
i → 0 a.s. In

turn, this gives n−1maxi≤n ξi → 0 a.s. !

Proof of Theorem 2. We prove part (a) Þrst. It suffices to show that

lim
n→∞P

(
n1/2Sn +ΣZC

!γ
& 1

0
ϕ(x, g)ϕ(x)dx ≤ z

)
= P (G∗ ≤ z) , (5.1)

for all z ∈ R, where G∗ ∼ N(0,ΣZ
' 1
0 [ϕ(x) − ϕ]2dx). We show that (5.1) holds

conditional on an {Xi : i ≥ 1} sequence that satisÞes certain properties, and that
{Xi : i ≥ 1} sequences satisfy these properties with probability one. Because condi-
tional probabilities are bounded by zero and one, this implies that (5.1) also holds
unconditionally by the bounded convergence theorem.

We condition on a sequence {Xi : i ≥ 1} for which

lim
n→∞ max

1≤i≤n
00Xi −Xn

002 / n!
i=1

00Xi −Xn

002 = 0, (5.2)

lim
n→∞n

−1
n!
i=1

(Xi −Xn)(Xi −Xn)
! = ΣX , and (5.3)

lim
n→∞n

−1
n!
i=1

2
Zi − Zn

3 2
Xi −Xn

3!
= 0. (5.4)

Such sequences occur with probability one (a.s.). Conditions (5.2) and (5.3) hold
a.s. under Assumptions 1 and 5 by Lemma 2(b) and the Kolmogorov strong LLN.
Condition (5.4) holds a.s. under Assumptions 1, 4(c), and 5(a) by a strong LLN due
to Loève, see Thm. 5.2.1 of Chow and Teicher (1978, p. 121).

By Assumptions 6(a) and (b) and 7W(a) and (b), we have

y1i − y!2iβ0 −X !
i
"θn

= α+ y!2iγ −X !
i(
"θn − θ) + ui

= α+ µ!γ + Z !iC
!γ/n1/2 −X !

i(
"θn − θ − Λ!γ) + v!iγ + ui, (5.5)
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using y2i = µ+CZi/n1/2 +ΛXi + vi. The constant α+ µγ does not affect the ranks
of the right-hand side (rhs) expression in (5.5) and can be ignored.

We apply Lemma 1 with Ψn("τn) = Sn, Qi = v!iγ + ui, ci = Zi, di = (Z !i,X
!
i)
!,"τn = (−γ!C/n1/2, ("θn − θ − Λ!γ)!)!, and h = g. The assumptions of Lemma 1 on

ci are satisÞed by Assumption 4. The required conditions for di are satisÞed by
Assumptions 2 and 4, (5.2), and (5.3). The assumptions of Lemma 1 for Qi are
satisÞed by Assumptions 1, 6(c), and 7W(c) and (d).

Next, we show that n1/2"τn = Op(1). By the deÞnition of "θn, we have
"θn = $

n−1
n!
i=1

(Xi −Xn)(Xi −Xn)
!
%−1

n−1
n!
i=1

(Xi −Xn)(α+ y
!
2iγ +X

!
iθ + ui)

= θ + Λ!γ +

$
n−1

n!
i=1

(Xi −Xn)(Xi −Xn)
!
%−1

× n−1
n!
i=1

(Xi −Xn)(Z
!
iC

!γ/n1/2 + v!iγ + ui), (5.6)

using y2i = CZi/n1/2 + ΛXi + vi. Hence, we obtain$
n−1

n!
i=1

(Xi −Xn)(Xi −Xn)
!
%
n1/2("θn − θ − Λ!γ)

= n−1
n!
i=1

(Xi −Xn)Z
!
iC

!γ + n−1/2
n!
i=1

(Xi −Xn)(v
!
iγ + ui). (5.7)

The Þrst multiplicand on the left-hand side of (5.7) equals ΣX + o(1), where ΣX > 0
by (5.3). The Þrst term on the rhs of (5.7) is o(1) by (5.3) and (5.4). Each element
of the second term on the rhs of (5.7) is asymptotically normal by the Lindeberg
central limit theorem using Assumptions 1, 5(b), 6(c), and 7W(c), (5.2), and (5.3).
In particular, the Lindeberg condition is satisÞed element by element, because (i)
wlog we can suppose Xi is a scalar, (ii) by (5.3), it suffices to show that for all ε > 0
λn = n−1

#n
i=1(Xi − Xn)

2Eξ2i 1((Xi − Xn)
2ξ2i > nε) → 0, where ξi = v!iγ + ui,

and (iii) using (Xi − Xn)
2 ≤ maxj≤n(Xj − Xn)

2 in the indicator function gives
λn ≤ (n−1

#n
j=1(Xj − Xn)

2)Eξ2i 1(maxj≤n(Xj − Xn)
2ξ2i > nε) → 0 by (5.2), (5.3),

Eξ2i <∞, and the dominated convergence theorem. We conclude that n1/2("θn− θ−
Λ!γ) = Op(1), n1/2"τn = Op(1), and the conditions of Lemma 1 hold.

Hence, by Lemma 1(b), n1/2Sn = n1/2Ψn(0) + úAn(0)n
1/2"τn + op(1) and by

Lemma 1(c), n1/2Ψn(0) →d G
∗. Next, using the deÞnitions of ci, di, and "τn, we

have úAn(0)n
1/2"τn/ ' 10 ϕ(x, g)ϕ (x) dx equals

n−1
n!
i=1

(Zi − Zn)(Zi − Zn)!C !γ

−n−1
n!
i=1

(Zi − Zn)(Xi −Xn)
!n1/2("θn − θ − Λ!γ)
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= ΣZC
!γ + op(1), (5.8)

where the equality uses Assumption 4, (5.4), and n1/2("θn − θ−Λ!γ) = Op(1). These
results combine to give (5.1) conditional on an {Xi : i ≥ 1} sequence that satisÞes
(5.2)-(5.4) and the proof of part (a) is complete.

We now prove part (b). We use the same conditioning argument as in the proof
of part (a). We condition on sequences {(Xi, εi) : i ≥ 1} for which (5.2)-(5.4) hold
and the following conditions also hold:

lim
n→∞ max

1≤i≤n
||εi − εn||2/

n!
i=1

||εi − εn||2 = 0, (5.9)

lim
n→∞n

−1
n!
i=1

||εi − εn||2 <∞, and (5.10)

lim
n→∞n

−1
n!
i=1

2
Zi − Zn

3
(εi − εn)! = 0. (5.11)

Conditions (5.9) and (5.10) hold a.s. by Assumption 7S(d), Lemma 2(b), and Kol-
mogorov�s strong LLN. Condition (5.11) is satisÞed a.s. by Assumptions 4(c) and
7S(d) and the strong LLN in Thm. 5.2.1 of Chow and Teicher (1978, p. 121).

By Assumptions 6(a) and (b) and 7S(a)-(c), we have

y1i − y!2iβ0 −X !
i
"θn (5.12)

=α+ µ!γ + Z !iπ
!γ/n1/2 −X !

i(
"θn − θ − Λ!γ/n1/2) + ε!iγ/n1/2 + (1 + ρ!γ/n1/2)ui

using y2i = µ+ πZi + ΛXi + εi + ρui.
Let ζn = (1 + ρ

!γ/n1/2)−1. Since ζn > 0 for n sufficiently large, {Ri : i ≤ n} are
equal to the ranks of the iid random variables {ui : i ≤ n} plus the terms4

ζnZ
!
iπ
!γ/n1/2 − ζnX !

i(
"θn − θ − Λ!γ/n1/2) + ζnε!iγ/n1/2 : i ≤ n5 . (5.13)

We apply Lemma 1 with Ψn("τn) = Sn, Qi = ui, ci = Zi, di = (Z !i,X
!
i, ε

!
i)
!, "τn =

(−ζnγ!π/n1/2, ζn("θn − θ − Λ!γ/n1/2)!,−ζnγ!/n1/2)!, and h = f . The assumptions of
Lemma 1 on ci are satisÞed by Assumptions 2 and 4. The required conditions for di
are satisÞed by Assumptions 2 and 4, (5.2), (5.3), (5.9), and (5.10). The assumptions
of Lemma 1 for Qi are satisÞed by Assumptions 1 and 7S(e).

Next, we show that n1/2"τn = Op(1). It suffices to show that n1/2("θn− θ) = Op(1)
because ζn → 1. We have$

n−1
n!
i=1

(Xi −Xn)(Xi −Xn)
!
%
n1/2("θn − θ)

= n−1
n!
i=1

(Xi −Xn)Z
!
iπ
!γ + n−1

n!
i=1

(Xi −Xn)X
!
iΛ
!γ

+n−1
n!
i=1

(Xi −Xn)ε
!
iγ + ζ

−1
n n

−1/2
n!
i=1

(Xi −Xn)ui. (5.14)
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The Þrst multiplicand on the left-hand side of (5.14) equals ΣX + o(1), where ΣX >
0. The Þrst term on the rhs is o(1) by (5.4). The second term on the rhs equals
(ΣX + o(1))Λ

!γ = O(1). The third term on the rhs has Euclidean norm bounded by

||γ||
$
n−1

n!
i=1

00Xi −Xn

002%1/2$n−1 n!
i=1

||εi − εn||2
%1/2

= O(1) (5.15)

by the Cauchy-Schwarz inequality, (5.3), and (5.10). Finally, the fourth term on
the rhs is asymptotically normal and, hence, Op(1), by the Lindeberg CLT using
Assumptions 1, 5(b), and 6(c) and (5.2) and (5.3). (The Lindeberg condition is
veriÞed by the same argument as above.) Hence, n1/2("θn − θ) = Op(1) and Lemma
1(b) and (c) apply.

Next, using the deÞnitions of ci, di, and "τn, we have úAn(0)n1/2"τn/' 10 ϕ(x, f)ϕ (x) dx
equals

ζnn
−1

n!
i=1

(Zi − Zn)(Zi − Zn)!π!γ

−ζnn−1
n!
i=1

(Zi − Zn)(Xi −Xn)
!n1/2("θn − θ − Λ!γ/n1/2)

+ζnn
−1

n!
i=1

(Zi − Zn)ε!iγ

= ΣZπ
!γ + op(1), (5.16)

where the equality holds by Assumption 4, (5.4), n1/2("θn − θ) = Op(1), (5.11), and
ζn → 1.

Hence, by Lemma 1(b) and (c) and (5.16), we have

n1/2Sn = ΣZπ
!γ
& 1

0
ϕ(x, f)ϕ (x) dx+ n1/2Ψn(0) + op(1)

→d ΣZπ
!γ
& 1

0
ϕ(x, f)ϕ (x) dx+G∗ (5.17)

conditional on a sequence {(Xi, εi) : i ≥ 1} that satisÞes (5.2)-(5.4) and (5.9)-(5.11),
which completes the proof of part (b). !

Proof of Corollary 1. In the case of weak IVs, we use the proof of Theorem
2(a) with the considerable simpliÞcation that no Xi and "θn appear and, hence, no
conditioning on {Xi : i ≥ 1} sequences is required. Under Assumptions C1-C6, C7W,
2, and 3, this proof yields: For all j = 1, . . . , J,

n
−1/2
j nSCnj →d ΣZjCjγjb

1/2
j

& 1

0
ϕ(x)ϕ(x, gj)dx+G

∗
j , where

G∗j ∼ N
(
0,ΣZj

& 1

0
[ϕ(x)− ϕ]2dx

)
. (5.18)
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The convergence in (5.18) is joint for j = 1, . . . , J by independence. Hence, n1/2SCn
is asymptotically normal:

n1/2SCn →d

J!
j=1

wjbjΣZjCjγj

& 1

0
ϕ(x)ϕ(x, gj)dx+G

∗, where

G∗ ∼ N
0, J!

j=1

w2j bjΣZj

& 1

0
[ϕ(x)− ϕ]2dx

 . (5.19)

Similarly, in the case of strong IVs, it follows from the proof of Theorem 2(b) that
under Assumptions C1-C6, C7S, 2, and 3, we have

n1/2SCn →d

J!
j=1

wjbjΣZjπjγj

& 1

0
ϕ(x)ϕ(x, fj)dx+G

∗. (5.20)

These results lead to the asymptotic properties for BCn, deÞned in (3.3), stated
in the Corollary. !
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TABLE I. Finite Sample Power of Wilcoxon Scores BW , Normal Scores BNS , and
(size-corrected) Anderson-Rubin Tests of SigniÞcance Level α = .05

Case∗ λ ρ β − β0 n k p F BW BNS AR

1. Base Case 9 .75 .95 100 1 5 Norm .36 .37 .38
t1 .81 .79 .45
t2 .62 .59 .41
t3 .50 .48 .39
t10 .38 .38 .37
DLN .60 .56 .39

2. Other Distributions 9 .75 .95 100 1 5 t4 .45 .44 .39
t6 .42 .41 .39
Unif .34 .40 .38
Abs Norm .40 .43 .39
Logistic .40 .40 .39
DE .45 .43 .39
Log Norm .70 .64 .39

3. Negative β − β0 9 .75 -.40 100 1 5 Norm .39 .41 .42
t1 .82 .79 .45
t2 .63 .60 .42
t3 .50 .48 .39
t10 .40 .40 .38
DLN .62 .57 .41

4. Strong IVs 20 .75 .37 100 1 5 Norm .37 .38 .39
t1 .83 .81 .47
t2 .66 .62 .43
t3 .53 .50 .40
t10 .40 .39 .37
DLN .64 .60 .41

5. Weaker IVs 4 .75 4.3 100 1 5 Norm .37 .39 .40
t1 .79 .77 .43
t2 .61 .58 .41
t3 .49 .47 .39
t10 .38 .38 .37
DLN .57 .53 .39

∗ λ=Strength of IVs, ρ=Correlation of Errors, β − β0=Deviation from Null, n=Sample Size,
k=Number of IVs, p=Number of Exogenous Variables, and F=Error/IV/Covariate Distribution
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TABLE I (cont..)

Case λ ρ β − β0 n k p F BW BNS AR

6. High Endogeneity 9 .95 1.08 100 1 5 Norm .36 .38 .39
t1 .83 .81 .48
t2 .66 .62 .43
t3 .53 .50 .40
t10 .40 .39 .37
DLN .64 .60 .41

7. No Endogeneity 9 0.0 .62 100 1 5 Normal .37 .39 .39
t1 .79 .77 .43
t2 .61 .58 .41
t3 .49 .47 .39
t10 .38 .38 .37
DLN .57 .54 .39

8. Five IVs 9 .75 2.5 100 5 5 Norm .39 .41 .41
t1 .91 .92 .46
t2 .70 .69 .41
t3 .54 .51 .40
t10 .40 .40 .41
DLN .66 .61 .36

9. Ten IVs 9 .75 5.8 100 10 5 Norm .38 .39 .40
t1 .92 .94 .50
t2 .72 .70 .38
t3 .54 .52 .38
t10 .38 .39 .39
DLN .65 .59 .33

10. Sample Size 50 9 .75 3.2 50 1 5 Norm .38 .39 .41
t1 .62 .60 .37
t2 .53 .51 .42
t3 .47 .46 .40
t10 .40 .40 .40
DLN .50 .49 .39

11. Sample Size 200 9 .75 .53 200 1 5 Norm .38 .39 .40
t1 .92 .90 .49
t2 .71 .67 .41
t3 .54 .51 .41
t10 .40 .41 .40
DLN .70 .64 .42
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