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ABSTRACT : It is not unfrequent to see studies of imperfect competition or
of industrial organization rest upon questionable foundations such as the
hypothesis that inverse market demand is, whenever it is positive, concave
or even linear. Assumptions of this sort are not robust (i.e. "additive")
in the sense that they are not usually preserved through aggregation of
different sectors that would satisfy them individually. The present paper
investigates an alternative specification that is based upon the plausible
existence of significant  Theterogeneities among demanders. It is
demonstrated that specific forms of demand heterogeneity tend to stabilize
market expenditures. In a partial equilibrium context, sufficient demand
heterogeneity is shown to imply existence and unicity of a Cournot
oligopoly equilibrium.

Jel Code : DOO, D43, L13.

Key words : Aggregation, heterogeneity, equivalence scales, oligopoly
equilibrium.

HETEROGENEITE ET OLIGOPOLE DE COURNOT

RESUME : Il n’est pas rare de voir des études portant sur la concurrence
imparfaite ou 1l’organisation industrielle partir d’'hypothéses douteuses,
comme une demande inverse globale concave ou méme linéaire. De telles
hypothéses ne sont pas robustes (i.e. additives), car elles ne sont pas
habituellement préservées par agrégation de secteurs qui les vérifieraient
individuellement. L’article examine une spécification alternative, fondée
sur la présence plausible d'hétérogénéités significatives dans les
comportements des acheteurs, qui est préservée par agrégation. On montre
que des formes d' hétérogénéité spécifiques tendent a stabiliser la dépense
globale. Ceci implique, dans un cadre d’équilibre partiel, 1l’'existence et
1'unicité de 1’équilibre d’oligopole de Cournot.

Code JEL : D0OO, D43, L13.
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BEHAVIORAL HETEROGENEITY AND

COURNOT OLIGOPOLY EQUILIBRIUM

Jean-Michel Grandmont *

Partial equilibrium models of imperfect competition typically rely
upon convenient assumptions on, say, market demand curves, that are
tailored so as to ensure concave revenue functions, hence the existence or
uniqueness of the corresponding Nash equilibrium (in socalled pure
strategies). It is even not unfrequent to see specifications in which the
inverse market demand curve is supposed to be, whenever it is positive,
linear or concave in price (see e.g. Tirole (1988)). The advantage of such
specifications is of course tractability but the trouble 1is that they
appear to lack robust economic foundations. It is well known that
traditional economic theory, or more specifically individual optimizing
behavior, does not typically generate demand curves displaying the kind of
nice properties imperfect competition theorists like to assume. A related
point is that these properties are not usually additive : if one takes two
demand sectors that are "nice" when functionning separately, adding them
together often results in a demand sector that behaves quite unpleasantly.
The point is illustrated in Fig. 1 in the case of linear or concave inverse
demand schedules. These difficulties have led quite a few theorists (see,
e.g., Mc Manus (1962, 1964), Roberts and Sonnenschein (1976, 1977), Bamon
and Frayssé (1985), Frayssé (1986), Novshek (1985)) to try to dispense with
concave revenue functions and other niceties in models of imperfect
competition. While there has been significant progress in the area, the
outcome is still frustrating as it has not yet generated models that are

both general and tractable.

Fig. 1

The difficulties we just alluded to are not novel, nor are they
limited to theories of partial equilibrium or imperfect competition. It is
well known that traditional economic theory does not place many
restrictions, to say the least, on aggregate market behavior in general
competitive equilibrium models. The devastating result is here

Sonnenschein-Mantel-Debreu’s indeterminacy theorem (see Sonnenschein (1973,






1974) and the survey by Shafer and Sonnenschein (1982)) : if the
distribution of microeconomic characteristics in the system is arbitrary,
individual optimizing behavior does not place any restrictions on
competitive aggregate excess demand, on any given compact set of prices,
other than homogeneity and Walras’s law. That is not much, and of course

one should not expect concave revenue functions.

The main source of the problem, whether in general competitive
analysis or in partial equilibrium models of imperfect competition, lies in
the single word : aggregation. One can get almost anything, hence nothing,
at the macroeconomic level, when the distribution of individual
characteristics is arbitrary. The diagnosis suggests a possible way out
that has been known for quite some time, namely to start with plausible
restrictions on the distribution of 1individual characteristics to get
testable (and hopefully pleasant) macroeconomic regularities. In
particular, it has been often asserted that heterogeneity should help in

this respect.

There has been some progress in recent times on this research front.
Hildenbrand (1983) took indeed a decisive step by showing that
heterogeneity in the income distribution may make macroeconomic income
effects just right or weak enough in multimarkets consumer demand analysis,
to leave us more or less, in the aggregate, with "nice" substitution
effects only (see also Grandmont (1987)). Another important idea originated
in the work of Jerison (1982, 1984, 1992), who showed that, roughly
speaking, increasing dispersion of household Engel curves as income goes up
leads to the weak axiom of revealed preference in the aggregate when the
distribution of income is fixed. This approach has been extended quite
successfully by Hildenbrand, who showed that it implied in fact the "Law of
Demand" at the macroeconomic level, and confronted to empirical data with
fairly convincing results (Hirdle, Hildenbrand and Jerison (1991),
Hildenbrand (1989, 1992)). While this approach has been an outstanding
methodological achievement, it seems however difficult to apply it beyond
the restrictive situation in which incomes are independent of prices. When
specialized to a partial equilibrium analysis, it apparently yields only a
downward sloping demand schedule. That is already a lot, but we are still

rather far from concave revenue functions.
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Another approach, complementary to that of Hildenbrand and Jerison,
has been recently implemented with fairly good success. It seeks to
introduce plausible heterogeneities in other dimensions of 1individual
characteristics, namely in consumers’ demand schedules. This line of attack
has it roots in, and generalizes the notion of, household equivalence
scales, which has been much used in applied demand analysis (Prais and
Houthakker (1955), Barten (1964), Jorgenson and Slesnick (1987)).
Dispersion of demand schedules of this sort have been introduced in general
competitive equilibrium analysis some time ago by Mas-Colell and Neuefind
(1977) and by E. Dierker, H. Dierker and Trockel (1984). It has also been
used by H. Dierker (1989) and E. Dierker (1991) to inquire whether demand
heterogeneity might help in ensuring existence of equilibrium in imperfect

competition models.

The recent discovery has been that increasing demand heterogeneity
tends to make aggregate expenditures more independent of prices. In a
competitive general equilibrium context, this fact has strong consequences
for the prevalence, in the aggregate, of the weak axiom of revealed
preferences, of gross substitutability, and on uniqueness and stability of
the Walrasian exchange equilibrium (Grandmont (1992)). When specialized to
a market for a single commodity, the approach implies that a relatively
large heterogeneity in individual demand behaviors yields an aggregate
demand that is not only downward sloping, but with an elasticity that is
not too far from minus 1. We are now within reach of a concave revenue
function ... Moreover, by contrast to the case of linear or concave inverse
market demands depicted in Fig. 1, this sort of configuration is robust,
i.e. additive. If one puts together two heterogenous demand sectors, one
still gets heterogeneity (alternatively, adding two market demand schedules
having an elasticity that is not too far from -1 yields a market demand

with the same property).

A reasonable conjecture is accordingly that demand heterogeneity,
along the line of Grandmont (1992), may generate concave revenue functions
and help in imperfect competition analysis. The purpose of the present
paper is to demonstrate that this conjecture is correct, in the context of
a partial equilibrium model in which firms compete in quantities, & la

Cournot. We give in Section 1 approximate bounds for market demand



elasticities that depend explicitly on specific measures of demand
heterogeneity. When the degree of demand heterogeneity grows, the
elasticity of market demand is not too far from minus -1. We establish in
Section 2 that demand heterogeneity leads essentially to strictly concave
revenue functions and thus, for a given firm, to a unique optimum supply
level. We show in Section 3 that enough demand heterogeneity, in a sense
that is made quantitatively precise, implies not only existence, but also

unicity of a Cournot oligopoly equilibrium.
1. HETEROGENEITY AND AGGREGATE DEMAND

We consider a market for a particular good or service, with a large
number - in fact a continuum - of individual buyers. All buyers behave
“competitively", i.e. formulate their demands while taking the price p > O
of the good as given. It is known that individual demands may not be well
behaved even if they come say, out of utility maximization (in the case of
a consumer good). The purpose of this section is to show that if there is
sufficient heterogeneity among individual buyers, aggregate market demand
displays 1indeed enough nice properties to be a potentially successful

building block of partial equilibrium models of imperfect competition.

The population of buyers is described as follows. There is first a set
A of "types". Each type a in A defines a demand function qa(p) > 0. Second,
Wwe assume that for each type that is present in the population, there is a
continuum of individuals who have the same demand function as qa(p), up to
a rescaling of the unit of measurement of the good by a factor 8 > 0. To
see what should be the form of this "rescaled" demand function, consider a
fictitious operation in which the unit of measurement of the good is
divided by B. If the price of the good in the fictitious unit is p > 0, the
price in the actual unit is Bp. Thus the original demand, expressed in the
fictitious unit, is Bqa(BpJ. By definition, the rescaled demand function
corresponding to the parameter B, expressed in the actual unit system
(which is in fact fixed throughout !) is equal to the above expression,
i.e. to Bqa(Bp). ! In the sequel, it will be in fact much more convenient
to work with the parameter « = LogB, which can be a positive or a negative

number. With this convention, the rescaled demand function is eOl qa(eap).
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The distribution of <characteristics in the demand sector can
accordingly be represented by a probability distribution over types, and
for each type a present in the population, by a conditional distribution
over the rescaling parameter «, which we shall suppose to have a density
f(a[a). Market demand Q(p) 1is then obtained by aggregating (i.e.
integrating) individual demands over the whole population, first
conditionally for each type and second, over types. We are then in a
framework in which we can speak in a meaningful way of the "heterogeneity"
of this population by looking at the dispersion of the conditional
densities f[a]a). Our program is indeed to show that a large dispersion

implies a well behaved market demand, even if individual demands are not.

To simplify the exposition, we shall assume that the conditional
densities are actually independent of the type a (see the Appendix for the
consequences of relaxing this assumption). The independence hypothesis
allows us to compute market demand by changing the order of integration. We
can first aggregate the demands qa(p) over types ; this yields the demand
function q(p). Market demand is then obtained by integration over the

rescaling factor «
ap) = J' e“q(e®p) fla) da.

We shall make throughout the following assumptions. The first one, on
the demand function q(p), states essentially that expenditure on the good,

aggregated over all types, is uniformly bounded above.

(1.a) The demand function q(p) iIs continuous and satisfies 0 < pq(p) < b

for all p > 0.

The immediate consequence is that market expenditure pQ(p) is also bounded
above by b. The second assumption states that the density function f(a) is
regular enough to ensure that market demand Q(p) has continuous first and

second derivatives.

(1.b) The density function f(«) is twice continuously differentiable
for every a in the real line. Its first and second derivatives

are uniformly integrable, i.e. Jlf’(a}lda < m and jlf”(a}|da < m.
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The coefficient m appearing in (1.b) is an indicator of the dispersion of
the density f(a). If it is small, the distribution over the rescaling
factor o should be widely spread out. We are going to show that in such a
case, market demand Q(p) is "well behaved” even though the individual

demands may not be so.
Market demand

Our strategy is to show that market expenditure pQ(p) has continuous
first and second derivatives and to give bounds for these derivatives that
depend explicitly on the dispersion of the density fl(«), i.e. on the
coefficient m. To this effect, it is convenient to introduce the notation
wip) = pal(p). Then it follows from the definition of market demand that

market expenditure is given by

pQ(p) = j w(e%p) flo) da.
By making the change of variable r = o« + Logp, we obtain

pQ(p) = j w(e”) f(r - Logp) dr.
This expression shows immediately that since the density f was assumed to
have continuous first and second derivatives that are uniformly integrable,
market expenditure has also continuous first and second derivatives. Taking

derivatives with respect +to Logp and reverting to the original variable

o« =1 - Logp yields

dlpQ(p)] _ _ « .
(11) —di—o'gT—- = J-W(e p) f (a) da,
d®(pa(p)] «
(1.2) PR . j w(e®p) £ (a) da.
(dLogp)

The last step is to use again assumption (1.b) to bound the right hand
sides of (1.1) and (1.2). We get then

(1.3) I dlpa(p)) | ' d® [pQ(p)]
dLogp - ’ (dLogp)2
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It should be noted that these bounds are valid for all densities f(a«a), even
if they are rather concentrated. On the other hand, when the coefficient m
becomes very small, the inequalities (1.3) tell us that market expenditure
is eventually approximately independent of the price. We shall make

throughout the following assumption

(1.c) Expenditure on the good, aggregated over all types, is uniformly

bounded away from O, i.e. pq(p) > &b > O for every p > O.

The immediate consequence 1is that market expenditure pQ(p) 1is also
uniformly bounded below by 8b. Thus if the coefficient m becomes very
small, other things (in particular the lower bound &b) remaining fixed,
market demand should be asymptotically close to a unit elastic demand of
the form A/p. One should expect accordingly that when m is not too large
(the density f(a) is relatively dispersed), market demand should be rather
well behaved. This 1is exactly the property we shall exploit in the

sequel 2

We transpose now, for later use, the inequalities (1.3) in terms of
the elasticities of market demand and of its first derivative. Here we
should expect these elasticities to be close to -1 and -2, respectively,

when the coefficient m becomes small, other things being equal.

LEMMA 1.1. Let eQ(p) = pQ’(p)/Q(p) and eQ,(p) = pQ”(p)/Q'(p) be the

elasticities of market demand and of its first derivative. Then
(1.4) |eo(p) + 1| < m/s.

Therefore, market demand is downward sloping, i.e. eQ(p) < 0, when m < &,

In that case
(1.5) leg (P) + 2| < 2m/(8 - m).
In particular, Q' (p) < 0 and Q“(p) > O for every p whenever m < &/2.

Proof : It follows from the definition that



d{pQ(p)]
dLogp

= pQ(p) [1 + eQ(p)]

Hence from the first inequality of (1.3) and assumption (1.c)
|e,(P) + 1] < mb/pQ(p) < w8,

which is (1.4). Then it is clear that :Q(p) < 0 when m < & since

(1.6) - (8+m)/8 < eo(p) < - (8-m)/s.

To prove (1.5), remark first that, using simple calculations

a[pQ(p)]

= pQ(p) [1 + & (p) (e ,(p) + 3)].
(dLogp)2 PP o ® o' P

This implies, in view of the second inequality of (1.3) and assumption
(1.c)

[eo[p) + 1+ eo(p) (eo,(p) +2)| < mb/pQ(p) < m/&.
Hence on account of (1.4)
< .
]eo(p)| ]80,(p) + 2] < 2m/8
If m < 8§, we have eQ(p) < 0 and therefore from (1.6),
|eo,(p) +2| < 2m/(6]£0(p)|) < 2m/(8-m),

which is (1.5). Since m/(8-m) is increasing with m and is equal to 2 when

m = 8/2, one has eo,(p) < 0 hence Q”(p) > 0 if m < &/2. Q.E.D.

Inverse market demand

The inverse market demand is often the object of prime interest in

models of imperfect competition. We assume from now on

(1.d) m< 8.
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We know from Lemma 1.1 that market demand is then downward sloping.
Moreover &b < pQ(p) < b and the range of Q(p) is the whole open interval
(0,+w). Thus market demand has an inverse P = Q'1 , which satisfies also
b < gP(q) < b and 1s twice continuously differentiable for every q > 0.
The next result gives useful bounds on the elasticities of the inverse
market demand P(g) and of its first derivative. Here again the inverse
market demand is well behaved when the density f(«) of the rescaling factor
« is "flat", since these elasticities are close to -1 and -2, respectively,

when the coefficient m is small, other things being equal.

LEMMA 1.2. For every q > 0 let cp(q) = gqP’ (q)/P(q) and sp,(q) = gP”(q)/P’ (q)
be the elasticities of the 1Inverse market demand and of its first
derivative. Then

(1.7) Isp(q) + 1 < and }cp,(q) +2] <7,

with n = m/(8-m) and n° = 7nll + &/(8-m)].

Proof : By definition P(gq) = Q_l(qJ, hence by differentiation,
P'(q) = - 1/Q’(P(q)) and SP(q) = 1/8O(F(q)) < 0. Thus in view of (1.6)
(1.8) -8/(8-m) < cp(q) < -8/(8+m)

and therefore

-m/(8-m) <

A
(]
£
+

[

< m/(8+m)
which implies |eP(q) + 1] € m/(8-m).
By differentiation of P’ (q) = -1/Q' (P(q)), we get
ep,(q) = -co,(P(q)) ep(q].
ep,(q) + 2= 2[ep(q) + 1] - cP(q)[eo,(P(q)) + 2],

Then using the bound on |8P(q) + 1| we just got, together with (1.8) and
(1.5), we obtain
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2m

)
n (1 +ﬁ} Q.E.D.

<
lep,(q) +2| <

We shall occasionally work directly with the coefficients 5 and 7'
appearing in (1.7), with understanding that, in view of their expressions,

they can be made small by decreasing the coefficient m, given &.

Remark 1.3. The normal distribution may play a significant role in
applications of the theory presented here. It might be accordingly useful
to see how the coefficlent m involved in assumption (1.b) is related to the
variance of the distribution in such a case. The coefficient m being
invariant through translations of the density f(«), we may assume with loss

of generality the mean of the distribution to be 0. The density is then

fla) =

¢ VZn
where ¢° is the variance. By differentiating we get
f'(a) = -af(«)/c° and £7(a) = -fla){1 - az/oz)]/o2
and this implies

2£(0) = §(2nJ‘1/2,

J|f’(a]| da

[{}

-1/2

flf”(a]] da = 2(£ (-¢) - £'(0)] = 2 (2ne)

4

2
T
These two expressions go to O when the variance o® becomes large.
2. FIRMS’ REVENUE AND REACTION FUNCTIONS

We wish to study Cournot oligopoly competition in the present
framework by using our previous findings on the demand sector. We analyze
in this section the behavior of a single firm. To simplify matters we
assume a constant marginal cost of production ¢ > 0, and no fixed cost. The
firm’s total cost of producing vy 2 0 is thus cy. The firm takes as given

the total output z of the other competing firms (which we will assume to be
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strictly positive 3) and chooses its own output supply y > 0 so as to

maximize its profit
n(y,z) = Rly,z) - cy,
in which R(y,z) = yP(y+z) is the firm's revenue function.

Under our assumptions revenue is bounded above by b, so the firm’s
choice of output cannot exceed b/c, otherwise profit would be negative.
Thus an optimum output level always exists, as it maximizes the continuous
profit over the interval [0,b/c]. The optimum output level needs not be
unique however, unless the revenue function is for 1instance strictly
concave in y. This creates wusually great difficulties in Cournot
equilibrium or other imperfect competition models, as economic theory does
not provide any reason for such a concavity property to be satisfied. In
view of the results obtained so far, we may expect to be able to give a
solution to the problem in our framework : with sufficient heterogeneity in
the demand sector (in the sense we have been talking about it in the
preceding section), the firm’s revenue function should be well behaved and
the optimum supply unique. The purpose of this section is to make this

intuition precise.
Differentiating twice the revenue function with respect to y gives

R

5§(y.z) = P(y+z) + yP’' (y+z),
a°R

__E(Y’ZJ = 2P’ (y+z) + yP"(y+z).
8y

The last expression can be put in the equivalent form

2
3°R _ P (y+z)
(2.1) —z(y,z) = _}'—"T

[2z2 + y(2 + &_, (y+z2))].
P
ay

Were market demand of the form Q(p) = A/p, the term e, * 2 would vanish
and the revenue function would be strictly concave for every nonnegative
output y. In our case we can hope, by exploiting the bounds established in

the previous section, to show the same property for a range of supply
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levels that would be large as the degree of heterogeneity in the demand
sector grows. In view of Lemma 1.2, we know that cp,(y+z) + 2 is bounded

below by -n‘, which implies

2 ’
8By, ¢ Elyr2)
ay y

(2z - yn').

Therefore the revenue function 1is strictly concave in y whenever
0 < y < 2z/n'. Given the other firms’ total output =z, the interval
{0,2z/m’) becomes indeed large when, other things being equal, the

coefficient m, hence n’, becomes small.

The study of the unicity of the firm's optimum supply is now rather

simple. If P(z) £ ¢, it is too costly for the firm to produce anything, for

marginal revenue gg(y,z) is strictly bounded above by P(z) and thus less
than marginal cost ¢, for all output levels y > 0. If ¢ < P(z), a necessary
condition for profit maximization is obtained by equating marginal revenue

and marginal cost
P(y+z) + yP’(y+z) = ¢,
which is equivalent to, after rearranging terms

Y o TS P

vz e (y+z) Ply+2z)

Thus in both cases P(z) < ¢ and ¢ < P(2), profit maximization requires

(2_2) _y_ = Max O, - 1__._&:_2_.]_
y+z sp(y+z)

If P(z) £ ¢, the unique profit maximizing output is y = 0 and it is the
only solutlon of the first order condition (2.2). When c¢ < P(z), we expect
the firm’s optimum supply to be unique if there is sufficient demand
heterogeneity. Specifically, we know that the firm's revenue function is
strictly concave for 0 £y £ 2z/n' and thus on the whole interval [0,b/c]
if b/c £ 2z/n" or equivalently 7’ £ 2zc/b. Since any profit maximizing

output must belong to that interval, the optimum supply level is unique if
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n’ < 2zc/b. It is in fact the sole solution of the first order condition

(2.2) (see Fig. 2).
Fig. 2
The following lemma summarizes our findings

LEMMA 2.1. Let z > O be the other firms’ total output. Then

1. A necessary condition for profit maximization is
Yy - _ 1 - c/Ply+2)]| _
(2.3) v Max[O, _—E;T§:ET_—_ = G(y+z)

2. The firm’s revenue function R(y,z) yP(y+z) is strictly concave in

2

its own output, i.e. é—g-(y,z) < 0, when O £ y < 2z/9'. If either P(z) < ¢
ay

or 1’ £ 2zc/b, the profit mamximizing supply y is unique. In both cases, it

is the unique solution of the first order condition (2.3).

The analysis confirms our intuition. As the degree of demand
heterogeneity grows, i.e. when the coefficient m, hence 7’, becomes small,
a firm’s revenue function becomes strictly concave for a large range of
supply levels and its optimum output is unique, other things (including the

other firms’ total supply) being equal.
3. COURNOT OLIGOPOLY EQUILIBRIUM

We study now existence and unicity of a Cournot oligopoly equilibrium,
in relation with the degree of heterogeneity in the demand sector. We
assume that there are n > 2 firms competing in quantities. Firm j produces
its output yj 2 0 at constant marginal cost cj > 0 (and no fixed cost).

Without loss of generality, we assume that firms are ordered by increasing

marginal costs, 1i.e. <, < c, ... £ c. - A Cournot equilibrium is an array
of outputs (y;,..‘,y;], with Zj y? > 0, such that the j-th firm’s supply y;
maximizes its profit yj F(yj + zj) - cyj with respect to yj, given the

other firms’ total output z? = k;) y:, and this for every j.
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Since the case of a unit elastic market demand is the asymptotic
situation that arises when the degree of demand heterogeneity grows, we

begin by reviewing what happens in that case.

Unit elastic demand

If market demand 1s of the form Q(p) = A/p, A > 0, the j-th firm’s
profit function is ij/(yj + zj) - cj yj, where zj > 0 stands for the other
firms’ total output. Profit is strictly concave in yj when zJ > 0 and
linearly decreasing when zj = 0. The optimum supply is thus unique and is
the unique solution of the following first order condition, which is the

exact analogue of (2.3)

This formulation shows that a Cournot equilibrium can be characterized by a
total output level Y* > 0 that is solution of the equation G(Y) = 1, with
GlYy) = Zj GJ(Y). Each firm’s equilibrium output is then determined by
y;/Y* = GJ(Y*].

The function G(Y) is piecewise linear (Fig. 3). Its value for Y = O is
equal to the number of firms n 2 2. It 1is strictly decreasing when
0<YZ A/c1 and vanishes for Y 2> A/C1‘ Thus there is unique Y* > 0 that
satisfies G(Y) = 1. The first n* firms are active in equilibrium and the

number n* is determined by looking at the nondecreasing sequence

r, = G(A/cl) = 0,

r.=G(A/c ) =2 - (c + ¢ )/c
2 2 1 2 2
Tr = =

G(AZc ) =n - (c, +...+ ¢ )/c
n 1 n n
Then n* is the largest integer such that r . < 1. Since T, < 1, there are
n
at least two active firms in equilibrium. Total equilibrium output is then

* - *_
Y Aln 1)/j§§, c,-
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Unicity of Cournot eguilibrium

We wish to demonstrate that when there is sufficient heterogeneity in
the demand sector, there exists a unique Cournot equilibrium. In view of
the first order condition (2.3) and by analogy with the case of a unit

elastic demand, we define for every total output Y > O and for every firm j

e_(Y)

G (Y) = Max[O , -
I P

Each GJ is strictly positive for Y < Q(Cj) and vanishes when Q(cj) < Y. If
a Cournot equilibrium exists, with total output Y*, then G (Y*) should give
the equilibrium market share of firm j. The reader will n;te that, here as
usual in Cournot equiibrium models (with constant marginal costs), the
firms separate in two disjoint sets. The firms that are active in
equilibrium are those for whom cJ < P(Y*), while all firms with P(Y*) < cJ

do not produce anything.

Since market shares have to add up to 1, equilibrium total output must
satisfy the equation G(Y*) = 1, with G(Y) = ZJ Gj(Y). Our strategy will be
therefore to show that with enough heterogeneity, the equation G(Y) = 1 has
a unique solution Y* > 0, and that the array of individual outputs defined

by y? = Y* Gj(Y‘) corresponds indeed to a Cournot equilibrium.

PROPOSITION 3.1. Let Y = 5b/2(c1 + c2). Consider the set J of firms such
that Y < b/cj (which is nonempty since it contains firms 1 and 2). Assume

that
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for every firm in J.

Then there is a unique Cournot equilibrium. Moreover each function
GJ(Y), hence G(Y), is non increasing, and strictly decreasing when positive,
for all Y 2 Y, while G(Y) > 1 for all Y < Y. In equilibrium, at least firms

1 and 2 are active, i.e. y; > 0 and y; > 0.



G(Y) A

18

\|

b4



19

Proof. The first item to show is that when the coefficient m is small, the
equation G(Y) = 1 has a unique solution Y* > O that is bounded away from O

when m decreases.
Remark that one can rewrite GJ as
(3.1) Gj(Y) = Max[0, —sO(P(Y)) (1 - cj/P(Y)J].

Each Gj is positive for 0 < Y < Q(cj) and vanishes when Y > Q(cj). Next, in

view of the bounds of 80 given in Lemma 1.1 (see (1.4)), and since

8b < Y P(Y) ¢ b, we have G (Y) £ G,

<G (¥) g G:(Y) for all Y > 0, with

. m cJY
Gj(Y] = Max[O, (1 + g] (1 - ——5—]];

_ m cJY
Gj(Y) = MaX[O, (1 - g) [1 - —ﬁ]],

and therefore, G (Y) < G(¥Y) £ G (Y), where G (Y) =X G (Y) and G (Y) =
ZJ G:(Y). Here G is positive for Y < Q(C1] and vanishes when Y ;Q(cl). In

particular G(Y) is always O when Y > b/cl, independently of m.

We wish to show now that G(Y) = 1 has all its solutions bounded away

from 0 when m become small, other things being equal. Specifically,

(3.2) Let Y = 5b/2(c1 + C2]. Then G(Y) > 1 for every 0 < Y < Y whenever
m < 8/3.

To prove thils, notice that G(Y) > G;(Y) + G;(Y). Now the map G: + G; is
piecewise linear, vanishes for Y > 5b/c1 and its values for Y =0 is

2(1 - m/38), which exceeds 1 as soon as m < &/2 and a fortiori when m < &/3

(Fig. 4). The equation G:(Y] + G;(Y) = 1 is equivalent to

m (c1 + cz) Y.
[1‘3] [2————3b_]=1’

which yields
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If m < §/3, then

In that case, we get for all 0 <Y hS %
G(Y) 2 G (Y) + G, (¥Y) > G (Y) + G (Y) =1
This proves (3.2).
Fig. 4
Our next step is to demonstrate that when m is small, each function GJ
is non increasing (in fact strictly decreasing when positive) for all

output levels that exceed some prespecified value 7¥. Of course such

properties will show up in G = ZJ Gy

(3.3) For fixed O < y < Q(cj), the function GJ is strictly decreasing
on [¥,Q(c )] provided that 4m/8 < cjy/b.
3 =

Fix 0 < y < Q(cj). For any ¥ < Y < Q(c ), one has
= = j

i}

G (Y) = - € (P(Y)) (1 - c /P(Y)).
J Q j

The elasticity ¢(Y) of this function is the elasticity wl(Y] of EO(P(Y)]
plus the elasticity ¢2(Y) of (1 - cj/P(Y)). Simple calculations show that

wi(Y] = EP(Y] [EQ,(P(Y)J + 1 - cQ(P(Y)]]
= EP(Y) [sQI(P(YJ) + 2 - (cQ(P(Y]) + 1)),
wz(Y] = EP(Y) cj/[P(YJ - cj].

Since eP(Y) < 0, one will have ¢(Y) < 0 if and only if
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(e (P(Y)) + 1) = (e, (P(Y)) + 2) < c/[{PlY) - c]
Q Q J ]

2m
é-m’
The right side is greater than CJ/P(Y) > ch/b > cjy/b. Thus we are sure

The leftside of the inequality is, from Lemma 1.1, bounded above by g +
that ¢(Y) < 0 if

c
J?
= b

A

(3.4)

s 2m
d-m

(21 R=]

Now assume 4m/8 < cjw/b. Since ¥ < Q(cj) < b/cj, one has cjw/b < 1, hence

m < 8/4. This implies that the left side of (3.4) is less than

Therefore the inequality 4m/3 < c)y/b implies (3.4), hence ¢(Y) < 0, or
equivalently that GJ is strictly decreasing on the interval [v,Q(cj)]. This

proves (3.3).

We are now ready to prove that when m is low, the equation G(Y) = 1
has a unique solution. This will be done by putting together (3.2) and
(3.3), with y = Y.

(3.5) Let Y = 5b/2(c1 + Cz)' Let J be the set of firms for which
Y < b/cj. Assume that 4m/3 < ch/b for all j in J. Then G(Y) > 1
for all Y < Y. Moreover each GJ, hence G, is nonincreasing, and
strictly decreasing when positive, for all Y > Y. The equation

G(Y) = 1 has then a unique solution Y* > 0.

Remark first that ¥ < 5b/cJ g b/cJ for j =1, 2, so the set J is nonempty
as 1t contains firms 1 and 2. The assumption 4m/8 < cJY/b for each firm j
in J implies that 4m/8 < 1, so surely m < &/3 and (3.2) applies. The
statements in (3.5) then follow by putting together (3.2) and (3.3) with

¥y =Y.

Under the assumptions of (3.5), there 1is a wunique solution Y* of
G(Y) = 1. Hence there is at most one Cournot equilibrium, and it must

involve the total output Y*. To complete the proof of the Proposition, it
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remains to show that the array of individual outputs defined by yj = Y*
GJ(Y') indeed corresponds, with enough heterogeneity, to a Cournot

equilibrium. To this end, we have to use Lemma 2.1. Let

2% = Y* -yt = Y1 -G (V)] 20

be the other firms’ total output from the j-th firm’s point of view. What
we have to show is that yj is an optimal response to z*, for every j. If

firm j is inactive, i.e. y; = 0, this is clear, since then z* = Y* and from

the definition of GJ, P{Y*) c

J

A

Consider now a firm j that is active, i.e. y* > 0. For such a firm
J
Y <y <Qle) g ve
so that an active firm belongs to the set J.

(3.6) Assume, as in (3.5), that 4m/8 < cj?/b for all firms in the set J.
Let y3 = ¥* G (Y*) and 2% = Y* - y*. Then 2 > 3CJ?2/4b for all
J J
j in J. If in addition 4m/é < 3(cj?/b)2/2, then y* is an optimal
= J

response to z;, for every firm in J.
To prove this statement, notice first that
2% = ¥Y*(1 - G (v*) 2 ¥(1 - G.(¥)) 2 Y(1 - G ().
= j = j

If j belongs to J, then cj? < b and one has

(o]
<t
O
<1

+
G
J

(Y) = (1 + g) (1--29)«<1-

(2=}

which implies

c Y 3c ¥
-3

x>y -1
J
under the assumption that 4m/8 < cJ?/b for all j in J.

According to Lemma 2.1, for y: to be an optimal response to 2; > 0, it is

sufficient to have 7’ hS 2z:cJ/b. In view of the expression of 7’ that is
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given in Lemma 1.2, the sufficient condition reads

(3.7) _— [l + ———] < sz cj/b.

The assumption 4m/8 <

the left side of (3.7) is thus

m 1 + 3 :@E(Q_n}
3-(8/4) 3-(8/4) 3 3

cj?/b for j in J implies m < &/4. An upper bound for

On the other hand a lower bound for the right side of (3.7) is obtained by
replacing z% by 3c Y°/4b. Therefore (3.7) is satisfied if
j

In that case, y* is indeed an optimal response to z*, for every firm in J.
j j

This completes the proof of (3.6).

The final remark is that since firm 1 is necessarily active and 2: > 0,
then firm 2 must also be active. The statement of Proposition 3.1 is simply
a reformulation of (3.5) and (3.6). Its proof is complete.

Q.E.D.

4. CONCLUSION

We have shown that enough heterogeneity in demand behavior may lead to
a well behaved aggregate market demand and to revenue functions for firms
that display attractive concavity properties. We have then applied these
findings to a market in which firms compete in quantities & la Cournot and
showed uniqueness of equilibrium when there is enough demand heterogeneity.
It remains to be seen whether the theory presented here can be a successful

building block in the study of other models of imperfect competition.
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APPENDI X

We assumed in the text that conditional densities over the rescaling
parameter « were independent of the type a, in order to simplify the
exposition. We sketch briefly here how the analysis must be amended when

the independence axiom 1s relaxed.

Let p be the probability distribution over all types a (we assume for
instance that the set of types A is a separable metric space and shall make
all necessary regularity assumptions, 1i.e. continuity with respect to
types, to ensure that the integrals presented below are well defined). For
each type a present 1in the population (in the support of pu), the
conditional density over the rescaling parameter « is f(a|a]. Market demand
is defined in two stages. Integration over «, for a given type 1in the

support of u, yields conditional market demand

Q (p) = J e qa(ea p) flaja) da.

a

Total market demand is then obtained by aggregating over all types

Q(p) = L Q_(p) ulda).

The analysis leading to the bounds (1.3) applies without any change to
conditional market demand Qa(p], provided that pqa(p) S ba and that the
derivatives of the conditional density f(«|a) satisfies (1.b) with m = m .
One gets then (1.3) for conditional market demand Qa, with b = ba and m = ma.
If the distribution of all ba in the population has a finite mean b and if
m_ is bounded above by m for all types present in the population, one gets

(1.3) for total market demand by integration over a.

To sum up, total market demand Q(p) satisfies (1.3) if assumptions

(1.a) and (1.b) are replaced by
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(1.a%) For each type a in the support of u and every price p, the
individual demand function qa(p] is continuous in (a,p), with

0 < pqa[p) < ba for all p > 0 and JA ba p(da) = b < + o,

(1.b") For every type a in the support of u :
» the conditional density fl(«|a) is continuous in («,a), and so
are its first and second derivatives f’(a]a) and f”(a|a).

. Jlf’(a|a)| de <m  and J]f”(a]a]] da < m.

Then it follows that all formal results of the paper are valid if

assumption (1.c¢) 1s made directly on total market demand
(1.¢") Total market expenditure pQ(p) is bounded below by 8b > 0.

One has, however, to be a little more careful in the interpretation of
the results when working with (l1.a’), (1.b’), (1.c’) instead of the
assumptions of the text. The independence assumption, together with (1.c),
allowed us to treat the coefficient of heterogeneity m as independent of
the lower bound 8b on aggregate expenditure, and to argue that increasing
heterogeneity should make things nicer, other things, including the lower
bound &b, being equal. When the independence axiom is relaxed as here, one
has to make sure that the lower bound on total market expenditure appearing
in assumption (l.¢’), 1is actually independent of the coefficient of
heterogeneity m in the class of density functions f(a]a) considered, in

order to apply consistently this interpretative argument.
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Since only changes of measurement units are 1involved in transformations
of this type, it should be clear that if the original demand qa(p) was
derived from utility maximization, then the rescaled demand function could
be also viewed as being derived from utility maximization — the new utility
function being obtained from the original one by the same change of unit of
measurement. The approach, however, 1is much more general and is valid even
if people don’t maximize. For more on thils, in a multicommodity context,

see Grandmont (1992).

2 All formal results of this paper are still valid when (1.c) is postulated

directly on market expenditure, i.e. pQ(p) > &b, but one has to be more

careful when interpreting them. For more on this, see the Appendix.

The reason is that we wish to look at a truly oligopolistic situation. In
the case of a monopoly (z = 0), we would run into trouble. Indeed when
demand heterogeneity increases, the asymptotic situation is a unit elastic
demand, and a monopolist’s profit maximizing output would then be 0. That

could not be a market equilibrium as the price would be infinite.



