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Abstract

We start by discussing some general weaknesses and limitations of the econo-

metric approach. A template from sociology is used to formulate six laws that

characterize mainstream activities of econometrics and the scientific limits of
those activities.

Next, we discuss some proximity theorems that quantify by means of ex-

plicit bounds how close we can get to the generating mechanism of the data

and the optimal forecasts of next period observations using a finite number of
observations. The magnitude of the bound depends on the characteristics of the

model and the trajectory of the observed data. The results show that trends are

more elusive to model than stationary processes in the sense that the proximity

bounds are larger. By contrast, the bounds are of smaller order for models that

are unidentified or nearly unidentified, so that lack or near lack of identification
may not be as fatal to the use of a model in practice as some recent results on

inference suggest.

Finally, we look at one possible future of econometrics that involves the use

of advanced econometric methods interactively by way of a web browser. With

these methods users may access a suite of econometric methods and data sets

online. They may also upload data to remote servers and by simple web browser

selections initiate the implementation of advanced econometric software algo-

rithms, returning the results online and by file and graphics downloads.

Key words and Phrases: Activities and limitations of econometrics, automated

modeling, nearly unidentified models, nonstationarity, online econometrics, pol-
icy analysis, prediction, quantitative bounds, trends, unit roots, weak instru-

ments.
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A fundamental issue that bears on all practical economic analysis is the extent to

which we can expect to understand economic phenomena by the process of develop-

ing a theory, taking observations and fitting a model. An especially relevant question
in practice is whether there are limits on how well we can predict future observa-

tions using empirical models that are obtained by such processes. Not only are we

interested in whether there are such limits, we also want to find some quantitative
expression for them and to address the issue of whether these limits are attainable

in practical empirical work. Forty years of empirical experience in macroeconomic

forecasting suggests that there are limits to our capacity to make predictions about

economic activity. In fact, the performance of aggregate predictions has improved

little over this time in spite of much early optimism, enormous bodies of research

in macroeconomic theory and modeling, improvements in econometric methods, and

larger data sets of better quality.

A primary limitation on empirical knowledge is that the true model for any given

data is unknown and, in all practical cases, unknowable. Even if a formulated model

were correct it would still depend on parameters that need to be estimated from data.

Often, data are scarce relative to the number of parameters that need to be estimated,

and this is especially so in models that have some functional representation that

necessitates the use of nonparametric or semiparametric methods. In such situations

one might expect that the empirical limitations on modeling are greater than in

finite parameter models. Second, all models are wrong. The models developed in
economic theory are metaphors of reality, sometimes amounting to a very basic set

of relations that are easily rejected by the data. Yet these models continue to be

used, often because they contain a kernel of truth that is perceived as an underlying

‘economic law’. Also, many see it as advantageous to use this information in crafting

an empirical model even though it is at best only approximately true because to do

so may well be better than using an entirely unrestricted system or an arbitrarily

restricted one. Whether or not it is worthwhile doing so is, of course, an empirical

matter.

Our discussion of these issues starts with the consideration of some maxims of

econometrics that make explicit the activities and some of the weaknesses of the

econometric approach. We formulate these in a light-hearted vein as ‘laws of econo-

metrics’. These laws of econometrics are not intended as universal truths. Instead,

they purport to express the essence of what is being done in econometrics and to

characterise some of the di culties that the econometric approach encounters in ex-

plaining and predicting economic phenomena. The position we take in this discussion

is related to views about modeling that have been suggested recently in Cartwright

(1999) and Hoover (2001). Cartwright advances the notion that models can be in-

terpreted as machines that generate laws (so-called nomological machines) and, even

more flexibly, puts forward the view that the laws that may emerge from modeling

are analogous to the morals that we draw from story-telling fables. Hoover (2001)

takes a sympathetic but even more flexible position in arguing the case that eco-
nomic modeling is useful to the extent that it sheds light on empirical relationships.

As Hoover puts it, talking about formal laws seems to do nothing for economics —
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“even accumulated falsifications or anomalies do not cause scientists to abandon an
approach unless there is the prospect of a better approach on o er”, Hoover (2001,

pp.54, 150). This position is similar to that of the Rissanen (1986, 1989) who argues

against the concept of a true model and sees statistics as a “language for expressing

the regular features of the data”.

Next, we discuss some proximity theorems that measure how close an empirical

model can get (in terms of its likelihood ratio) to the true model in some parametric

family. These theorems have been developed in joint work with Werner Ploberger

(2001, 2002) and build on some earlier work in statistical theory by Rissanen (1986,

1987). The bounds in these proximity theorems depend on the data as well as on

the model being used. A discovery in this research that is important in economic

applications is that the magnitude of the bound depends on the presence and the

nature of trends in the data. In particular, the bounds are greater for trending data

than when the data are stationary, thereby giving quantitative expresssion to the

intuitively appealing notion that trending data are harder to predict than data that

do not trend. These theorems allow for finite parameter families and families with
local misspecifications. Modeling algorithms then allow for gross misspecification
within family groups. Proximity theorems for prediction are also provided in this

approach, quantifying limits on empirical forecasting capability that are relevant in

empirical work where specification is suspect. The present paper also discusses some
cases of practical importance involving evaporating trends and nearly unidentified
models. The latter have attracted recent interest in microeconometrics in applied

models where only weak instruments are available for endogenous regressors (such

as the use of the quarter of birth date as an instrument for schooling in earnings

regressions, c.f. Angrist and Kruger, 1991).

We address some issues related to the possible attainment of these bounds in prac-

tical research and mechanisms for doing so. One mechanism that we consider involves

the provision of econometric technology online using web servers that are accessible on

a 24/7 basis. We describe a prototype web site that has been developed by the author

to provide macroeconomic forecasts using automated model selection methods. Such

web services o er one possible future for econometrics in which econometric meth-

ods are made available online to a wide range of consumers through the provision of

automated modeling facilities. These facilities may involve resident databases that

are made available to users or the option of uploading customer data for econometric

analysis and forecast purposes.

The paper is organised into three parts. Part I postulates six law of econometrics.

These laws provide a template for the discussion of the main activities of econometrics

and what has distinguished the subject from other applications of statistical methods.

The framework also o ers us an opportunity to comment on recent lines of research

and discuss the limitations of the econometric approach. The second part of the paper

describes recent attempts to quantify the empirical limits of econometric methodology

and of the forecasting capacity of empirical econometric models. The final part of
the paper discusses the provision of econometric techniques as a web service, so that

empirical econometric methods can be used by a wide range of possible consumers
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including practitioners, much as web users can presently view graphs of economic data

like exchange rates or financial asset prices when they access financial sites online.

Part 1: Six Laws of Econometrics

The laws of econometrics that we propose below are not intended as universal sci-

entific truths. Instead they are laws that characterise the activities and limitations
of econometrics. These are serious issues. But it is useful to present them in a way

that does not overstate our scientific contributions given the complexity of the real
economic world. A self deprecating approach has the advantage that it often helps to

pinpoint the essential limitations of a scientific approach to human economic behav-
ior. In thinking about these matters I have found some useful related maxims that

have been put forward in sociology.

A Template of Empirical Laws from Sociology

Paul Lazarsfeld, one of the fathers of modern mathematical sociology, founded the

Bureau of Social Research at Columbia University in 1941 and established the field
of mass media communications with a landmark study of the influence of the media
on voting behavior (Lazarsfeld et al. 1944). In what is now folklore in the discipline,

Lazarsfeld is credited with the enunciation of four laws of sociology. The laws were

intended as a humorous summation of the limitations of the discipline. As far as I

am aware, they have not before appeared in print1. I use them here as a template

for suggesting some related laws of econometrics.

1: Some Do, Some Don’t When all the modeling is done and the statistical

analysis is complete, we are often left with the conclusion about human behavior

that some individuals do certain things like buy a product, while others don’t and

our models simply do not explain it. These unaccounted aspects of human behavior

represent heterogeneity across individuals. We are well acquainted with this need

to allow for individual heterogeneity in modeling individual and firm behavior in

microeconometrics.

2: It’s Di erent in the South Similar to the heterogeneity we observe in individ-

ual behavior, we often find heterogeneity across regions. Lazarsfeld encapsulated this
idea in the distinction between the two original regions of the USA - the Northern and

Southern states. Here, the di erences were so great in the nineteenth century that

they precipitated civil war. The fact that there may be greater heterogeneity across

regions than within regions needs to be taken into account in formulating models of

human behavior and economic activity. At the same time, of course, there may well

be greater cross section dependence within regions. Both factors a ect the way we

might formulate a realistic model.

1These laws of sociology were kindly communicated to me by Ronald Milavsky, a former student

of Lazarsfeld.
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3: Hill People Always Cause Trouble Social and economic life is not a level

playing field. The reality is that some people (and some corporations) corner key
resources and occupy the best real estate. With economic resources comes power and

influence. With power and influence comes responsibility. Lazarsfeld translated eco-
nomic inequality and the trappings of power and influence into trouble - trouble that
sometimes only becomes manifest when it is discovered that the responsibilities that

accompany power are not being met, as in ongoing investigations of the accounting

practices of large corportations. The quantification of economic inequality and the
study of its troubling as well as its beneficial e fects on society continue to be major
concerns in both sociology and economics.

4: Nothing Works in India We all recognise the prospect that models fail and

that sometimes they fail in a big way. Behavioral theories that are developed for

one context or culture often founder completely in another. Diagnosing model failure

is an issue that econometric modelers have confronted, and mechanisms for finding
improved models that address the deficiencies of others have been developed. But
there is also the prospect that the class of potentially useable models itself is so

impoverished in relation to the generating mechanism that there is little prospect of

improvement, and total model failure results. In such situations, most of our accepted

paradigms of modeling provide little help and we are forced to turn to other alter-

natives. In economic forecasting, for example, when the models give results that are

considered totally unrealistic, the modelers themselves make intercept adjustments

to get the forecasts back on track, a practice that we will discuss with some analysis

below.

The Laws of Econometrics

In a similar spirit, we now formulate six laws of econometrics. These laws encapsu-

late some of the features of the econometric approach, provide some practical maxims

of applied econometrics, and point to some strengths and weakenesses of prevailing

econometric methodology.

1: Some Methods Work, Some Don’t

Econometrics has in large part been concerned with the development of statistical

machinery that is appropriate for economic models and economic data. This devel-

opmental process ocurs because sometimes the usual statistical methods work well

and sometimes they do not. The process is well illustrated by the steady progression

of modeling practice and econometric methodology from the bivariate correlational

studies of Fisher (1907) and others at the turn of the twentieth century, and the sub-

sequent use of linear models in which the regressors were taken as fixed (e.g., Koop-
mans, 1937, Tinbergen, 1939), through to the development of simultaneous equations

methodology in which the regressors may be jointly dependent or predetermined. The

theory of identification, estimation and inference for simultaneous systems was the
centrepiece of econometrics until at least the mid 1970’s and involved major advances
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in econometric estimation, such as the systematic development of instrumental vari-

able techniques by Sargan (1958, 1959). The following paragraphs briefly trace some
features of this particular development drawing attention to some areas where the

methodology is ongoing and showing that the knowledge boundary, where accepted

practice falters, is never far away.

In recognition that simultaneous equations often su er empirically from serially

correlated errors (noted by Orcutt, 1949), an early direction in which the economet-

ric methodology progressed was the accommodation of weakly dependent equation

errors. The marriage of simultaneous equations and weak dependence, as Sargan

(1959) called it, led to the development of new estimation procedures that worked

better, at least asymptotically, such as generalized instrumental variables (GIVE)

and later generalized method of moments (GMM) by Hansen (1982). In the last two

decades, this work has further evolved into the large subject area of cointegration,

which has succeeded in addressing three of the principal features of macroeconomic

data - joint dependence, serial dependence and nonstationarity. The field is vast and
has now reached a degree of maturity where we have e cient estimators based on

semiparametric least squares (Phillips and Hansen, 1990) and parametric maximum

likelihood (Johansen, 1988), and easily implemented test procedures and diagnostics.

The purpose of all this research has been to produce new methods that work where

conventional procedures fail. A large body of empirical evidence has now accumu-

lated about the use of these procedures in practice, revealing that, while we have

successfully produced a fairly complete theory of inference for unit root nonstation-

ary and jointly dependent time series data, the linkage mechanisms between series

often seem to be much more subtle than the linear concept of cointegration allows.

Recent research (inter alia, Jeganathan, 1998; Kim and Phillips, 1999; Robinson

and Marinucci, 1999, 2001) has begun to tackle the di culties of formulating and

estimating models in which the time series are ( ) and have memory that is charac-
terised by a possibly fractional parameter thereby allowing for greater generality

than when is integer. The problems presented by these models of fractional coin-

tegration seem considerably more complex than the (1) (0) (variable/error) case
that is now common in applications. Both conceptual and technical issues are in-

volved. Since the degree of nonstationarity (or memory) in the data (as well as the

equation errors) is typically unknown, these parameters characterising memory need

to be estimated in addition to any cointegrating relations among the variables. Fur-

thermore, empirical evidence indicates that the degree of nonstationarity in economic

data often di ers significantly from one variable to another. For instance, interest

rates, inflation, the money supply and income all appear to be nonstationary with
individual memory parameters in the vicinity of 0 9 0 6 1 4 and 1 0 respectively

(see Shimotsu and Phillips, 2002, for recent empirical estimates and valid confidence
intervals based on an exact local Whittle estimator that consistently estimates the

long memory parameter for any value of ). In consequence, no finite linear relation
among these variables or subsets of them can be cointegrating in the conventional

sense, even though it is very common to formulate empirical models that relate these

variables in a linear way. Such relationships would, in fact, be unbalanced in terms
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of the memory characteristics of the data. Similar remarks apply to finite order vec-
tor autoregressions (VAR’s) and structural VAR’s, which have been in common use

for many years as empirical models for these variables in applied macroeconomics.

These linear models show us that present conceptualizations of cointegration and

fractional cointegration do not allow the degree of flexibility needed to relate eco-
nomic variables with di ering memory characteristics and trend behavior, revealing

some of the shortcomings of existing empirical methodologies. We are now begin-

ning to understand the ways in which nonlinear transformations of nonstationary

series a ect stochastic order and memory properties (e.g., Park and Phillips, 1999),

but we have not yet made significant headway on formulating relationships involving
many variables with long memory characteristics. Modeling the stochastic relations

between economic variables in a way that faithfully accommodates their di ering in-

dividual memory characteristics as well as their apparent joint dependence is a task

that exceeds present capability.

Another area of recent research on the boundary of our knowledge of simultaneous

systems is the subject of estimation and inference with poor instruments. The early

research of Koopmans and Hood (1953) and Sargan (1958) acknowledged concern

about lack of identification and attempted to construct tests of underidentification
that could shed light on the absence of identification and weak instrumentation. Much
of this early research was neglected for many years. One exception is Sargan (1983)

who devoted his Econometric Society presidential address to the consideration of

models that were nearly unidentified, showing that slower convergence rates occured
when first order rank conditions for identification failed but the parameters were
still identified. Another is Phillips (1989), which provided a systematic study of the
large sample properties of instrumental variables estimators for unidentified systems,
showing that the estimates converged weakly to random variables that reflected the
uncertainty about the parameters that was implicit in their lack of identification, and
that Wald tests about unidentified parameters had the same distribution under both
null and alternative hypotheses, foreshadowing later work on unbounded confidence
intervals in such situations by Dufour (1997). The conclusion of Phillips (1989) argued

the relevance of this new asymptotic theory to empirical work in microeconometrics

where the low 2 in companion regressions are often suggestive of weak instrumen-

tation and near unidentification. Subsequent empirical work by Angrist and Kruger
(1991) that related earnings to schooling using birth dates as instruments brought

wide attention to this problem of weak instrumentation as an important issue for

practitioners. A decade of theoretical research followed. Recent work in the field
(Kleibergen, 2000; Forchini and Hillier, 2001; Moreira, 2001) seeks to make inference

in weakly identified situations conditional on the amount of information in the data
about the parameters on which identification hinges. We have also discovered that
increasing the number of instruments can partially compensate for the fact that each

of the instruments is weak. In fact, it is easy to show that one can obtain consistent

estimates (but at reduced rates) as the number of instruments goes to infinity in
situations where estimates with finite numbers of weak instruments converge weakly
to random variables. All of this research makes it clear that, if the potential e ects of
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weak instrumentation are not accounted for, inference can be badly distorted. Here

again we find that the usual statistical methods do not work well, and conventional
asymptotic properties can be a poor guide to the actual properties of estimation and

testing procedures in practical situations.

2: It’s Di erent in Infinite Dimensional Spaces

Much of modern econometrics is about trying to achieve generality wherever that

is possible, but especially with regard to aspects of a model about which there is little

prior knowledge. On the other hand, where a model connects most closely with some

underlying economic hypothesis, we often seek to retain specificity through direct
parameterisation. These considerations have led to a flowering of work in the last
two decades on nonparametric and semiparametric estimation. These methods are

now used in financial econometrics (recent examples being the functional estimation
of di usion equations - see Bandi and Phillips, 2002), time series (a major field of
recent application being that of the semiparametric estimation of the long memory

parameter in an ( ) process - see Baillie, 1996, and Henry and Za aroni, 2001, for
reviews), and microeconometrics (where adaptation for heterogeneity of unknown

form or unknown error distributions is often important - see Horowitz, 1998, for an

overview).

Estimating a function with a finite amount of data is like running a marathon. A
marathon is not run in a series of 100 metre sprints. Instead, the available energy (or

data) is spread out so that it lasts for the whole course and contributes to estimation

over the full domain of the function. In consequence, one has slower rates of con-

vergence in function space, typically at a rather than rate, where is the

number of data points and is a bandwidth parameter that controls the width of the

band used around each local point in the domain. Complications arise over the choice

of bandwidth and the fact that the data is spread more thinly when the dimension

of the function space increases, leading to commensurate reductions in the conver-

gence rate. Because the rate of convergence is slower, asymptotic theory is often a

less satisfactory device for producing adequate approximations to the distribution of

function estimates. Asymptotic expansions are especially helpful here because they

can o er improvements on first order limit theory and quantitative insights that can
guide suitable bandwidth choices (Linton, 1996; Xiao and Phillips, 1998, 2002). On

the other hand, these expansions are more complex than conventional expansions

because they involve the two parameters and Function estimation can also be

used when the data is nonstationary, either to estimate the amount of time spent

by the process in various spatial vicinities (see Phillips, 1998, 2001) or to provide

nonparametric estimates of drift and di usion functions in potentially nonstationary

di usion equations (Bandi and Phillips, 2002). In these and other respects, both

theory and application are di erent in infinite dimensional space.

3: Unit Roots Always Cause Trouble

Unit roots are the new hill people of econometrics. Unless you are a Bayesian (Sims
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and Uhlig, 1991; Kim, 1994; Phillips and Ploberger, 1996), unit roots inevitably cause

trouble because of the nonstandard limit distributions (see Phillips and Xiao, 1998,

for a recent review) and the discontinuities that arise in the limit theory as the

autoregressive parameter passes through unity (but see Phillips, 1987b, Chan and

Wei, 1987, and Phillips, Moon and Xiao, 2001, for attempts to unify this asymptotic

theory). The nonstandard limit distributions themselves vary, depending on the

specification of the model and any prior filtering (such as demeaning or deterministic
detrending) that has been done in the estimation of the autoregressive coe cient

(Park and Phillips, 1988, 1989). So, the commonplace filtering and regression with
integrated time series that is done in the econometric kitchen inevitably shows up in

the attic in the asymptotic theory. The situation is analogous to that of the fictional
character Dorian Gray in the novel by Oscar Wilde (1890) - the face of Dorian Gray

showed no signs of aging as time passed, whereas the sins of his worldly existence

showed up to torment him in the portrait of himself that he hept hidden in the attic.

Unit roots also cause trouble because of the di culty in discriminating between

stochastic trends and deterministic trend alternatives, including models that may

have trend breaks. Much of the received wisdom on this subject focuses on what

is perceived as the poor power properties of unit root tests and stationarity tests.

However, an alternate perspective is that unit roots and deterministic trending pro-

cesses may both have validity in explaining the same characteristics of the data, viz.

their trending behaviour. With this perspective, the issue subtly changes from the

adversarial position of stochastic trends versus trend stationarity to one in which

many competing explanations are admitted as possible. Econometric practice can

then focus on finding those models and explanations that are the most useful. We
describe this alternate perspective more fully below. It is an interesting feature of

the research process that, in spite of the enormous amount of work that has been

done on unit root theory and testing in the last two decades, subtler issues such as

these are only now being considered.

In some respects, panel unit root problems cause even more trouble. In the first
place, the asymptotic theory is often multidimensional with both the cross section

sample size ( ) and the time series sample size ( ) tending to infinity. Situations
of this type are studied in Phillips and Moon (1999) and, depending on the passage

of and to infinity, we can get both standard and nonstandard limit theory.
In cases where is fixed, bias problems in dynamic panel estimation is known to
be severe and to lead to inconsistencies in estimation by maximum likelihood (e.g.,

Nickell, 1982). Bias is further aggravated in the unit root case (Phillips and Sul, 2001)

and even occurs when both and tend to infinity in the case of near unit roots
(Moon and Phillips, 1999, 2001). These are all instances of the incidental parameters

problem (e.g., Lancaster, 1998) that arises when there is a proliferation of nuisance

parameters from fixed e ects and individual specific trends. In such cases, maximum
likelihood, in attempting to get good estimates of all the parameters in a model, ends

up failing to obtain consistent estimates of some them. In dynamic panel models,

the inconsistency unfortunately shows up in the important autoregressive coe cient

that governs the dynamics.

9



As Maddala (Lahiri, 1999) remarks, much of the original interest in the problem of

panel unit roots was to assess whether there was homogeneity in dynamic behaviour

across individuals in the panel — the question, in e ect, was whether unit roots really

persisted across individuals in a panel. Homogeneity testing of this type remains

an extremely important issue in practical work. By contrast, much of the attention

in theoretical work has focused on the gains to be had from pooling cross section

observations under homogeneity. In unit root cases, the gains can appear substantial

because pooling converts nonstandard into more useable standard limit theory by

cross section averaging. These features have made panel unit root theory popular

among practitioners. How relevant these results are when homogeneity does not

apply is a di erent matter. Another issue is how well the pooled limit theory holds

up when the asymptotics are multidimensional and more slowly than

Many of these practically important matters need investigation. The field is vast and
there is a lot to be done.

4: Cross Section Dependence also Causes Trouble

It is convenient and has for long been common econometric practice to assume

cross section independence in panel modeling up to a time specific e ect. Yet cross
section dependence is often to be expected in microeconomic applications of firm and
individual behaviour, is almost always present in regional or cross country macroe-

conomic panels, and it is widely acknowledged as a major characteristic of financial
panels.

In recognition of its empirical relevance, cross section dependence is a rapidly

growing field of study in panel data analysis. But there are many limitations to
the models being used and unresolved di culties for empirical workers. A primary

di culty arises because there is no natural ordering of cross section data, making it

hard to characterise and model dependence across section. This di culty is exac-

erbated by the absence of a theory justifying (or even suggesting) realistic forms of

cross section dependence. Without theory, there are few restrictions on the degree

of dependence that can be imposed a priori. Increases in cross section sample size

then lead to a rapid proliferation in the number of parameters to be estimated and

potential incidental parameter problems like the inconsistency problem mentioned

above. One approach in dynamic modeling has been to use a factor structure and

delimit the number of factors to one or two (Phillips and Sul, 2002) or use model

selection methods to empirically determine the number of factors (Bai and Ng, 2002;

Moon and Perron, 2001). Once a factor structure is determined, the estimation of

dynamic factors presents further di culties. The obvious approach here is to use

principal components (Stock and Watson, 1998, 1999; Bai and Ng, 2001, Moon and

Perron, 2001). But moment based approaches (Phillips and Sul, 2002) seem to o er

an interesting alternative. A fully fledged asymptotic theory for ( ) is still

to be developed, and assessment of the various alternative approaches is hampered

by the many di erent ways in which the nuisance parameters can be treated and the

absence of an optimal theory of estimation. Traditional asymptotic theory for panels

(see Maddala, 1993, for an overview) conditioned on a fixed value of , typically
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assumed time series stationarity, relied heavily on cross section independence, and

involved the passage to infinity of only the single index Panel data research in

the last decade has begun to address each of these issues, but awaits a systematic

multi-index asymptotic analysis that allows for cross section dependence and general

forms of time series nonstationarity.

5: No One Understands Trends.

In spite of the importance of trends in macroeconomic research, particularly in

the study of economic growth and growth convergence, economic theory provides

little guidance for empirical research on the formulation of trend functions. This

partly explains the rather impoverished class of trend formulations that are in use in

econometrics. Most commonly, these are polynomial time trends, simple trend break

polynomials, and stochastic trends, which include unit root models, near unit root

models and fractional processes. More occasionally, sinusoidal time polynomials and

nonparametric trend specifications are used. When the focus is on trend elimination
(for instance, in the extraction of the cyclical component of a series for studying

business cycles), smoothing methods are popular. The most prominent of these is

the Whittaker (1923) filter, which is commonly known in macroeconomics as the
Hodrick-Prescott (1980) filter, and the closely related spline smoothers (Schoenberg,
1964; Wahba, 1978). Band pass filters like those in Baxter and King (1999) and
Corbae, Ouliaris and Phillips (2002) are also used. All these methods provide a

mechanism for dealing with trends in the data. But it is unrealistic to pretend that

such formulations and filters explain the process by which trends actually occur in
the real world. In short, no one really understands trends, even though most of us

see trends when we look at economic data.

One nearly universal consequence of trends in the data is the regression phenom-

ena called spurious regression. In e ect, any trend function that we postulate in an

econometric specification will turn out to be statistically significant in large samples
provided the data do in fact have a trend, whether it is of the same form as that spec-

ified in the empirical regression or not. Perhaps the most well known example is that
polynomial trends are statistically significant (with probability one, asymptotically)
when the true trend is stochastic and vice-versa (Durlauf and Phillips, 1988). This is

so even when robust standard errors are used to assess significance (Phillips, 1998).
Similar results hold for trend breaks, fractional processes and regressions among such

variables even when they are stochastically independent, the phenomenon originally

studied in Granger and Newbold (1974) and Phillips (1986).

The nomenclature ‘spurious regression’ has become universal and carries a pejo-

rative connotation that generally makes empirical researchers anxious to show that

their fitted relationships are validated by some procedure such as a test for cointe-
gration. An alternative perspective proposed in Phillips (1998) is that deterministic

trend functions (or even the time path of another trending variable) can be used

as a coordinate system for measuring the trend behavior of an observed variable,

much as one set of functions can be used as a coordinate basis for studying another

function. For instance, we can write any function 2[0 1] in terms of an orthonor-
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mal basis { } =1 as ( ) =
P

=1 ( ) Continuous stochastic processes such as
Brownian motion and di usions also have representations in terms of the functions

but with coe cients that are random variables rather than constant Fourier

coe cients. In a similar way, we can write trending data in terms of coordinates

comprised of other trends, like time polynomials, random walks or other observed

trends. Such formulations can be given a rigorous function space interpretation in

terms of functional representations of the limiting stochastic processes or determin-

istic functions to which standardized versions of the trending data or trend functions

converge. What is particularly interesting about this perspective is that it provides a

mechanism for relating variables of di erent stochastic order (like time polynomials

and random walks) so that it can be used to justify relationships between observed

variables like interest rates, inflation, money stock and GDP, which have di ering
memory characteristics, overcoming the problem of stochastically imbalanced rela-

tionships discussed earlier. This approach also o ers an interpretation of empirical

regressions that are deliberately constructed to be spurious such as the celebrated

example of prices on cumulative rainfall (Hendry, 1980). Here, cumulative rainfall is

a stochastic trend by construction and this trend is simply one possible coordinate

(by no means a good one a priori) for measuring the trending behavior of prices. Of

course, other coordinates, like the aggregate stock of money, may well provide a more

economically meaningful coordinate system, but this does not invalidate the rainfall

aggregate as a potential yardstick for assessing the trend in price levels.

A secondary element in this alternative perspective of spurious regression is that

when we include di erent trend functions in an empirical regression, they will each

compete in the explanation of the observed trend in the data. Correspondingly, when

we regress a unit root stochastic trend on a time polynomial of degree as well as a

lagged variable, each of the +1 regressors is a valid yardstick for the trend. If we let
as the number of observations but with 0 so that the regression

remains meaningful as grows large, then the coe cient of the lagged variable tends

to unity but at the reduced rate This reduction in the rate of convergence to a unit

root coe cient demonstrates how seemingly irrelevant time polynomial regressors can

succeed in reducing the explanatory power of a lagged dependent variable even though

the true model is a first order autoregression (Phillips, 2002).
The previous discussion speaks to the importance of misspecification analysis

in studying trends. Recognising that trend specifications are inevitably wrong in
empirical practice has implications for forecasting. The subject has received little

attention in the literature, with the recent exception of Clements and Hendry (1999,

2001). The following brief analysis gives some new results, showing how we can still

perform useful forecasting exercises despite the presence of (inevitably) misspecified
trends.

Suppose that is a stochastic trend with = and that partial sums of

the stationary process satisfy the functional law 1 2
P[ ·]

=0 (·) a limit
Brownian motion process. Suppose also that is erroneously modeled by a linear

deterministic trend, giving the (spurious) regression equation = ˆ + ˆ where
ˆ =

P
=1

P
=1

2 It is often suggested that the behavior of forecasts from such
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erroneous regressions is one of the more serious consequences of misspecification. The
- period projection of the fitted linear trend, ˆ ( + ), for instance, seems very

di erent from the constant level prediction one gets from a martingale model for

. In fact, ˆ ( + ) produces divergent behavior as becomes large. However,

the situation is more benign than appears to be generally known. For instance, one

period ahead forecasts from the fitted trend have the form ˆ
+1 = ˆ ( + 1) and

since (Durlauf and Phillips, 1988) ˆ
R 1
0

R 1
0

2 it follows that

ˆ =

Ã
1
R 1
0R 1
0

2

!
=

µ
1
¶

(1)

so that

ˆ
+1 =

¡ ¢
which is precisely the same stochastic order as the optimal forecast

˜
+1 = + ( +1) =

¡ ¢
(2)

Moreover, if intercept correction using the last period error (see Clements and Hendry,

1999, for a recent discussion) is employed, the following adjusted forecast is obtained

ˇ
+1 = ˆ

+1 + ( ˆ )

Direct calculation reveals that

ˇ
+1 = ˆ ( + 1) +

³
ˆ

1

´
= +ˆ +

³
ˆ ˆ

1

´
= +

Ã
1
R 1
0R 1
0

2

!
+

Ã
2

P 1
=1

2 3
P 1

=1P 1
=1

2
P

=1
2

!

= +

µ
1
¶

Thus,

ˇ
+1 = ˜

+1 ( +1) +

µ
1
¶

(3)

so that the intercept adjusted forecast from the misspecified model, ˇ +1 di ers

from the optimal forecast, ˜ +1 by the stationary process ( +1) up to an error
of ( 1 2) Thus, prediction from a misspecified trend may not be that serious
provided we make an e ort to keep the model on track by using intercept adjustments.

This is, of course, a time-honored empirical practice in applied forecasting (e.g.,

Evans, 2002).
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In fact, we can go further than this. Take the observed prediction errors of the

adjusted forecasts giving

+1
ˇ
+1 = + +1

ˇ
+1

= +1 +

µ
1
¶

(4)

= ( +1) + +1 +

µ
1
¶

where +1 = +1 ( +1) is a martingale di erence. The prediction errors

+1
ˇ
+1 therefore di er from the original stationary residual process +1 by

a term of ( 1 2); and they are asymptotically the same as ˜
+1

ˇ
+1 or

( +1) up to a martingale di erence. We may then model the prediction errors

+1
ˇ
+1 using stationary process techniques to obtain an empirical estimate,

ˆ say, of the stationary sequence ( +1) Using this estimate, we can modify the
adjusted forecasts ˇ +1 to construct a predictor that is fully adjusted for specification
errors in the trend and stationary components, viz.

ˇ+
+1 =

ˇ
+1 + ˆ (5)

From (4) and (5), it is apparent that

+1
ˇ+
+1 = +1

ˆ +

µ
1
¶

= +1 +
³

( +1) ˆ
´
+

µ
1
¶

which di ers from the optimal forecast error +1 = +1
˜
+1 by the error of

stationary estimation ( +1) ˆ and a term of order ( 1 2) In this way,
intercept adjustment compensates for trend misspecification and enables subsequent
modification to achieve forecasts that are asymptotically equivalent to the optimal
forecast ˜ +1

Similar results can be shown to hold in the alternate case where the true model

is a trend stationary process and the supposed model is a unit root stochastic trend.

It may be true that no one understands trends. But if we acknowledge the inevitable

presence of trend misspecification and adjust forecasts often and with enough care,
then we may be able to make do with our existing impoverished arsenal of trend

specifications.

6: DGP’s are Unknown and Inherently Unknowable.

Having collected data and knowing that the process by which it has been gathered

can be well described, it seems like a simple step to accept the notion that there must

be a corresponding ‘true model’ or data generating process (dgp). However, whether

that process can be faithfully and completely represented in terms of a formal statis-

tical model whose variables are defined on a certain probability space is a di erent
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matter altogether. It often seems reasonable to think of quantifiable economic vari-
ables as random variables defined on a probability space and this has proved to be
a very useful practical approach to formal modeling. Indeed, we deal so much with

models, random processes and probability spaces in our work as econometricians that

is easy to be lured into thinking that there must be an underlying true dgp. However,

the actual process of data generation may not fit faithfully into this framework with-
out an extraordinary level of additional complexity that belies the notion of modeling

as we presently know it. This view may at first appear heretical but it becomes more
reasonable upon reflection. In the case of econometric modeling, we may note that
individual decision makers rarely make purely random decisions, much less ones that

follow nice Gaussian distributions, and the factors that enter decision making are of-

ten so numerous and complex as well as individual specific that it is hard to conceive
of a probability space large enough to capture all of the determining factors accu-

rately. A series such as national income illustrates many of the essential problems.

The process by which individual incomes are aggregated into national income has

been carefully defined according to certain conventions and we may reasonably take
each component income in the aggregate to be a quantifiable random variable. Yet,

individual income components are determined in di ering ways that can be extremely

complex, depending as they often do on a host of decisions made at di erent points in

time by di erent personnel involved in the hiring, promotion and wage determination

process, as well as a vast number of historical, institutional, regional and local prece-

dents that bear on wage setting behavior. To faithfully capture all of these elements,

as well as their many endogeneities and dependencies, in a true model of individual

specific wage determination for each of the individuals in the aggregate seems like
an impossible task. Indeed, to do so is antithetic to the notion that a model itself

is a simplified representation of a real world process. Correspondingly, any attempt
to faithfully represent a variable like national income in terms of a formal statistical

model like an autoregression or an autoregression with distributed lag e ects from

other variables is a heroic simplification where the distribution of the error compo-
nent only crudely captures the omitted influences. Similar comments apply to more
general attempts at modeling, such as nonparametric approaches.

The ideas about modeling and true dgp’s expressed in the last paragraph have

many antecedents. Hannan (1993), for instance, put the notion quite simply by saying

that there is “never an attainable true system generating the data” and that the best

that can be hoped for is that “a very restricted model class can be successfully used”.

Rissanen (1987) expressed similar views when he characterised statistical modeling

as “a language to express the regular features of the data”. These positions make

sense as more realistic representions of the goals of statistical modeling of observed

data than the idea of searching for or approximating an underlying true dgp. They

are also highly suggestive of the notion discussed in the Introduction that there are

limits to empirical knowledge.

If there were a true statistical model responsible for generating the observed data,

such a model would inevitably involve elements unknown to an empirical researcher,

such as the functional form of the systematic component of the model, the distribution
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of random error components or the true values of parameters or hyperparameters in

the system. The simplest case would be one in which only the true values of the

parameters were unknown and everything else from the model class to functional

form were known and correctly specified. This obviously represents an ideal situation.
Even in such a case the true dgp is still unknown. However, it is interesting to ask

how close to the true system we can get using observed data in this ideal situation.

As it turns out, there is a quantifiable bound on how close we can get to the true
system and how well we can predict using an empirical model, which we now move

on to discuss.

Part 2: Quantifying the Limits to Empirical Knowledge

In this ideal situation where there is a true system and the only unknowns are a

finite number of parameters to be estimated, closeness to the true system depends

on how well we can estimate these parameters and the role these parameters play

in generating the data. Our discussion here will focus here on the time series case.

We will briefly report some proximity theorems of Ploberger and Phillips (2002) that
deliver quantitative bounds on how close empirical models can come to the true

system in this context and discuss some extensions of that theory.

Proximity Bounds in Modeling and Forecasting2

The line of reasoning used in this research was pioneered by Rissanen (1986, 1987,

1996). Rissanen asked how close on average (measured in terms of Kullback-Leibler

(KL) distance) can we get to a true dgp using observed data. It is presumed that

time series data { } =1 is available and the dgp belongs to a -dimensional para-

metric family and satisfies certain regularity conditions. The dgp is known up to a
certain parameter and is the corresponding unknown probability measure. The

class of potential empirical models for the data generated by is very wide, but

will normally depend on some rules of estimation for obtaining numerical values of

the unknown parameters or rules for averaging the parameters out, both leading to

a usable empirical form of the model that can be represented by a proper probability

measure, say. The most common empirical models are constructed using classical

and Bayesian principles. In the classical approach (or in Dawid’s, 1983, terminology,

the prequential approach) unknown parameters are replaced by their maximum like-

lihood estimates, whereas in the Bayesian approach the unknown parameters are

averaged out to produce the data density or marginal likelihood.

As a measure of ‘goodness of fit’ to the true model we may use the sequence of
random variables given by the log likelihood ratio

( ) = log

computed for di erent empirical models Rissanen (1987,1996) showed that if

is stationary, if a regular subset of R ( i.e. dim = ), and if some technical

2The discussion in this section draws on Ploberger and Phillips (2001, 2002).
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conditions are fulfilled, then the Lebesgue measure (i.e., the volume in R ) of the set½
: log

1

2
log

¾
(6)

converges to 0 as for any choice of empirical model . This theorem shows

that, whatever one’s model, one can approximate (with respect to KL distance) the

dgp no better on average than 1
2 log . Thus, outside of a ‘small’ set of parameters

we can get no closer to the truth than the bound 1
2 log and the ‘volume’ of the

set for which we can do better actually converges to zero.

Rissanen’s theorem justifies a certain amount of skepticism about models with a

large number of parameters. The minimum achievable distance of an empirical model

to the dgp in this theory increases linearly with the number of parameters. In essence,

the more complex the system is, the harder it is to construct a good empirical model.

Thus, the theorem makes precise the intuitive notion that complex systems can be

very hard to model, that models of larger dimension place increasing demands on the

available data. The bound 1
2 log in (6) provides a yardstick for how ‘close’ to the

true probability measure we can get within a parametric family, assuming that the

parameters all have to be estimated with the given data. An important feature of

this Rissanen bound is that it treats all parameters equally by way of the fact that

it depends on the total number of parameters

Ploberger and Phillips (2002) pursue a similar analysis but gave almost sure

(rather than average) proximity results and worked with a broader class of assump-

tions that allow for some nonstationary as well as stationary time series. They gave a

general ‘limitation result’ for regressions with integrated and cointegrated variables as

well as stationary time series, and validated the higher level assumptions of the the-

ory for simultaneous equations models. In their result, an important role is played

by the conditional ‘Fisher information’ matrix, =
P
1 ( ( ) ( )0|F 1)

where ( ) = log ( |F 1) is a score component and ( |F 1) is the con-
ditional density corresponging to (·|F 1) and where F is a filtration. Ploberger
and Phillips show that for any empirical model and every compact set in the

parameter space, the Lebesgue measure of the set of structures½
:

µ·
log

µ ¶
1

2
log det ( )

¸¶ ¾
(7)

converges to 0 as for any given small 0 and some 0 This result

means that sets of for which the empirical model can do better than the bound
1
2 log det ( ) with nonneglible probability 0 have volume in R that goes to

zero as the sample size In other words, up to a small exceptional set in

space, no empirical model can come closer to the true dgp than 1
2 log det a

bound that depends on the data through The bound may well therefore be path

dependent, rather than being reliant solely on the dimension of the parameter space,

and there is no reason why it will treat parameters equally. Indeed, coe cients of

trending regressors actually increase the bound even though these coe cients may

be estimable at higher rates than the coe cients of stationary variables.
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Most of the commonly arising cases in time series econometrics lead to asymptotic

expressions of the form

log det

ÃX
=1

!
log (8)

for the sample information where = 1 with inequality occuring for at least one
element when there are trending mechanisms in the model. In particular, = 1 for
stationary regressors, = 2 for stochastic trends, = 2 for regressors with long

memory and = 3 for a linear deterministic trend. These scale coe cients

make it clear that the achievable distance of an empirical model to the dgp increases

faster the stronger is the trending behavior. In e ect, when nonstationary regressors

are present, it appears to be even more important to keep the model as simple as

possible. In particular, an additional stochastic trend in a linear regression model

will be twice as expensive as a stationary regressor in terms of the marginal increase

in the nearest possible distance to the dgp and a linear trend three times more

expensive. Although nonstationary regressors embody a powerful signal and have

estimated coe cients that display faster rates of convergence than those of stationary

regressors, they can also be powerfully wrong in prediction when inappropriate and

so the loss from including nonstationary regressors is correspondingly higher. One of

the conclusions of this work, therefore, is that in a clearly quantifiable sense the true
dgp turns out to be more elusive when there is nonstationarity in the data.

The above results apply irrespective of the modelling methodology that is in-

volved. Neither Bayesian nor classical techniques nor other methodologies can over-

come this bound on empirical modelling. The bound can be improved only in ‘special’

situations — special because the sets for which improvements can occur have Lebesgue

measure zero in R — like those where we have extra information about the true dgp

and do not have to estimate all the parameters. For instance, we may ‘know’ that

there is a unit root in the model, or by divine inspiration we may hit upon the right

value of a parameter and decide not to estimate it.

Result (7) has a counterpart in terms of the capacity of an empirical model to

capture the good properties of the optimal predictor (i.e. the infeasible predictor that

uses knowledge of the dgp and, in particular, the values of its parameters). Ploberger

and Phillips (2002) show that for a general class of Gaussian simultaneous equation

models, the limitations of an empirical model such as in (7) carry over to the

weighted forecast mean square divergence

=
X
= 0

{( b )0 1( b ) ( e )0 1( e )} (9)

where 0 is some point of initialization for the optimal (one period ahead) fore-

casts e and another predictor for b say, which is constructed from and is F 1-

measurable. In particular, there exists a number =
P

=1 (depending on the

degree of nonstationarity and taking into account cointegrating rank) which has the
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property that for Lebesgue almost all parameters and for all 0µ·
1

2
log

¸¶
0 (10)

Thus, only on exceptional sets can we expect to come closer (in terms of the

divergence measure ) to the optimal forecast than the bound 1
2 log as

So, in cases where the data is nonstationary, something new happens in prediction.

Our capacity to get near to the optimal predictor is reduced whenever we include

a nonstationary regressor. In the rule for determining empirical limits, we have

to multiply the number of parameters by an additional factor that is essentially

determined by the number and type of the trends in the regressors. Increasing the

dimension of the parameter space therefore carries a price in terms of the quantitative

bound of how close we can come to replicating the optimal predictor. This price goes

up when we have trending data and when we use trending regressors.

What happens under Weak Identification?

In contrast to the case of trending regressors, the price of including additional

regressors goes down when the signal diminishes, as it often does in cases of weak

identification. For example, in the evaporating trend model

= + = 1 ; (0 2) =
1

2
(11)

we have =
P

=1
1 = log + (1) and so

log log log

in place of (8). Hence, the cost of including the regressor 1 1 2 grows more slowly

than it does when the regressor is stationary. Apparently, the reason for this cost

reduction is that as increases, the model (11) shrinks towards the simpler model

= in which there are no coe cients to estimate. Hence, in models like (11), we

can get closer to the true model than we could if the regressor were stationary. Note

that this is the case even though the rate of convergence of the maximum likelihood

estimate of in (11) is only log rather than

Evaporating trends like the regressor 1 1 2 in (11) can be useful in modeling

intercept creep, where the intercept is allowed to shift from one level to another over

time. For instance, in the linear regression model with independent variables

= + + 0 + = 1 (12)

the intercept shifts from the initial level ( + ) at = 1 toward a new level ( ) at
= while the coe cients of remain fixed. An empirical example of this type of
intercept creep is the NAIRU in the US over the 1990’s, which was observed to shift

in a downward direction over this period. Such e ects seem important in practice,
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although specifications like (12) have not yet been used in empirical research to
capture them.

A more extreme case is provided when = 1 in (11) and the signal from the

regressor 1 is even smaller. In this case, =
P

=1
1
2 = (1) and log = (1)

so that the cost of including the regressor is bounded as Thus, we can get

closer to the truth when we estimate model (11) when = 1 than we can when
= 1

2 Again, the reason is that the true dgp is more closely approximated by the

much simpler model = when = 1
In other ongoing work, the author has been able to show that the same phenomena

arises in unidentified structural models, some nearly unidentified models and models
with weak instrumentation. In such cases, the bound is again (1) or in cases

where there are both identified and nearly unidentified coe cients the inclusion of

the nearly unidentified coe cients only introduces an additional cost in the bound

that is of (1) Thus, we have the curious outcome that although the coe cients are

hard to estimate (Phillips, 1989) and confidence intervals for them may be unbounded
(Dufour, 1997), the inclusion of such regressors does not seriously penalize the bound

that determines how close we can get to the true dgp or how well we can forecast.

The Bounds are Attainable Asymptotically

The limitation results discussed above provide bounds on how close we can come

in empirical modelling to the true dgp and in forecasting to the optimal forecast. It

turns out that these bounds are attainable, at least asymptotically. In particular, we

can construct empirical models for whichµ
log

¶
(log det )

1

2
(13)

One way of attaining the bound asymptotically is to take to be the Bayesian

measure =
R

( ) for any proper Bayesian prior ( ). We can also use

an empirical model which is based on an asymptotic approximation to and

defined by its density

=
(ˆ ) exp

h ³
ˆ
´i

(det )1 2
(14)

where ˆ is the maximum likelihood estimate of In the case of improper priors, em-

pirical models may be obtained by taking the conditional Bayes measure, 0 ,

or its asymptotic approximation 0 where the conditioning is on some initial

(training) subsample of the data with 0 observations. Empirical models that are

asymptotically equivalent to and 0can also be obtained by prequential meth-

ods, like those discussed in Dawid (1984), where we plug in sequentially computed

estimates ˆ 1 of into the conditional densities. The reader is referred to Phillips

(1996) and Phillips and Ploberger (1996) for details of these constructions and the

asymptotic theory associated with them.
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When only the model class is known, model selection methods may be used to

determine which candidate model is the most appropriate. The density (14) provides

a model selection criterion that is consistent (in the sense that the chosen orders

converge in probability to the true orders) in a wide range of settings that are useful

in econometrics, including unit root testing, determination of the rank of the coin-

tegrating space, lag order determination and trend degree selection. This density

is called the PIC density and some of its properties as a model selection device are

considered in Phillips (1996), Phillips and Ploberger (1996) and Chao and Phillips

(1999). In stationary models, PIC is asymptotically equivalent to the BIC criterion

of Schwarz (1978). But in nonstationary models it imposes a higher penalty than

BIC and in nearly unidentified models the PIC penalty is weaker. In these respects,
PIC has properties that ensure that its use in applications will lead to an empirical

model that attains the bounds discussed in the last section, at least asymptotically.

Part 3: One Look to the Future

These properties of PIC model selection and adaptation open up the prospect of using

the methods as a basis for automated econometric modeling. In particular, once the

model classes are specified, the methods may be employed to find the optimal model
amongst the various candidate models in terms of the PIC density (14). The methods

were systematically implemented in this fashion by the author to produce automated

quarterly forecasts of macroeconomic aggregates 12 quarters ahead for several Asia-

Pacific countries over the period 1995-2000, using vector autoregression, reduced
rank regression, vector error correction model and Bayesian vector autoregression

formats - see Phillips (1995a). The forecasting performance of the methods in this

five year experiment turned out to be comparable to that of major macroeconometric
forecasting models such as that of Fair’s (1994) model of the US economy (see Phillips,

1999). To conduct these exercises the methods were automated in terms of GAUSS

programs, following the lines of two earlier applications by the author (1992, 1995b)

to historical economic time series for the United States.

One useful feature of the approach is that it o ers the flexibility of adaptation
of the optimal model on a period by period basis, so that the most suitable model

is re-evaluated (including such items as trends and cointegrating rank) as new data

becomes available. This approach helps to reduce the impact of misspecification, as
discussed earlier, and allows for the model form as well as the estimated coe cients

to adapt over time with the arrival of new information. A further advantage is that

the order of integration and the cointegrating rank of a system of variables can be

monitored and adjusted on a period by period basis, just like other order parameters.

In a recent application of these methods to generate forecasts of New Zealand’s

real GDP, Schi and Phillips (2000) showed that this automated approach can pro-

duce results that are competitive with the forecasts of professional forecasting insti-

tutions. One great advantage of the approach is that these competitive forecasts can

be produced almost instanteously using computer software - all the researcher needs

to do is to choose the group of variables to be studied and the model classes to be
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considered in the application. Schi and Phillips (1999) also demonstrate how to use

these methods to forecast the e ects of di erent economic policies and to evaluate

the potential impact of international shocks on domestic economic activity.

Automated methods of this type provide one possible future for the practical

use of econometrics. In addition to the author’s work described here, their use has

been advocated by Hendry (2001) and a software mechanism has been discussed in

Hendry and Krolzig (1999, 2001). The approach involves single equation methods

that rely on automated significance tests in conjunction with model selection to deal
with rival specifications which are unresolved by significance testing. An independent
evaluation of the general approach was conducted by Hoover and Perez (1999), leading

to broadly favorable conclusions and some recommendations on setting test size more

conservatively than the usual 5%. A practical application of the methodology to super

12 rugby attendance modeling is given in Owen and Weatherston (2002).

Figure 1: Automated Econometric Computing on the Web
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An appealing property of automation is that it can o er econometric modeling

methods to a wider community of users. The most direct way in which this service

can be accomplished is by means of the internet. Figure 1 outlines a structure that

the author has already implemented and tested on a web server that is designed

to deliver econometric modeling results and forecasts in response to user activated

selections. With this design, local machines can connect to a remote server and by

making suitable selections on a web browser a user may estimate models, find the most
suitable model in a certain class and use that model for forecasting out to a specified
horizon. All of these functions are performed by remote control using programs and

data that are resident on the server. For instance, a user may select a variable

like GDP, specify the sample period of data to be used, and request forecasts 12

quarters ahead from the most suitable time series model in the class of autoregressions

with trend and possible unit roots. The web server responds to this request by

passing the selected parameters along to the appropriate statistical software. In

the author’s implementation, the econometric software is written in GAUSS and the

GAUSS engine is used to activate the software from a command embedded in a Visual

Basic master program that passes along the user selections. Once GAUSS is activated,

the program calls the resident data base for the sample data specified, performs as
many regressions as are needed to find the most suitable model in the specified class
using as the criterion for model selection the PIC density (14), estimates that model

and then uses the model with the fitted coe cients to generate forecasts to the

specified horizon. The results are passed back to the master program via parameters

that are written into the GAUSS procedure call. Those parameters are used to

construct output files and graphics in a suitable format for returning to the user
via the web browser. In the author’s application, MATLAB is used to construct a

graphical display of the sample data and the out of sample projections. These graphics

are converted to .gif format, in which form they can be passed along to the user via

on the web. Forecasts can also be made under di erent policy scenarios (for instance,

overnight cash rate target settings by the central bank) or di erent profiles of external
shocks (for example, GDP growth rates of a country’s major trading partners). The

author has been using this process successfully for several years and been able to

demonstrate empirical results with a delay of only a few seconds even when the

connections to the server are being made over long intercontinental distances.

Perhaps the main advantage of econometric web services of this kind is that they

open up good practice econometric technique to a community of users, including un-

sophisticated users who have little or no knowledge of econometrics and no access

to econometric software packages. Much as users can presently connect to financial
web sites and see graphics of financial asset prices over user-selected time periods
at the click of a mouse button, this software and econometric methodology make it

possible for users to perform reasonably advanced econometric calculations in the

same way. The web service can be made available on a 24/7 basis so that people

can perform the work at their leisure, doing last minute calculations before meetings

or even performing online calculations in presentations and lectures. People with no

knowledge of econometrics will inevitably have little understanding of the methods
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Figure 2: Interactive Econometric Computing on the Web

being used or the limitations of these methods, but confidence bands can be displayed
in the forecast profiles and these help to reveal some of the uncertainties of the fore-
casting and policy analysis process. More sophisticated users can produce forecasts

and policy scenarios that can be calibrated against those that have been produced

elsewhere. For example, bankers, journalists, business people, politicians and civil

servants can obtain forecasts of economic variables relevant to their own work and

compare projections under various policy scenarios and external shocks that are of

interest to them.

Figure 2 shows how this process can be extended to allow for user supplied data

sets. In this case, the user uploads data to the web server and makes selections in

the same manner as before. The computation engine on the server then simply uses

the supplied data rather than a resident data set in the calculations. One additional
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di culty in this interactive form of an econometric web server is that care must

be taken to ensure that only data is uploaded through the firewall. This can be
accomplished by checking the incoming file to ensure that only numeric data and
carriage return characters appear in the file.

Continuing growth in computing power and the extensive use of econometric

software packages has made it much easier to do applied econometric work. Web

implementations of econometric software of the type just described can be seen as a

continuation of this process and they should make econometric methods more gener-

ally available and more widely used. While the mechanistic nature of the approach

has its limitations, empirical testing of the approach in ex ante forecasting and pol-

icy analysis reveals that the approach can work well in practice and can provide

competitive forecasts and policy analyses at a very low cost.

Part 4: Afterword

“The more we study econometrics, the more there is to discover”

Sargan (2003)

It is a truism of any scientific discipline that the more we learn the more there is
to know. Like other disciplines, econometrics opens up a maze of complexity as we

study it more deeply. The frontier is at once broader in scope and at each point of

investigation we continue to discover more fine grain details to resolve. Moreover, as
we collect more data and data of di erent types, we often find that we simply have
more to explain and that our understanding of economic behavior does not necessarily

improve with larger or even better data sets.

Happily and somewhat characteristically, Denis Sargan himself suggested a partial

solution to these problems. The solution takes the form of human capital. Even

though automated econometrics of the type described in the last section may play

a major role in the practical future of econometrics and even though it is a cliché

to say it, new thinkers and new researchers are our greatest ally in moving out the

boundaries of econometrics. To wit,

“As we discover new problems, we recruit more quality researchers to

solve them” Sargan (2003)
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