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ON FINITELY REPEATED GAMES AND PSEUDQ-NASH EQUILIBRIA

by

Chien Chou and John Geanakoplos

1. INTRODUCTION

It is by now a well-known paradox that if a game is repeated infinitely
often (to construct a '"supergame') then it is possible to achieve coopera-
tion between the players as a (perfect) Nash equilibrium, whereas for many
games, like the prisoner's dilemma, a finite repetition of the game, no matter
how long, will not provide for any more cooperation than the one-shot game
itself. So far two modifications of the equilibrium notion for finitely
repeated games have been introduced into the literature in order to restore
"continuity at infinity," i.e., to explain the anecdotal and experimental
evidence suggesting that in long finitely repeated games players do seem
to behave as if the games were to be infinitely repeated, In this paper
we shall provide a third pseudo-Nash equilibrium concept.

It is clear that strategic rivalry in a long term relationship might
modify behavior in each of the one-shot struggles. A player who considers
the subsequent reactions of his opponents may be led by the fear of retali-
ation to exhibit cooperative behavior which otherwise would not be to his
advantage to show. In an infinitely repeated game (without discounting) the
potential for punishment is always infinite, while in a finitely repeated
game it declines as time reaches its end. In the last period, there is no
future to consider, and so the players must play a Nash equilibrium, In
the prisoner's dilemma, the players work backwards; knowing that the worst

will happen to them anyway in the final period, they have no more incentive
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to act cooperatively in the second to last period than in the one-shot game.
Repeating the argument shows that the players will rationally act myopic-
ally even in the first period of an N-repeated prisoner's dilemma,

Radne:r1 (1980) broke the yoke of backward induction by defining an
e-equilibrium in which a player is satisfied with his strategy unless he
can gain at least e per period more by deviating, If T 1is large, then
deviations which begin near the end cannot gain Te , while for deviations
which begin earlier there is more time left for retaliation., More recently
Kreps-Wilson (1982}, Milgrom-Roberts (1982), and Kreps-Milgrom-Roberts-
Wilson (1982) proposed an "e-crazy'" equilibrium in which with probability
e a player may behave in some arbitrarily specified "crazy'" manner. They
have shown (see also Fudenberg-Maskin (1983)) that given any average payoff
per period (xl, x2) which can be sustained in an infinitely repeated two
player game, there is a specification of 'craziness' for the two players
such that (x;, x,) can nearly be obtained as the average payoff ofa T
times repeated game, for T sufficiently large.

Both the e—eqﬁilibrium and the eg«crazy equilibrium allow for the sus-
pension of the Nash optimality test along the game tree, especially near
the end. In principle both definitions allow for a large amount of total
suboptimality if not average suboptimality. We might ask, how much fury
doth hell need to induce the players to cooperate?

In this paper we propose a pseudo-Nash equilibrium for N-person games
in which very simply we allow play in the last period to be arbitrary, but
otherwise it must conform to the (perfect) Nash optimality criterion. This

is analogous both to Radner's definition in the sense that for the first

lsee also Fudenberg-Levine (1983),



T-1 periods both players must playan e-equilibrium, but since only one period
is arbitrary, ¢ = K/(T-1) + 0, where K is some constant corresponding

to the value of cooperation in the one-shot game at stage T , and to the
K-M-R-W "crazy-equilibrium" in the sense that in period T we allow players
to be crazy.*

Qur definition also permits us to draw an analogy between repeated games
and overlapping generations (0G) economies, and between money and coopera-
tion. Rational, self-interested agents hold money because they expect future
money to be valuable; similarly, they cooperate because they expect future
cooperation to be valuable. It is a well-known phenomenon that in an
infinite-horizon OG economy rational agents may hold money and the equilib-
rium set may oftep be a contimuum, while in finite horizon economies it is
typically finite, and no agent holds money. Just as infinite horizon 0G
economies can be understood as limits of finite horizon 0OG economies where
the markets do not need to clear at the last time period, so we are suggest-
ing that infinitely repeated games can be understood as limits of finitely-
repeated games in which the Nash test need not be applied in the last period.

To see the force of our modification of Nash equilibrium, consider the

prisoner's dilemma game:

(1/5, 1/5) (1, 0)

0, 1) (4/5, 4/5)

*To put it another way, we suppose that an N+15t Yprincipal' announces

a punishment scheme that he will deliver in period T as a function of
how the players behaved until T-1 . If the punishment is limited in size
to what the N 'agents" could inflict upon themselves in a one-shot game,
we ask whether the principal, by varying his limited punishment scheme, can
induce the agents to achieve every cooperative outcome (in pay-

off space) as a perfect Nash equilibrium, as T - » (and therefore as his
threat becomes arbitrarily small relative to the total payoff).



The outcome (4/5, 4/5) cannot be sustained as a Nash equilibrium, but it
can as a pseudo-Nash equilibrium. If player one deviates at period T-1 ,
he gains 1 - 4/5 = 1/5, 1In period T, however, he can be punished (say,
by 4/5 - 1/5 = 3/5) so that on the whole he loses. On the other hand in

the game

(1, 0 (0, 1)

(0, .8) (.9, 0)

the average payoff (1/2, 1/2) is sustainable in the infinitely repeated game
(a famous folk-theorem guarantees that any individually rational payoff in
the convex set of the payoff pairs of G is sustainable in G ) yet it
would seem hard to sustain as a pseudo-Nash equilibrium. The only way to
make it feasible is to alternate (1,0) and (0,1) and if in period T player
two stands the most to gain, what will prevent player one from cheating when
the payoff is (0,1) ?

In this paper we show that for a generic N-player smooth game G , such
as Cournot's model of quantity competition, any payoff pair sustainable in
G is the limit of T period (perfect) pseudo-Nash equilibrium payoffs.
The same property holds for any two player mxn game G that has a non-
degenerate mixed strategy Nash equilibrium, such as G2 » above, and for
any 2 player 2 x2 matrix game that has any Pareto inferior Nash equilibrium,
such as G1 above,

The difference between smooth games and matrix games is that in the
latter, when mixed strategies are used, cheating is difficult to detect.
Thus we remark in Section 6 that for matrix games the force of the entire
last period threat is required for the proof, while for smooth games

period T can be discounted arbitrarily (just short of totally) without



affecting the limiting results. To put it differently, for generic smooth
games Radner's proposition about e-average equilibria can be strengthened
to e-total equilibria--no matter how small e > 0 1is, if no player will
deviate unless he can gain at least € in total, then any individually
rational payoff vector can be achieved arbitrarily closely as T + = ,

The paper is organized as follows, Section 2 gives definitions, and
Sections 3 and 4 introduce useful devices called the continuation principle
and reusable reward systems. The difficulty in implementing multiperiod
(perfect) cooperation schemes is that each player might deviate many times,
and each time he must be threatened with a new punishment. This tends to
put a heavy burden on the force of the final retribution. OQur method of
coping with this is to devise schemes where (1) no player will deviate con-
secutively and (2) when player i deviates he brings upon himself a punish-
ment to be delivered at the end, but at the same time a rew;rd to the previous
player j # i that deviated! Thus the total net punishment (or reward)
that must be delivered at the end can be kept small,

In Section 5 we use this technique to prove that

lim (perfect) pNE(GT) = NE(Gm) for smooth games G . In Section 6 we give

T

the corresponding proof for matrix games with nondegenerate mixed strategy
Nash equilibria, and in Section 7 we state our theorem for 2x2x2
games,

A related result by Benoit and Krishna shows that when a game G has
miltiple Nash equilibria, then the perfect NE of GT converge to the NE of
G . Of course many games of great interest, like the Cournot game, often
have a unique Nash equilibrium. Nevertheless, in view of the importance
of the Benoit—Krishna result, we have shown in Section 8 how our contimation

principle can be used to give a short demonstration of their theorem.



2. General Definitions

2.1, Pseudo-Nash Equilibria

Definition 1. An N-person game G 1is defined by G= [Zi,Hi, i=1,...,8],

where the Ei are the strategy spaces and the Hi are the payoff functions

for players {1

N

Let = X I; » We also assume that I : I +R dis continuous, and con-
i=1

1, .e.y, N . We assume that ezch Ei is compact and convex,

cave in the ith coordinate,

We have thus restricted our attention to "one-shot" games which have
Nash equilibria. The standard matrix games, where each player has a finite
number of pure strategies, can be regarded as a special case if we include
all the "randomized" strategies for each player., We shall discuss these
games in Section 6. A canonical example of a game G satisfying our defi-
nition is the Courmot game, where each player must choose a quantity
a; € [0, Qi] = Ei , and the payoffs are given by the profits (equal to
revenue minus costs) that are obtained in some market.l Typically in a
Cournot game the Nash payoffs to the sellers are less than the monopoly
profits that could be shared if they agreed to cooperate and produce less.
(A still worse situation for player i occurs when all the other players

play qj = Qj , the "minmax strategies' against player i .)

Definition 2, The repeated game GT is defined to be the game that repeats

G T times, and whose payoff is the sum of the individual period payoffs.

T T T
A strategy o, € I; for player 1 in G can be represented by

1Of course the inverse demand function P = P(q1-+q2 +...-+qN) must be well-
behaved and similarly for the cost functions ci(qi) so that the profit func-
tion for firm i , Hi(ql’ ...,qN) = qu(ql, ceesdQy) - Ci(qi) will be concave

in 9 » for each i =1, ..., N .



T_ (D (2) (T
o, (ci » 0,778 eeey O )
t-1
where c(l) €I,, and a(t) is a function from X to I, ,
i i i Tal i
) T T T

t=2, ..., T. Given the N=tuple ¢~ = (01, ...,cN) , let
Ez = (?gl), _Eiz), ...,E:ET)) be the realized sequence of actions for player

i . The payoff function for GT is

T T
T_ T, T, . () _ —(t) —(t)
I = 0,(o") ) I ¥ Moy, eenyog ) o
=1 t=1
Notice that if we regard Ei as the randomized mixtures over a finite
set of pure strategies, then the definition we have just given for GT allows
the t-period choice of player i to depend on the randomizing device used

by player j # i in period t~1 . We change our definition when we consider

matrix games in Section 6.

Definition 3. 4An N-tuple o%* = (cf, ...,cﬁ) of strategies for the repeated

game GT is a Nash Equilibrium (NE)} if and only if

T, % * * T
Hi(ul, vees Tis ...,GN) 2 Hi(c;, R ...,a;)

for all oy € EI y and all 1 =«1, ..., N .

We are now ready for our main definition:

Definition 4. The N-tuple o* of strategies for the repeated game GT

is a pseudo-Nash equilibrium (PNE) if and only if

T, % * * T, % :
Hi(ol, ey Ui, aany GN) ; Hi(cl, o.o,Ui, “eey D';)

for all ay € Ez such that



ol = oD

1 , i-l’ I.l’ N -

Notice that any NE is a PNE.

It is also possible to define a perfect Nash equilibrium (perfect NE)

and a perfect PNE of the repeated game GT . Let o' = (E(l), ...;E(T))
be any sequence of joint moves in éLi:é:-ﬁﬁb, where T < T ., Then the

%57 = (*UT

N~tuple of strategies 1° ...,*og) for the game GT » together

with the given t-period history o' , defines an N-tuple of strategies

(ET, *cT) for the game GT—T in the obvious way. If this is an RE {PNE)
for GT_T , Do matter what is T or o' , then we say that o* is a

perfect NE (perfect PNE) of GT .

Definition 5. Let (perfect) PNE(GT) = {x = (xl, ...,xN)[H a (perfect) PNE

*UT of GT such that %ﬂT(GT)'= x} .

Example 1. Prisoners' Dilemma Came

The payoff matrix of a prisoners' dilemma game can be represented by

Left Right
Top (2/3, 2/3) (0, 1)
Bottom (1, O (1/3, 1/3)

The pure strategy pair (BT, Eg) defined below is a perfect PNE but not a NE

of G repeated T times:

Ef(t) = Top if Eér) # Right for all Tt <t ,
Bottom otherwise
and
a'g“‘) = Left if 'EF) # Bottom for all T <t ,

Right otherwise,



Hence, (2/3, 2/3) € perfect PNE(GTS , whereas NE(GTS = {(1/3, 1/3)} for

all T.

2.2. The Folk Theorem

N
Let £ ,= X5z, , for =1, ..., N . The minmax value v, for
-j i i
i=1
i#]
player 1 1in the (one-shot) game G is Min Max M,(o,, o )
c EX g€, + -1
-1 -1 14
= Max Min Hi(ci, c_i) = Hi(ui) . Let C(G) be the comvex hull of

0.€L., o €%
i1 -17"=1

all the payoff N-vectors (Hl(c), ...,HN(U)) as © varies over I .

Definition 6. We let NE(G ) = C(G) N {(xl, ...,xN)[x. >v

i s i=1,...,N} .

1

The folk theorcm asserts that the Nash equilibrium average payoffs (and also

the perfect NE payoffs) to the infinite repesated game ¢ are given by the

set NE(GN) .

Definition 7. x = (xl, ...,xN) is called a (perfect) PNE (average) payoff,

and we let x € lim PNE(GY) s, if and only if there exists a sequence X7
T4
where QT is a (perfect) PNE average payoff for GT , and lim X' = x .

Tereo
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3. The Continuation Principle

3.1. Enforceability and Consecutive Deviations

Let (rl, ...,rN) be a vector of nonnegative numbers which we call
rewards, Clearly we shall use rewards to enforce cooperation. However, if
we wish to enforce "perfect" cooperation, then we must be prepared to punish
deviations off the equilibrium path, and to punish deviations from deviations,

etc., With this in mind, we give:

Definition 8. The strategies *gT for the game GT are said to be

enforceable by the reward structure (rl, ...,rN) if

i, *cEi ; for all UE € ZE , and all i

Similarly, if for any T period history ot , with t <T, if (ET, *cT)

is enforced in GT_T

r

nz(c ) - Hi(.*cT)

A

l, onn,Nn

by the reward structure (rl, ...,rN) , then we say

that (rl, ...,rN) perfectly enforces *GT .

Note that *cT is a (perfect) NE of GT if and only if it is (perfectly)
enforceable by the reward structure (0, 0, ...,0) .

As we have just said, when dealing with perfect equilibria it may be
necessary to be able to "punish” many players, and some players more than
once, It would then appear that the prizes (rl, ...,rN) would have to be
given out over and over, and hence the total reward might need to be arbi-
trarily large. We shall show, however, that once consecutive profitable
offenses are eliminated, the rewards need only be given out once.

Let *GT be an N-vector of strategies for GT .« Given a history
ar » up until <t < T , we shall say that player i deviated from *UE
at time <t if *UgT)(ET_l) #'Eir) and 0(1;(31-1) = Ggr) for j<1i.
Furthermore, we shall say that player i was the last deviator from *cT

up until time Tt if there is a time t < t at which he was the deviator,
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and 1if there is nortimﬂ t' , t <t' <t at which some other player J # i

was the deviator.

Definition 9. The strategies *UT for the game GT are said to prevent

consecutive deviations if for any 1 < T period history ot , 1if 1 was

the last deviator from *UT up until <+ , then
T-1T ,—1T T % T Tet,~t T T T
Hi (o, (Ui’ c_i)) < Hi {oc", "o7) for all o) € Ei .

"Trigger strategies" are the most famous example of such strategies.

Let (*sl, ...,*sN) = *3 be a one-shot Nash equilibrium for G , and let

*Ui for player i 1in GT

=s, if 7P s forall t <1, and *Uif)(ET-l) =*s,

®

ni(sl, ...,sN) > Hi( s) . The trigger strategy
is *ci‘r) (B'T-l)
otherwise, for T =1, ..., T . Trigger strategies have the special property

that once one player has deviated, then no player can subsequently deviate

advantageously.

3.2. Reusable Reward Systems and the Continuation Property

Definition 10. A reusable, (perfect), T-period reward system RT with

reward structure (rl, ...,rT) is a set of N+l (perfect) PNE's
(oc, g, 1 =1, ...,N) for the game GT which satisfies

ng(jo)-n’i:(la);ri forall i =1, coey N, §=0,1, eosy, N, 1#3.*

The following diagram displays the payoffs to two players of 3 pNE's

forming a reusable reward system: Note that each io = (icl, ey ioN) is

itself an N-vector of strategies, for i =0, ..., N .

*

Qur reusable rewarq system is in some sense the finite-time horizon analogue
of Abreu's [1982] simple penal code. A similar device for infinitely re-
peated games was also used by Fudenberg-Maskin [1983]
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)
i
{ n*o), o1(’s)
T
2 2
oH( U)
T nl
1
Notice that as long as the intended perfect PNE is o € {Oc, 10, 20} but

o # 6 , then player i can be threatened with a loss of T if play
switches to Yo . Since ¢ is itself a (perfect) PNE, this threat is
credible.
. ™ "
Suppose that the strategies o for the game G  do not allow con-
secutive deviations, and suppose furthermore that they can be perfectly

"
enforced by the reward structure (rl, ...,rN) . Let ﬁT be a reusable,

perfect, T"-period reward system with reward structure (rl, ...,rN) .

T ] ] "
Define the strategies 1T n the game ¢ T by *oit) = cit) for
all players i1 and v ¢ T'. Furthermore, from T'+1 to T'+T" the players

1

T
follow "¢ if i was the last player to diverge from cT up until time

T' . Otherwise they follow Oo .

1
Definition: The continuation property asserts that if *cT prevents con-

1
secutive deviations in the game GT and is (perfectly) enforceable by the

1

reward structure (rl, ceesTy) , and if {00, g, ...,Na} is a (perfect) re-

[}
usable reward system for the game GT' with reward structure (rl, ...,rN)

T '
then their combination as above in. the game GT = GT +T is a (perfect)

3

pNE. Moreover, if the Js  are all {perfect) NE's, then the combination is
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a (perfect) NE in the game GT . We denote the combined strategy for the

t T L 1
game GT +T by (*GT s RT') .

The continuation property hardly needs proof, However, it suggests
the strategy we shall use for the proof of our main theorem., Take an arbi-
trary N-player game G , and payoffs x = (xl, ...,xN) = N(0o)
= (Hl{b), ...,HN(U)) strictly greater than the maxmin payoffs (vl, ...,VN) N
where ¢ is some N-tuple of one shot moves by all the players. Lemma 1
shows that there is some reward T > 0 such that for all T' there is an
N-tuple of strategies *UT' in GT' that prevents consecutive deviations,
that is perfectly enforceable with reward structure (r, ...,Tr) , and that
yields payoffs (xl, ...,xN) in almost every period if there are no devia-
tions.

In view of Lemma 1, the proof of our main theorem for a specific game
G is reduced to showing that for given (rl, ...,rN) » there is some T"

1

"
and a reusable reward system {Oo, c,...,Nc} for G' with rewards at least

(rys +-.» 1) . Note that since T 1is fixed independent of T' , so0 is
T , and hence as T' + » , the average payoffs of (*cT', RT") coenverge
to X .

Observe also that for a PNE, the last period can be arbitrary. Thus
even when T'" =1, there is a reusable reward system with rewards on the
order of (1/N, ...,1/N} . It turns out that for smooth games one can
easily build this into an arbitrarily harsh reward system. The same is

true when there are multiple one-shot Nash equilibria, even without benefit

of the last period. For matrix games, the proof is a bit more difficult.
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4. The Basic Lemma

Consider the one-shot game G with maxmin payoffs v = (vl, ...,VN) s

i i i ey - .
v, = Hi(ui, u_i) > Ri(c, u_i) Yo € I s and a Nash equilibrium *s with

payoffs ni(s*) . Without loss in generality we take Min Hi(o) = 0 and
o€l

Max Hi(c) =1, forall i=1,...,N,

o€Z

Lemna 1. Let S be an N-tuple of one-shot strategies for G with payoffs

-+ . . .
Hi(s) =Xy satisfying X > vy for all i=1,...,N . Let

W= {i en[ni(*s) >vi}, let 'ii = Min(x;, I,(*s)) , and let
K= Max_+ + 1 . Then for any period T 4t is possible to devise
iew|*1 7™V

strategies ot that (1) do not permit consecutive deviations and {2) are
enforced by the reward structure (K, ...,K) and (3) yield a history ET

with realization s in at least T-K periods,

Proof. We shall give a sketch—-the proof is obvious except for notation,

Let T > K (otherwise there is nothing to prove). The intended path

*

means each player i plays ;i at each date t < T-K , and plays s

i
for T-K <t <T.

Let W be the set of players with v, < Hi(*s) s and let B be the

i
rest, all with v, = I (*s) .
i i

If a player i € W deviates from the intended path at time = < T-K ,
then from 1+l to t+K all other players should play ui . After K ,
all players should return to the intended path. If during period 1+l to
K a player jEW, j#1i deviates from the intended punishment of
i {(playing anything different from that specified by u; ) then play
returns immediately to the intended path, If i himself deviates from his

own punishment phase, then the punishment continues as before. It is easy
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to see that no player i € W can advantageously deviate from the intended
path, or from his own punishment, Once i deviates from the punishment of

j €W, play immediately returns to the intended path, Hence i € W cannot
deviate consecutively, advantageously, provided that i € W has no oppor-
tunity to deviate following a deviation of k € B .

Since the most that i € W can gain by deviating from the punishment
phase of j €W is K , it follows that the behavior of i €W is perfectly
enforced by the reward K .

If a player i € B deviates from the intended path, or from the punish-
ment phase of a player j € W, then all players should play *s until the
end. Deviations from this path by any player are ignored. Clearly once
player i € B has deviated, no player can again advantageously deviate.

Note that the behavior of i € B 1is perfectly enforced by the reward 1 < K .
Q.E.D.
Lemma 1 can easily be extended to average payoffs

(xl, ...,xN) >> (vl, ...,vN) that are rational combinations of payoffs from
el

+

strategy N-tuples s and s for the one-shot game G . Ilet

ny , n, =
X "TTH(S) +-7fﬁ(s) . The intended path must now be a sequence of C-cycles,
-

in any one of which s occurs ny times and s n, times. The punish-

ment phase shall last K = Max?t--%— +1 cycles, i.e. be KC periods
iew|®1 "V :
long, and r, must be at least KC .,

As T gets large, the K (or KC ) periods during which x is not’
realized becomes negligible, as does the payoff from the reusable reward
system phase at the end. Thus to conclude the proof of the general proposi-
tion for a class of games G requires only that one can demonstrate that

for each such game it is possible to construct a reusable reward system with

arbitrarily large reward structure.
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5. Smooth Games

let I, be an Ei dimensional rectangle, i =1, ..., N, and let

i
Si be its intericr. Let 6 be an bg 2 %7 8 F e t “N dimensional
rectangle of parameters., Let the games GG be defined by
(Zi, i=1,...,N) and the functions Hi : 21 X oey X EN x 8 +R , where
each 17, 1s three times differentiable, and strictly concave in I for

i i?

any (o‘_i, 8) € Z_i x 8 . The classic example of such a game is the Cournot

game, where II, is the profit function of firm i , depending on the out-

i
puts Uj € Zj = [0, 6j} of all the players j € N, and the constant

marginal cost Bi of plaver i (8 = (31, ooy BN)) .

We shall make the following assumptions:

'Al) For any 6 € © all the Nash equilibria of G, involve strategies lying

]

in the interior, i.e. in Sl X eee X SN .

A2) TFor any choice of 8 € & and € Sl’ ceey .EJ-N €S and for any

%

N »
player i1 € N, and coordinate k < ,Qi it is possible to choose a
direction A din 8 space such that (1) aznj/aaaoi__ =0, j#1i,
6,0
2 i
r=1, ..., &, , (2) 2°L. /3Asc =0, r#k, and
4 i rss

(3) 32n /aAaoi #0 ,
i k|=— —
e,o

Assumption A2 means that we have a rich set of pames., For example, in

the Cournot model where =1 forall 1i€N and 6 = (61, cnsy BN) is

4
2
the vector of cost parameters ci(e,c) = Bioi s then 23 ni/aeiaoi = -1,
while 321'[3/361801. =0 for all j# 1.
let T be a subset of ® . We say U is generic if it is open and

dense in 6 , and if its complement in 6 has measure 0.
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Theorem 1: There is a generic set D < 6 , such that for any game Ge with

€D, lin PNE(Gg) = NE(G}) .

Toa

Proof. From Lemma 1 and the continuation property it suffices to show the
existence of N+1 PNE's as follows,
It is easy to show that for a generic set D, any ® €D and any

Nash equilibrium o of G—e- satisfies the following property:
Write the matrix of derivatives of profit o, in every strategy cﬂ s
]..31, ...,N, j=1, .o-,N, k=1, cno,lj »

oll BHI

aoN

|

e

oMy
T

L W

evaluated at (0,8) . Then A has full row rank. This is proved 1in Dubey

|

Q2
(=]
[y ]

and Rogawski [4]; it is derived directly from the transversality theorem.
The fact that A has full row rank means that the Nash equilibrium

¢ 1is not Pareto optimal. There are small finite changes dcl, evuy doN
which increase the payoffs to all the players. In the Cournot case it is
no surprise to learn that all the firms can improve their profits if they
collude,

Let @[ be the N-vector of payoffs to all the players at the Nash
equilibrium' ¢ in the game GE » Since A has full row rank, it follows
that for small ¢ , it is possible to find small finite changes

dc;, ...,dcr; such that I!E(E+dc°) =T + ee s, wWhere e= (1,1, ...,1) .

Similarly for any j , we can find small (da{, cany dog) = v:lorj such that
TE-B-(E +dch) =T + ce -eej . Lastly, we can alsc find u such that

Hg(u)<<ﬁ
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Observe now that for € small, any of the N+l average payoffs
T+ ce - eej (j =0,1, ..., N : ey = 0) can be supported as an average
pseudo-perfect Nash equilibrium for any T > 1 ., Consider for example
T+ee . Let T be given. Let the intended path for all <t be for each
player i to play E;-+dci . If any player i deviates from the intended
path at time T <T , then from t =1+l to t = T-1, all players play
T . At time T they all play u . For e small, the facts that o is
a Nash equilibrium and Ei is compact and Hi is continuous implies that
c?é?ini(oi’ E;i-+dcgi) - ﬁi < ﬁi - T .
The theorem now follows from Lemma 1 and the continuity property. Q.E.D.
Corollary (of Proof): Let G be a generic smooth game. Let € > 0 and
X = (xl, ...,xN) >> (vl, ..-,VN) be given, with x € C(G) . Then for every
T there is an N-tuple of strategies *g T such that
(1) the total gains to deviating are less than e , i.e. *cT is
perfectly enforced by the reward structure (e, €, ...,€) and
() Lin T (%D = x, .
Toreo
The above corollary shows that for generic smooth games, Radner's

g-average-equilibrium theorem can be strengthened to an e-total-equilibrium

theorenm,
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6. Two-Person Matrix Games with Mixed Strategy Nash Equilibria

Consider now a two person mxn matrix game G = A, B , 1like the one

given in the introduction:

(1, 0 (0, 1D

G =

(0, .8) (.9, 0)
It would seem difficult to support the alternation of payoffs (0, 1) and
(1, 0) in a perfect PNE, because in period T it is possible to reward
one player or the other, but not both. In fact, it can be shown that if the
last period is discounted by any factor & > 0 , then there is always an

open set of matrix games for which lim PNE(G:) # NE(G) .

Tem

Observe now that G has a (unique) mixed strategy Nash equilibrium
(p* = (.8/1.8, 1/1.8) , q* = (.9/1.9, 1/1.9)) . Furthermore, this Nash
equilibrium is nondegenerate, or not perfectly safe: by choosing q near
q* player II can change player I's payoffs, and vice versa. Nondegeneracy
of course is a generic property: for almost any matrix game G, 1if G
has any mixed strategy Nash equilibria, then all of them are non-
degenerate,

Thus the "mixed extension™ of the typical matrix game with mixed stra-
tegy Nash equilibria has properties very similar to the smooth games of the
last section. There is an essential difference, however, in that in matrix
games only the realized outcome is observable. In the proof for smooth
games, all cheating was immediately punished. When a player's "intended"
move in a given period is a mixture, he can always pretend that his per-
sonally favorable realization was a matter of luck. It is this difficulty
that we must deal with, and it is for this reason that the full last period
is needed. For smooth games, the last period can be discounted by any

finite ¢ without affecting the result.
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Theorem 2. Let G = [A,B] be any mxn matrix game with a nondegenerate
mixed strategy Nash equilibrium. Let G also be such that either there is

a unique (i,3j) with Aij = Max A, . or else a unique (i', i") with

k,2
B,, ., = Max B, - Then lim perfect PNE(GT) = NE(GQ) .
1,1 k,2 T=roo

We defer the proof to the appendix.
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7. The 2 x2x2 Case

Theorem 3. Let G = [A,B] be a two player, 2 x2 matrix game. Suppose there
are at least two Nash equilibria of G with distinct payoffs, or one Nash
equilibrium that can be strictly Pareto dominated by something in the con~
vex hull of the entries of G . Then lim perfect PNE(G') = NE(G) .
T

This theorem covers games like the Prisoner's dilemma, which has a
unique, pure strategy Nash equilibrium. We do not bother to give the proof,
which consists of an exhaustive examination of cases. The theorem is false

in general for 2 x3 x3 games.

8. Perfect Nash Equilibria

The continuation principle and the reusable reward system we introduced
earlier apply not only to our pseudo Nash equilibria, but also to Radner's
e=equilibria, the e-crazy equilibrium notion, perfect Nash equilibria, and
Nagsh equilibria. In this section we use our constructions to give a very

simple, alternative proof of the important theorem by Benoit and Krishna.

Theorem 4 (Benoit-Krishna). Let G satisfy the following properties:

(1) There are multiple Nash equilibrium strategy tuples, 13, cans LE

ok L

whose payoff N-tuples yoeews *T° 5 1 = (%9 satisfy

L
*tzxy*r>  mn *nfatt@ 521, ..., N, and
i i { 1 ’ » »

g=1 g=1,...,L

ol o

(2) There are N+1 strategy N-tuples lc, caes N+la whose payofis

N+10)

H(la), eesy II( have convex hull in R with nonempty interior.

Then 1lim (perfect) NE(GT) = NE(G“) .
T
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Proof. The idea of the proof is very simple. If there are N+l one-shot

0 1 N+1
{76, "0, ..,

Nash equilibria o} among the L Nash equilibria which

satisfy 1,0%0) - I,(%0) >0 forall i=1, ..., N, §=0, ..., N, j#i,
then a T"-period reusable reward system can easily be constructed by repeat-

ing each one-shot NE T" times. In this way the reward structure can be

made arbitrarily large. Slightly more generally, if the span of the payoffs

of the one-shot NE's is full (i.e. N-) dimensional, then one can alternate

them in the right proportions to construct N+1 different T" period perfect
NE's which also form a reusable reward system, Again the reward structure

can be made arbitrarily large.

Furthermore, even if the one-shot NE payoffs do not span a full dimen-
sional set, if their payoffs are distinct, then it is always possible to use
them to make a large threat. (The intended sequence of one-shot NE's alter-
nates the L NE's in cyclical fashion. Any deviation by player i is
punished by switching to his worst NE. If there are enough such L-cycles,
the threat is arbitrarily large). But then any one-shot move can be enforced
in period 1 if it is followed by a sequence of one-shot Nash equilibria 55
above. But this is simply to say (in view of assumption 2) that for some

K , the perfect NE's of GK are full dimensional. But we have already

said that in this case there is nothing more to show beyond Lemma 1.
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APPENDIX

Let us give a proof of Theorem 2, Let G = [A,B] be a matrix game
with a mixed strategy Nash equilibrium p* , q* , Let A and B be
normalized so max Aij = ] = Max Bkl » and Min Aij = 0 = Min Bkg .
WI = p*Aq* , and let wg = p*8q* . We shall prove in Part I that for any

Let

§ >0 it is possible to construct for some T » @ T-period perfect PNE
*pT with residue Hz(u*) - (T—l)w: >1-8§ , for 1 =1, 2, In Part II

we use this perfect PNE to construct the usual reusable reward system,

Proof of Part I:

Let us assume for now that p* >> 0 , and q* >> 0 ,
Since (p*, q*) is non-degenerate, let us suppose that by perturbing

player two's strategy we can improve player one, hence, there exists a

n
q= (ql’ Qps =eesq }  such that E q, = 0 (hence, p*Bq =0 ) and
n ju1 3

p*Aq > 0 . For q sufficiently small, E = q* + q 1is still a completely
mixed strategy. Later we shall make q even smaller by multiplying by
1/k . Consider the one-shot strategy pair (p*, Ej = (p*, q*+q) . The

one-shot payoffs are

=
il

1 p*A(q* +q) > p*Aq* = Wf

and

=
]

2 p*B(q* +q) = p*Bq* + p*Bq = wg +0= w; .

Since player one still plays the NE strategy, p* , player two is indiffer-
ent between any two gtrategies in the one-shot game. But p* 1is not an
optimal strategy for player one when player two plays ; .

Consider the repeated game GT . Suppose player one plays p* and
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player two plays E all the time except the last move. If we use the pay-
off of the last move T to compensate player one such that he is indiffer-
ent between all strategies, and at the same time guarantee player two an
expected payoff arbitrarily close to 1 on the last move, then we can derive

a PNE with a sufficiently large residue for both players. Against p* player
two has no incentive to cheat, and player one is steadily gaining his resi-
due. One problem is that after paying two's residue in period N we have
only a very limited resource, that is, 1 - two's residue, to compensate player
one for not cheating in the earlier periods. Another problem is that we can
observe only the realization of one's randomization at each move, not how

he randomizes,

Let

Cj = (expected one-shot payoff for player 1 from strategy j

against E} - WI

(cl, €5y ...,cng = Aq ,

and let YJI(t) be the total number of times player one plays strategy j

in rounds 1, 2, ...y, t . Define X(0) =0 and

m
Xt) = YY(e Sk, t=1,2, ...,T-L .
j=1 ]

*
X(t) + tw; is player one's expected payoff through period t , given his

choices for T <t , and given that player two randomizes according to

a; = q* + q/k at each move. Let s>0 be given. F or large enough

k , |X(t+l) - X(t)| will always be less than s . Let 3 = Max{a,,|b,.=1}
ij' 743

It follows from continuity that for any ¢ , with a<c<l s» there are one shot

strategies p(c) and q{c) with p(c)Aq(c)=c; moreover, for c near a ’

p(c)Bq(c) may be taken near 1 .
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* %
Define a PNE, (ul, uz) as follows:

(1) At the tth mve (1 <t<T),

i) if -8 < X(tr) < 1l-a - 38 for all t< t s, then
(p*, qk) is played, where q = q* + q/k ;

ii) if -s > X(v) or X(t) > l-a - 3s forsome t <t , (p*, g%

is played.
Define
t = the first time X(t) crosses either one of the boundaries,
-s or 1l-a=23s,
T-1 if X(t) never cross the boundaries,
(2) At T® move, supp;)se X(f) =1 -2s -c. Then ( p(c) , q(c) )

with p(c)Aq(c) = ¢ as defined above is played, Observe that for

large emough k , c satisfies a <c<l.

The above rules specify strategies for the two players.

Since player one always plays p* except the last move, and since player
two cannot affect the last move, player two is indifferent between all strate-
gies. Hence, to test that (uI, u;) is a pseudo-Nash equilibrium, we need
only check that player one cannot gain by deviating during t =1, 2, ..., ==1 .
But it is obvious that no matter what strategy player one adopts, if player
two plays according to u; and player one d es not vary at time T , then

his expected payoff is:
*
('I‘-l)w:L +1 =25,

Thus, (,u;, u; is certainly a PNE. Hence, for k sufficiently large so

that |X(t+l) - X(t)| < s ,

rl(u;, ].l;) =1 - 25 .
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Notice that when the players stick to the strategies u{ and u; .
the path of X(t) 1is a drifting process with mean drift p*Aq/k and vari-
ance proportional to l/k2 « Hence, for k sufficiently large; the prob-
ability of crossing the top boundary if player one always player p* approaches
1. At the top boundary, the period T payoff goes almost entirely to player
two., Hence, given any h > 0 , for k sufficiently large and s suffi-

ciently small, player two's expected payoffs is
N, # & *
Hz(ul, u2) > (T—l)w2 + (1-h) (1-s)

and the residue is

ry(u)s u3) > (1-h)(1-s) .

Finally we note that dropping the hypothesis that p* >> 0 and gq* >> 0
changes almost nothing in' the proof. Player two is still indifferent, against
pz y to using any strategy My which only involves playing one shot strate-
gles j with q; > 0 . Doing anything else can only make player two worse
off. As for player one, we still define (cl, Sy ...,cng = Aq and X(t)
as before, If p* is not strictly positive, then player one's expected
payoff through period t 1is bounded above by X(t) + twv ; equality neces-
sarily holds only when player one uses one shot strategies i with PI >0 .

Q.E.D.

Proof of Part II

We can now show how the perfect PNE u* can be used to comstruct the

reusable reward system posited in the continuity principle,.

Since (p*, g*) is a nondegenerate mixed strategy, it is strictly

Pareto dominated, and there are strategies cA and cB and integers k <K



such that x = %H(GA) +-§i§H(UB) >> (w;, w;) . Let H(UA) = (a,b) = ab

and H(GB) = (a', b') = a'b" . We shall support the average payoff =x as
a perfect PNE for a game with arbitrarily large T . Once one has two perfect
PNE's, whose total difference in payoffs can be made arbitrarily large, then
the proof is finished as in our proof of Benoit-Krishna. |

0f course the idea is to alternate the payoffs ab and a'h' over
each cycle of K periods so that ab occurs k times and a'b' K-k times.
At the end comes the PNE u* + In case there is any deviation, both players
get (w{, w;) till the very end. Thus by cheating a player loses 1-6

from the final phase,

Lemma., Let (a,b) and (a', b') be given. Let x =-§(a,b) +-§i5(a', b') .
Then there exists a function £ : {1, ...,K} - {(a,b), (a', b")} such that

#f—l( a,b ) = k , and such that for any 1 <t <Kk,

K
(L I £(0
=t

nv

(K-t+l)xl and

K
(2) ¥ £,(1)
1=t

v

(K-t:):e:2 .

Suppose player 1 deviates at some time t . He gets at most
1+ (K-t)wI until the end of the cycle, instead of (K-t+~l)x1 . His net
gain is (l-xl) - (K-t)(xl-wl) . Similarly player 2's maximum gain is

1l - (K-t)(xz-wz) . Since x these numbers must be less than 1-8

i Yo
(for sufficiently small & ) , except when t =K .

Thus the only time a player can gain as much as 1 is on the last period,
if the payoff is supposed to be a0 (or Ob' ). We can always replace
a0 and Ob' with 1b and al . If there is a wmique 1ij with Aij =1,
Or a unique kf with Bk2 =1, then either 1b or al has the property

that neither player can change his strategy alone and gain 1. Q.E.D.



