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Abstract

We explore weekly stock market volatility forecasting performance of a univariate MIDAS volatil-

ity model based on squared daily returns vis-á-vis the benchmark model of GARCH(1,1) for four

developed and ten emerging stock markets. We compare the out-of-sample forecasting performance

of the MIDAS model during the financially turbulent year 2008. We show evidence that MIDAS

model produce better weekly volatility forecast than the GARCH model based on the test sug-

gested by West (2006). MIDAS model could not generate a superior forecasting precision during

more tranquil period.
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1 Introduction

Following the seminal papers of Engle (1982) and Bollerslev (1986), volatility forecasting has become an

extensive area of research. The different directions to which this research developed are investigated and

portrayed in Granger and Poon (2003). Within the volatility modeling context, Mixed Data Sampling

(MIDAS) model is introduced by Ghysels et al. (2004, 2005, 2006a,b), which provide ground to study

parsimoniously parameterized regressions using data sampled at different frequencies. More recently,

Ghysels et al. (2009) have studied multi-period ahead forecasts of volatility using MIDAS methodology,

where they conclude that MIDAS forecasts perform well at long horizons and the model dominates all

other approaches at horizons of 10-days ahead and longer.1 Huimin et al. (2009) employ the MIDAS

regression as well as the Heterogeneous Autoregressive (HAR) regression to predict realized range-based

volatility of S&P 500 index and compare them with the implied volatility model of VIX. They conclude

that the implied volatility model (VIX) has more powerful explanatory ability than the former.

While a majority of the previous financial empirical studies utilizing the MIDAS model have used

the U.S. equity return data, there seems to be very few comparative studies analyzing Emerging Market

equity return data. Given the global integration of international financial markets as well as the different

nature of emerging markets, the way these recent models fare in emerging countries is an interesting

issue. Furthermore, even though most risk managers, options traders, portfolio managers and bank

regulators frequently use long horizon measures of volatility forecasts, most papers study short term

volatility forecasting such as daily volatilities. Particularly, internal risk management models and

banking regulations require 10 days ahead of volatility forecasts. This paper aims to fill these gaps in

the empirical volatility modeling literature. In particular, we assess the relative forecast performance

of weekly MIDAS model vis-á-vis the benchmark GARCH(1,1) model. A systematic comparison of

weekly MIDAS volatility forecasts has, to our knowledge, not been conducted before. Furthermore, a

cross-country study of weekly volatilities of four developed and ten emerging stock markets has been

performed.2 In order to assess how MIDAS volatility forecasting fare under market turmoil, the sample

is divided into two periods. The out-of-sample forecasting period of September 15, 2006 - August 3,

2007 is used to represent the tranquil period. For the turmoil period, we choose the forecasting period

of December 15, 2007 - December 19, 2008. In order to rank weekly volatility forecasts on a continuous

basis, the testing procedure proposed by West (2006) is used, minimizing the Mean Squared Prediction

Error (MSPE) as the objective. Hence, the following contributions have been made in the context of

volatility forecasting literature: First, under market stress, MIDAS weekly volatility model produces a

much better forecasting precision than that of GARCH(1,1) model. It should also be emphasized that

1Even though higher frequency application of the MIDAS method received more emphasis in the literature, the MIDAS
method also offers a more general analytical framework for monthly or even quarterly macroeconomic data. Ghysels et
al. (2007) analyze the U.S. commercial real estate market within the MIDAS context. Clements and Galvao (2006) study
forecasts of the U.S. output growth and inflation in the context of mixed sampling context. Hogrefe (2007) employs a
study on data revisions of GDP within a mixed frequency sampling approach. Kotze (2007) uses MIDAS regressions for
inflation forecasting with high frequency asset price data.

2We utilize daily/weekly data for two main reasons. First, intra-daily stock data for emerging markets was simply
unavailable. Second, as we focus on weekly return series, we provide additional evidence on how MIDAS regression model
fares under relatively less frequent samples.
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MIDAS has a better precision both on developed and developing countries’ volatility. This improvement

is mainly driven by the use of higher frequency (daily volatility) information for forecasting weekly

volatility, which is the major appealing feature of MIDAS model. For the tranquil period, we do not

observe a significant improvement of MIDAS over the GARCH model.

The rest of the paper proceeds as follows. Section 2 describes the methodology. Section 3 provides

the data diagnostics and the empirical results, and Section 4 concludes.

2 Methodology

The linear univariate MIDAS regression model is represented with the following econometric specifica-

tion:

Yt = α0 + α1

kmax∑

k=0

B(k, θ)X(m)
t−k/m + εt (1)

where Y and X(m) are one-dimensional processes, B(k, θ) is a polynomial weighting function depending

on both the elapsed time k and the parameter vector θ, and X
(m)
t is sampled m times more frequent

than Yt. Accordingly, the MIDAS model enables one to explore the power of X
(m)
t in predicting Yt

where the former has a higher sampling frequency than latter. For instance, with t denoting a 5-day

weekly sampling and m = 5, equation (1) resembles a MIDAS regression of weekly data (Yt) on past

kmax daily data (Xt). Thus, MIDAS regression model is able to offer a gain in efficiency by exploiting

information hidden in the higher frequency data through an optimal weighting scheme.

Other appealing aspects of using the MIDAS regression model can be given as follows: (i) The

polynomial B(k, θ) is parameterized in a parsimonious and flexible manner by a low-dimensional vector

θ. (ii) The MIDAS model does not necessarily involve autoregressive scheme, that is, one can include

any Xt that is expected to have a power to predict Yt. Moreover, Xt can involve more than one regressor

each having different sampling frequencies. (iii) The MIDAS regression model is not confined to a linear

univariate framework, but can be extended to a non-linear and/or a multivariate setting (Ghysels et al.

2004, 2005, 2006a,b).

In this paper, we primarily focus on forecasting one-week-ahead realized volatility based on individual

squared daily returns. In particular, we use the following linear univariate MIDAS specification:

Vt+1,t = α0 + α1

kmax∑

k=0

B(k, θ)
[
r
(m)
t,t−k/m

]2

+ εt (2)

where m = 5, kmax = 50, and t denotes weekly sampling. r
(m)
t,t−k/m is the kth lag of daily stock returns,

where r
(m)
t,t−1/m is defined as [log(P (m)

t )− log(P (m)
t−1/m)] with P

(m)
t referring to daily closing value of the

stock market and P
(m)
t−j/m denoting the closing value of the stock market for the m − jth day of the

week. Vt+1,t is a measure of (future) volatility such as realized volatility where RVt+1,t =
∑5

k=1 r2
t−k.

3 Accordingly, equation (2) specifies how the previous 50 individual daily squared returns should
3See Ghysels et al. (2009) for more details.
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to be weighted in predicting next week’s realized volatility. Notice also that realized volatilities are

based on non-overlapping consecutive m days which potentially avoid autocorrelation in the estimated

disturbances. In order to be able to compare the MIDAS model with the benchmark GARCH model,

we did not employ a non-autoregressive or a multivariate MIDAS model.

There are various alternatives for the polynomial specification, B(.), among which we focus on the

beta lag polynomial, following Ghysels et al. (2006a). In essence, beta polynomial appears to be not

only parsimonious but also flexible and performing well in our in-sample forecast experiment, compared

to other polynomial specifications including exponential almon lag or step functions.4 Specifically,

the beta polynomial parameterizes the weights B(k, θ) through a low-dimensional parameter vector

θ = (θ0, θ1) and is specified as:

B(k, θ) =
f(k/kmax; θ0, θ1)∑kmax

k=1 f(k/kmax; θ0, θ1)
(3)

with

f(x, θ0, θ1) =
xθ0−1(1− x)θ1−1Γ(θ0 + θ1)

Γ(θ0)Γ(θ1)

where Γ(.) is the conventional Gamma function. The Beta polynomial, besides being parsimonious and

flexible, has two other important characteristics: First, it provides non-negative weights which (almost)

ensures nonnegativity of the estimated volatility. Second, the weights it offers sum up to one so that the

slope parameter β1 is identified. Given the smoothness of estimated weights, we estimate the MIDAS

parameters through non-linear least squares, among other procedures.

The benchmark model based on which we assess the out-of-sample forecast performance of the

above-specified MIDAS model is ARMA(1,1)-GARCH(1,1) with Gaussian disturbances.5 In particular,

we first construct friday-to-friday weekly return series (denoted by r̃t), and estimate

r̃t = b0 + b1r̃t−1 + b2εt−1 + εt (4)

Et−1(ε2
t ) = ht = a0 + a1ht−1 + a2ε

2
t−1 (5)

Then, denoting the predicted value for ht with V̂ G
t+1 for all t, the forecast error for the GARCH model

for the observation t + 1 is computed as eG,t+1 = RVt+1,t − V̂ G
t+1. Similarly, denoting the predicted

value for RVt+1,t as V M
t+1,t, the forecast error for the MIDAS model is eM,t+1 = RVt+1,t − V M

t+1,t.

It is worth noting that our specification for the two models allows us for such a comparison

since, first, we exploit a linear univariate autoregressive MIDAS regression model rather than a non-

linear/multivariate/non-autoregressive MIDAS. Second, as the GARCH(1,1) model can capture a large

number of past shocks, we set a relatively high kmax in the MIDAS model, i.e. kmax = 50 by follow-

ing Ghysels et al. (2006a).6 Moreover, we restrict our attention to θ0 = 1 and estimate θ1 > 1 so
4The in-sample forecasting results under different polynomial specifications are available upon request.
5GARCH(1,1) specification is also used by Ghysels et al. (2009). In general, other GARCH specifications do not

perform better than simple GARCH(1,1) model.
6In essence, our in-sample as well as out-of-sample forecast experiments show that lags beyond 50 does not convey

significant information in predicting next period’s realized volatility.
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that our MIDAS model specification is not over-parameterized vis-á-vis the benchmark model to avoid

penalizing the latter. We next present our forecast evaluation procedure in detail.

Forecast Evaluation. A common criterion to compare out-of-sample forecast accuracies of competing

models is to choose the model that provides a smaller mean, mean-absolute or mean-squared prediction

error, among other loss measures. Improving upon this naive criterion, Diebold and Mariano (1995),

West (1996, 2006), and McCracken (2000, 2004) question the adequacy of such a procedure, and provide

formal tests of equal forecast accuracy between (nested or non-nested) models for a wide variety of loss

measures. In this paper, we formally compare the one-week-ahead forecast performance of the MIDAS

model specified above with the benchmark ARMA(1,1)-GARCH(1,1) model, based on the Mean Squared

Prediction Error (MSPE) as the loss measure. Moreover, we pursue a recursive scheme with a fixed

start date, that is, we successively expand the prediction sample on a one-week-step basis. We next

introduce our forecast comparison procedure in detail by first conforming our notation to West (2006).

Suppose the sample consists of T + 1 observations and let one use the first R observations for

the first roll of estimation and leave the remaining P observations for forecast evaluation such that

R + P = T + 1. Under the recursive scheme in particular, one first uses the first R observations to

predict the observation R + 1, and then uses the first R + 1 observations to predict the observation

R + 2, and after successive rolling, one finally uses the first T observations to predict the observation

T + 1.

Let eG,t and eM,t denote the one-step-ahead population forecast errors under the GARCH and

MIDAS models respectively. Also, let the difference between the squared forecast errors be ft ≡
e2
G,t−e2

M,t. Then denoting the sample counterpart of the variables with a “̂ ”, we have f̂t = ê2
G,t− ê2

M,t.

Moreover, let f
∗ ≡ 1

P

∑T
t=R ft+1 and f ≡ 1

P

∑T
t=R f̂t+1 denote the sample counterpart of f

∗
.

Diebold and Mariano (1995), casting their analysis in terms of our setting, propose a simple t-test

for the null hypothesis of equal population MSPEs, that is,

H0 : E[ft] ≡ E
[
e2
G,t

]− E
[
e2
M,t

]
= 0

against the alternative that E[ft] > 0. In particular, letting V̂ ∗ ≡ 1
P

∑T
t=R

(
f̂t+1 − f

)2

be a consistent

estimate for the long-run variance of ft+1, i.e. V ∗ ≡ E [ft − Eft]
2, and (eG,t, eM,t) being independently

and identically distributed, the t-statistic for the specified null would be

f
[

V̂ ∗
P

] 1
2

where the inference can be done via using standard normal critical values. Nevertheless, since the

prediction errors, e2
G,t and e2

M,t, are contaminated by error due to parameter estimation for each model,

V̂ ∗ is not necessarily a consistent estimate for V ∗. Yet, since the GARCH and the MIDAS models are

non-nested, one may resort to ‘asymptotic irrelevance’ to circumvent this problem. In particular, under

‘suitable’ circumstances, f has the same asymptotic distribution as of f
∗

implying that errors due to
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estimating model’s parameters do not pollute the results of the aforementioned standard procedure.7

These suitable circumstances include the following: if a relatively large sample (sufficiently large R) is

used to estimate the model parameters, then the errors that pollute the standard inference will be of

less importance, i.e. as P
R → 0. West (2006) points out that a useful threshold can be P

R < 0.1, based

on which we choose the forecast sample periods in our experiments. Next section presents our data set

and empirical results in detail.

3 Data and Empirical Results

Our data set consists of daily/weekly stock returns of four developed and ten emerging market economies.

In particular, we study S&P500 (the U.S.), FTSE (the U.K.), DAX (Germany), and NIKKEI (Japan)

among developed economies; and BSE30 (India), HSI (Hong Kong), IBOVESPA (Brazil), IPC (Mex-

ico), ISE100 (Turkey), JKSE (Indonesia), KS11 (South Korea), MERVAL (Argentina), STI (Singa-

pore), and TWII (Taiwan) among emerging market economies. The stock market indices are obtained

from Bloomberg. The indices for each stock market are daily closing values for the period between

Jan 5, 1998 (Monday) and December 19, 2008 (Friday). The ‘missing’ observations due to fixed or

moving holidays are replaced by the most recent available observation to achieve uninterrupted series

of observations. We did not transform the data into a common currency (e.g. U.S. Dollars) to avoid

potential problems based on fluctuations in cross-country exchange rates or deviations from relative

purchasing power parity. For our first forecast experiment, we initially use the period Jan 5, 1998 -

Dec 12, 2007, and predict the remaining weekly realized volatilities on a one-step-ahead basis. For

the second experiment, we initially use the period Jan 5, 1998 - September 12, 2006, and predict the

realized volatilities for a rather tranquil period of September 15, 2006 - August 3, 2007. Our aim for

choosing such forecast samples is to explore whether the MIDAS model fares better in more volatile

sample periods.

The diagnostics for daily return data for the whole sample are provided in Tables 1 and 2. We

first present the data diagnostics for each country in Table 1, and then provide the average values

of descriptive statistics for each group of countries in Table 2. The main appealing characteristic of

emerging stock markets is that they provide higher returns at an expense of higher volatility, and exhibit

higher fluctuations in the realized volatility. Developed markets show higher persistence in returns and

realized volatility. Moreover, we observe higher within-week daily volatility fluctuations for both sets

of countries for the year 2008 compared to the tranquil period of 2006-2007 (see Table 3). Hence, since

the MIDAS model exploits the fluctuations in the higher frequency data optimally, one can expect the

MIDAS model to outperform the benchmark in our first out-of-sample experiment where we forecast

the realized volatility for 2008.

We present MIDAS regression diagnostics, specifically for our first experiment, in Table 4. The

table values are the mean and the standard deviation of the corresponding regression statistics across
7For an extended discussion, see West (2006).
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Figure 1: MIDAS Weights using the whole sample
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the sample rollings (which sums to 53 out-of-sample weekly observations). The MIDAS regression

coefficients α̂0 and α̂1 are found to be positive and significant for all countries across all sample rolls.

This implies that, as expected, daily squared returns contribute positively to the following week’s

realized volatility. The estimated weighting schemes are presented by columns 3 to 7, and it is apparent

that the weights are heavily placed on the first 15 lags, and completely die out around 35-40 lags.8

Estimated MIDAS residuals for all countries except HSI and JKSE exhibit no serial correlation at a

tenth lag order. Moreover, the squared MIDAS residuals have no serial correlation for all markets but

DAX, IPC, MERVAL, and TWII. Based on these diagnostics, we conclude that our specification for the

MIDAS regression model is appropriate/adequate as all parameters appear to be significant, we have

no serial correlation in the first and second moments of the errors for most markets, and lags toward

50 convey no significant information.

Table 5 presents our essential empirical results: the out-of-sample forecast performance of the MI-

DAS regression model. The first three columns provides the diagnostics for the first forecast experiment

where we initially use the sample Jan 5, 1998 - Dec 12, 2007, and forecast the Dec 15, 2007 - Dec 28,

2008. The remaining three columns present our second forecast experiment, where we first use the

January 5, 1998 - September 12, 2007 sample, and forecast the period September 15, 2007 - August

3, 2008. The columns for the t-statistics are the West (2006) forecast accuracy test statistic, where a

positive and large value implies that the MIDAS model forecasts statistically outperform the benchmark

GARCH(1,1) model.

8We also present in-sample weights for S&P500, FTSE, IBOVESPA, ISE100, and HSI in Figure 1, where we use the
whole sample of 1998-2008.

7



First observation from Table 6 is that, for the tranquil period, we can not reach a conclusion

regarding the superiority of forecasting precision of the MIDAS method. As given by the sixth column,

MIDAS can beat the GARCH model only for the case of BSE. However, we draw a completely different

picture for the stressed market period. The third column presents our forecast comparison results for

the global turbulent period. Apparently, seven stock markets’ forecasts generated by the MIDAS model

are statistically more precise than the one obtained from the GARCH(1,1) model at 90% confidence. In

particular, weekly MIDAS volatility forecasts obtained for FTSE, NIKKEI, IBOVESPA, IPC, ISE100,

KS11, and MERVAL are statistically superior to GARCH forecasts at a 90% confidence. Moreover, the

result is more stark for IPC and MERVAL, where MIDAS beats the benchmark GARCH model at a

95% confidence.9 Moreover, it is interesting to note that the forecast precision of the MIDAS model

increases for almost all stock markets, both for developed and emerging stock markets.10

Hence, we conclude that MIDAS method shows a significant improvement over the benchmark

GARCH model during more volatile periods. We attribute this improvement to the flexibility of MI-

DAS methodology which allows the daily data to be used in forecasting weekly volatility. Hence, this

additional information in the higher frequency data during turbulent market conditions significantly

improved volatility forecasts. Moreover, MIDAS model’s success in weekly volatility forecasting is valid

for both the developed and emerging markets data.

4 Conclusion

In this paper, weekly equity return volatility forecasts generated by MIDAS model have been compared

with the benchmark of GARCH for various stock markets under the recent financial turbulence. The

MIDAS model has produced a better volatility forecasting performance during the stressed market

period. These results are consistent in both developed and developing countries’ stock market data.

We conclude that making use of additional daily return information during turbulent periods in weekly

volatility forecasting provides an improvement in forecast precision. However, the same conclusion could

not be drawn for the tranquil period. The use of the MIDAS model with various implied volatility models

has been left for future research.

9To ensure that our results are not driven by our specification for the benchmark model, we compare the MIDAS
model against different benchmarks, e.g. GARCH with t-distributed disturbances, and EWMA, and the results are found
to be very similar.

10The only exceptions are BSE30 and DAX.
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Table 2: Group-wise Descriptive Statistics of Stock Market -Daily Data-

Daily Return Daily Squared Return

Developed M. Emerging M. Developed M. Emerging M.

Mean -0.0068 0.0298 2.119 3.885

Variance 2.119 3.883 37.906 82.255a

Skewness -1.131 0.0023 10.114 8.341b

Kurtosis 9.524 9.312 154.240 112.296c

Q(5) 36.075 20.437 1227.873 423.036d

Notes: Developed countries’ equity markets consist of S&P500 (the U.S.), FTSE (the U.K.), DAX (Germany), and
NIKKEI (Japan). Emerging equity markets consist of BSE30 (India), HSI (Hong Kong), IBOVESPA (Brazil), IPC
(Mexico), ISE100 (Turkey), JKSE (Indonesia), KS11 (South Korea), MERVAL (Argentina), STI (Singapore), and TWII
(Taiwan). The table values are calculated simply by averaging the corresponding statistics for each group of countries.
Q(5) denotes the corresponding Ljung-Box (1979) Q-statistic for five lags.

a averaging all but the outliers IBOVESPA and ISE100. Including the outliers yields an average variance of
152.255.
b averaging all but the outlier IBOVESPA. Including the outlier yields an average skewness of 10.091.
c averaging all but the outlier IBOVESPA. Including the outlier yields an average kurtosis of 195.781.
d averaging all but the outlier HSI. Including the outlier yields an average Q(5) of 472.280.

Table 3: The Descriptive Statistics for Daily Squared Return Data for Two Sub-Samples

Dec. 15, 2007 - Dec. 19, 2008 Sep. 15, 2006 - Aug. 3, 2007
Mean St.Dev. Mean St.Dev

S&P500 6.363 15.611 0.485 1.190

FTSE 5.322 12.642 0.554 1.123

DAX 5.407 14.625 0.794 1.281

NIKKEI 7.948 19.979 0.765 1.453

BSE30 7.633 13.598 1.317 3.083

HSI 9.700 23.168 1.050 1.919

IBOVESPA 10.204 23.422 1.969 4.294

IPC 4.986 11.941 1.268 2.891

ISE100 7.124 14.841 2.388 3.964

JKSE 5.714 14.048 1.140 2.208

KS11 5.735 15.048 0.571 2.048

MERVAL 7.628 20.024 1.484 4.491

STI 4.488 10.473 1.071 2.005

TWII 4.321 7.097 0.885 2.348
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Table 5: The forecasting performances of MIDAS and GARCH models: Out-of-sample Mean Squared Prediction Errors

Forecast Sample Forecast Sample
Dec. 15, 2007 (Monday) - Dec. 19, 2008 (Friday) Sep. 15, 2006 (Monday) - Aug. 3, 2007 (Friday)

MIDAS GARCH t-stat. MIDAS GARCH t-stat.

S&P500 0.089 0.109 0.977 0.0009 0.0006 -0.452

FTSE 0.093 0.114 1.494∗ 0.0009 0.0008 -0.231

DAX 0.107 0.108 0.086 0.012 0.0014 0.455

NIKKEI 0.134 0.271 1.245∗ 0.0015 0.0016 0.081

BSE30 0.112 0.150 1.199 0.0059 0.0098 1.362∗

HSI 0.528 0.687 0.966 0.0020 0.0021 0.147

IBOVESPA 0.364 0.428 1.608∗ 0.0157 0.0140 -0.222

IPC 0.067 0.107 1.826∗∗ 0.0047 0.0089 0.871

ISE100 0.145 0.174 1.555∗ 0.0436 0.0118 -5.477

JKSE 0.174 0.185 1.001 0.0032 0.0028 -0.595

KS11 0.123 0.161 1.497∗ 0.0027 0.0009 -3.072

MERVAL 0.253 0.541 1.829∗∗ 0.0148 0.0159 0.104

STI 0.073 0.098 1.237 0.0020 0.0025 0.264

TWII 0.031 0.027 -1.274 0.0033 0.0020 -0.750

Notes: The values in the table are of order 10−4. Mean squared prediction errors for each methodology are based on one-step-ahead

out-of-sample forecasting. The HAC t-statistics are obtained from the regression of f̂t ≡ ê2
G,t − ê2

M,t on a constant. The superscripts
∗ and ∗∗ imply that the MSPE of GARCH is higher than that of the MIDAS with a significance level of .10 or .05, respectively. The
corresponding critical values are 1.282 and 1.645.
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