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Abstract

Many economic processes are a combination of components operating on di¤erent

frequencies. Several questions about the data are connected to the understanding of

the behavior at di¤erent frequencies. Fourier analysis allow us to study the cyclical

nature of a time-series in the frequency domain. However, under the Fourier transform,

the time information of a time series is completely lost. Some authors have proposed

Wavelet analysis, which performs the estimation of the spectral characteristics of a

time-series as a function of time, as an alternative to the Fourier transform.

In this paper, we suggest two tools that generalize wavelet methods: cross wavelets

and wavelet coherency. With these tools, we are able to use wavelet analysis to directly

study the interactions (such as covariance, correlation and causality) between two time-

series at di¤erent frequencies and how they evolve over time.
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1 Introduction

Many economic processes are a combination of components operating on di¤erent frequencies.

Several questions about the data are connected to the understanding of the behavior at

di¤erent frequencies. Sometimes the same economic agent may be simoultaneasly operating

at di¤erent horizons. For example, the Central banks may have di¤erent objectives in the

short and long run, and may be operating simultaneously at di¤erent timescales (e.g. see

Ramsey and Lampart 1998a and 1998b).

Fourier analysis allow us to study the cyclical nature of a time-series in the frequency

domain. However, under the Fourier transform, the time information of a time series is com-

pletely lost. This does not mean that they are not useful. For example, spectral techniques

can be used to identify seasonal components, such as a Christmas e¤ect (see Wen 2002). But

these classical techniques can only be used for time-series in which the statistical properties

do not vary with time, i.e. are stationary. Unfortunately, macroeconomic time-series are

noisy, complex and, tipically strongly non-stationary.

To overcome the problems of analysing non-stationary Gabor (1946) have suggested the

use of the Short Time Fourier Transform (STFT). The basic idea is to break a time series into

smaller sub-samples and apply Fourier transform to each sub-sample. However, as Raihan

et al. (2005) pointed out, once it is selected the length of the window is �xed. However

a longer window implies the loss of information along the time dimension, and a shorter

window implies the loss of information along the frequency dimension.

As an alternative to STFT, wavelet analysis has been proposed. Wavelet analysis per-

forms the estimation of the spectral characteristics of a a time-series as a function of time.This

approach reveals how the di¤erent the periodic components of the time-series change over

time.

One major advantage a¤orded by the wavelet transform is the ability to perform natural

local analysis of a time series in the sense that the length of wavelets varies endogenously.
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It stretches into a long wavelet function to measure the low frequency movements; and it

compresses into a short wavelet function to measure the high frequency movements. In order

to capture abrupt changes, for example, one would like to have very short functions (narrow

windows). At the same time, in order to isolate slow and persistent movements, one would

like to have very long functions (wide windows). This is exactly what can be achieved with

the wavelet transform.

While the Fourier transform breaks down a time series into constituent sinusoids of

di¤erent frequencies and in�nite duration in time, the wavelet transform expands the time

series into shifted and scaled versions of a function �the so-called mother-wavelet �that has

limited spectral band and limited duration in time. We know from the Heisenberg uncertainty

principle that there is always a trade-o¤ between localization in time and localization in

frequency; in particular, we cannot ask for a function to be, simultaneously, band and time

limited. However, a mother wavelet can be chosen with a fast decay in time and frequency

which, for all pratical purposes, corresponds to an e¤ective band and time limiting; see

Daubechies (1992).

As a coherent mathematical body, wavelet theory was born in the mid-1980s (Grossmann

and Morlet 1984, Goupillaudand et al 1984). After 1990, the literature rapidly expanded

and wavelet analysis is now used extensively in physics, geo-physics, astronomy, epidimiology,

signal processing, oceanography, etc. Interestingly, and in spite of all its potential advan-

tadges, this technique is very rarely used in Economics. The pioneering work of Ramsey and

Lampart (1998a and 1998b) and Ramsey (1999), as noted by Crowley (2007) is unknown

by most of the economists, who seem �xated on traditional econometric methods because,

overlooking the potential for using wavelets in economic data. Among the notable exceptions

to this rule, one can point at Wen e os outros. For a more thorough (and excellent) review

see ??????.

Probably, one of the reasons why wavelets are not more popular in the economics liter-

ature is related to the di�culty to simultaneosly analyse two (or more) time-series simulta-
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neously. In Economics, these techiques have either been applied to a single time-series (e.g.

Raihan et al. 2005) or used to individually analise two time-series (one each time), whose

decompositions are then studied using traditional time domain methods, such us correlation

analysis or Granger causality (see Ramsey and Lampart, 1998a and 1998b).

In this paper, we present two tools, Cross Wavelet Transform and Cross Wavelet Coher-

ence, proposed by Hudgins et al (1993) and Torrence and Compo (1998) that may help to

overcome this problem. Cross wavelets and wavelet coherency generalize wavelet methods,

allowing the analysis of time-frequency dependencies between the two time-series. With

these tools, we are able to use wavelet analysis to directly study the interactions (such as

covariance, correlation and causality) between two time-series at di¤erent frequencies and

how they evolve over time.

This paper proceeds as follows. Section 2 rigorously introduces wavelets. It starts by dis-

cussing the Continuous Wavelet Transform (CWT), its localization properties and discusses

in some detail one of the most popular wavelets, the Morlet wavelet. Section 3 describes the

Cross Wavelet Transform (XWT) and the Wavelet Coherence (WTC) and discusses how to

assess their statistical signi�cance. Section 4 applies CWT, XWT and WTC to macroeco-

nomic data and discusses its insights. Section 5 concludes.
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2 Wavelets: The dynamical decomposition of time

2.1 The wavelet

We start by introducing some mathematical notation. In what follows, L2 (R) denotes the

set of square integrable functions, i.e. the set of functions de�ned on the real line such that

Z 1

�1
jx (t)j2 dt <1: (1)

Since the above quantity is usually referred to as the energy of the function x, this space

is also known as the space of functions with �nite energy. As it is well known, one can de�ne

in L2 (R) an inner product

hx; yi :=
Z 1

�1
x (t) y� (t) dt (2)

and an associated norm kxk := hx; xi
1
2 . Here, and throughout the paper, the asterisk super-

script will be used to denote complex conjugation and the symbol := means �by de�nition�.

Given a function x (t) 2 L2 (R), we will denote by X (f) the Fourier transform of x (t):

X (f) :=

Z 1

�1
x (t) e�i2�ftdt: (3)

We recall the well-known Parseval relation, valid for all x (t) ; y (t) 2 L2 (R) :

hxt; y (t)i = hX (f) ; Y (f)i ; (4)

from which the Plancherel identity (which sates that the energy of a function is preserved

by the Fourier transform) immediately follows:

kx (t)k2 = kX (f)k2 ; (5)

see, for example, Körner (1988).
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The minimum requirements imposed on a function  (t) to qualify for being a mother

(admissible or analyzing) wavelet are that  2 L2 (R) and also ful�lls a technical condition,

known as the admissibility condition, which reads as follows:

0 < C :=

Z 1

�1

j	(f)j
jf j df <1: (6)

The wavelet  is usually normalized so that it has unit energy, i.e. k k2 =
R1
�1 j (t)j

2 dt =

1:

The square integrability of  is a very mild decay condition; the wavelets used in practice

have much faster decay; typical behavior will be exponential decay (j (t)j �MeCjtj;for some

constants C and M) or even compact support.

For functions with su¢ cient decay1 it turns out that the admissibility condition (6) is

equivalent to requiring

	(0) =

Z 1

�1
 (t) dt = 0: (7)

This means that the function  has to wiggle up and down the t-axis, i.e. it must behave

like a wave; this, together with the decaying property, justi�es the choice of the term wavelet

(originally, in French, ondelette) to designate  .

2.2 The continuous wavelet transform

Starting with a mother wavelet  , a family  s;� of �wavelet daughters�can be obtained by

simply scaling  by s and translating it by �

 s;� (t) :=
1p
jsj
 

�
t� �

s

�
,s; � 2 R; s 6= 0: (8)

The parameter s is a scaling or dilation factor that controls the length of the wavelet (the

1The exact minimum decay requirements are that  2 L2 (R) also satis�es
R1
�1 (1 + jtj)

� j (t)j dt < 1
for some � > 0; see e.g. Daubechies (1992). p. 25.
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factor 1=
p
jsj being introduced to guarantee preservation of the unit energy,



 s;�

 = 1)

and � is a location parameter that indicates where the wavelet is centered. Scaling a wavelet

simply means stretching it(if jsj > 1), or compressing it (if jsj < 1).2

Given a function x (t) 2 L2 (R) (a time series), its continuous wavelet transform (CWT),

with respect to the wavelet  ; is a function Wx (s; �) obtained by projecting x (t) ; in the L2

sense, onto the over-complete family
�
 s;�

	
:

Wx (s; �) =


x;  s;�

�
=

Z 1

�1
x (t)

1p
jsj
 �
�
t� �

s

�
dt: (9)

The importance of the admissibility condition (6) comes from the fact that it guarantees

that it is possible to recover x (t) from its wavelet transform; see e.g. Daubechies (1992). p.

25:

x (t) =
1

C 

Z 1

�1

�
Wx (s; �) s;� (t) d�

� ds
s2
: (10)

Since we can go from x (t) to its wavelet transform, and from the wavelet transform back

to x (t), we can conclude that both are representations of the same mathematical entity.

They just present information in a di¤erent manner, allowing us to gain insights that would,

otherwise, remain hidden. It is also important to observe that the energy of x (t) is preserved

by the wavelet transform, in the sense that

kxk2 = 1

C 

Z 1

�1

�Z 1

�1
jWx (s; �)j2 d�

�
ds

s2
(11)

and that a Parseval type identity also holds

hx; yi = 1

C 

Z 1

�1

�
Wx (s; �)W

�
y (s; �) d�

� ds
s2

(12)

for x; y 2 L2 (R) :

Because the wavelet function  (t) may, in general, be complex, the wavelet transform

2Note that for negative s, the function is also re�ected.
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Wx may also be complex. The transform can then be divided into its real part, RfWxg ;

and imaginary part, I fWxg ; or in its amplitude, jWxj ; and phase, tan�1
�
IfWxg
RfWxg

�
: For real-

valued wavelet functions the imaginary part is zero and the phase is unde�ned. Therefore,

in order to separate the phase and amplitude information of a time series it is important to

make use of complex wavelets. In particular, it is convenient to choose  (t) to be progressive

or analytic, i.e. to be such that 	(f) = 0 for f < 0; in this case, if x (t) is real, a variant

of the reconstruction formula, in which the parameter s can be restricted to positive values

only, is possible:

x (t) =
2

C 

Z 1

0

�Z 1

�1
R
�
Wx (s; �) s;� (t)

�
d�

�
ds

s2
(13)

and one also has

kxk2 = 2

C 

Z 1

0

�Z 1

�1
jWx (s; �)j2 d�

�
ds

s2
(14)

and

hx; yi = 2

C 

Z 1

0

�
Wx (s; �)W

�
y (s; �) d�

� ds
s2
; (15)

see Daubechies (1992), pp. 27-28, Kaiser 1994, pp. 70-73 or Mallat (1998), pp.82-83 for more

details about analytic wavelets. Throughout the rest of the paper, since, in the practical

applications, we will use an analytic wavelet, we always assume that the scaling parameter

s takes positive values only.

In view of the energy preservation formula (14), and in analogy with the terminology

used in the Fourier case, the function jWx (s; �)j2 is usually referred to as the wavelet power

spectrum (sometimes also called the scalogram, see Flandrin 1988).

2.3 Localization properties

Let the wavelet  be normalized so that k k = 1 and de�ne its center �t by

�t =

Z 1

�1
t j (t)j2 dt: (16)
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In other words, the center of the wavelet is simply the mean of the probability distribution

obtained from j (t)j2. As a measure of concentration of  around its center one usually takes

the variance �t:

�t =

�Z 1

�1
(t� �t)

2 j (t)j2 dt
� 1

2

: (17)

In a total similar manner, one can also de�ne the center �f and variance �f of the Fourier

transform 	(f) of  .

The interval [�t � �t; �t + �t] is the set where  attains its "most signi�cant" values

whilst the interval
�
�f � �f ; �f + �f

�
plays the same role for 	(f) of  : The rectangle

[�t � �t; �t + �t] �
�
�f � �f ; �f + �f

�
in the (t; f)�plane is called the Heisenber box or

window in the time-frequency plane. We then say that  is localized around the point�
�t; �f

�
of the time-frequency plane with uncertainty given by �t�f .

In quantummechanics, the uncertainty principle, �rst established byWerner Karl Heisen-

berg, gives a lower bound on the product of the standard deviations of position and momen-

tum for a system, implying that it is impossible to have a particle that has an arbitrarily

well-de�ned position and momentum simultaneously. The Heisenberg uncertainty principle

establishes that the uncertainty is bounded from below by the quantity 1=4�; i.e. one has

�t�f �
1

4�
: (18)

It is also known that the equality in (18) is attained if and only if the function  is a

(translated and modulated) gaussian:  (t) = aei�f te�b(t��t)
2

;see Messiah (1961).

It follows from the Parseval relation (4) that

Wx (s; �) =


x (t) ;  s;� (t)

�
= hX (f) ;	s;� (f)i

(19)

where X (f) and 	s;� (f) are the Fourier transforms of x (t) and  s;� (t) ;respectively.
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If the mother wavelet  is centered at �t and has variance �t and its wavelet transform

	(f) is centered at �f with a variance �f , then one can easily show that the daughter wavelet

 �;s s will be centered at � + s�t with variance s�t, whilst its Fourier transform 	s;� will

have center
�f
s
and variance �f

s
. Hence, (19) shows that the continuous wavelet transform

Wx(s; �) gives us local information within a time-frequency window

[� + s�t � s�t; � + s�t + s�t]�
h�f
s
� �f

s
;
�f
s
+
�f
s

i
(20)

In particular, if  is chosen so that �t = 0 and �f = 1;then the window associated with  �;s

becomes

[� � s�t; � + s�t]�
�
1

s
� �f

s
;
1

s
+
�f
s

�
(21)

In this case, the wavelet transform fW fg (s; �) will give us information on x (t) for t near

the instant t = � ; with precision s�t; and information about X (f) for frequency values near

the frequency f = 1
s
; with precision �f

s
: Therefore:

� small values of s correspond to information about x (t) in a �ne scale and about X (f)

in a broad scale,

� large values of s correspond to information in a broad scale about x (t) and in a �ne

scale about X (f),

� Although the area of the windows is constant at all scales, A = 4�t�f , their dimensions

change according to the scale. The windows stretch for large values of s (broad scales

s �low frequencies f = 1=s and compress for small values of s (�ne scale s �high

frequencies f = 1=s).
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2.4 The Morlet wavelet: optimal joint time-frequency concentra-

tion

There are several types of wavelet functions available with di¤erent characteristics, such as,

Morlet, Mexican hat, Haar, Daubecies, etc; see, e.g. Daubechies (1992), Mallat (1998) or

Meyer (1993). Since the wavelet coe¢ cientsWx (s; �) contain combined information on both

the function x (t) and the analyzing wavelet  (t), the choice of the wavelet is an important

aspect to be taken into account. This will depend maily on the particular application one has

in mind. In this paper we choose a complex wavelet, as it yields a complex transform, with

information on both the amplitude and phase, which is essential for the analysis we want to

perform. One of the most popular wavelets used is the Morlet wavelet, �rst introduced in

Goupillaudand (1984), which is de�ned as

 � (t) = ��
1
4

�
ei�t � e�

�2

2

�
e�

t2

2 ; (22)

the term e�
�2

2 being introduced to guarantee the ful�llment of the admissibility condition;

however, for � � 5 this term becomes negligible and the simpli�ed version

 � (t) = ��
1
4 ei�te�

t2

2 (23)

of (22) is normally used (and still referred to as a Morlet wavelet). Our results in the next

section, were obtained with the particular choice � = 6.

This wavelet has interesting characteristics. First of all, it is (almost) analytic. The

Fourier transform of the �true�Morlet wavelet (22) is, in fact, supported in (0;1), but

that of (23) has some mass on (�1; 0); for � > 5, this mass is, however, negligible, so, for

all practical purposes, the wavelet can be considered as analytic; see Foufoula-Gergiou and

Kumar (1993).

The wavelet (23) is centered at the point
�
0; �

2�

�
of the time-frequency plane; hence, the
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for the particular choice � = 6, one has that the frequency center is

�f =
6

2�
� 1 (24)

and the relationship between the scale and frequency is simply

f =
�f
s
� 1

s
(25)

It is also very simple to verify that the time variance is �t = 1=
p
2 and the frequency

variance is �f = 1=
�
2�
p
2
�
: Therefore, the uncertainty of the corresponding Heisenberg box

attains the minimum possible value �t�f and one can thus say that the Morlet wavelet has

optimal joint time-frequency concentration.3

2.5 Transform of �nite discrete data

If one is dealing with a discrete time series fxn; n = 0; :::; N � 1g of N observations with a

uniform time step �t, the integral in (9) has to be discretized and is, therefore, replaced by

a summation over the N time steps; the CWT of the time series fxng is thus given by

W x
m (s) =

�tp
s

N�1X
n=0

xn 
�
�
(n�m)

�t

s

�
: (26)

Although it is possible to calculate the wavelet transform using the above formula for each

value of s andm, one can also identify the computation for all the values of m simultaneously

as a simple convolution of two sequences; in this case, one can follow the standard procedure

and calculate this convolution as a simple product in the Fourier domain, using the fast

Fourier transform (FFT) algorithm to go forth and back from time to spectral domain; this

is precisely the technique prescribed by Torrence and Compo (1998).4

3This could be antecipated by noting that  � is a simple modulated Gaussian.
4A program code based on the above procedure is also available at the the site

http://paos.colorado.edu/research/wavelets/.
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As with other types of transforms, the CWT applied to a �nite length time series in-

evitably su¤ers from border distortions; this is due to the fact that the values of the transform

at the beginning and the end of the time series are always incorrectly computed, in the sense

that they involve �missing� values of the series which are then arti�cially prescribed; the

most common choices are zero padding �extension of the time series by zeros �or peri-

odization. Since the �e¤ective support�of the wavelet at scale s is proportional to s, these

edge-e¤ects also increase with s. The region in which the transform su¤ers from these edge

e¤ects is called the cone of in�uence (COI). In this area of the time-frequency plane the re-

sults are unreliable and have to be interpreted carefully. In this paper, the cone of in�uence

is de�ned, following Torrence and Compo (1998), as the e-folding time of the wavelet at the

scale s, that is, so that the wavelet power of a Dirac � at the edges decreases by a factor of

e�2. In the case of the Morlet wavelet this is given by
p
2s, and in all the pictures is marked

as a shadow in the wavelet plot.
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3 Cross Wavelet Transform and Cross Wavelet Coher-

ence

Probably, one of the reasons why wavelets are not more popular in the Economics literature

is because it has been a di¢ cult task to use wavelets to analyze two, or more, time series

together. Torrence and Compo (1998) and Grinsted et al. (2004) showed how the Cross

Wavelet Transform (XWT) and wavelet coherence can be used to quantify the relationships

between two time series in the time-frequency space.

The XWT of two time series, x = fxng and y = fyng, �rst introduced by Hudgins et al

(1993) is simply de�ned as

W xy
n = W x

nW
y�
n ; (27)

where W x
n and W

yx
n are the wavelet transforms of x and y, respectively. The cross wavelet

power is given by jW xy
n j.

While a wavelet power spectrum depicts the variance of a time series, with times of

large variance showing large power, the cross�wavelet power of two time series depicts the

covariance between these time series at each scale or frequency. Therefore, cross�wavelet

power gives us a quanti�ed indication of the similarity of power between two time series.

As in the Fourier spectral approaches, the wavelet coherence (WTC) can be de�ned as

ratio of the the cross-spectrum to the product of the spectrum of each series, and can be

thought of as the local correlation between two CWTs. Here, again, we follow Grinsted et al

(2004) and de�ne the wavelet coeherence between two time series as x = fxng and y = fyng

as follows:

R2n (s) =
jS (s�1W xy

n (s))j2

S
�
s�1 jW x

n j
2�S �s�1 jW y

n j2
� ; (28)

where S denotes a smoothing operator in both time and scale. The smoothing can be

achieved by a convolution in time and scale. For the Morlet wavelet, a suitable smoothing

operator is suggested by Torrence and Webster (1998) and also used by Grinsted et al

14



(2004). In this case, the time convolution is done with a Gaussian e�t
2=(2s2), which is the

absolute value of the wavelet function in each scale, and the scale convolution is performed

by a rectangular window � with a length of 0:6s, (the factor 0.6 is the empirical scale

decorrelation length for Morlet wavelet):

St (W; s) =Wn (s) c1e
� t2

2s2 (29)

and

Ss (W;n) =Wn (s) � c2�(0:6s) ; (30)

where c1 and c2 are normalizing constants and is the rectangle function; see Grinsted et al

(2004). In practice both convolutions are done discretely and therefore the normalization

coe¢ cients are determined numerically.

Smoothing is a necessary step, because, without that step, coherence is identically one

at all scales and times. A similar procedure is used in Fourier analysis.

3.1 Statistical signi�cance

1. We have exact probability distributions for the CWT

2. We have exact probability distributions for the XWT

3. Torrence and Compo (1998) suggest that this can be estimated by conducting repeated

Monte Carlo simulations of white or colored random noise.

The computed wavelet results are only considered statistical signi�cant if they are above

a given con�dence level de�ned by the random noise simulations; more details can be found

in [TC98], [TW99] and [JMG03].

A MatLab software package for performing and displaying the XWT and WTC, which

also computes the levels of signi�cance as described above, was developed by A. Grin-
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sted, J. C. Moore, and S. Jevrejeva and can be found at http://www.pol.ac.uk/home/ re-

search/waveletcoherence/. All the numerical results presented in this paper were obtained

using the above package.

16



4 Interest Rates and the Economic Activity: a simple

application

In this section we apply the methods analyzed earlier, to decompose the evolution of time-

frequency relations between Economic variables.

The data used are monthly. We have a measure for interest rates (Moody�s Seasoned Aaa

Corporate Bond Yield) running from 1919:01 to 2007:04, and a measure for in�ation rate,

based on the Consumer Price Index), running from 1921:02 to 2007:4. To measure Economic

Activity we use the Industrial Production Index, available from 1921:1 to 2007:4. We also

have data for money stock. We have data for M1 (since 1947:01) and M2 (since 1948:1).

All data is available at the Federal Reserve Bank of St. Louis (data for M1 and M2 were

complemented with the estimations provided by Rasche, 1987).

Data for industrial production and the money stocks were transformed in logarithms.

The trend was removed using a wavelet based �lter (see Cronley 2007), which has properties

similar to a band pass �lter. In Figures 1-5 we can see the continuous wavelet power spectrum

of the several variables.

In Figure 2,5 we see the time-scale decomposition of interest rates. It is clear that most

of the action, specially at high scales (low frequencies) appears after 1960s, suggesting a

structural change in that decade. Figure 3 tells us that until 1950s in�ation rate variance

was quite high both at low and high scales. Again in 1970s and 1980s, probably as a

consequence of very active oil shocks, the variance of the in�ation rate became higher, but

in this case, the e¤ect is clearer at medium and high scales, suggesting that we were facing

permanent shocks to in�ation.

Figure 4, suggests that the variance, at all scales of the industrial production was quite

high until 1950s. After that it has been steadily decreasing, with an exception between mid

5The thick black contour designates the 5% signi�cance level. The cone of in�uence where edge e¤ects
might distort the picture is shown as a lighter shade.
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1970s and mid 1980s, when the variance at the business cycle frequency (2 to 8 years) was

quite high. It has become common in the literature to argue that in the last decade we

observed of decrease in the volatility of GDP in the United States. Some authors call it

the "Great Moderation". In reality, we can observe that this is a secular, and not decadal,

trend. Before the 2nd World War, the volatility was quite high at all scales (at least scales

above 6 months). In the 1960s, the volatility decreased at all scales, and the increase at the

business cycle frequency in the 1970s, probably due to the oil shocks, was temporary.

Figures 5 and 6 are interesting, because we can compare the di¤erent evolution of the

behavior of two di¤erent monetary aggregates. The volatility of M1 is very high at very low

scale (high frequencies), which is something we do not observe for M2. It is also very clear

the di¤erent behavior in the 1970s, with M2 with a very high power in the 3 � 6 year scale,

while M1 only became more active after 1980, suggesting a change in the monetary policy.

In Figures 7 to 10,6 we can observe the estimated cross wavelet between the interest

rates and several other variables. We focus on the interest rates because according to Sims

(1980, 1992) the role of money in output determination is very minor, when interest rates

are included in the system. According to his results interest rates play a leading role both

in determining output and in�ation.

In Figure 7, we can see that in the 1970s and 1980s the covariance between in�ation and

interest rates was quite high in the 3 � 20 year scale. Here can see the big advantage of using

wavelets. Note that the causality is not the same at the di¤erent scales. Arrows pointing

down and to the right (in the 3-8 year scales) suggest that these variables are procyclical,

with the in�ation rates leading. In the 12-20 year scales arrows point down and to the

left, suggesting that the variables behave anti-cyclically and with the interest rates leading.

This suggests that, at the business cycle frequency, interest rate increases follow in�ation

6The 5% signi�cance level is shown with a thick contour. The relative phase relationship is shown as
arrows. In-phase pointing right, anti-phase pointing left.
In-phase relations with interest rates leading (lagging) pointing up (down) and to the right. Anti-phase

realations with interest rates leading (lagging) pointing down (up) and to the left.
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increases, but in the longer run the increase in the interest make in�ation rates fall. This

type of conclusion would not be easy to get if one is restricted to time series or frequency

analysis methods.

Figure 8 tells us that in 1920s and 1930s increases in the interest rates preceded decreases

in the industrial production suggesting that Friedman was right, when blaming the contrac-

tionary monetary policy for the big recession. In late 1950s and in the decade of 1960, long

run changes (at the 10-14 year scales) in the interest rates caused anti-cyclical movements

in the industrial production. In the 1970s and 1980s this e¤ect was extended to the business

cycle frequency (4-10 years). Interestingly, and starting in 1980, coinciding with Paul Volker

as a governor of the Federal Reserve, one can see that interest rates, in the 2-4 year band,

reacted procyclically with industrial production, having contractionary e¤ects in the longer

run.

Figures 9 and 10, describe to us the time-scale relation between interest rates and M1

and M2 after the second World War. A structural change in this relation has clearly happen

in 1970s, probably coinciding with the end of the monetary targeting. Generally, arrows

point to the left, suggesting an obvious anticyclical relation, higher interest rates correspond

to contractionary monetary policies. Arrows pointing down, typically at lower scales, higher

frequencies, suggest that interest rates lead the money stock, while in the long run (higher

scales) the opposite happens.

While the cross wavelet transform gives us something that can be interpreted as the

covariance between two variables at di¤erent time-scales, the wavelet coherency can be in-

terpreted as the correlation; therefore complementing the previous analysis and highlighting

relations that could, otherwise, remain hidden.

In Figure 10, we can observe that the relation between interest rates and in�ation has

changed a lot. In the 1930s the relation is not very strong, except for an island in the 6-9

year band, where arrows pointing upwards and to the left suggest that in�ation was the

leading variable, with anticyclical e¤etcs on the interest rates. After 1960s, strong medium
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and long run relations are uncovered con�rming the conclusions we reached with the cross

wavelet analysis. More iluminating is Figure 11. A negative relation between interest rates

and industrial production is uncovered in the 1930s at the business cycle frequency. In 1950s,

interest rates react procyclically to changes in the industrial production (1-5 year band). In

the 1970s and 1980s, in the 3-10 year band, arrows suggest that increases in the interest rates

had contractionary e¤ects, con�rming the analysis of the authors (examples???) who argued

that monetary policy reinforced the e¤ects of the oil shocks. Still in the 1980s, but at lower

scales (0.5-1.5 and 2-5 year band), interest rates seem to follow industrial production, with

the negative long run e¤ects already noted. After 2000, this pattern seems to have moved to

higher scales (but since this island is under the cone of in�uence it is still to early for decent

inference).

Figures 12 and 13 show that the relation between money stocks and interest rates has

changed quite often since 1950. For example, if we focus on Figure 12, we can see that in

the 1950s the interest rate was the leading variable, with M2 reacting anticyclically. In the

decade of 1960, in the 1-3 year band, M2 became the leading variable, with the interest rate

responding in a procyclical way. In the 1970s, at the business cycle frequencies, 2-8 year

band, interest rates and M2 varied anticyclically, and it is not clear which mariable was the

leading one. But in the 1980s, at higher scales, 6-8 year M2 became the leading variable,

while at lower scales, 1-3 year, interest rates were leading. A similar pattern continued to

be observed in the 1990s.

20



References

[Dau92] Daubechies, I. (1992) Ten Lectures on Wavelets, CBMSNSF Regional Confer-

ence Series in Applied Mathematics,.vol. 61 SIAM, Philadelphia,

[Fla88] Flandrin, P. (1988), Time-frequency and time-scale, in IEEE Fourth Annual

ASSP Workshop on Spectrum Estimation and Modeling, pp 77�80, Minneapolis,

Minnesota.

[FK93] Foufoula-Gergiou, E. and Kumar, P. (1993) , Wavelts in Geophysics, volume 4

of Wavelet Analysis and Its Applications. Academic Press, Boston, 1993.

[GGM84] Goupillaudand, P., A. Grossman, and J. Morlet (1984), Cycle-octave and re-

lated transforms in seismic signal analysis, Geoexploration, 23, 85�102.

[Kai94] Kaiser, G. (1994), A Friendly Guide to Wavelets. Birkhäuser, Basel, 1994.

[Kör88] Körner, T. W. (1988), Fourier Analyis, Cambridge University Press, Cambridge,

1988.

[Mal98] Mallat, S. (1998), A Wavelet Tour of Signal Processing, Academic Press, New

York, 1998.

[Mes61] Messiah, A. (1961), Quantum Mechanics, North-Holland, Amsterdam.

[Mey93] Meyer, Y. (1993), Wavelets: Algorithms and Applications, SIAM, Philadelphia.

[Sim80] Sims, C. A. (1980) Comparison of interwar and postwar business cycles: Monetarism

reconsidered, American Economic Review, 70, 250�7.

[Sim92] Sims, C. A. (1992) Interpreting the macroeconomic time series facts, European Eco-

nomic Review, 36, 975�1011.

21



[TC98] C. Torrence, C. and Compo, G. P. (1998),A practical guide to wavelet analysis,

Bulletin of the American Meteorological Society, 79, 605�618.

[TW99] Torrence, C. andWebster, P. (1999), Interdecadal changes in the esnomonsoon

system, Journal of Climate, 12,2679�2690.

22



Figure 1: The Morlet wavelet  6 (t): Real part �solid line and imaginary part �dashed line
(on the left) and its Fourier transform (on the right).

Figure 2: The continuous wavelet power spectrum of Interest Rates.
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Figure 3: The continuous wavelet power spectrum of In�ation.

Figure 4: The continuous wavelet power spectrum of the Industrial Production Index.
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Figure 5: The continuous wavelet power spectrum of M2.

Figure 6: The continuous wavelet power spectrum of M1.
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Figure 7: Cross Wavelet Transform between In�ation and Interest Rates

Figure 8: Cross Wavelet Transform between Industrial Production and Interest Rates
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Figure 9: Cross Wavelet Transform between M2 and Interest Rates

Figure 10: Cross Wavelet Transform between M1 and Interest Rates
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Figure 11: Squared wavelet coherence between Interest Rates and In�ation.

Figure 12: Squared wavelet coherence between Interest Rates and Industrial Production
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Figure 13: Squared wavelet coherence between Interest Rates and M2.

Figure 14: Squared wavelet coherence between Interest Rates and M1.
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