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Abstract

This paper presents an endogenous growth model that includes research and de-
velopment and human capital accumulation.

The model’s specification builds on the R&D-based structure of Romer’s [1990]
model and introduces two functions: (1) A specification for the production of new
designs that assumes no externalities and no inventions before time zero; and (2) A
specification for the accumulation of human capital technically similar to that in Lucas
[1988].

The model displays two main results. The first is that it eliminates the scale-
effects prediction which is common to most R&D-based growth models, but which is
not empirically supported.

Secondly, the model offers a new prediction that growth depends positively on
the ratio of final-good workers to researchers. Thus the model provides a theoretical
explanation as to why developed countries have had rising numbers of researchers but
not rising growth rates in the twentieth century.
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1 Introduction
In the majority of endogenous growth literature the respective roles of research
and development (R&D) and human capital accumulation in generating sus-
tained positive growth have been studied separately from each other.
In this paper, we develop a model that integrates creation of designs and

human capital accumulation into a single framework. This growth model has
an R&D-based structure in which the engine of growth is human capital accu-
mulation.
The model displays two main results. The first is that it eliminates the scale-

effects prediction that growth depends positively on the number of researchers
and, consequently, on the size of the economy. This scale-effects prediction is
common to most R&D-based growth models but is not empirically supported.
Secondly, the model offers a new prediction that growth depends positively

on the ratio of final-good workers to researchers. Thus the model can be used to
provide a theoretical explanation as to why developed countries have had rising
numbers of researchers but not rising growth rates in the twentieth century. The
model predicts that a rise in the number of researchers will lower the growth
rate unless this rise is accompanied by a proportionately equal or larger increase
in the number of final-good workers.

As first identified by Jones [1995], the first-generation of R&D-based endoge-
nous growth models, including Romer [1990], Grossman and Helpman [1991]
and Aghion and Howitt [1992], fail empirically because they display the above
mentioned scale-effects prediction. In fact, the labour force in developed coun-
tries has increased substantially over the last century whilst growth rates have
been relatively constant or have even declined. Similarly, a positive relationship
between the number of researchers and the growth rate has been empirically
rejected.
Beginning with Jones [1995], many growth economists have been actively

attempting to eliminate the scale-effects prediction from R&D-based models.
As defined by Jones [1999], these new growth models fall into two groups. In the
first group of nonscale1 growth models lie the models of Jones [1995], Kortum
[1997] and Segerstrom [1998], all of which obtain the result that the growth
rate of output per-capita is proportional to the growth rate of the population,
rather than the absolute population size. The growth rate of the population is
assumed exogenous, which means that these models result in the neoclassical
growth model’s prediction that neither economic policies nor tastes impact on
the economic growth rate. Moreover, in the absence of population growth,
exponential economic growth cannot be sustained in this kind of models.
The second line of this latest research on scale and growth includes the works

of Aghion and Howitt [1998 Chp.12], Dinoupolous and Thompson [1998], Peretto
[1998] and Young [1998]. These models eliminate the scale-effects prediction by
assuming that an increase in scale increases the number of products available,

1A nonscale growth model is a model without the scale-effects property.
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leaving the amount of research effort per sector (and consequently growth) unal-
tered. In these models, changes in policy affect the long-run growth rate and, in
addition, the models result in exponential growth in the absence of population
growth.

The model we propose in this paper is a nonscale growth model which does
not fall into the two groups of models referred to above.
The model is an R&D-based growth model that considers human capital

accumulation.
Human capital is defined here as an individual’s capacity to observe, compre-

hend and act accordingly upon his/her environment. Accumulation of this ca-
pacity is done by the whole educated population; either by taking extra courses,
through self instruction, or learning with their family or peers.
The model’s specification builds on the R&D-based structure of Romer’s

[1990] model and introduces two functions: (1) A specification for the production
of designs that assumes no externalities and no inventions before time zero; and
(2) A specification for the accumulation of human capital, technically similar to
that in Lucas [1988].
The model results in multiple balanced growth paths, parameterised by the

ratio of final-good workers to researchers. These parameterised solutions allow
for exponential economic growth in the absence of population growth.
The scale-effects prediction is eliminated in the new model because techno-

logical progress does not depend on the number of researchers, but instead on
the rate of growth of human capital.
The proposed model also carries a new result that growth depends positively

on the ratio of final-good workers to researchers. That is, it predicts that in
order to grow faster, a country must increase its ratio of final-good workers to
researchers.

As Temple [1999] writes, the latest empirical research shows strong evidence
of differences in levels and/or rates of growth across countries. This suggests
that both policy and institutions affect economic growth2, and thus points to
endogenous growth models as being better than the neoclassical model at ex-
plaining reality.
In this sense, the growth model developed in this paper can be used to

analyse the effects of economic policy and of international trade on the growth
rate. It is found that subsidies to the research sector, or international trade of
capital goods, lead to a higher long-run per-capita growth rate.

The paper is organised as follows. After this Introduction, Section 2 includes
the specification and results of the new model. Section 3 analyses the model’s
implications regarding the elimination of the scale effects prediction, with a
comparison between Jones’ [1995] model and this model. This Section further

2Mills and Crafts [1999], too, show that the recent OECD experience shows no tendency
for the equalisation of long-run growth rates.
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analyses the new model’s implications in terms of economic policy, trade and
welfare properties. Section 4 closes the present study with Concluding Remarks.

2 Specification and Results of the Model
The preference structure adopted for this model is the standard optimising
one. Infinitely lived homogeneous consumers maximise, subject to a budget
constraint, the discounted value of their representative utility:

Max

Z ∞
0

e−ρtU(Ct)dt , U(Ct) =
C1−σt

1− σ
,

where variable Ct is consumption in period t, ρ is the rate of time preference
and 1

σ is the elasticity of substitution between consumption at two periods of
time. A consumer facing a constant interest rate r, chooses to have consumption
growing at the constant rate gc given by the familiar Euler equation:

gc =

·
C

C
=
1

σ
(r − ρ) (1)

Equation 1 expresses a positive relationship between the interest rate and the
growth rate. In the (r, g) space this relationship is represented by an upward
sloping curve that unites pairs (r, g) which constitute balanced growth paths
determined by the savings decisions of households. It is called the Preferences
curve3.
As in Romer [1990], the production side can be understood as having three

sectors. The final goods sector, the capital goods sector and the R&D sector.
The specification of the production technology for the final goods sector picks
up the production function used by Romer [1990], in the version presented by
Jones [1995] and Aghion and Howitt [1998], and adapts it so as to replace labour
with effective labour, in a Lucas [1988] fashion.
Thus, the final good Y is produced using, as inputs, effective labour devoted

to final output LeY and a number A of differentiated durable capital goods i each
produced in quantity x(i). All capital goods have additively separable effects
on output. The production function is, then:

Yt = (uthtLY )
1−α

Z At

0

xt(i)
αdi, (2)

where, as workers are assumed to be identical, LeY = uhLY is the effective
contribution of labour to final goods production. Variable u represents time
devoted to working and variable h stands for a worker’s level of human capital
ranging from zero to infinity.
A worker with human capital level h, and endowed with one unit of time per

unit of time, devotes the fraction u of his non-leisure time to current production,

3After Rivera-Batiz and Romer [1991].
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and the remaining 1− u to human capital accumulation. The model implicitly
assumes that the amount of leisure is fixed exogenously.
Physical capital accumulation is given by:

·
Kt = Yt − Ct,

and assuming that it takes one unit of foregone consumption to produce one
unit of any type of capital good, K is related to the capital goods by the rule:

Kt =

Z At

0

xt(i)di,

People can choose whether to work in the final goods sector or in the R&D
sector:

L = LY + LA, (3)

where total population L is assumed to be constant.
In the R&D sector, the production function of designs that we introduce is:

At = ε(uthtLA) , 0 ≤ ε < 1 (4)

This specification involves the definition of variable A as a flow variable.
We interpret research activities as follows: In period t, researchers invent At
designs, which they sell to capital good producers. But, in the following period,
the use of these patents requires researchers to reread the manual of each patent
and teach the capital good producers how to use them. That is, the manuals
of each patent are of no use per se, as they need to be read, each period, by
someone who understands them - the researchers. This idea finds agreement
with Langlois’ [2001] view that much knowledge in the economy is tacit and not
easily transmitted.
Equation 4 also implies that there is no exogenous discovery before time

zero. That is, without R&D activities, the number of designs is zero. In other
words, no invention has fallen from the sky at the time this economy is born.
It also means that a positive level of output requires a positive number of

researchers, and that the higher the number of researchers LA in one economy,
the higher is the number of designs A.
Another important aspect of this specification is that it assumes that the

productivity of researchers is independent from the number of designs. That is,
in this model there are no positive externalities across time in the R&D process.
The zero external returns assumption can be supported with Romer’s [1990]

idea that whether there are increasing or decreasing returns to R&D is a philo-
sophical question. The assumption can also be supported by Jones’ [1995] ar-
gument that if on the one hand some discoveries like calculus are most likely
to increase the productivity of the following researchers, on the other hand it
is also likely that the most obvious ideas are discovered first, making it more
difficult for the following researchers to discover new ideas.
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According to equation 4, in a balanced growth path A will be growing at
the same rate as the population’s human capital h, as LA is assumed constant,
and u must be constant in a balanced growth path, as will be seen later:

At = ε(uthtLA)

⇒
gA = gh

Technological progress is dependent on human capital accumulation. Hence,
we must now specify the human capital accumulation process.
The population is assumed to be skilled, and each person can increase his/her

human capital by taking extra courses4, learning by themselves, or learning with
their peers and family. The human capital accumulation equation assumes a
Uzawa’s [1965] or Lucas’ [1988] form:

·
ht = htγ(1− ut), (5)

where, as written before, 1 − u is the amount of time dedicated to accumu-
lating human capital, and γ is a constant reflecting the efficiency with which
an individual’s time spent absorbing new information translates into his/her
accumulation of human capital.
Equation 5 says that a balanced growth path, that is a solution with a con-

stant growth rate of h, requires a constant u. This means that, in a balanced
growth path, infinitely lived people will dedicate, in each period, a constant
amount of time to working and a constant amount of time to learning. Also,
human capital will grow by the same constant proportion each period5. This re-
sult is driven by the idea that there is always something new to learn. Skilled in-
dividuals (intentionally) keep on absorbing new information, attending training
activities - in short, accumulating human capital. This human capital benefits
the productivity of workers in whichever sector they choose to work6.
As mentioned above, all labour in this economy is assumed to be skilled. We

have not included unskilled labour in this model as we take up Cohen’s [1998]
view that unskilled individuals are bound to be excluded from a developed
economy. In his 1998 book, Cohen states that a worker who does not engage in
the task-upgrading efforts of society as a whole is left behind.
Moving on, final good producers rent each capital good according to the

profit maximisation rule:

dYt
dxt(i)

= Rt(i),

4Assumed to be paid for by the government.
5 If we prefer to think in terms of finitely lived individuals and infinitely lived familes,

we have to assume that altruistic parents leave everything to their children, including their
knowledge. This is not difficult to accept if we observe that the better educated the parents
are, the greater the level of knowledge showed by their children from as early as birth.

6Notice that the accumulation of knowledge cannot be assumed to happen through
learning-by-doing, as it would imply two different kinds of knowledge. In this model we
assume that there is only a common base of knowledge which is used by workers in whatever
sector they are employed.
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which gives the inverse demand curve faced by each capital good producer:

Rt(i) = α(uhtLY )
1−αxt(i)α−1 (6)

Faced with given values of LY and r, the monopolistic capital good producer
that has bought a design and owns the patent on it, will maximise its revenue
minus its variable cost at every date:

Max πt(i) = Rt(i)xt(i)− rtxt(i)
With a constant marginal cost and a constant elasticity demand curve, this
monopolistic competitor solves his profit maximisation problem by charging a
monopoly price which is a markup over marginal cost:

dπt(i)

dxt(i)
= 0⇔ Rt(i) =

rt
α

The decision to produce a new capital good depends on a comparison be-
tween the discounted stream of net revenues that the patent on this good will
bring in the future, and the cost PA of the initial investment in its respective
design. We assume that researchers charge no extra price for rereading, each
period, the manual of each design.
The market for designs is competitive, so at every date t the total cost of

each design will be equalised to the present value of the future revenues that
a monopolist can extract. This means that capital good producers earn total
profits of zero present value. The dynamic zero-profit/free-entry condition is
then:

PAt =

Z ∞
t

e−r(τ−t)πτdτ (7)

⇔
·
PAt = rPAt − πt,

where the second equation is obtained assuming that there are no bubbles.
The model is solved for its balanced growth path, i.e. the equilibrium in

which the variables h, A, K, C and Y grow at constant exponential rates:
Equation 1 tell us that in a balanced growth path the interest rate must

be constant. Therefore R(i) is also constant. Hence, having in consideration
the fact that the symmetry of the model implies that R(i) = R = R and
x(i) = x = x, the demand function faced by each capital good producer is
rewritten as:

xt = (uhtLY )

·
α2

r

¸ 1
1−α

(8)

Time-differentiation of equation 8 shows that in a balanced growth path, x is
growing at the same rate as human capital:

·
x

x
=

·
huLY

h
α2

r

i 1
1−α

uhLY
£
α2

r

¤ 1
1−α

=

·
h

h
(9)
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Let us move now to the equilibrium in the labour market. In equilibrium,
the remuneration of labour will be equal in the final good and the R&D sectors.
In the final good sector the wage per unit of time is equal to labour’s marginal
productivity:

wY t =
dYt
dLY

= (1− α)uht(uhtLY )
−αAtxαt ,

and in the research sector, labour’s remuneration is:

wAt =
dAt
dLA

PAt = εuhtPAt

Equality of wY and wA implies that:

PAt =
1− α

ε
(uhtLY )

−αAtxαt (10)

Log-differentiation of equation 10 shows that in a balanced growth path, PA is
growing at the rate:

gPA = −αgh + gA + αgx = gh, (11)

therefore the zero-profit condition 7 becomes:

gh =

·
r − π

PA

¸
(12)

Now, recalling the markup rule and equation 6, profits π are rewritten as:

π = Rx− rx
= (1− α)α(uhLY )

1−αxα

Hence, replacing π by its equivalent expression given above, and replacing
PA by its equivalent expression given by 10, we have:

π

PA
=

εαuhLY
A

= α
LY
LA

Equation 12 can then be rewritten as:

gh =

·
r − α

LY
LA

¸
(13)

Now, total physical capital K grows at the rate:

K = Ax

⇒
gk = gA + gh = 2gh,
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where we replace gK with gk, once per-capita variables grow at the same rate
as aggregate variables, due to the constancy of total population.
Output per-capita grows at the same rate as capital, as can be deduced from

log-differentiation of the production function:

Y = (uhLY )
1−αAxα

⇒
gy = (1− α)gh + gA + αgx = 2gh

Finally, the physical capital accumulation equation:

·
K = Y − C

guarantees that consumption per-capita is growing at the same rate as output
and capital per-capita:

g = gc = gy = gk = 2gh

Thus equation 13 implies that:

g = 2

·
r − α

LY
LA

¸
(14)

Equation 14 links pairs (r, g) that constitute balanced growth paths resulting
from the equilibrium conditions on the production side of the economy. It
expresses a positive relationship between the interest rate and the growth rate
and it is called the Technology curve7. It is upward sloping in the space (r, g).
The equilibrium balanced growth rate for this economy is found by solving

the system of three equations, 1, 14, and 3 in three unknowns r, g and LY
LA
:

g = 1
σ (r − ρ)

g = 2
³
r − αLYLA

´
L = LY + LA

(15)

There are many balanced growth path solutions to this system8, as the labour
market equation turns out to be redundant. Let us see why.
First, we deduce the demand functions for LY and LA:

wY =
dY

dLY
= (1− α)uh(uhLY )

−αAxα

= (1− α)uhA

·
α2

r

¸ α
1−α

7After Rivera-Batiz and Romer [1991].
8Provided parameter values are chosen so as to ensure that the growth rate is not greater

than the interest rate, as, otherwise, present values will not be finite and the integral that
defines consumers utility diverges.
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We have lost LY , in the equation above. So we will try to obtain it through
L− LA, after determining LA. So:

wA =
dA

dLA
PA = εuhPA

We know that in equilibrium:

wY = wA = w

So, after replacing A with ε(uhLA), we obtain:

w = (1− α)uhε(uhLA)

·
α2

r

¸ α
1−α

(16)

⇔
LA =

PA

(1− α)uh
£
α2

r

¤ α
1−α

Now, we pick up equation 10 and replace x by its equivalent given by equation
8:

PA =
1− α

ε
(uhLY )

−αAxα

= (1− α)uhLA

·
α2

r

¸ α
1−α

This implies that equation 16 becomes:

LA =
(1− α)uhLA

h
α2

r

i α
1−α

(1− α)uh
£
α2

r

¤ α
1−α

= LA

That is, LA and LY are not determined by the model, which means that there
are multiple balanced growth path solutions, one for each given value of LYLA .
Each balanced growth path is obtained through the parameterisation of the

model. This means that for each given value of LYLA there is one balanced growth
path solution, characterised by a pair of r and g. This solution is represented
in the space (r, g) as the point where the Technology curve and the Preferences
curve cross.
The parameterised equilibrium growth rate is then obtained by solving the

system: (
g = 1

σ (r − ρ)

g = 2
³
r − αLYLA

´ ⇔ g =
2

1− 2σ
·
ρ− α

LY
LA

¸
which is equivalent to:

g =
2

2σ − 1
·
α
LY
LA
− ρ

¸
(17)
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Whether the equilibrium growth rate varies positively or negatively with the
ratio LY

LA
depends on the value of σ being greater than or smaller than 0.5,

respectively. The subsequent analyses about policy and trade effects on growth
are dependent on this value.
The restriction σ > 0.5 is imposed here, having in consideration that Blan-

chard and Fisher [1989] write that 1/σ has been observed to be normally below
or close to unity. Also Barro and Sala-i-Martin [1995] use values of σ = 2 or 3
in their empirical studies on growth.
The model is illustrated in Figure 1. Under the imposed restriction on σ,

the Preferences curve is steeper than the Technology curve9.
In the Appendix, we provide a partial characterisation of the dynamics of

our model around the parameterised steady-state, guided by the analyses that
Barro and Sala-i-Martin [1995, Chp. 5] provided on Lucas’ [1988] model, and
that Arnold [2000] provided on Romer’s [1990] model. We show that the equi-
librium of the model can be characterised in terms of a system of five differential
equations in five variables, χ = C

K , Z =
Y
K ,W = h

A , LY and u. The steady-state
of this system corresponds to the balanced growth path of our model. Then, we
assume that σ > α2 and show, through phase diagram analysis, that the system
is saddle-path stable.

Our model delivers the result that per-capita output growth depends pos-
itively on the ratio LY

LA
, meaning that the higher the proportion of workers

9Note that this restriction implies that αLY
LA

is greater than ρ.
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engaged in final good production relative to those dedicated to research, the
higher the growth rate of the economy.
Although surprising, this result might explain why, in many advanced coun-

tries, average growth rates have not risen or have even declined, despite an
increase in their R&D intensity. Notice however, that this economy needs re-
searchers. The solution would be indeterminate if LA were zero.

3 Implications of the Model

3.1 No scale-effects prediction

Equation 17 shows us that the economic growth rate does not depend on the
size of the population. Indeed doubling L would lead to a doubling of both LY
and LA, given the constant share of each in total labour in a balanced growth
path. Thus doubling L would leave the growth rate unaltered.
The elimination of the scale-effects prediction is an important result. The

scale-effects prediction, which characterises Romer’s [1990] model and the ma-
jority of the first-generation R&D-based models is not empirically supported,
as highlighted by Jones [1995].
The source of scale-effects in the first-generation of R&D-based models lies in

their specification of the R&D equation. In Romer [1990] the relevant equation
is:

·
At = δAtLA (18)

With such a specification, the growth rate of designs is gA = δLA. Therefore
a balanced growth path solution, that is, a solution with a constant growth rate,
requires a constant LA, and so the growth rate is proportional to the number
of workers engaged in research. This also makes the economic growth rate
proportional to the size of the economy L, given the constant share of total
labour dedicated to R&D.
Jones [1995] writes that this scale-effects prediction is empirically rejected.

He states that the labour force has grown immensely in the developed economies
over the last 25 to 100 years, and yet average growth rates have been relatively
constant or have even declined. Jones adds that evidence against the R&D
equation is also compelling. In the United States, for instance, the number
of workers engaged in R&D grew by more than a factor of 5 from 1950 to
1988 although the average growth rate has remained relatively constant. Jones
writes that even accounting for lags associated with R&D would not reverse the
rejection of the scale-effects prediction.
Jones [1995] proposes an extension to Romer’s model with the purpose of

preserving its R&D-based structure, whilst eliminating the prediction of the
scale-effects. With this extension, Jones is the father of nonscale R&D-based
growth models. He transforms the original R&D equation 18 into:

·
At = δAφ

t L
λ
At, (19)
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where 0 < λ ≤ 1 and φ < 1.
Equation 19 implies that the growth rate of A is:

·
A

A
=

δLλA
A1−φ

,

which means that a balanced growth path solution requires that:

gA =
λgLA
1− φ

The share of LA in L is fixed, so gLA = gLY = gL. The growth rate of the
population is, in turn, taken as exogenous to the model.
Jones’ [1995] equilibrium growth rate of output per-capita is then:

gy =
λgL
1− φ

(20)

In making the growth rate of output per-capita dependent on an exogenously
determined variable gL, Jones’ model places the explanation for the engine of
economic growth outside of the model. In doing so, Jones’ model returns to be-
ing an exogenous growth model in terms of its implications for long-run growth.
Hence the model does not explain whether nor how economic policies or tastes
are capable of influencing the economic growth rate.
Jones’ economy can be visualised with the help of Figure 2.
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As the figure shows, a decrease in the value of ρ and/or σ implies a shift
to the right of the Preferences curve. However, the equilibrium rate of growth
remains the same.
Likewise no parameter on the production side affects the long-run economic

growth.
Jones’ [1995] prediction that population growth is the fundamental engine of

per-capita growth can be empirically rejected. Moreover in Jones’ model there
is no economic growth in the absence of population growth. This is also not
empirically confirmed, as Jones himself states.
Like Jones’, the model introduced in this paper also preserves the structure

of an R&D-based model and it does not have the scale-effects prediction. The
fundamental difference between Jones’ model and the model here proposed con-
cerns the engine of growth. Jones’ model is a semi-endogenous model, that is
the engine of economic growth is the exogenous population growth. The model
here introduced is an endogenous growth model, that is the engine of growth,
which is the accumulation of human capital, is determined within the model by
the existing market forces and is thus influenced by economic policies and other
national characteristics. These influences are studied next.

3.2 Policy Effects on Growth

Consider a subsidy to the R&D sector financed by lump-sum taxes. This will
modify the remuneration of researchers to:

wSA =
dA

dLA
PA = (1 + s)εuhPA,

while the remuneration in the final goods sector remains the same. Therefore,
the labour market equilibrium condition 10 becomes:

PA
S =

1− α

(1 + s)ε
(uhLY )

−αAxα (21)

So: µ
π

PA

¶S
=
(1 + s)αLY

LA

which changes the Technology curve into:

gS = 2

·
r − (1 + s)αLY

LA

¸
, (22)

meaning that the Technology curve with the subsidy lies to the left of the original
one, as illustrated in Figure 3.
By enhancing the value of the ratio LY

LA
, the subsidy to the R&D sector

positively influences the growth rate of the economy. The new equilibrium
growth rate is:

g =
2

2σ − 1
·
(1 + s)α

LY
LA
− ρ

¸
(23)

14



T

g

r
P
T’

Figure 3:

The intuition of this effect is that the subsidy allows equilibrium in the
labour market to occur at a lower patent price. This lower cost relative to
capital good producers’ revenues results in more of them wishing to enter the
market. The increased demand for credit raises the interest rate, which leads
to higher savings and consequently higher growth.

3.3 Trade Effects on Growth

Rivera-Batiz and Romer [1991] use Romer’s [1990] model to analyse the effects
of trade in capital goods on growth. A similar exercise with our model, using a
two-country framework, shows that trade of capital goods increases the growth
rate of the economy.
The assumptions of this exercise are:
(i) The two economies are identical, that is, L = L∗and A = A∗.
(ii) The symmetry between the two countries implies that there are no op-

portunities for intertemporal trade along a balanced growth path;
(iii) There is only one single final consumption good (with price equal to

unity). Therefore the only trade that occurs is that of capital goods;
Assuming no redundancy in the production of new designs, trade in capital

goods doubles the number of capital goods available to final good producers:

Y T = (uhLY )
1−α

Z 2A

0

x(i)αdi (24)
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Then each capital good producer sees the demand for its good double:

xT = 2(uhLY )

·
α2

r

¸ 1
1−α

= 2xC , (25)

Therefore profits must also double, for a constant interest rate:

πT = 2πC ,

where the T-nomenclature stands for the trade economy and the C-nomenclature
stands for the closed economy variables.
The marginal productivity of labour in the final goods sector becomes:

wT =
dY T

dLY
= (1− α)uh(uhLY )

−α2Axα,

and researchers see the demand for their inventions double, so remuneration in
the research sector becomes:

wT = εuh2PA

Then equilibrium in the labour market implies:

PA
T = PA

C (26)

Now recall the zero-profit condition 12:

gC = 2

·
r − πC

PCA

¸
With trade in capital goods, it becomes:

gT = 2

·
r − 2 π

C

PCA

¸
, (27)

which means, in graphical terms, that the Technology curve with trade lies to the
left of the same curve in the closed economy (again as in Figure 3), resulting
in an equilibrium balanced growth path with a higher growth rate of output
per-capita and a higher interest rate.
The equilibrium growth rate in the economy with trade is:

gT =
2

2σ − 1
·
2α
LY
LA
− ρ

¸
(28)

The intuition behind this result is that, facing a larger market, capital good
producers have higher profits and so more of them will want to enter the market.
The higher demand for credit raises the interest rate. A higher interest rate in
turn makes saving more appealing, which translates into a higher growth rate.
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3.4 Welfare Properties

Monopolistic competition in the capital goods market is responsible for a higher
than marginal cost renting price of each capital good, R = r

α . This implies that
the equilibrium interest rate is not equal to the marginal productivity of capital,
but instead it is equal to r = αR = α dYdK , which is lower than the marginal
productivity of capital.
Figure 4 illustrates the comparison between the model’s equilibrium interest

rate and the marginal productivity of capital.
The optimal solution, go, that is the solution with the interest rate equal to

the marginal productivity of capital, corresponds to a higher point along the
Preferences curve.
To achieve this equilibrium, the Technology curve would have to lie to the left

of the decentralised equilibrium one. This means that the optimal equilibrium
has a higher value of αLYLA than the decentralised equilibrium.
Notice that a second factor of non-optimality, besides the lower than marginal

productivity remuneration of capital, is present in Romer’s model but not in the
model here introduced. In the new model there are no externalities from a higher
stock of designs, which means that when one researcher invents one good, other
researchers are not going to benefit from a higher stock of designs.
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4 Concluding Remarks
In this paper, we have developed a growth model that brings human capital
accumulation into an R&D framework.
In this new framework, the growth dynamics result in the ultimate engine of

growth being human capital growth, which is determined by the market forces
at play in the R&D monopolistic competition setting.
Human capital is interpreted as the capacity to observe, comprehend and act

accordingly upon the (working) environment, influencing positively the popu-
lation’s productivity. Accumulation of human capital is done in a Lucas [1988]
fashion by the whole population and improves not only researchers’ productivity,
but also the productivity of workers in the final goods sector.
In this R&D-structured model, the specification of the production of new de-

signs assumes that there are no externalities from the existing stock of designs
into the productivity of researchers. It also assumes that there are no inven-
tions before time zero. With such specifications, technological progress does not
depend on the number of researchers, but instead on the rate of human capital
accumulation. As a result, the scale-effects prediction that characterises the
first-generation of R&D-based models is not present in this model.

This paper aims to provide a theoretical contribution to nonscale growth
theory. The model that we develop is structurally different from the previous
nonscale growth models identified in the Introduction. Our model is closest in
structure to Jones’ [1995] model. However our model is fundamentally different
from the Jones model as the engine of growth in our model is the endogenously
determined human capital accumulation and not, as in the model by Jones,
the exogenously determined population growth. This is important because our
use of endogenously determined human capital accumulation as the engine of
growth results in our model being a fully endogenous growth model. This allows
us to study policy implications on growth, which is not possible in models with
growth rates dependent on exogenous variables.

The model has multiple balanced growth path solutions. We have shown
that unique solutions can be obtained through parameterisation of the ratio of
final-good workers to researchers. We have also shown, in the Appendix that
each parameterised equilibrium is saddle-path stable.
The model predicts that the growth rate of output per-capita depends pos-

itively on the ratio of final-good workers to researchers. According to this pre-
diction, raising the number of researchers will not have a positive impact on the
growth rate unless it is accompanied by a larger proportionate increase in the
number of final-good workers. This might serve as a clue as to why although
the developed countries have invested so much in new researchers, they have
failed to experience increasing growth rates in the last century.
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Appendix

In this Appendix, we provide a partial characterisation of the dynamics of
our model around the parameterised steady-state.
In light of the transitional dynamics analysis that Barro and Sala-i-Martin

[1995, Chp. 5] did with Lucas’ [1988] model, and that Arnold [2000] did with
Romer’s [1990] model, we start by characterising the equilibrium of the model in
terms of a system of five differential equations in five variables, χ = C

K , Z =
Y
K ,

W = h
A , LY and u.

The steady-state equilibrium is obtained by solving the system:

·
χ = 0
·
Z = 0
·
W = 0
·
LY = 0
·
u = 0

(29)

which is equivalent to:

χ =
³
1− α2

σ

´
Z + ρ

σ

gA = α2Z − αεuLYW = α2Z − αLYLA
gu = gLY

LY
LA

χ = (1− α)Z − gu − γ(1− u) + 1−α
α gA +

LY
LA

gA = γ(1− u)− gLY LY
LA

In the steady-state, gLY is zero, thus the third equation of the system says
that gu is also zero. And the fifth equation therefore states that gA = γ(1− u).
Hence, the system becomes:

χ =
³
1− α2

σ

´
Z + ρ

σ

γ(1− u) = α2Z − αLYLA
χ = (1− α)Z + 1−2α

α γ(1− u) + LY
LA

The steady-state value of Z is:

Z∗ =
σ

α2(2σ − 1)
·
2α
LY
LA
− ρ

σ

¸
=

1

α2(2σ − 1)
·
2ασ

LY
LA
− ρ

¸
Thus, the steady-state value of χ is:

χ∗ =
2(σ − α2)

α(2σ − 1)
LY
LA
− ρ(1− 2α2)

α2(2σ − 1)
The steady-state value of u is:

u∗ = 1 +
α

γ

LY
LA
− 1

(2σ − 1)
·
2ασ

LY
LA
− ρ

¸
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And the steady-state value of W is:

W ∗ =
1

ε
h
1 + α

γ
LY
LA
− 1

(2σ−1)
h
2ασLYLA − ρ

ii
LA

As analysed in this paper, all the equilibrium values depend on the param-
eterization of the value of LYLA .
Finally, we can deduce the steady-state growth rate of output:

gy = 2gh = 2gA = 2

·
α2Z∗ − α

LY
LA

¸
(30)

=
2

2σ − 1
·
α
LY
LA
− ρ

¸
,

which corresponds to the balanced growth path of this model.
Next, we analyse the transitional dynamics towards the steady-state. For

that, we work with the system: gχ = χ−
³
1− α2

σ

´
Z − ρ

σ

gz = (1− α)
h
gA
α − αZ + LY

LA

i (31)

First, we rewrite both equations as:

gz = −α (1− α) (Z − Z∗)

And:

gχ = (χ− χ∗)−
µ
1− α2

σ

¶
(Z − Z∗)

which means that we have the system:" ·
χ
·
Z

#
=

"
1 −

³
1− α2

σ

´
0 −α (1− α)

#
×
·

χ
Z

¸
+

" ³
1− α2

σ

´
Z∗ − χ∗

α (1− α)Z∗

#

So: 
·
χ = 0⇔ χ = χ∗ +

³
1− α2

σ

´
(Z − Z∗)

·
Z = 0⇔ Z = Z∗

We can study the dynamics around the steady-state with a phase diagram, as
in Figure 5. We assume that 1− α2

σ is positive10, which implies that σ > α2.The

10 If this value were negative, the system would still be saddle-path stable, with a negatively
sloped stable arm.
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stable arm is positively sloped, as can be deduced below:

det

"
1− θ −

³
1− α2

σ

´
0 −α (1− α)− θ

#
= 0

⇔ θ1 = −α (1− α) , θ2 = 1

The stable arm is the one associated with the negative eigenvalue. Let us then
derive the inclination of the stable arm:"

1 + α (1− α) −
³
1− α2

σ

´
0 0

#
×
·
v11
v21

¸
= 0

⇔

v11 =

³
1− α2

σ

´
1 + α (1− α)

v21

which is positive.
The unstable arm is horizontal, because:"

0 −
³
1− α2

σ

´
0 −α (1− α)− 1

#
×
·
v12
v22

¸
= 0

⇔
v22 = 0
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Concluding, if the system starts at the steady-state then it remains there. If
the system starts at a point in region (1) or (4) then its dynamics takes it back to
the steady-state. But if it starts somewhere in regions (2) or (3) the dynamics
moves it away from the steady-state. Therefore this economy is saddle-path
stable.
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