WORKING PAPER SERIES

NO. 349 / APRIL 2004

ESTIMATING THE RANK OF THE SPECTRAL DENSITY MATRIX

by Gonzalo Camba-Mendez and George Kapetanios

WORKING PAPER SERIES

NO. 349 | APRIL 2004

ESTIMATING THE RANK OF THE
SPECTRAL DENSITY MATRIX'
by Gonzalo Camba-Mendez ${ }^{2}$
and George Kapetanios ${ }^{3}$

In 2004 all
This paper can be downloaded without charge from http://www.ecb.int or from the Social Science Research Network electronic library at http://ssrn.com/abstract_id=53301I.
© European Central Bank, 2004

Address

Kaiserstrasse 29
60311 Frankfurt am Main, Germany

Postal address

Postfach 160319
60066 Frankfurt am Main, Germany

Telephone

+49 6913440

Internet

http://www.ecb.int

Fax
+49 6913446000

Telex
411144 ecb d

All rights reserved

Reproduction for educational and noncommercial purposes is permitted provided that the source is acknowledged.

The views expressed in this paper do not necessarily reflect those of the European Central Bank.

The statement of purpose for the $E C B$ Working Paper Series is available from the ECB website, http://www.ecb.int

CONTENTS

Abstract 4
Non-technical summary 5
1 Introduction 6
2 Motivation 7
3 Background theory 9
4 Testing the rank of Σ II
5 Monte Carlo analysis 13
6 Conclusion 15
References 17
Appendix 19
European Central Bank working paper series 21

Abstract

The rank of the spectral density matrix conveys relevant information in a variety of statistical modelling scenarios. This note shows how to estimate the rank of the spectral density matrix at any given frequency. The method presented is valid for any hermitian positive definite matrix estimate that has a normal asymptotic distribution with a covariance matrix whose rank is known.

Keywords: Tests of Rank, Spectral Density Matrix. JEL classification: C12, C32 and C52.

NON-TECHNICAL SUMMARY

The rank of the spectral density matrix conveys relevant information in a variety of statistical modelling scenarios. First, Phillips (1986) showed that a necessary condition for cointegration of a multivariate time series is that the spectral density matrix of the innovation sequence at frequency zero is of reduced rank. Second, knowing the rank of the spectral density matrix allows to identify a simplifying structure of a vector times series under the approach suggested by Pena and Box (1987), i.e. the common driving forces behind the system. Third, knowledge of the rank of the spectral density matrix is also relevant in the context of the reduction of large multiple input multiple output (MIMO) systems. Fourth, it enables restricting the dimensionality of cyclical components at individual frequencies. If a vector series share common cycles over certain frequencies, then it must hold that the spectral density matrix is of reduced rank for those frequencies.

This paper discusses the estimation of the rank of the spectral density matrix using a similar approach to that in Cragg and Donald (1996). The Cragg and Donald (1996) approach is a very general method to test for the rank of a matrix as it only requires that an estimate of that matrix exists having a normal asymptotic distribution with a covariance matrix whose rank is known.

The presentation of the paper focuses in the particular case of the spectral density matrix. However, the test presented extends to any hermitian positive definite matrices. It is worth pointing that our method is also valid for testing the rank of a positive semidefinite Toeplitz matrix. The rank of this matrix conveys very relevant information in a number of signal processing applications, see, e.g., Pisarenko (1973) and Tryphou (2000).

1 Introduction

The rank of the spectral density matrix conveys relevant information in a variety of statistical modelling scenarios. Phillips (1986) showed that a necessary condition for cointegration of a multivariate time series is that the spectral density matrix of the innovation sequence at frequency zero is of reduced rank. Tests of the rank of the spectral density matrix are also relevant to identify a simplifying structure of a vector times series under the approach suggested by Pena and Box (1987), i.e. the common driving forces behind the system. Also, the knowledge of the rank of the spectral density matrix is relevant in the context of the reduction of large MIMO systems.

This paper discusses the estimation of the rank of the spectral density matrix using a similar approach to that in Cragg and Donald (1996). The Cragg and Donald (1996) approach is a very general method to test for the rank of a matrix as it only requires that an estimate of that matrix exists having a normal asymptotic distribution with a covariance matrix whose rank is known. The structure of the paper is as follows:

Section 2 presents some areas of work where a procedure that estimates the rank of the spectral density matrix may be of use. Section 3 presents the analytical framework and background material on the estimation of the spectral density matrix together with the asymptotic properties of the estimates. A method to estimate the rank of the spectral density matrix is described in section 4 . Section 5 presents some Monte Carlo experiments that provide some intuition on the potential merits of this new method as a valid tool for the estimation of the cointegrating rank. Section 6 concludes.

[^0]
2 Motivation

The analysis of a number of statistical and econometric issues may be helped by a procedure that determines the rank of a spectral density matrix. Here we give some examples.

Common driving forces. Denote an m-vector zero mean stationary process by $\left\{\boldsymbol{x}_{t}\right\}_{t=1}^{\infty}$, and assume that there exists a representation:

$$
\begin{equation*}
\boldsymbol{x}_{t}=\boldsymbol{P} \boldsymbol{z}_{t} \tag{1}
\end{equation*}
$$

where \boldsymbol{P} is a $m \times r$ matrix of parameters, and \boldsymbol{z}_{t} is a r-vector stationary process, with $r<m$, i.e. there is a reduction in dimensionality, which follows an ARMA(p,q) process, i.e.

$$
\boldsymbol{\Phi}(L) \boldsymbol{z}_{t}=\boldsymbol{\Theta}(L) \boldsymbol{u}_{t}
$$

where $\boldsymbol{\Phi}(L)$ and $\boldsymbol{\Theta}(L)$ are matrix lag polynomials with all their roots outside the unit circle, and \boldsymbol{u}_{t} is an iid random process with zero mean and positive definite covariance matrix $\boldsymbol{\Gamma}_{u}$. A further identification restriction imposed in this model is that the r factors are independent, and that all $\boldsymbol{\Phi}_{i}$ and $\boldsymbol{\Theta}_{i}$ matrices are diagonal. \boldsymbol{P} is usually referred to as the matrix of factor loadings. For identification purposes it is assumed that $\boldsymbol{P}^{\prime} \boldsymbol{P}=$ \boldsymbol{I}. Denote $\boldsymbol{\Gamma}_{x}(k)=E\left\{\boldsymbol{x}_{t} \boldsymbol{x}_{t-k}^{\prime}\right\}$, and $\boldsymbol{\Gamma}_{z}(k)=E\left\{\boldsymbol{z}_{t} \boldsymbol{z}_{t-k}^{\prime}\right\}$. Under the representation in equation (1), it follows that $\boldsymbol{\Gamma}_{x}(k)=\boldsymbol{P} \boldsymbol{\Gamma}_{z}(k) \boldsymbol{P}^{\prime}$ for $k \geq 1$. The rank of $\boldsymbol{\Gamma}_{x}(k)$ for $k \geq 1$ is equal to r, the number of the common driving forces. Also, the spectral density matrix of \boldsymbol{x}_{t} at frequency ω is denoted by and equal to $\boldsymbol{\Sigma}_{x x}(\omega)=\boldsymbol{P} \boldsymbol{\Sigma}_{z z}(\omega) \boldsymbol{P}$. The rank of this matrix is of reduced rank for all frequencies. The model in Pena and Box (1987) is equivalent to model (1) with added noise, i.e.

$$
\begin{equation*}
\boldsymbol{x}_{t}=\boldsymbol{P} \boldsymbol{z}_{t}+\boldsymbol{\varepsilon}_{t} \tag{2}
\end{equation*}
$$

where, $\boldsymbol{\varepsilon}_{t}$ is an m-vector of i id zero mean processes with covariance matrix $\boldsymbol{\Gamma}_{\varepsilon}$. Identification of the number of common driving forces cannot be linked directly to the rank of
the spectral density matrix, but to a transformation of this. It is easy to see that the number of driving forces is equivalent to the rank of $\left(\boldsymbol{\Sigma}_{\tilde{\boldsymbol{x}} \tilde{\boldsymbol{x}}}(\omega)-\boldsymbol{I}\right)$, for all frequencies ω, where $\tilde{\boldsymbol{x}}_{t}=\boldsymbol{\Gamma}_{x}(0)^{-1 / 2} \boldsymbol{x}_{t}$.

Reduction of MIMO Systems. Given the multiple input multiple output (MIMO) system:

$$
\begin{aligned}
\boldsymbol{z}_{t} & =\sum_{k=0}^{\infty} \boldsymbol{A}_{k} \boldsymbol{u}_{t-k} \\
\boldsymbol{x}_{t} & =\boldsymbol{z}_{t}+\boldsymbol{\varepsilon}_{t}
\end{aligned}
$$

where \boldsymbol{x}_{t} is the $p \times 1$ observed output, \boldsymbol{z}_{t} is the $p \times 1$ true output vector, \boldsymbol{u}_{t} is the $m \times 1$ input vector, and ε_{t} is a $p \times 1$ noise component. The transfer function of that system is given by $\boldsymbol{A}\left(e^{i \omega}\right)=\sum_{k=0}^{\infty} \boldsymbol{A}_{k} e^{i k \omega}$. For \boldsymbol{u}_{t} and $\boldsymbol{\varepsilon}_{t}$ jointly stationary uncorrelated processes, it holds that $\boldsymbol{\Sigma}_{x u}(\omega)=\boldsymbol{A}\left(e^{i \omega}\right) \boldsymbol{\Sigma}_{u u}(\omega)$, where $\boldsymbol{\Sigma}_{x u}(\omega)$ and $\boldsymbol{\Sigma}_{u u}(\omega)$ are the cross spectral density matrix between \boldsymbol{x}_{t} and \boldsymbol{u}_{t} and the spectral density matrix of \boldsymbol{u}_{t} respectively. This suggests that an estimator of the transfer function could be given by:

$$
\hat{\boldsymbol{A}}\left(e^{i \omega}\right)=\hat{\boldsymbol{\Sigma}}_{x u}(\omega) \hat{\boldsymbol{\Sigma}}_{u u}^{-1}(\omega)
$$

See Priestley (1981) for further details. For systems with large numbers of input and output variables, this estimation strategy might contain redundant information, and under those circumstances it appears sensible to try to reduce the dimension of this system. Brillinger (1969) and Priestley, Rao, and Tong (1973) showed that a possible reduction strategy would be to apply principal component analysis to the Fourier components of the input and output. These so called Dynamic Principal Components are built from a spectral decomposition of the spectral density matrix. Knowledge of the rank of the spectral density matrix of the input vector and the output vector is useful to select the relevant number of dynamic principal components that provide an optimal representation of the input vector and the relevant number of dynamic principal components that provide an optimal representation of the output vector; and where optimal representation is defined as that which provides maximum linear predictive efficiency.

Cointegration. Let $\left\{\boldsymbol{y}_{t}\right\}_{t=0}^{\infty}$ be a $n \times 1$ vector stochastic process generated by:

$$
\boldsymbol{y}_{t}=\boldsymbol{y}_{t-1}+\boldsymbol{u}_{t}
$$

and where \boldsymbol{y}_{0} is any random vector, and $\left\{\boldsymbol{u}_{t}\right\}$ is a zero mean, weakly stationary innovation process such that $E\left|\boldsymbol{u}_{i}\right|^{\beta}$ for $i=1, \ldots, n$ and $\beta>2$; and $\left\{\boldsymbol{u}_{t}\right\}_{t=0}^{\infty}$ is strong mixing
with mixing numbers α_{m} that satisfy $\sum_{m=1}^{\infty} \alpha_{m}^{1-2 / \beta}<\infty$. Under those conditions, Phillips (1986) showed that if the system is cointegrated, i.e. there exists a vector γ for which $\gamma^{\prime} \boldsymbol{y}_{t}$ is stationary, then the spectral density matrix of the innovation sequence \boldsymbol{u}_{t} at frequency zero, denoted by $\boldsymbol{\Sigma}_{u u}$, is of reduced rank equal to n minus the number of cointegrating vectors γ_{i}.

Clearly, for some of the cases considered above one requires a joint test that the rank of the spectral density matrix is of a given rank for all frequencies. Our method will consider given frequencies only. However, our methodology is viewed more as a diagnostic tool for further model development rather than a formal joint test of reduced rank. In that sense it can still provide vital information about the structure of the data considered by being used for a set of different frequencies. Further, identifying common components of multivariate data at particular frequencies is of interest in its own, e.g. macroeconomic analysis often focuses on business cycle frequencies of between 5 and 10 years. Our proposed procedure can be a useful tool in such circumstances.

3 Background Theory

Multivariate one sided tests. Let $\hat{\boldsymbol{\theta}}$ be a consistent estimator of the $q \times 1$ vector $\boldsymbol{\theta}$ such that $\sqrt{T} \operatorname{vec}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \xrightarrow{d} N(\mathbf{0}, \boldsymbol{\Omega})$, where $\boldsymbol{\Omega}$ is nonsingular and T denotes the size of the sample used to estimate $\boldsymbol{\theta}$. We would like to test the hypothesis $H_{0}: \theta_{i}=0(i=1, \ldots, q)$ against the alternative $H_{1}: \theta_{i} \geq 0(i=1, \ldots, q)$ where the inequality is strict for at least one value of i. Kudo (1963) showed that a likelihood ratio statistic for the one sided hypothesis we consider and normally distributed random variables can be defined as:

$$
\begin{equation*}
\bar{\chi}^{2}=T \hat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Omega}^{-1} \hat{\boldsymbol{\theta}}-T \min _{\substack{\theta_{i} \geq 0 \\ i=1, \ldots, q}}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{\prime} \boldsymbol{\Omega}^{-1}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \tag{3}
\end{equation*}
$$

The minimum of the second summand can be computed by means of quadratic programming. Kudo (1963) further showed that the probability that the value of $\bar{\chi}^{2}$ exceeds $\bar{\chi}_{0}^{2}$ is given by:

$$
\begin{equation*}
\operatorname{Pr}\left(\bar{\chi}^{2} \geq \bar{\chi}_{0}^{2}\right)=\sum_{i=0}^{q} w_{i} \operatorname{Pr}\left(\chi_{i}^{2} \geq \bar{\chi}_{0}^{2}\right) \tag{4}
\end{equation*}
$$

where χ_{i}^{2} is the chi-squared random variable with i degrees of freedom, $\chi_{0}^{2}=0$, and w_{i} are nonnegative weights given by:

$$
\begin{equation*}
w_{i}=\sum_{Q_{i}} P\left\{\left(\boldsymbol{\Omega}_{Q_{i}^{\prime}}\right)^{-1}\right\} P\left\{\boldsymbol{\Omega}_{Q_{i}: Q_{i}^{\prime}}\right\} \tag{5}
\end{equation*}
$$

where the summation runs over all subsets Q_{i} of $K=\{1, \ldots, q\}$ of size i, and Q_{i}^{\prime} is the complement of Q_{i} where $\boldsymbol{\Omega}_{Q_{i}}$ is the variance matrix of $\theta_{j}, j \in Q_{i}$, and $\boldsymbol{\Omega}_{Q_{i}: Q_{i}^{\prime}}$ is the same under the condition $\theta_{j}=0, j \notin Q_{i}$, and $P\{\boldsymbol{\Omega}\}$ is the probability that the variables distributed in a multivariate normal distribution with mean zero and covariance matrix $\boldsymbol{\Omega}$ are all positive; finally, $P\left\{\boldsymbol{\Omega}_{\phi: K}\right\}=1$ and $P\left\{\left(\boldsymbol{\Omega}_{K^{\prime}}\right)^{-1}\right\}=P\left\{\left(\boldsymbol{\Omega}_{\phi}\right)^{-1}\right\}=1$. The probabilities in 5 can be easily computed by means of the algorithm proposed in Sun (1988). Note that a simple expression for $\boldsymbol{\Omega}_{Q_{i}: Q_{i}^{\prime}}$ is given by $\boldsymbol{\Omega}_{Q_{i}}-\boldsymbol{\Omega}_{Q_{i}, Q_{i}^{\prime}} \boldsymbol{\Omega}_{Q_{i}^{\prime}}^{-1} \boldsymbol{\Omega}_{Q_{i}, Q_{i}^{\prime}}^{\prime}$ where $\Omega_{Q_{i}, Q_{i}^{\prime}}$ is the covariance matrix of $\theta_{j}, j \in Q_{i}$ and $\theta_{j}, j \in Q_{i}^{\prime}$ (see e.g. Anderson (2003, pp. 33-35)). Note that a similar analysis using the ideas of Kudo (1963), among others, has been carried out, by Gourieroux, Holly, and Monfort (1982), in the context of inequality constraints on coefficients in regression models.

Complex Multivariate Normal Distribution. A q-dimensional random variable \boldsymbol{x}_{t} with complex valued components is complex multivariate normally distributed with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Omega}$, and denoted as $N^{C}(\boldsymbol{\mu}, \boldsymbol{\Omega})$, if the $2 q$-random variable with real components $\left(\operatorname{Re} \boldsymbol{x}_{t}^{\prime}, \operatorname{Im} \boldsymbol{x}_{t}^{\prime}\right)^{\prime}$ is distributed as

$$
N\left(\left[\begin{array}{c}
\operatorname{Re} \boldsymbol{\mu} \tag{6}\\
\operatorname{Im} \boldsymbol{\mu}
\end{array}\right], \frac{1}{2}\left[\begin{array}{cc}
\operatorname{Re} \boldsymbol{\Omega} & -\operatorname{Im} \boldsymbol{\Omega} \\
\operatorname{Im} \boldsymbol{\Omega} & \operatorname{Re} \boldsymbol{\Omega}
\end{array}\right]\right)
$$

where Re and Im denote the real and imaginary part of a complex variate. Let us denote the covariance matrix in (6) by $\boldsymbol{\Omega}^{r}$. For a detailed exposition of the complex multivariate normal see Brillinger (1981, Sec. 4.2). If a set of vector random variables, $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ are i.i.d zero mean complex multivariate normal with covariance $\boldsymbol{\Omega}$, then $\sum_{i=1}^{n} \boldsymbol{x}_{i} \overline{\boldsymbol{x}}_{i}{ }^{\prime}$ (where $\overline{\boldsymbol{x}}_{i}$ is the complex conjugate of \boldsymbol{x}_{i}) is said to have a complex Wishart distribution with n degrees of freedom, and is denoted by $W^{C}(n, \boldsymbol{\Omega})$.

Spectral Density Matrix. Denote a zero mean, wide sense stationary m-vector process by $\left\{\boldsymbol{x}_{t}\right\}_{t=1}^{\infty}$. The spectral density matrix of \boldsymbol{x}_{t} is defined as

$$
\boldsymbol{\Sigma}(\omega)=(2 \pi)^{-1} \sum_{k=-\infty}^{\infty} \boldsymbol{\Gamma}_{k} e^{-i k \omega}
$$

for $\theta \in[-\pi, \pi]$ where $\boldsymbol{\Gamma}_{k}=E\left\{\boldsymbol{x}_{t} \boldsymbol{x}_{t-k}^{\prime}\right\}$. Given a sample of T observations an estimate of the spectral density matrix is given by:

$$
\bar{\Sigma}(\omega)=(2 \pi)^{-1} \sum_{k=-(T-1)}^{T-1} \hat{\boldsymbol{\Gamma}}_{k} e^{-i k \omega}
$$

where $\hat{\boldsymbol{\Gamma}}_{k}=\frac{1}{T} \sum_{t=1}^{T-|k|} \boldsymbol{x}_{t} \boldsymbol{x}_{t-k}^{\prime} .2 \pi \overline{\boldsymbol{\Sigma}}(\omega)$ is the periodogram. The periodogram provides an inconsistent but asymptotically unbiased estimate of the spectral density matrix, and
is asymptotically distributed as a complex Wishart variable with 1 degree of freedom. A standard approach for consistent estimation of the spectral density matrix ${ }^{1}$ relies on 'smoothing' the periodogram itself over the frequencies, i.e. averaging adjacent frequency ordinates. These estimates take the form,

$$
\begin{equation*}
\hat{\boldsymbol{\Sigma}}(\omega)=\frac{1}{2 M+1} \sum_{k=-M}^{M} \overline{\boldsymbol{\Sigma}}(\omega+k / T) \tag{7}
\end{equation*}
$$

For M fixed as $T \rightarrow \infty$ this estimate is still inconsistent, asymptotically unbiased for the spectral density matrix and asymptotically distributed as $(2 M+1)^{-1} W^{C}\left(2 M+1, \boldsymbol{\Sigma}\left(\omega_{j}\right)\right)$, (see Brillinger (1981, pp. 245)). This is the simplest form of a smoothed periodogram estimate for the spectral density matrix. Different weights can be assigned to the periodogram coordinates $\overline{\boldsymbol{\Sigma}}(\omega+k / T)$, see Brillinger (1981, Chapter 7). If we allow $M \rightarrow \infty$ as $T \rightarrow \infty$ but impose $M^{4} / T \rightarrow 0$ we get a consistent and asymptotically normal estimate (see e.g. Newey and West (1987)). In particular we get that $\sqrt{2 M+1}(\operatorname{vec}(\hat{\boldsymbol{\Sigma}}(\omega))-\operatorname{vec}(\boldsymbol{\Sigma}(\omega)))$ is asymptotically complex normal ${ }^{2}$ with a covariance matrix whose element giving the asymptotic covariance between $\hat{\boldsymbol{\Sigma}}_{i, j}(\omega)$ and $\hat{\boldsymbol{\Sigma}}_{u, v}(\omega)$, is given by:

$$
\begin{array}{ll}
\boldsymbol{\Sigma}_{i, u}(\omega) \boldsymbol{\Sigma}_{j, v}(\omega)+\boldsymbol{\Sigma}_{i, v}(\omega) \boldsymbol{\Sigma}_{j, u}(\omega) & \text { if } \omega=0, \pm \pi \\
\boldsymbol{\Sigma}_{i, u}(\omega) \boldsymbol{\Sigma}_{j, v}(\omega) & \text { if } \omega \neq 0, \pm \pi \tag{8}
\end{array}
$$

where $\boldsymbol{\Sigma}_{i, j}(\omega)$ is the (i, j)-th element of $\boldsymbol{\Sigma}(\omega)$. We will denote this covariance matrix by \boldsymbol{V} and its estimate, obtained by using the estimated spectral density matrix, by $\hat{\boldsymbol{V}}$. More details may be found in e.g. Brillinger (1981, pp. 262) or Brockwell and Davis (1991, pp. 447). In what follows we will assume that the periodogram coordinate weights are such that the spectral density matrix estimate is nonnegative definite.

4 Testing the rank of Σ

This paper deals with the issue of testing the rank of an $n \times n$ hermitian positive semidefinite matrix $\boldsymbol{\Sigma}$. In what follows we assume that in the following partition of $\boldsymbol{\Sigma}$ the $r \times r$ submatrix $\boldsymbol{\Sigma}_{11}$ is of full rank.

$$
\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \Sigma_{22}
\end{array}\right)
$$

If $\boldsymbol{\Sigma}_{11}$ is not initially of full rank r, a valid reordering of the columns and rows of $\boldsymbol{\Sigma}$ would guarantee this without affecting the overall rank of the matrix. Cragg and Donald

[^1](1996) propose the application of r steps of Gaussian elimination with complete pivoting on $\boldsymbol{\Sigma}$ to achieve the required result. This manipulation guarantees that $\boldsymbol{\Sigma}_{11}$ in the finally reordered matrix is of full rank r. In the case under study in this paper we need to preserve the symmetry of $\boldsymbol{\Sigma}$ and hence symmetric pivoting should be implemented. An algorithm to compute the factorization $\boldsymbol{P} \boldsymbol{\Sigma} \boldsymbol{P}^{\prime}=\boldsymbol{G} \overline{\boldsymbol{G}}^{\prime}$, where \boldsymbol{P} is an $n \times n$ pivoting matrix and \boldsymbol{G} is an $n \times r$ lower triangular matrix is available in the LINPACK, see Dongarra, Bunch, Moler, and Stewart (1979), and subroutine CCHDC for details. Without lack of generality we avoid the issue of pivoting in this section for ease of notation.

Given the linear dependance of the last $n-r$ columns on the first r columns it must hold that $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}=\mathbf{0}$. This implies that a test of rank $H_{0}: r k(\boldsymbol{\Sigma})=r$ is equivalent to a test of the null hypothesis $H_{0}: \mathbf{\Lambda}=\mathbf{0}$. This is the testing strategy adopted by Cragg and Donald (1996). We further have the following proposition which simplifies the problem considerably.

Proposition $1 \boldsymbol{\Lambda}=\mathbf{0}$ if and only if $\Lambda_{i, i}=0, i=1, \ldots, n-r$ where $\Lambda_{i, i}$ denotes the i-th diagonal element of $\boldsymbol{\Lambda}$.

Proof: The 'if' part is obvious. The 'only if' part follows if we note the following. By the Schur Complement Theorem we know that if $\boldsymbol{\Sigma}$ is positive semidefinite then $\boldsymbol{\Lambda}$ will be positive semidefinite. Hence, all the eigenvalues of $\boldsymbol{\Lambda}$, denoted $\lambda_{i}, i=1, \ldots, n-r$, will be nonnegative. For a positive semidefinite matrix it always holds that its trace is equal to the sum of its eigenvalues, implying $\sum_{i=1}^{n-r} \Lambda_{i, i}=\sum_{i=1}^{n-r} \lambda_{i}$. Then, by the fact that $\sum_{i=1}^{n-r} \Lambda_{i, i}=0$ it must follow that $\lambda_{i}=0, i=1, \ldots, n-r$, i.e. the matrix has rank zero and is therefore a matrix of zeros.

We can therefore concentrate on testing the null hypothesis $H_{0}: \boldsymbol{\theta}=0$ where $\boldsymbol{\theta}=$ $\left(\Lambda_{1,1}, \ldots, \Lambda_{n-r, n-r}\right)^{\prime}$. Note further that $\boldsymbol{\theta}$ is a real vector. Under the null hypothesis we show in the appendix that $\sqrt{2 M+1} \operatorname{vec}(\hat{\boldsymbol{\Lambda}}) \xrightarrow{d} N^{C}(\mathbf{0}, \boldsymbol{W})$ where \xrightarrow{d} denotes convergence in distribution, and \boldsymbol{W} is a matrix defined in the appendix. Hence

$$
\begin{equation*}
\sqrt{2 M+1} \hat{\boldsymbol{\theta}}=\sqrt{2 M+1} \boldsymbol{L}\left(\operatorname{Re} \operatorname{vec}(\hat{\boldsymbol{\Lambda}})^{\prime}, \operatorname{Im} \operatorname{vec}(\hat{\boldsymbol{\Lambda}})^{\prime}\right)^{\prime} \xrightarrow{d} N\left(\mathbf{0}, \boldsymbol{L} \boldsymbol{W}^{r} \boldsymbol{L}^{\prime}\right) \tag{9}
\end{equation*}
$$

where \boldsymbol{L} is a $n-r \times 2(n-r)^{2}$ selector matrix that picks the real part of the diagonal elements of $\hat{\Lambda}$. Then, we have the following proposition

Proposition 2 Under the null hypothesis, $H_{0}: r=r^{*}$, $(2 M+1) \hat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Psi}^{-1} \hat{\boldsymbol{\theta}}$ is distributed as a weighted mixture of $\chi_{i}^{2}, i=1, \ldots, n-r^{*}$, where $\boldsymbol{\Psi}=\boldsymbol{L} \boldsymbol{W}^{r} \boldsymbol{L}^{\prime}$ and the weights w_{i} are given by (5).

Proof: Using the results of Kudo (1963) we can construct the test statistic for the null hypothesis $H_{0}: \boldsymbol{\theta}=0$ against the alternative $H_{0}: \theta_{i} \geq 0, i=1, \ldots n-r$ where at least one inequality is strict. Our estimate of the spectral density matrix guarantees that the diagonal elements are always nonnegative (Note that the spectral density matrix at frequency ω is simply the covariance matrix of a white noise process according to the spectral representation of a multivariate stationary process. See e.g. Brockwell and Davis (1991, Section 11.8 and (11.1.17))). This means that the second summand in the statistic $\bar{\chi}^{2}$ presented in (3), namely the quadratic programming problem, will always be zero. Therefore, the statistic of interest is simplified to $\bar{\chi}^{2}=(2 M+1) \hat{\boldsymbol{\theta}}^{\prime} \boldsymbol{\Psi}^{-1} \hat{\boldsymbol{\theta}}$.

It is worth noting that the multivariate one sided test has been generalized by Kudo and Choi (1975) to cases where $\boldsymbol{\Psi}$ is singular. Further, we note that the following possibilities for simplifying the execution of the test, with respect to the calculation of the critical values, are possible. Firstly, Tang, Gnecco, and Geller (1989) provide an approximate likelihood ratio test which is distributed as a $\bar{\chi}^{2}$ statistic with weights that do not depend on \boldsymbol{V} and are easily calculated. Secondly, since the weights in (5) add up to 1 (see, e.g., Bohrer and Chow (1978)) then a conservative test (i.e. a test whose true size is lower that the nominal significance level used) can usefully serve as a vehicle for deriving a consistent estimator for the rank. So we can set the weights, w_{i} such that the critical values of the assumed distribution are upper bounds of the critical values of the true distribution. This can be straightforwardly achieved by setting $w_{i}=0$ for $i=1, \ldots, n-r^{*}-1$ and $w_{i}=1$ for $i=n-r^{*}$. In other words the critical values of the $\chi_{n-r^{*}}^{2}$ distribution would be used.

A sequential application of this test of rank can provide a consistent estimate of the rank of $\boldsymbol{\Sigma}$ if the significance level used in the test converges to zero as the number of observations tends to infinity (See, e.g., Hosoya (1989)).

5 Monte Carlo Analysis

As stated above, one of the uses of estimating the rank of the spectral density matrix is identifying the cointegrating rank. The test developed by Johansen (1988) is the key reference in the econometric literature to search for the cointegrating rank. However, this method was developed under the assumption of normally distributed innovations. Non-normally distributed innovations lead to a loss in power of this method. It is thus of interest to see whether the method presented in this paper could have certain merits
as a nonparametric test of cointegration. This section present a brief collection of Monte Carlo exercises that show that this is indeed the case. We note however that a more thourough study is beyond the scope of this paper and is left for future research.

The class of finite order linear vector error correction mechanism (VECM) models is not the most appropriate class to assess nonparametric procedures. Therefore, linear and nonlinear cointegrating systems will be considered. The data generation process for the vector simulated series \boldsymbol{y}_{t} is defined as follows:

$$
\begin{equation*}
\Delta \boldsymbol{y}_{t}=F\left(\Delta \boldsymbol{y}_{t-1}\right) \boldsymbol{\Pi} \boldsymbol{y}_{t-1}+\boldsymbol{\epsilon}_{t} \tag{10}
\end{equation*}
$$

where we allow for three alternative specifications for $F($.$) :$

$$
\begin{align*}
& F\left(\Delta \boldsymbol{y}_{t-1}\right)=\boldsymbol{I} \tag{11}\\
& F\left(\Delta \boldsymbol{y}_{t-1}\right)=1-e^{-\left(\sum_{i=1}^{m} \Delta y_{i, t-1}\right)^{2}} \tag{12}\\
& F\left(\Delta \boldsymbol{y}_{t-1}\right)=1\left\{\left|\sum_{i=1}^{m} \Delta y_{i, t-1}\right|>r\right\}, \mathrm{r}=2 \tag{13}
\end{align*}
$$

These specifications lead to a linear model if (11), a pseudo-STAR model if (12), and a pseudo-SETAR model if (13). The last two lead to nonlinear VECM models where the speed of convergence to equilibrium depends on $\Delta \boldsymbol{y}_{t-1}$. As their name indicate the pseudo-STAR model is inspired by univariate smooth transition autoregressive (STAR) models, while the pseudo-SETAR by self-exciting threshold autoregressive (SETAR) models. Note that these nonlinear models still imply the existence of a Wold decomposition for the differenced data and therefore our suggested procedure is appropriate.

We concentrate on a multivariate model with 3 variables. We control the rank of the coefficient matrix Π in the error correction representation by specifying the vector of its eigenvalues. Two different vectors are considered: $(-0.6,0,0)$, i.e. one cointegrating vector, and $(-0.6,-0.6,0)$, i.e. two cointegrating vectors. Note that all the eigenvalues are negative given the requirement that the eigenvalues of $\boldsymbol{I}+\boldsymbol{\Pi}$ are less than or equal to one. We then construct a standard normal random matrix of eigenvectors \boldsymbol{E} which are almost surely linearly independent. These are transformed into an orthonormal basis, $\tilde{\boldsymbol{E}}$, using the Gram-Schmidt process. The coefficient matrix is then given by $\tilde{\boldsymbol{E}} \boldsymbol{\Lambda} \tilde{\boldsymbol{E}}^{\prime}$ where $\boldsymbol{\Lambda}$ is a diagonal matrix containing the eigenvalues of the required coefficient matrix. Two alternative types of random disturbances are used for simulating ϵ_{t}. First, random normal disturbances with identity covariance matrix. Second, iid MA(1) processes with correlation coefficient 0.9. Using these random numbers a sample from a process following the error correction representation in (10) is obtained.

The sample sizes considered are 200 and 600 . For each simulated sample, 200 initial observations have been discarded to minimise the effect of starting values. For each Monte Carlo experiment 10,000 replications have been carried out. Bias and Mean Square Error (MSE) statistics for these simulation exercises are shown in table 1. For illustration purposes, this table also reports simulation results for Johansen (1988) maximum eigenvalue test (JM) and also his trace test (JM), the procedure described in this paper is denoted by (CK). ${ }^{3}$ Generally speaking the performance of the CK is satisfactory for most cases under study. The only exceptions are exercises run with samples of size 200, rank 2 and a pseudo-SETAR model. The test appears always best in terms of Bias and MSE for exercises of rank equal to 1 , sample size equal to 600 and MA(1) errors. But for minor exceptions, the Johansen's procedures are always best for exercises conducted with normally distributed shocks.

6 Conclusion

This paper has formulated a rank determination procedure for the rank of the spectral density matrix at any frequency. The need for such techniques becomes apparent in areas such as multivariate factor models and cointegration. Phillips and Ouliaris (1988) suggested tests of the null of 'no cointegration' which amounted to a test of the hypothesis that the r smallest eigenvalues of the spectral density matrix of the innovation sequence at frequency zero are greater than zero. Phillips and Ouliaris (1990) expanded on the issue of choice of the null hypothesis in cointegration testing by pointing out that adopting the null hypothesis of cointegration may be more sensible from a methodological point of view given that cointegration is the focus of interest. However, it was also pointed out that standard test statistics based on the spectral density matrix provided inconsistent tests under the null hypothesis of no cointegration. This paper has described tests of the rank of the spectral density matrix which may serve, at frequency zero, as tests of the null of 'cointegration'. It is clear that, as long as a consistent estimate of the spectral density matrix of the innovation process exists and has an asymptotic complex normal distribution, the application of the test described will provide a consistent testing procedure for cointegration. The test of the rank of the spectral density matrix described in this paper is also relevant to identify a simplifying structure of a vector times series under the approach suggested by Pena and Box (1987), and to restrict the dimensionality of cyclical components at individual frequencies.

[^2]The presentation of this paper has been focused in the particular case of the spectral density matrix. However, the test presented extends to any hermitian positive definite matrices. It is worth pointing that our method is also valid for testing the rank of a positive semidefinite Toeplitz matrix. The rank of this matrix conveys very relevant information in a number of signal processing applications, see, e.g., Pisarenko (1973) and Tryphou (2000).

References

Anderson, T. W. (2003): Introduction to Multivariate Statistical Analysis. John Wiley \& Sons.

Bohrer, R., and W. Chow (1978): "Weights for One-sided Multivariate Inference," Applied Statistics, 27, 100-104.

Brillinger, D. (1981): Time Series: Data Analysis and Theory. Holden-Day, San Francisco.

Brillinger, D. R. (1969): "The canonical analysis of time series," in Multivariate Analysis: II, ed. by P. R. Krishnaiah. Academic Press, New York.

Brockwell, P. J., and R. A. Davis (1991): Time Series: Theory and Methods. Springer Series in Statistics, Springer, New York.

Cragg, J. G., and S. G. Donald (1996): "On the Asymptotic Properties of LDUBased Tests of the Rank of a Matrix," Journal of the American Statistical Association, 91, 1301-1309.

Dongarra, J. J., J. R. Bunch, C. B. Moler, and G. W. Stewart (1979): LINPACK Users' Guide. SIAM.

Gourieroux, C., A. Holly, and A. Monfort (1982): "Likelihood Ratio Test, Wald test, Kuhn-Tucker test in linear models with inequality constraints on the regression parameters," Econometrica, 50(1), 63-80.

Hosoya, Y. (1989): "Hierarchical Statistical Models and a Generalised Likelihood Ratio Test," Journal of the Royal Statistical Society B, 51(3), 435-448.

Johansen, S. (1988): "Statistical Analysis of Cointegration Vectors," Journal of Economic Dynamics and Control, 12, 231-254.

Kudo, A. (1963): "A Multivariate Analogue of the one-sided test," Biometrika, 50(3), 403-418.

Kudo, A., and J. Choi (1975): "A Generalized Multivariate Analogue of the one-sided test," Memoirs of the Faculty of Science, Kyushu University, Ser. A, 29(2), 303-328.

Lütkepohl, H. (1996): Handbook of Matrices. John Wiley and sons.

Newey, W., and K. West (1987): "A Simple Positive Semi Definite Heteroscedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, 55, 703-708.

Pena, D., and G. E. P. Box (1987): "Identifying a Simplifying Structure in Time Series," Journal of the American Statistical Association, 82(399), 836-843.

Phillips, P. C. B. (1986):"Understanding Spurious Regressions," Journal of Econometrics, 33, 311-340.

Phillips, P. C. B., and S. Ouliaris (1988):"Testing for cointegration using principal components methods," Journal of Economic Dynamics and Control, 12, 205-230.
— (1990): "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, 58(1), 165-193.

Pisarenko, V. F. (1973): "The retrieval of harmonics from a covariance function," Geophys. J. R. Astron. Soc., 33, 347-366.

Priestley, M. B. (1981): Spectral Analysis and Time Series. Academic Press, London.
Priestley, M. B., T. S. Rao, and H. Tong (1973): "Identification of the structure of multivariate stochastic systems," in Multivariate Analysis: III, ed. by P. R. Krishnaiah. Academic Press, New York.

Sun, H. J. (1988): "A Fortran subroutine for computing normal orthant probabilities of dimensions up to nine," Communications in statistics - Simulation and computation, 17(3), 1097-1111.

Tang, D., C. Gnecco, and N. L. Geller (1989): "An approximate likelihood ratio test for a normal mean vector with nonnegative components with applications to clinical trials," Biometrika, 76(3), 577-583.

Tryphou, T. G. (2000): "Signal estimation via selective harmonic amplification: MUSIC, REdux," IEEE Transactions on Signal Processing, 48(3), 780-790.

A Appendix

As $\operatorname{vec}(\boldsymbol{\Lambda})$ is not analytic, it cannot be expanded as a Taylor series. We define instead for a hermitian complex matrix \boldsymbol{A}, a $2 n \times 2 n$ real symmetric matrix \boldsymbol{A}^{R} which is an arrangement of the real and imaginary parts of the elements of \boldsymbol{A}. Details on \boldsymbol{A}^{R} are given in Brillinger (1981, pp. 71). By Brillinger (1981, Lemma 3.7.1(i),(ii),(iv)), if $\boldsymbol{\Lambda}=$ $\boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}$ then $\boldsymbol{\Lambda}^{R}=\boldsymbol{\Sigma}_{22}^{R}-\boldsymbol{\Sigma}_{21}^{R} \boldsymbol{\Sigma}_{11}^{R-1} \boldsymbol{\Sigma}_{12}^{R}$. Note that $\left(\operatorname{Revec}(\boldsymbol{\Sigma})^{\prime}, \operatorname{Im} \operatorname{vec}(\boldsymbol{\Sigma})^{\prime}\right)^{\prime} \xrightarrow{d}$ $N\left(\mathbf{0}, \mathbf{V}^{r}\right)$. Let $\boldsymbol{d}_{i j}$ be the vector of distinct elements of $\boldsymbol{\Sigma}_{i j}^{R}$. Define $\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \boldsymbol{J}_{j}^{h}, \boldsymbol{J}_{i j}^{h}$ and \boldsymbol{D}_{i}, $i, j=1,2$, as $\boldsymbol{s} \equiv\left(\operatorname{vec}\left(\boldsymbol{\Sigma}_{11}^{R}\right)^{\prime}, \operatorname{vec}\left(\boldsymbol{\Sigma}_{21}^{R}\right)^{\prime}, \operatorname{vec}\left(\boldsymbol{\Sigma}_{12}^{R}\right)^{\prime}, \operatorname{vec}\left(\boldsymbol{\Sigma}_{22}^{R}\right)^{\prime}\right)^{\prime}=\boldsymbol{J}_{1}\left(\operatorname{Re} \operatorname{vec}(\boldsymbol{\Sigma})^{\prime}, \operatorname{Im} \operatorname{vec}(\boldsymbol{\Sigma})^{\prime}\right)^{\prime}$, $\boldsymbol{J}_{2} \operatorname{vec}\left(\boldsymbol{\Lambda}^{R}\right)=\left(\operatorname{Re} \operatorname{vec}(\boldsymbol{\Lambda})^{\prime}, \operatorname{Im} \operatorname{vec}(\boldsymbol{\Lambda})^{\prime}\right)^{\prime}, \quad \boldsymbol{J}_{j}^{h} \boldsymbol{d}_{j j}=\operatorname{vech}\left(\boldsymbol{\Sigma}_{j j}^{R}\right), \boldsymbol{J}_{i j}^{h} \boldsymbol{d}_{i j}=\operatorname{vec}\left(\boldsymbol{\Sigma}_{i j}^{R}\right)$ and $\operatorname{vec}\left(\boldsymbol{\Sigma}_{i i}^{R}\right)=\boldsymbol{D}_{i} \operatorname{vech}\left(\boldsymbol{\Sigma}_{i i}^{R}\right)$. Then

$$
\boldsymbol{R} \equiv \frac{\partial v e c\left(\boldsymbol{\Lambda}^{R}\right)}{\partial \boldsymbol{s}}=\left[\frac{\partial \operatorname{vec}\left(\boldsymbol{\Lambda}^{R}\right)}{\partial \operatorname{vec}\left(\boldsymbol{\Sigma}_{11}^{R}\right)^{\prime}}, \frac{\partial \operatorname{vec}\left(\boldsymbol{\Lambda}^{R}\right)}{\partial \operatorname{vec}\left(\boldsymbol{\Sigma}_{21}^{R}\right)^{\prime}}, \frac{\partial \operatorname{vec}\left(\boldsymbol{\Lambda}^{R}\right)}{\partial \operatorname{vec}\left(\boldsymbol{\Sigma}_{12}^{R}\right)^{\prime}}, \frac{\partial \operatorname{vec}\left(\boldsymbol{\Lambda}^{R}\right)}{\partial \operatorname{vec}\left(\boldsymbol{\Sigma}_{22}^{R}\right)^{\prime}}\right]
$$

Since $\operatorname{vec}\left(\boldsymbol{\Sigma}_{21}^{R} \boldsymbol{\Sigma}_{11}^{R-1} \boldsymbol{\Sigma}_{12}^{R}\right)=\left(\boldsymbol{\Sigma}_{12}^{R^{\prime}} \otimes \boldsymbol{\Sigma}_{21}^{R}\right) \operatorname{vec}\left(\boldsymbol{\Sigma}_{11}^{R-1}\right), \boldsymbol{\Sigma}_{11}^{R}$ and $\boldsymbol{\Sigma}_{22}^{R}$ are symmetric and $\boldsymbol{\Sigma}_{21}^{R}=\boldsymbol{\Sigma}_{12}^{R^{\prime}}$, from Brillinger (1981, Lemma 3.7.1(v)), we have

$$
\begin{align*}
\frac{\partial \operatorname{vec}\left(\boldsymbol{\Lambda}^{R}\right)}{\partial \operatorname{vec}\left(\boldsymbol{\Sigma}_{11}^{R}\right)^{\prime}} & =\left(\boldsymbol{\Sigma}_{12}^{R^{\prime}} \otimes \boldsymbol{\Sigma}_{21}^{R}\right) \boldsymbol{D}_{1} \boldsymbol{D}_{1}^{+}\left(\boldsymbol{\Sigma}_{11}^{R-1} \otimes \boldsymbol{\Sigma}_{11}^{R-1}\right) \boldsymbol{D}_{1} \boldsymbol{J}_{1}^{h} \boldsymbol{J}_{1}^{h+} \boldsymbol{D}_{1}^{+} \tag{A-1}\\
\frac{\partial \operatorname{vec}\left(\boldsymbol{\Lambda}^{R}\right)}{\partial \operatorname{vec}\left(\boldsymbol{\Sigma}_{21}^{R}\right)^{\prime}} & =-\left(\boldsymbol{I}_{4(n-r)^{2}}+\boldsymbol{K}_{2(n-r), 2(n-r)}\right)\left(\boldsymbol{\Sigma}_{21}^{R} \boldsymbol{\Sigma}_{11}^{R-1} \otimes \boldsymbol{I}_{2(n-r)}\right) \boldsymbol{J}_{21}^{h} \boldsymbol{J}_{21}^{h+} \tag{A-2}\\
\frac{\partial \operatorname{vec}\left(\boldsymbol{\Lambda}^{R}\right)}{\partial \operatorname{vec}\left(\boldsymbol{\Sigma}_{12}^{R}\right)^{\prime}} & =\frac{\partial \operatorname{vec}\left(\boldsymbol{\Lambda}^{R}\right)}{\partial \operatorname{vec}\left(\boldsymbol{\Sigma}_{21}^{R}\right)^{\prime}} \boldsymbol{K}_{2 r, 2(n-r)}, \quad \frac{\partial \operatorname{vec}\left(\boldsymbol{\Lambda}^{R}\right)}{\partial \operatorname{vec}\left(\boldsymbol{\Sigma}_{22}^{R}\right)^{\prime}}=\boldsymbol{D}_{2} \boldsymbol{J}_{2}^{h} \boldsymbol{J}_{2}^{h^{+}} \boldsymbol{D}_{2}^{+} \tag{A-3}
\end{align*}
$$

where for a matrix $\boldsymbol{A}, \boldsymbol{A}^{+}=\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime}, \boldsymbol{K}_{m, n}$ is a commutation matrix (see Lütkepohl (1996, Sec. 9.2)). (A-1), (A-2) and (A-3) follow from Lütkepohl (1996, 10.6(2) and 9.5.3(1)(ii)), Lütkepohl (1996, 10.5.1(7)) and Lütkepohl (1996, 10.4.1(1)(iii) and 9.5.3(1)(ii)) respectively. Then, $\sqrt{2 M+1}\left(\operatorname{Revec}(\hat{\boldsymbol{\Lambda}})^{\prime}, \operatorname{Im} \operatorname{vec}(\hat{\boldsymbol{\Lambda}})^{\prime}\right)^{\prime} \xrightarrow{d} N\left(\mathbf{0}, \boldsymbol{W}^{r}\right)$ where $\boldsymbol{W}^{r}=$ $\boldsymbol{J} \boldsymbol{V}^{r} \boldsymbol{J}^{\prime}$ and $\boldsymbol{J}=\boldsymbol{J}_{2} \boldsymbol{R} \boldsymbol{J}_{1}$. Finally, $\sqrt{2 M+1} \operatorname{vec}(\hat{\boldsymbol{\Lambda}}) \xrightarrow{d} N^{C}(\mathbf{0}, \boldsymbol{W})$. An alternative to the above is the use of numerical derivatives.

Table 1: Bias and MSE of Estimated rank. ${ }^{a}$

Model	Noise	Test	rank	Bias		MSE	
				200	600	200	600
Linear	Normal	CK	1	0.191	0.134	0.206	0.135
			2	-0.366	-0.218	0.418	0.230
		JM	1	0.058	0.055	0.061	0.059
			2	0.059	0.060	0.059	0.060
		JT	1	0.060	0.056	0.073	0.070
			2	0.059	0.060	0.059	0.060
	MA(1)	CK	1	0.196	0.135	0.206	0.137
			2	-0.369	-0.206	0.425	0.218
		JM	1	0.158	0.162	0.183	0.187
			2	0.095	0.078	0.095	0.078
		JT	1	0.169	0.172	0.218	0.217
			2	0.095	0.078	0.095	0.078
STAR	Normal	CK	1	0.158	0.130	0.209	0.136
			2	-0.543	-0.307	0.670	0.341
		JM	1	0.055	0.056	0.059	0.059
			2	0.063	0.060	0.063	0.060
		JT	1	0.057	0.056	0.068	0.066
			2	0.063	0.060	0.063	0.060
	MA(1)	CK	1	0.173	0.125	0.206	0.129
			2	-0.492	-0.275	0.596	0.295
		JM	1	0.156	0.150	0.188	0.170
			2	0.093	0.081	0.093	0.081
		JT	1	0.145	0.160	0.229	0.196
			2	0.093	0.081	0.093	0.081
SETAR	Normal	CK	1	-0.125	0.081	0.342	0.156
			2	-1.019	-0.647	1.452	0.825
		JM	1	-0.115	0.055	0.208	0.058
			2	-0.041	0.060	0.177	0.060
		JT	1	-0.161	0.057	0.273	0.069
			2	-0.028	0.060	0.156	0.060
	MA(1)	CK	1	0.036	0.123	0.257	0.143
			2	-0.824	-0.466	1.110	0.558
		JM	1	-0.144	0.152	0.384	0.175
			2	-0.151	0.081	0.366	0.081
		JT	1	-0.166	0.159	0.489	0.202
			2	-0.055	0.081	0.236	0.081

[^3]
European Central Bank working paper series

For a complete list of Working Papers published by the ECB, please visit the ECB's website (http://www.ecb.int).

202 "Aggregate loans to the euro area private sector" by A. Calza, M. Manrique and J. Sousa, January 2003.

203 "Myopic loss aversion, disappointment aversion and the equity premium puzzle" by D. Fielding and L. Stracca, January 2003.

204 "Asymmetric dynamics in the correlations of global equity and bond returns" by L. Cappiello, R.F. Engle and K. Sheppard, January 2003.

205 "Real exchange rate in an inter-temporal n-country-model with incomplete markets" by B. Mercereau, January 2003.

206 "Empirical estimates of reaction functions for the euro area" by D. Gerdesmeier and B. Roffia, January 2003.

207 "A comprehensive model on the euro overnight rate" by F. R. Würtz, January 2003.

208 "Do demographic changes affect risk premiums? Evidence from international data" by A. Ang and A. Maddaloni, January 2003.

209 "A framework for collateral risk control determination" by D. Cossin, Z. Huang, D. Aunon-Nerin and F. González, January 2003.

210 "Anticipated Ramsey reforms and the uniform taxation principle: the role of international financial markets" by S. Schmitt-Grohé and M. Uribe, January 2003.

2II "Self-control and savings" by P. Michel and J.P. Vidal, January 2003.
212 "Modelling the implied probability of stock market movements" by E. Glatzer and M. Scheicher, January 2003.

213 "Aggregation and euro area Phillips curves" by S. Fabiani and J. Morgan, February 2003.
214 "On the selection of forecasting models" by A. Inoue and L. Kilian, February 2003.
215 "Budget institutions and fiscal performance in Central and Eastern European countries" by H. Gleich, February 2003.

216 "The admission of accession countries to an enlarged monetary union: a tentative assessment" by M. Ca’Zorzi and R. A. De Santis, February 2003.

217 "The role of product market regulations in the process of structural change" by J. Messina, March 2003.

218 "The zero-interest-rate bound and the role of the exchange rate for monetary policy in Japan" by G. Coenen and V. Wieland, March 2003.

219 "Extra-euro area manufacturing import prices and exchange rate pass-through" by B. Anderton, March 2003.

220 "The allocation of competencies in an international union: a positive analysis" by M. Ruta, April 2003.

221 "Estimating risk premia in money market rates" by A. Durré, S. Evjen and R. Pilegaard, April 2003.

222 "Inflation dynamics and subjective expectations in the United States" by K. Adam and M. Padula, April 2003.

223 "Optimal monetary policy with imperfect common knowledge" by K. Adam, April 2003.

224 "The rise of the yen vis-à-vis the ("synthetic") euro: is it supported by economic fundamentals?" by C. Osbat, R. Rüffer and B. Schnatz, April 2003.

225 "Productivity and the ("synthetic") euro-dollar exchange rate" by C. Osbat, F. Vijselaar and B. Schnatz, April 2003.

226 "The central banker as a risk manager: quantifying and forecasting inflation risks" by L. Kilian and S. Manganelli, April 2003.

227 "Monetary policy in a low pass-through environment" by T. Monacelli, April 2003.

228 "Monetary policy shocks - a nonfundamental look at the data" by M. Klaeffing, May 2003.

229 "How does the ECB target inflation?" by P. Surico, May 2003.
230 "The euro area financial system: structure, integration and policy initiatives" by P. Hartmann, A. Maddaloni and S. Manganelli, May 2003.

231 "Price stability and monetary policy effectiveness when nominal interest rates are bounded at zero" by G. Coenen, A. Orphanides and V. Wieland, May 2003.

232 "Describing the Fed's conduct with Taylor rules: is interest rate smoothing important?" by E. Castelnuovo, May 2003.

233 "The natural real rate of interest in the euro area" by N. Giammarioli and N. Valla, May 2003.

234 "Unemployment, hysteresis and transition" by M. León-Ledesma and P. McAdam, May 2003.

235 "Volatility of interest rates in the euro area: evidence from high frequency data" by N. Cassola and C. Morana, June 2003.

236 "Swiss monetary targeting 1974-1996: the role of internal policy analysis" by G. Rich, June 2003.

237 "Growth expectations, capital flows and international risk sharing" by O. Castrén, M. Miller and R. Stiegert, June 2003.

238 "The impact of monetary union on trade prices" by R. Anderton, R. E. Baldwin and D. Taglioni, June 2003.

239 "Temporary shocks and unavoidable transitions to a high-unemployment regime" by W. J. Denhaan, June 2003.

240 "Monetary policy transmission in the euro area: any changes after EMU?" by I. Angeloni and M. Ehrmann, July 2003.

24 I Maintaining price stability under free-floating: a fearless way out of the corner?" by C. Detken and V. Gaspar, July 2003.

242 "Public sector efficiency: an international comparison" by A. Afonso, L. Schuknecht and V. Tanzi, July 2003.

243 "Pass-through of external shocks to euro area inflation" by E. Hahn, July 2003.

244 "How does the ECB allot liquidity in its weekly main refinancing operations? A look at the empirical evidence" by S. Ejerskov, C. Martin Moss and L. Stracca, July 2003.

245 "Money and payments: a modern perspective" by C. Holthausen and C. Monnet, July 2003.
246 "Public finances and long-term growth in Europe - evidence from a panel data analysis" by D. R. de Ávila Torrijos and R. Strauch, July 2003.

247 "Forecasting euro area inflation: does aggregating forecasts by HICP component improve forecast accuracy?" by K. Hubrich, August 2003.

248 "Exchange rates and fundamentals" by C. Engel and K. D. West, August 2003.

249 "Trade advantages and specialisation dynamics in acceding countries" by A. Zaghini, August 2003.

250 "Persistence, the transmission mechanism and robust monetary policy" by I. Angeloni, G. Coenen and F. Smets, August 2003.

25 I "Consumption, habit persistence, imperfect information and the lifetime budget constraint" by A. Willman, August 2003.

252 "Interpolation and backdating with a large information set" by E. Angelini, J. Henry and M. Marcellino, August 2003.

253 "Bond market inflation expectations and longer-term trends in broad monetary growth and inflation in industrial countries, I880-200।" by W. G. Dewald, September 2003.

254 "Forecasting real GDP: what role for narrow money?" by C. Brand, H.-E. Reimers and F. Seitz, September 2003.

255 "Is the demand for euro area M3 stable?" by A. Bruggeman, P. Donati and A. Warne, September 2003.

256 "Information acquisition and decision making in committees: a survey" by K. Gerling, H. P. Grüner, A. Kiel and E. Schulte, September 2003.

257 "Macroeconomic modelling of monetary policy" by M. Klaeffling, September 2003.
258 "Interest rate reaction functions and the Taylor rule in the euro area" by P. GerlachKristen, September 2003.

259 "Implicit tax co-ordination under repeated policy interactions" by M. Catenaro and J.-P. Vidal, September 2003.

260 "Aggregation-theoretic monetary aggregation over the euro area, when countries are heterogeneous" by W. A. Barnett, September 2003.

261 "Why has broad money demand been more stable in the euro area than in other economies? A literature review" by A. Calza and J. Sousa, September 2003.

262 "Indeterminacy of rational expectations equilibria in sequential financial markets" by P. Donati, September 2003.

263 "Measuring contagion with a Bayesian, time-varying coefficient model" by M. Ciccarelli and A. Rebucci, September 2003.

264 "A monthly monetary model with banking intermediation for the euro area" by A. Bruggeman and M. Donnay, September 2003.

265 "New Keynesian Phillips Curves: a reassessment using euro area data" by P. McAdam and A. Willman, September 2003.

266 "Finance and growth in the EU: new evidence from the liberalisation and harmonisation of the banking industry" by D. Romero de Ávila, September 2003.

267 "Comparing economic dynamics in the EU and CEE accession countries" by R. Süppel, September 2003.

268 "The output composition puzzle: a difference in the monetary transmission mechanism in the euro area and the US" by I. Angeloni, A. K. Kashyap, B. Mojon and D. Terlizzese, September 2003.

269 "Zero lower bound: is it a problem with the euro area?" by G. Coenen, September 2003.

270 "Downward nominal wage rigidity and the long-run Phillips curve: simulation-based evidence for the euro area" by G. Coenen, September 2003.

27 "Indeterminacy and search theory" by N. Giammarioli, September 2003.

272 "Inflation targets and the liquidity trap" by M. Klaeffling and V. López Pérez, September 2003.

273 "Definition of price stability, range and point inflation targets: the anchoring of long-term inflation expectations" by E. Castelnuovo, S. Nicoletti-Altimari and D. RodriguezPalenzuela, September 2003.

274 "Interpreting implied risk neutral densities: the role of risk premia" by P. Hördahl and D. Vestin, September 2003.

275 "Identifying the monetary transmission mechanism using structural breaks" by A. Beyer and R. Farmer, September 2003.

276 "Short-term estimates of euro area real GDP by means of monthly data" by G. Rünstler and F. Sédillot, September 2003.

277 "On the indeterminacy of determinacy and indeterminacy" by A. Beyer and R. Farmer, September 2003.

278 "Relevant economic issues concerning the optimal rate of inflation" by D. R. Palenzuela, G. Camba-Méndez and J. Á. García, September 2003.

279 "Designing targeting rules for international monetary policy cooperation" by G. Benigno and P. Benigno, October 2003.

280 "Inflation, factor substitution and growth" by R. Klump, October 2003.

281 "Identifying fiscal shocks and policy regimes in OECD countries" by G. de Arcangelis and S. Lamartina, October 2003.

282 "Optimal dynamic risk sharing when enforcement is a decision variable" by T. V. Koeppl, October 2003.

283 "US, Japan and the euro area: comparing business-cycle features" by P. McAdam, November 2003.

284 "The credibility of the monetary policy 'free lunch"' by J. Yetman, November 2003.

285 "Government deficits, wealth effects and the price level in an optimizing model" by B. Annicchiarico, November 2003.

286 "Country and sector-specific spillover effects in the euro area, the United States and Japan" by B. Kaltenhaeuser, November 2003.

287 "Consumer inflation expectations in Poland" by T. Łyziak, November 2003.
288 "Implementing optimal control cointegrated I(I) structural VAR models" by F. V. Monti, November 2003.

289 "Monetary and fiscal interactions in open economies" by G. Lombardo and A. Sutherland, November 2003.

290 "Inflation persistence and robust monetary policy design" by G. Coenen, November 2003.
291 "Measuring the time-inconsitency of US monetary policy" by P. Surico, November 2003.
292 "Bank mergers, competition and liquidity" by E. Carletti, P. Hartmann and G. Spagnolo, November 2003.

293 "Committees and special interests" by M. Felgenhauer and H. P. Grüner, November 2003.
294 "Does the yield spread predict recessions in the euro area!" by F. Moneta, December 2003.
295 "Optimal allotment policy in the eurosystem's main refinancing operations?" by C. Ewerhart, N. Cassola, S. Ejerskov and N. Valla, December 2003.

296 "Monetary policy analysis in a small open economy using bayesian cointegrated structural VARs?" by M. Villani and A. Warne, December 2003.

297 "Measurement of contagion in banks' equity prices" by R. Gropp and G. Moerman, December 2003.
298 "The lender of last resort: a 2 Ist century approach" by X. Freixas, B. M. Parigi and J.-C. Rochet, December 2003.

299 "Import prices and pricing-to-market effects in the euro area" by T. Warmedinger, January 2004.
300 "Developing statistical indicators of the integration of the euro area banking system" by M. Manna, January 2004.

301 "Inflation and relative price asymmetry" by A. Rátfai, January 2004.
302 "Deposit insurance, moral hazard and market monitoring" by R. Gropp and J. Vesala, February 2004.
303 "Fiscal policy events and interest rate swap spreads: evidence from the EU" by A. Afonso and R. Strauch, February 2004.

304 "Equilibrium unemployment, job flows and inflation dynamics" by A. Trigari, February 2004.
305 "A structural common factor approach to core inflation estimation and forecasting" by C. Morana, February 2004.

306 "A markup model of inflation for the euro area" by C. Bowdler and E. S. Jansen, February 2004.
307 "Budgetary forecasts in Europe - the track record of stability and convergence programmes" by R. Strauch, M. Hallerberg and J. von Hagen, February 2004.

308 "International risk-sharing and the transmission of productivity shocks" by G. Corsetti, L. Dedola and S. Leduc, February 2004.

309 "Monetary policy shocks in the euro area and global liquidity spillovers" by J. Sousa and A. Zaghini, February 2004.

310 "International equity flows and returns: A quantitative equilibrium approach" by R. Albuquerque, G. H. Bauer and M. Schneider, February 2004.

3II "Current account dynamics in OECD and EU acceding countries - an intertemporal approach" by M. Bussière, M. Fratzscher and G. Müller, February 2004.

312 "Similarities and convergence in G-7 cycles" by F. Canova, M. Ciccarelli and E. Ortega, February 2004.

313 "The high-yield segment of the corporate bond market: a diffusion modelling approach for the United States, the United Kingdom and the euro area" by G. de Bondt and D. Marqués, February 2004.

314 "Exchange rate risks and asset prices in a small open economy" by A. Derviz, March 2004.
315 "Option-implied asymmetries in bond market expectations around monetary policy actions of the ECB" by S. Vähämaa, March 2004.

316 "Cooperation in international banking supervision" by C. Holthausen and T. Rønde, March 2004.
317 "Fiscal policy and inflation volatility" by P. C. Rother, March 2004.
318 "Gross job flows and institutions in Europe" by R. Gómez-Salvador, J. Messina and G. Vallanti, March 2004.
319 "Risk sharing through financial markets with endogenous enforcement of trades" by T. V. Köppl, March 2004.
320 "Institutions and service employment: a panel study for OECD countries" by J. Messina, March 2004.
321 "Frequency domain principal components estimation of fractionally cointegrated processes" by C. Morana, March 2004.

322 "Modelling inflation in the euro area" by E. S. Jansen, March 2004.
323 "On the indeterminacy of New-Keynesian economics" by A. Beyer and R. E. A. Farmer, March 2004.
324 "Fundamentals and joint currency crises" by P. Hartmann, S. Straetmans and C. G. de Vries, March 2004.
325 "What are the spill-overs from fiscal shocks in Europe? An empirical analysis" by M. Giuliodori and R. Beetsma, March 2004.

326 "The great depression and the Friedman-Schwartz hypothesis" by L. Christiano, R. Motto and M. Rostagno, March 2004.

327 "Diversification in euro area stock markets: country versus industry" by G. A. Moerman, April 2004.
328 "Non-fundamental exchange rate volatility and welfare" by R. Straub and I. Tchakarov, April 2004.
329 "On the determinants of euro area FDI to the United States: the knowledge-capital-Tobin's Q framework, by R. A. De Santis, R. Anderton and A. Hijzen, April 2004.

330 "The demand for euro area currencies: past, present and future" by B. Fischer, P. Köhler and F. Seitz, April 2004.
331 "How frequently do prices change? evidence based on the micro data underlying the Belgian CPI" by L. Aucremanne and E. Dhyne, April 2004.

332 "Stylised features of price setting behaviour in Portugal: I992-200I" by M. Dias, D. Dias and P. D. Neves, April 2004.

333 "The pricing behaviour of Italian firms: New survey evidence on price stickiness" by S. Fabiani, A. Gattulli and R. Sabbatini, April 2004.

334 "Is inflation persistence intrinsic in industrial economies?" by A. T. Levin and J. M. Piger, April 2004.

335 "Has eura-area inflation persistence changed over time?" by G. O'Reilly and K. Whelan, April 2004.

336 "The great inflation of the 1970s" by F. Collard and H. Dellas, April 2004.

337 "The decline of activist stabilization policy: Natural rate misperceptions, learning and expectations" by A. Orphanides and J. C. Williams, April 2004.

338 "The optimal degree of discretion in monetary policy" by S. Athey, A. Atkeson and P. J. Kehoe, April 2004.

339 "Understanding the effects of government spending on consumption" by J. Galí, J. D. López-Salido and J. Vallés, April 2004.

340 "Indeterminacy with inflation-forecast-based rules in a two-bloc model" by N. Batini, P.Levine and J. Pearlman, April 2004.

341 "Benefits and spillovers of greater competition in Europe: A macroeconomic assessment" by T. Bayoumi, D. Laxton and P. Pesenti, April 2004.

342 "Equal size, equal role? Interest rate interdependence between the euro area and the United States" by M. Ehrmann and M. Fratzscher, April 2004.

343 "Monetary discretion, pricing complementarity and dynamic multiple equilibria" by R. G. King and A. L. Wolman, April 2004.

344 "Ramsey monetary policy and international relative prices" by E. Faia and T. Monacelli, April 2004.
345 "Optimal monetary and fiscal policy: A linear-quadratic approach" by P. Benigno and M. Woodford, April 2004.

346 "Perpetual youth and endogenous labour supply: a problem and a possible solution" by G. Ascari and N. Rankin, April 2004.

347 "Firms' investment decisions in response to demand and price uncertainty" by C. Fuss and P. Vermeulen, April 2004.

348 "Financial openness and growth: Short-run gain, long-run pain?" by M. Fratzscher and M. Bussiere, April 2004.
349 "Estimating the rank of the spectral density matrix" by G. Camba-Mendez and G. Kapetanios, April 2004.

[^0]: *Comments by an anonymous referee are gratefully acknowledged. All possible remaining errors are our own. Gonzalo Camba-Mendez is at the European Central Bank, Kaiserstrasse 29, D-60311, Frankfurt am Main, email: gonzalo.camba-mendez@ecb.int. George Kapetanios is at the Department of Economics, Queen Mary, University of London, Mile End Rd, London E1 4NS, email: G.Kapetanios@qmul.ac.uk.

[^1]: ${ }^{1}$ As we are mainly interested in the rank of the spectral density matrix, in the rest of the discussion we drop the normalizing constant 2π.
 ${ }^{2}$ For more details on the choice of M and its effect on the asymptotic bias and variance of the estimator see also Brillinger (1981, Chapter 2).

[^2]: ${ }^{3}$ GAUSS code to implement this test is available from the authors upon request.

[^3]: ${ }^{a}$ Sample sizes for Monte Carlo experiments are 200 and 600. CK denotes the Camba-Mendez and Kapetanios test, JM refers to Johansen's maximum eigenvalue test and JT to Johansen's trace test. rk denotes the cointegrating rank which is 1 or 2 for the different exercises conducted as described in the text.

