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1 Introduction

Building on work by Sims (1988) and Chung (1990), Sargent (1999) studied a setting in
which adaptation within an approximating Phillips curve model causes recurrent escapes
from the time-consistent outcome of Kydland and Prescott (1977). Better outcomes emerge
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Figure 1: Moving average of monthly C.P.I. inflation, all items.

because the government temporarily has learned the natural rate hypothesis. The escapes
occur via a remarkable type of dynamics reflecting accidental experimentation induced by
the government’s adaptive algorithm and its imperfect model. By focusing on a manage-
able special case, this paper obtains analytical characterizations of those escape dynamics.1

Figure 1 shows the inflation rate in the U.S. consumer price index after World War II. It
displays a rise in the late 1960’s and 1970’s, with a dramatic stabilization under Volcker
around 1980, then a further reduction under Greenspan in the early 1990’s.

We want to think about these data in terms of a model with the following features:
(1) the monetary authority controls the inflation rate, apart from a random disturbance;
(2) the true data generating mechanism embodies a version of the natural rate hypothe-
sis embedded within an expectational Phillips curve; and (3) as in Kydland and Prescott
(1977), a purposeful government dislikes inflation and unemployment and a private sector
forecasts inflation optimally. An innovation of this paper is to add: (4) that the monetary
policy makers don’t know the true data generating mechanism but use a good fitting ap-
proximating model.

Within models with features (1), (2), and (3), there are two approaches to explaining the
data in Figure 1. The first is the hypothesis of Parkin (1993) and Ireland (1997) that move-
ments in the fundamentals of the basic Kydland-Prescott model caused the time-consistent
inflation rate to vary over time, and that observed inflation tracked these movements.
Parkin and Ireland assume fixed preferences and fixed beliefs for the policy authority and
the public, but a shifting natural rate of unemployment.

The second approach posits that while the data from the 1970’s may have tracked the
time consistent inflation rate, after the early 1980’s the monetary authorities chose infla-

1Since we completed this paper, we have received Williams (1999), which manages to compute the domi-
nant escape route for a closely related model. Williams slightly modifies the learning algorithm by ignoring
the R term below in order to simplify the analysis. He is able to obtain a diffusion approximation and to
numerically minimize a version of the action functional to be described below. The dominant escape route
computed by Williams closely resembles the one computed here.
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tion below the time consistent rate. Some papers (e.g., Ball (1995)) have formalized this
view in terms of particular specifications of history-dependent strategies for the monetary
authorities that encode reputations. Others (e.g., McCallum (1995) and Blinder (1998)) sug-
gest that the American monetary authorities have somehow, through unspecified means,
managed to commit themselves to a better than time consistent inflation rate.

This paper contributes another theory within second approach. We hold fixed the fun-
damentals in the economy, including the true data generating mechanism, preferences,
and agents’ methods for constructing behavior rules. Changes in the government’s beliefs
about the Phillips curve, and how it approximates the natural rate hypothesis, drive the
inflation rate. Inspired by econometric work about approximating models by Sims (1972)
and White (1982), we endow the monetary authority, not with the correct model, but with
an approximating model that it nevertheless estimates with good econometric procedures.

We use the concept of a self-confirming equilibrium, a natural equilibrium concept
for behavior induced by an approximating model. Among the objects determined by a
self-confirming equilibrium are the parameters of the government’s approximating model.
While the self-confirming equilibrium concept differs formally from a Nash (or time con-
sistent) equilibrium,2 it happens that the self-confirming equilibrium outcomes are the
time-consistent ones. Thus, the time consistent outcome continues to be our benchmark.

Like a Nash equilibrium, a self-confirming equilibrium is stated in terms of population
objects (mathematical expectations, not sample means). We add adaptation by requiring
the government to estimate its model from historical data in real time. We form an adap-
tive model by having the monetary authority adjust its behavior rule in light of the latest
model estimates. Thus, we attribute ‘anticipated utility’ behavior (see Kreps (1998)) to the
monetary authority. Following Sims (1988), we study a ‘constant gain’ estimation algo-
rithm that discounts past observations. Called a ‘tracking algorithm’, it is useful when
parameter drift is suspected (see e.g. Marcet and Nicolini (1997)).

Results from the literature on least squares learning (e.g., Marcet and Sargent (1989),
Woodford (1990), Evans and Honkapohja (1998)) apply and take us part way, but only
part way, to our goal. The literature shows how the limiting behavior of systems with
least squares learning is governed by a deterministic dynamics, described by an ordinary
differential equation and known as ‘mean dynamics’. These results imply that the adaptive
system with least squares learning converges to the self-confirming equilibrium and the
time consistent outcome. We go beyond the previous literature on least squares learning
and discover another deterministic component of the dynamics that governs the system
under the constant gain algorithm. These are the ‘escape’ dynamics. They point away from
the self-confirming equilibrium and toward the Ramsey (or optimal-under-commitment)
equilibrium outcome. So two sorts of dynamics dominate the behavior of the adaptive
system.

1. The mean dynamics come from an unconditional moment condition, the least squares
normal equations. These dynamics drive the system toward a self-confirming equi-
librium.

2It is defined in terms of different objects.
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2. The escape route dynamics propel the system away from a self-confirming equilibrium.
They emerge from the same least squares moment conditions, but they are conditioned
on a particular “most likely” unusual event, defined in terms of the disturbance se-
quence. This most likely unusual event is endogenous.

Under least squares adaptation without discounting of past observations, the mean
dynamics dominate in the limit. They make the system converge to a self-confirming equi-
librium. Under the adaptive system with constant gain, the escape route dynamics endure
and occasionally drive the system toward the optimal (time inconsistent) outcome.

The escape route dynamics have a compelling behavioral interpretation. Within the
confines of its approximate model, learning the natural rate hypothesis requires that the
government generate a sufficiently wide range of inflation experiments. To learn even an
imperfect version of the natural rate hypothesis, the government must experiment more
than it does within the confines of a self-confirming equilibrium. The government is caught
in an experimentation trap. With a constant gain, the adaptive algorithm occasionally puts
enough movement into the government’s beliefs to produce informative experiments.

1.1 Simplifications

Sargent (1999) studied these matters within the context of the distributed lag specification
of the Phillips curve used in empirical applications. To simplify the approximation and
control issues, this paper confines itself to a context in which the government estimates a
static Phillips curve. This is the setting studied by Sims (1988). A cost of this simplification
is that it eliminates important points about the “induction hypothesis” of Cho and Matsui
(1995) and how distributed lag specifications of the Phillips curve can approximate the nat-
ural rate theory under particular experiments. A benefit is how the current setting illumi-
nates the role of induced experimentation in promoting escapes from the time-consistent
equilibria.

1.2 Related literature

Evans and Honkapohja (1993) investigated a model with multiple self-confirming equilib-
ria having different rates of inflation. When agents learn through a recursive least squares
algorithm, outcomes converge to a self-confirming equilibrium that is stable under the
learning algorithm. When agents use a fixed gain algorithm, Evans and Honkapohja (1993)
demonstrated that the outcome oscillates among different locally stable self-confirming
equilibria. They suggested that such a model can explain wide fluctuations of market out-
comes in response to small shocks.

In models like Evans and Honkapohja (1993), the time spent in a neighborhood of a lo-
cally stable equilibrium and the escape path from its basin of attraction are determined by
a large deviation property of the recursive algorithm. As the stochastic perturbation dis-
appears, the outcome stays in a neighborhood of a particular locally stable self-confirming
equilibrium (exponentially) longer than the others. This observation provided Kandori,
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Mailath, and Rob (1993) and Young (1993) with a way to select a unique equilibrium in
evolutionary models with multiple locally stable Nash equilibria.

An important difference from the preceding literature is that our model has a unique
self-confirming equilibrium. Despite that, the dynamics of the model resemble those for
models with multiple equilibria such as Evans and Honkapohja (1993). With multiple
locally stable equilibria, outcomes escape from the basin of attraction of a locally stable
outcome to the neighborhood of another locally stable equilibrium. The fact that our model
has a globally unique stable equilibrium creates an additional challenge for us, namely, to
characterize the most likely direction of the escape from a neighborhood of the unique self-
confirming equilibrium. As we shall see, the most likely direction entails the government’s
learning a good, but not self-confirming, approximation to the natural rate hypothesis.

1.3 Organization

The remainder of this paper focuses on a learning mechanism that facilitates sufficient ex-
perimentation occasionally to offset the strong forces driving an adaptive system toward
the pessimistic Kydland-Prescott time consistent equilibrium. Section 2 describes the basic
setting. Section 3 defines and computes the Nash equilibrium and the Ramsey outcome.
Section 4 defines a self-confirming equilibrium and shows how it supports a Nash out-
come. Section 5 describes a minimal modification of a self-confirming equilibrium formed
by giving the government an adaptive algorithm for its beliefs. In section 6, using sim-
ulations, we study how and why adaptation facilitates experimentation and escapes to
better than time-consistent outcomes. Section 7 offers an economic interpretation of the
escape path. Section 8 specializes the setting to multinomial shocks, for the sake of ana-
lytic tractability. In section 9, we formally examine the asymptotic properties of the escape
path by investigating the large deviation properties of the underlying recursive learning
algorithm. Section 10 discusses a more general setting and concludes. A final appendix
gives a brief post World War II pictorial history of the U.S. Phillips curve.

2 Setup

We start with a framework and an idea of Sims (1988). We use Sims’s version of Kydland
and Prescott’s model of a time-consistent government inflation policy and restate it in lan-
guage used by Stokey (1989). First we form two rational expectations equilibria (Nash and
Ramsey). Then we formulate a version of the model called a self-confirming equilibrium.
Here the government uses an approximating model. After that, we describe our main in-
terest, an adaptive version of the model in which the government fits its approximating
model using a recursive algorithm that discounts past observations.

Let (Ut; yt; xt; x̂t) denote the unemployment rate, the inflation rate, the systematic part
of the inflation rate, and the public’s expected rate of inflation, respectively. The govern-
ment sets xt, the public sets x̂t, and the economy determines outcomes (yt; Ut).
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2.1 The Private Economy

The data are generated by the natural unemployment rate model

Ut = U� � �(yt � x̂t) + v1t (2.1)

yt = xt + v2t (2.2)

xt = x̂t; (2.3)

where � > 0, U � > 0, and vt is a (2 � 1) i. i. d. random vector with Evt = 0, diagonal
contemporaneous covariance matrix and Ev2jt = �2vj . Here U � is the natural rate of un-
employment and �� is the slope of an expectations-augmented Phillips curve. According
to (2.1), there is a family of Phillips curves indexed by x̂t. Condition (2.2) states that the
government sets inflation up to a random term v2t. Condition (2.3) imposes rational ex-
pectations for the public. System (2.1), (2.2), (2.3) embodies the natural unemployment
rate hypothesis: surprise inflation lowers the unemployment rate but anticipated inflation
does not.

2.2 The government’s purpose

The government has a preference ordering over (yt; Ut) induced by the one-period return
function

�E(U2
t + y2t ): (2.4)

3 Equilibria with knowledge of model

The literature focuses on two equilibria that arise from assuming that the government
knows the correct model. Called the Nash equilibrium and the Ramsey plan, they come
from different timing protocols. The outcome with a Ramsey plan is better than that for a
Nash equilibrium. This is the time inconsistency problem.

To define a Nash equilibrium, we need

Definition 3.1 A government best response map xt = B(x̂t) solves the problem

min
xt

E(U2
t + y2t ) (3.5)

subject to (2.1), (2.2), taking x̂t as given.

The best response map is

xt =
�

�2 + 1
U� +

�2

�2 + 1
x̂t: (3.6)

A Nash equilibrium incorporates a government best response and rational expectations
for the public:
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Definition 3.2 A Nash equilibrium is a pair (x; x̂) satisfying (a) x = B(x̂), and (b) x̂ = x. A
Nash outcome is the associated (Ut; yt).

Definition 3.3 The Ramsey plan xt solves the problem of minimizing (3.5) subject to (2.1), (2.2),
and (2.3). The Ramsey outcome is the associated (Ut; yt).

A Ramsey outcome dominates a Nash outcome. The Ramsey plan is x̂t = xt = 0 and
the Ramsey outcome is

Ut = U� � �v2t + v1t; yt = v2t: (3.7)

The Nash equilibrium is x̂t = xt = �U� and the Nash outcome is Ut = U� � �v2t +
v1t; yt = �U� + v2t. The addition of constraint (2.3) to the government’s problem in the
Ramsey plan makes the government achieve better outcomes by taking into account how
its actions affect the public’s expectations. The superiority of the Ramsey outcome reflects
the value to the government of being able to commit to a policy before the public sets its
expectations. This is how Kydland and Prescott (1977) reached the pessimistic conclusion
that a benevolent and knowledgeable government would set inflation too high because it
makes decisions sequentially, not once-and-for-all time.

4 Equilibrium with an approximating model

Following Sims (1988), we now study a setting where the government does not know the
structure and makes policy with an econometric model that approximates the economy.
This leads to a model with two models within, one the true model (2.1), (2.2), (2.3), the
other the government’s econometric model.

In particular, the government does not know (2.1) and (2.3), but believes (2.2) and

Ut = 0 + 1yt + �t; (4.8)

where �t is a random variable orthogonal to the constant and yt, which makes (4.8) a re-
gression equation. Specification (4.8) ignores the hidden state x̂t that truly positions the
Phillips curve in (2.1). The government’s beliefs are restricted by the least-squares normal
equation

E�t

�
1
yt

�
= 0; (4.9)

where E is the mathematical expectation operator; (4.9) identifies  as a population least
squares regression vector. Equation (2.2) continues to express the government’s belief that
it can control yt up to a random term.

4.1 The government’s decision problem

Substituting (2.2) into (4.8) gives

Ut = 0 + 1(xt + v2t) + �t: (4.10)

We use
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Definition 4.1 A government pseudo best response map xt = ho() solves

min
xt

E(U2
t + x2t ) (4.11)

subject to (4.10).

The pseudo best response is

xt =
�01
21 + 1

� ho(): (4.12)

It maps an approximating Phillips curve  into the government’s setting of the systematic
part of inflation xt.

4.2 Self-confirming equilibrium

Definition 4.2 A self-confirming equilibrium is a government belief , a government pseudo
best response map for xt, and an associated stochastic process for (Ut; yt; xt; x̂t) such that: (a) the
stochastic process satisfies (2.1), (2.2), (2.3); (b) xt satisfies (4.12); (c) the regression coefficients 
satisfy (4.9).

Condition (a) requires that the data are generated by the true model and that the pub-
lic’s expectations are rational. Condition (b) requires that the government set the system-
atic part of inflation to be a pseudo best response to its beliefs about the Phillips curve.
Condition (c) requires that the government’s beliefs about the Phillips curve be consistent
with the data.

Proposition 4.3 The self-confirming equilibrium outcome equals the Nash outcome.

Proof: We proceed by constructing the self-confirming equilibrium outcome and compar-
ing it to the Nash outcome. To compute a self-confirming equilibrium, substitute rule (4.12)
and (2.3) into (2.1) to get

Ut = [U� + ho�]� �yt + v1t: (4.13)

Equating coefficients in (4.13) and (4.8) and rearranging gives  in a self-confirming equi-
librium:

1 = �� (4.14)

0 = U�(1 + �2): (4.15)

Substituting these values into (4.12) gives

xt = �U�: (4.16)

This equals the setting for xt under a Nash equilibrium. Q.E.D.
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Figure 2: Nash and Ramsey outcomes and best response expansion path.

Within a self-confirming equilibrium, the moment matrix of the variables on the right
of the government’s regression (4.8) satisfies

R �M() = E

�
1
yt

�
[1 yt] =

�
1 ho()

ho() ho()
2 + �22

�
; (4.17)

where  is evaluated at self-confirming equilibrium values (4.14), (4.15).

4.3 Source of suboptimality

In the self-confirming equilibrium, the government’s approximating model correctly cap-
tures the short-run Phillips curve trade-off between Ut and yt, although it fails to iden-
tify the role of the expected inflation rate x̂t in positioning the Phillips curve. See figure
2, adapted from Kydland and Prescott (1977). In a self-confirming equilibrium, the esti-
mated Phillips curve coincides with the true Phillips curve evaluated at the Nash equi-
librium value of expected inflation. The effects of expected inflation x̂ are absorbed into
the constant 0. Since xt and x̂t are constant in the self-confirming equilibrium, the fail-
ure to identify x̂ as a shifter costs the government nothing in terms of statistical fit. The
self-confirming equilibrium is suboptimal because the Nash equilibrium is suboptimal.

It is useful to find the parameter values that would induce the government to imple-
ment the Ramsey inflation policy xt = 0. From the pseudo-best response map (4.12), the
government must believe that 1 = 0 if it is to set xt = 0: it must believe that the Phillips
curve is vertical. But the Phillips curve is not vertical in a self-confirming equilibrium.
The empirical Phillips curve (4.8) would be approximately vertical had the government
and the public experimented by setting xt = x̂t randomly over a sufficiently wide set of
values. However, within a self-confirming equilibrium, the government and the public set
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xt = x̂t = xN , the suboptimal constant Nash equilibrium value, and the government’s
estimate of 1 becomes ��.

5 An adaptive system

Following Sims (1988), we now make a minimal modification of the preceding model of
self-confirming equilibrium with an approximating model. We withdraw knowledge of
the population parameters 0; 1, and instead endow the government with a recursive al-
gorithm for estimating those parameters from historical data. The recursive estimation
algorithm is a version of least squares. Each period, the government sets x t by substi-
tuting its most recent estimate of  into its behavior rule (4.12). Thus, we posit that the
government behaves each period as though its estimate of  were known and permanent,
even though it updates that estimate in response to new data.3 This leads to an anticipated
utility model (Kreps (1997)) for the government. The specification generates data from a
version of (2.1), where

xt = ho(t) (5.18)

and where ho() continues to satisfy (4.12). We assume that x̂t = xt, so that “Fed watchers”
tell the private sector the government’s behavior rule.4 Augmenting (2.1), (2.2), (2.3), (5.18),
(4.12) with an adaptive formula for t completes the model. We express the learning rule
for  in the recursive form"

0t+1
1t+1

#
=

"
0t
1t

#
+ atR

�1
t

"
1
yt

#
(Ut � 0t � 1tyt) (5.19)

Rt+1 = Rt + at

 "
1
yt

#
[1 yt]�Rt

!
: (5.20)

where fatg is a sequence of positive real numbers and Rt is an estimate of the moment

matrix of
�
1
yt

�
. The second term on the right of (5.19) is a weighting matrix times the time

t value of the least squares orthogonality condition for the government’s Phillips curve .
The algorithm adjusts  in a direction to make the orthogonality condition hold, not on
average, but for this period’s shock. Setting at � t�1 recovers a version of least squares.
We shall be interested in constant gain algorithms where at = a for all t. Compared to least
squares, an algorithm with a constant a discounts past observations.

This leads to the following data generating mechanism:
"
0t+1
1t+1

#
=

"
0t
1t

#
+ atR

�1
t

"
1
yt

#
(Ut � 0t � 1tyt) (5.21)

3The government does not experiment intentionally, and does not proceed as advocated by Wieland (1997).
4We would get similar data patterns if we instead gave the private sector agents their own recursive algo-

rithm for forecasting inflation with a gain parameter equal to the government’s.
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Rt+1 = Rt + at

 "
1
yt

#
[1 yt]�Rt

!
: (5.22)

xt = ho(t) =
�1;t0;t
1 + 21t

(5.23)

yt = xt + v2t (5.24)

Ut = U� � �v2t + v1t: (5.25)

Here (;R) summarize the government’s beliefs.

6 An associated o.d.e. and mean dynamics

The analysis of convergence of least squares in self-referential systems in Marcet and Sar-
gent (1989) and Woodford (1990) rests on results from stochastic approximation theory.
They approximate the limiting behavior of the stochastic system with an o.d.e. This paper
will extend this analysis by finding another o.d.e. that governs expulsions away from a
self-confirming equilibrium.

To prepare to find these o.d.e.’s, write (5.19) more compactly as

t+1 = t + atb(t; vt) = t + at

"
b0(t; vt)
b1(t; vt)

#
(6.26)

and vt = (v1t; v2t). A straightforward calculation shows that

b(t; vt) = R�1
"

1
xt + v2t

#
z(t; vt) (6.27)

where
z(; vt) = U� �

0
1 + 21

+ v1t � (� + 1)v2t: (6.28)

Notice that z(; v) is the residual � in the government’s Phillips curve (4.8). When we drop
time subscripts, we shall mean the continuous time counterpart of the variables in the
corresponding discrete time variable. The mean dynamics are

_ = b() = R�1

2
4 U� � 0

1+2
1

� 01
1+2

1

�
U� � 0

1+2
1

�
� �22(� + 1)

3
5 (6.29)

_R = M()�R; (6.30)

where M() is from (4.17). This is the associated o.d.e. used by Marcet and Sargent (1989)
and Woodford (1990) to analyze related models. The o.d.e. (6.29) is derived by taking
the unconditional5 mean of b(; v), the term multiplying at in (6.26). The o.d.e. (6.30) is
derived in a similar way from (5.20). The o.d.e. (6.29), (6.30) has a unique stable point
s = (��; U�(1 + �2)), the  associated with a self-confirming equilibrium. Let Rs be the
associated fixed point of (6.30).

5Later we shall find other o.d.e.’s derived by averaging the shocks in (6.26) with respect to other distribu-
tions.
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6.1 Self-confirming equilibrium as unconditional moment conditions

The right side of (6.29) incorporates three aspects of the model: (1) the time t value of the
least squares orthogonality conditions for the government’s estimator of ; (2) the gov-
ernment’s pseudo-best response in setting x̂ t as a function of ; and (3) the true Phillips
curve and inflation generating mechanism (2.1), (2.2), (2.3). Together, these form a differ-
ential equation whose right side, when equated to zero, can be interpreted as a set of un-
conditional moment restrictions that determines a self-confirming equilibrium. The mean
dynamics are interesting because they determine the limiting behavior of the stochastic
discrete time algorithm when at eventually behaves as 1

t , as it does under least squares.
More precisely, by applying results of Marcet and Sargent (1989) and Woodford (1990), we
can show that if the gain at is equal to a0=t for t � 1, then t ! s with probability 1. We
summarize this in

Proposition 6.1 If the adaptive system under least squares converges, it converges almost surely
to a self-confirming equilibrium. Further, because the mean dynamics are globally stable, global
convergence obtains once the algorithm is modified to prevent it from wandering outside a given
neighborhood of the self-confirming equilibrium.

Marcet and Sargent (1989) and Evans and Honkapohja (1998) describe conditions on
the recursive algorithm that suffice. The crudest of these is borrowed from Ljung (1977)
and uses a projection facility to force (;R) to remain in the domain of attraction of (s; Rs).

To sustain outcomes other than the self-confirming equilibrium outcome in the limit,
we must arrest Proposition 6.1. We shall do so in an economical way that retains the basic
spirit of least squares learning in self-referential models.

Thus, the idea behind least squares learning (e.g., Evans and Honkapohja (1999)) is to
endow agents with a statistical model that might be “wrong” during a transition, but that
has a chance of eventually being “correct” should convergence occur. Typically, the reason
that agents’ models are wrong during transitions is that they are fixed-coefficient models,
while agents’ estimation procedures and behaviors in the aggregate cause the coefficients
in truth to drift. Eventually, however, things may settle down so that the fixed-coefficients
assumption becomes correct. The problem posed by Bray (1982) was to establish con-
vergence to a correct (i.e., rational expectations) specification of a particular sequence of
incorrect specifications induced by least squares learning. The mean dynamics are a good
way to study this problem. See Woodford (1990) and Marcet and Sargent (1989).

The at =
a0
t specification implicitly embodies the fixed-coefficient misspecification of

least squares. During a transition, an agent would improve forecasts were he to copy
practitioners who, when confronted with drifting coefficients, discount past observations.
Discounting makes sense if the model being estimated has coefficients that are random
walks. In particular, there is a Bayesian formulation of Gaussian random walk coefficients
that leads to a constant gain algorithm. See Sargent (1999).
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Figure 3: Self-confirming equilibrium with U� = 5; � = 1.

6.2 Simulations: evidence for another o.d.e.

In the next section, we present some simulations that show the mean dynamics at work
but that also indicate another nearly deterministic kind of dynamics. This other source of
dynamics looks like it is solving some o.d.e., but not the mean dynamics. The rest of the
paper seeks this other o.d.e. The source of this o.d.e. must be the original system (5.21),
(5.22), (5.23), (5.24), (5.25). We shall see that the new o.d.e. comes from the same moment
conditions as the mean dynamics, with expectations being conditioned on an endogenous
sequence of unusual shocks.

6.3 Simulations

We are interested in the behavior exhibited by the system in the constant gain case a t = a
for 8t � 1. We will display some simulations that show the workings of two distinct
sources of dynamics: the mean dynamics associated with (6.29), and some “escape route
dynamics” that are activated when the government engages in enough experimentation to
make it learn (too strong) a version of the natural rate hypothesis.

The simulations are from a version of the algorithm (5.21), (5.22), (5.23), (5.24), (5.25).
For the simulations, we set � = 1; U � = 5. We assumed Gaussian disturbances. We set
(�1; �2) = (:3; :3) in the first simulation and (:5; :5) in the second. The definition of �b() in
(6.29) shows the self-confirming equilibrium to be the intersection of the line 1 = � with
the parabola determined by U � 0

1+2
1

= 0. There is a unique self-confirming equilibrium,
depicted in Figure 3. It has 0 = 10; 1 = �1.

Figures 4 and 5 display aspects of the two simulations. The mean inflation rate in a self-
confirming equilibrium is 5. The mean inflation in the Ramsey equilibrium is 0. Notice that
from (4.12), the government would set the systematic part of inflation at the Ramsey level
of 0 only if it believed that the Phillips curve is vertical (0 = 0).

We initiated each simulation from a self-confirming equilibrium and set a constant gain
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parameter a = :0275.6 The first three panels in Figures 4 and 5, respectively, show the rate
of inflation, 1t, and the time t variance of 1t. The fourth panels of Figures 4 and 5 display
scatter graphs of (0t; 1t), together with a solid line that indicates the locus of (1; 0) that
solve U� = � 0

1+2
1

. The simulations show:

1. Usually, the adaptive system follows a noisy version of the mean dynamics �b() and
heads toward a self-confirming equilibrium. This reflects the workings of the usual
Woodford-Marcet-Sargent convergence theorems. For �2 small (as we have set it),
the mean dynamics of �b() lie virtually along the parabola U� = 0

1+2
1

(see the defini-

tion of �b associated with (6.29)). The simulations show 1; 0 paths adhering closely
to this parabola during the typical episodes heading toward the self-confirming equi-
librium. For 1; 0 on the parabola and 1 > ��, notice that the mean dynamics of �b
from (6.29) have d

dt0 = 0; d
dt1 < 0. This explains why most of the points near the

parabola cluster slightly underneath the parabola.

2. There are occasional recurrent rapid movements away from a self-confirming equi-
librium toward a neighborhood of the Ramsey inflation outcome. These rapid move-
ments do not simply reverse direction and follow the mean dynamics path (1; 1) 2
<2 away from a self-confirming equilibrium. They take another shorter (in some
sense) route. The “escape routes” are almost straight lines in (1; 0) space toward
the Ramsey outcome.

3. The sample variance of the estimated parameter 1 typically grows along the dy-
namic path heading toward the self-confirming equilibrium, then collapses during
the escape to near Ramsey.

6.4 The escape route

For the same set of parameter values with �1 = �2 = :3, we ran many simulations to
learn more about the escape route. We used the simulations to estimate the distribution of
escape routes and the time to first escape. Starting from a self-confirming equilibrium, each
simulation runs for a random number of periods. The stopping time for a simulation was
determined by the event that the government set the target inflation rate at a level within
� = :75 of the Ramsey inflation outcome. For each sample path, we then recorded the path
of beliefs (1t; 0t) to the neighborhood of the Ramsey outcome and the number of periods
that elapse from the beginning of the simulation to the event that the government’s beliefs
prompt it to enter the prescribed neighborhood of the Ramsey outcome. Figures 6 and 7
describe these statistics for large numbers of simulated paths. Figure 6 plots 500 escape
paths, and Figure 7 plots the histogram of first passage time to the neighborhood of the
Ramsey for 5000 sample paths. We plot only 500 escape paths to contain the size of the

6See Appendix B to chapter 8 of Sargent (1999) for the connection between a and a discount parameter in a
loss function.
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Figure 4: Simulation with constant gain, �1 = �2 = :3.
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Figure 5: Simulation with constant gain, �1 = �2 = :5.
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Figure 6: Scatter of 500 escape routes, a = :0275.

postscript file that generates the graph. With 5000 points, the escape route graph is only
a little thicker and centered on the same route. For the sample of 5000 sample paths, the
mean time of transition to a neighborhood of Ramsey is 49:3 with a standard deviation of
36:2 and a median of 38.

Other simulations with lower constant values of a reveal the same escape route but
have distributions of escape times to the Ramsey neighborhood that are shifted to the right
relative to Figure 7.

The striking feature of Figure 6 is how tightly bunched are the paths of beliefs moving
from the vicinity of the self-confirming equilibrium to the neighborhood of Ramsey. This
reflects the “near determinism” that Whittle (1996) tells us about escape route dynamics.
We can summarize the dynamics of escapes to Ramsey in the following rough phrase:
escapes to Ramsey are unusual events; but given that they occur, with high probability
they occur nearly along the most likely path.7 We explain this mysterious phrase in the
context of the special case that vit is binomial for i = 1; 2.8 But first we briefly interpret the
escapes from the self-confirming equilibrium in terms of the behavior of the government.

7 Escaping the experimentation trap

The striking feature of the simulations is the large and rapid departures from the self-
confirming equilibrium that always approach the Ramsey outcome along a common es-
cape route. Notice how the slope coefficients go rapidly nearly to zero during the stabiliza-
tion. What prompts the stabilizations is a chance process through which the government

7We are paraphrasing Michael Harrison’s verbal account of one of the two fundamental results of large
deviation theory.

8For binomial shocks we have obtained simulations that are qualitatively the same as those reported above.
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learns a stronger-than-is-true version of the natural unemployment rate hypothesis (the
government doesn’t distinguish between surprise and anticipated inflation).

In a self-confirming equilibrium, the government is in an experimentation trap. Within
the confines of the government’s approximating model, detecting the natural rate hypoth-
esis requires that there be sufficient dispersion in the public’s expected rate of inflation.
But within a self-confirming equilibrium, there is no variation in the expected rate of in-
flation because the government does not vary its setting of the systematic part of inflation
xt. Though the outcome is the same, the structure of this expectations trap differs from
the one in Kydland and Prescott’s time consistent equilibrium. Here the government fails
to generate the range of experiments needed to detect the natural rate hypothesis within
its approximating model. But only if it detects something approximating the natural rate
hypothesis will it want to generate those experiments.

The escape route has the government generating those experiments because its doubts
leave it open enough occasionally to experiment and to learn. The experiments are initi-
ated by some unusual shock patterns that we shall analyze in detail below. The escapes to
near the Ramsey outcome are accompanied by endogenous experimentation. Any force
that causes the government to experiment by randomizing xt generates a (yt; Ut) data
scatter through (2.1) that steepens (in the (y; U) plane) the estimated Phillips curve (4.8).
Through (4.12), any steepening of the Phillips curve causes the government to lower infla-
tion, generating influential observations to steepen the Phillips curve further. Overweight-
ing recent observations helps this process along. This reinforcing process comes to a halt
when the estimated Phillips curve (4.8) becomes vertical. The system cannot remain at the
Ramsey outcome forever, because there is in truth a short-run Phillips curve that the gov-
ernment will discover and begin to exploit, rekindling the mean dynamics that drive the
system toward the Nash outcome.

The simulations indicate that there is another nearly deterministic component of the
dynamics that supplements the mean dynamics. We now seek them in a special case that
permits us to get our arms around the escape route.

The explanation in terms of endogenous experimentation will be strengthened and
formalized by the analysis of the following section where we find an o.d.e. that describes
the escape route.

8 Binomial shocks

We shall analyze the multinomial case, but to simplify in the beginning we assume that vit
has a binomial distribution with variance �2i (i = 1; 2):

vit =

(
�i with probability 1

2
��i with probability 1

2 :
(8.31)

We proceed by studying in detail the structure of the orthogonality conditions that define
self-confirming equilibrium and, what is the same thing, a fixed point of the government’s
learning scheme under least squares. Above, we have defined z(; vt) as the residual in the

22                                                                                                               ECB Working Paper No 23 ●  June 2000  



government’s Phillips curve for regression coefficients  and shock vector vt. We expressed
the least squares orthogonality conditions as

ER�1
�
1
yt

�
z(; vt) = 0

or
Eb(; vt) = 0;

where the mathematical expectation is taken with respect to the unconditional distribution
of vt. The mean dynamics for  were derived by setting

_ = Eb(; vt): (8.32)

The escape dynamics occur when the algorithm is driven by a particular unusual sequence
of vt’s. An associated o.d.e. that describes them comes from replacing E in (8.32) with an
expectation operator conditioned on a particular draw of shocks.

Thus, let � 2 f�1;��1g�f�2;��2g be a realization of vt. Since vt can take four different
values, for any  2 <2, fb(; vt)g consists of four vectors for any  2 <2. Let Rt = [Rij;t]
and Dt be the determinant of Rt. We can write (6.26) as"

0t+1
1t+1

#
=

"
0t
1t

#
+ a

1

Dt

"
R22;t �R12;t(xt + v2;t)
�R12;t + (xt + v2;t)

#
z(t; vt): (8.33)

Then from (8.33)
d0;t+1
d1;t+1

=
R22;t �R12;t(xt + v2;t)

�R12;t + (xt + v2;t)
(8.34)

is independent of v1t, which implies that for any vt, fb(t; vt)g consists of two pairs of
linearly dependent vectors, each pair being indexed by one of the two possible values for
v2t. This fact is critical in shaping the escape route.

In (6.27), b(; vt) = 0 if z(; vt) = 0. For later analysis, it is useful to depict the contour
of  satisfying

z(; vt) = 0

for each realization of vt. As depicted in Figure 9, for example, 1;e is the intersection of

f : z(; (�1; �2)) = 0g

and
f : z(; (��1;��2)) = 0g :
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Figure 9: Stable solution s and four “extreme” points i;e (i = 1; : : : ; 4) with the boundary func-
tions. The line connecting the four “extreme” points is the boundary ofDo which contains s in the
interior. The dotted curve passing through s solves b0() = 0.
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9 The Escape Path

9.1 Introduction

We proceed by studying the dynamics when the amount of noise in the recursive stochastic
system is very small.9 Roughly speaking, as the noise in the recursive stochastic system
disappears, the asymptotic behavior of the recursive algorithm can be approximated by
the mean dynamics. Since the mean dynamics of the recursive system converges to the
stable point, it is sensible to focus on the dynamics of t around the stable point.

While the mean dynamics push t toward the stable solution of the associated ordinary
differential equation, the stochastic perturbation, albeit small, sometimes pushes t away
from the neighborhood of the stable solution. Our objective is to characterize the most
likely path that t follows while escaping from the neighborhood. We call it the dominant
escape path (Bucklew (1990)).

Let D be an open ball around stable point of the mean dynamics s. We follow the
convention of fixing the starting point of the escape path at the stable solution  s and the
terminal point e 2 @D. In order to distinguish the path converging to s from the path
escaping from s, we write the escape path as '. Define the exit time � e as

inff� � 0 : '(�) = eg:

There are many escape paths starting from the same point. These paths are determined
by the different fvtg sequences in (6.26) that succeed in driving  to @D. These paths
pass through different points of the boundary of D. Consequently, associated with the
exit time is a probability distribution along the boundary of D, induced by the probability
distribution of the escape paths. As the gain sequence a converges to 0, however, the
probability that a particular point in @D becomes an exit point is completely determined
by the probability that the shortest escape paths through the point is realized. (This is the
meaning of the mysterious phrase of Michael Harrison cited above.)

As a ! 0, the recursive system converges to a deterministic system in a probabilistic
sense and the probability distribution of exit times converges to a degenerate distribution
concentrated at the exit point of the dominant escape path. Thus, if ' is the dominant
escape path, then for any � > 0, the shortest escape paths must converge to the � neigh-
borhood of ' with probability 1 as the gain sequence a converges to 0.

9.2 Key idea

From standard results of stochastic approximation, we know that as a # 0, the sample paths
generated by a stochastic recursive algorithm converge to the mean dynamics with prob-
ability 1 over any finite time interval. As the gain sequence becomes smaller, the sample
paths accumulate in a small neighborhood of the mean dynamics so that its neighborhood
is the most likely location of a sample path. This observation suggests that the dominant

9Also known as a nearly deterministic system in Whittle (1996) or a system with small noise in Freidlin and
Wentzell (1984).
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escape path is characterized by a mean dynamics of some stochastic recursive algorithm.
We now find that recursive algorithm. It is intimately connected to the original recursive
algorithm (6.27) for t.

9.3 Definitions

Because the notion of an escape path is built upon a continuous time process while the
original recursive algorithm is a discrete time process, we need more notation. We shall
use ' with various sub and superscripts to represent the escape path.

We borrow some notation from Kushner and Clark (1978). Define real time in terms of
the gain sequence a:

tk = ak

and 8� 2 <+, there exists a unique k such that

� 2 [tk; tk+1):

Define
m(�) = k:

Following the convention, let
'a
0 = s

and define
'a
t+1 = 'a

t + ab('a
t ; vt) (9.35)

where b is defined as (6.26). Except that 'a
t takes the place of t, (9.35) emulates the original

recursive formula. However, we shall modify the probability distribution of vt to push 'a
t

away from the initial point s and toward @D. Let 'a(�) be the continuous time process
obtained by linearly interpolating 'a

t , and let 'a
� (s) be the left shift of 'a(� + s).

Definition 9.1 'a is an escape path from s 2 D if 'a is absolutely continuous, 'a(0) = s and

� e = inff� � 0 : 'a(�) 62 Dg <1:

We call �e the escape time, and 'a(� e) the exit point. 'a is the shortest escape path to e 2 @D if
'a is an escape path satisfying 'a(� e) = e and among all escape paths that exit D through e, � e

is the minimal escape time.

The exit time � e is associated with a probability distribution along @D. To emphasize
the relationship between the exit time � e and the escape path, we often write � e('a) for the
exit time of 'a.

Definition 9.2 Let Ba be the set of all escape paths for (9.35) with gain function a > 0. An escape
path ' with exit time �e is a dominant escape path if 8� > 0

lim
a!0

Pr

 
sup

�2[0;�e]
j'(�) � 'a(�)j < � : Ba

!
= 1: (9.36)
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Since s is the stable point of the associated o.d.e., the unconditional probability of
escaping from the neighborhood of s converges to 0 as a! 0:

lim
a!0

Pr (Ba) = 0:

Therefore, in order to define the dominant escape path, we must consider the probability
distribution conditioned on Ba. In this sense, we are searching for the most likely unlikely
events.

9.4 Characterization

Suppose that vit is drawn from a multinomial distribution with mean 0. In order to sim-
plify notation, let us assume that the distribution of vit is symmetric: there exist

0 < �i1 < � � � < �i` i = 1; 2

such that
Pr (vit = �ik) = Pr (vit = ��ik) = pik k = 1; : : : ; ` (9.37)

and X̀
k=1

pik =
1

2
8i 2 f1; 2g:

Let
�i 2 f��i`; : : : ;��i1; �i1; : : : ; �i`g

be a generic element in the support of vit. Let � = (�1; �2) be realization of vt. Since vit
(i = 1; 2) takes one of 2` different values, vt = (v1t; v2t) can take one of 4`2 different values.

Recall that in (8.33), the evolution of 0;t and 1;t is influenced by a common factor
z(t; vt). One can easily verify that if  is in the small neighborhood of s, then

z(; (�1; �2))z(; (��1; �2)) < 0: (9.38)

By (8.34), the vector field fb(s; vt)g around the stable point s consists of 2`2 pairs of lin-
early dependent vectors:

9� 2 <; b(; (�1; �2) = �b(; (��1; �2)): (9.39)

By (9.38), this pair of linearly dependent vectors must point in opposite directions:

� < 0: (9.40)

To approach the boundary of D requires a sequence of “unusual” events of vt, whose
probability is strictly less than 1. Thus, in order to maximize the probability of escape, the
escape path must minimize the number of “unusual” events to reach the neighborhood of
the exit point. To do so, the adjustment b('; vt) made in each period must point in the same
direction, say toward the boundary of D. Otherwise, some moves cancel others, wasting
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precious time to escape. Therefore, at any time � along the shortest path ', the vectors in
fb('(�); vt)g must point in the same direction: the cone spanned by the vectors must be
contained in a closed half space rather than cover <2.

To state the first characterization result, we need more notation. Given b1; : : : ; bL 2 <2,
let

C(fb1; : : : ; bLg)

be the cone spanned by b1; : : : ; bL. Given b 2 <2, let

H(b) = fx : b � x = 0g

be the hyperplane with directional vector b. LetH+(b) be the open half space aboveH(b).
Let d�e be the integer part of � 2 <. Let

fas;�(�) =
#ft : d�=ae � t � d �+s

a e; vt = �g

ds=ae
(9.41)

be the empirical frequency of � in time interval [�; � + s). Define

fs;� (�) = lim
a!0

fas;� (�) (9.42)

and
f� (�) = lim

s!0
fs;� (�): (9.43)

Proposition 9.3 Suppose that vit (i = 1; 2) has the multinomial distribution described in (9.37).
Fix the dominant escape path ' with e 2 @D with exit time �e. Then 8� 2 (0; � e), there exist
s > 0 and b 2 <2 such that 8s 2 (0; s),

C(fb('(�); �) : fs;� (�) > 0g) �H+(b): (9.44)

In particular, if vit (i = 1; 2) has a binomial distribution (` = 1), then for 8� 2 (0; �e), the
support of f� is either a singleton or consists of 2 elements, say � and �0, such that b('(�); �) and
b('(�); �0) are linearly independent.

Proof. See Appendix A.

The key implication of Proposition 9.3 is that along the dominant escape path, not
every � in the support of vt can be realized with positive frequency. Hence, the maximum
number of elements in the support of f� along the dominant path must be strictly less than
4`2.

In order to find the upper bound for the number of elements in the support of f � im-
plied by Proposition 9.3, we need to find a subset �(�) in the support of v t such that

fb(; �) : � 2 �(�)g

is contained in a half space. Here, we use (9.39) and (9.40) in a crucial way.
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Choose an arbitrary  = (�) along the dominant escape path and an arbitrary real-
ization (�1; �2) of vt. Consider hyperplane H(b) � <2 (or a straight line) that “embeds”
b(; (�1; �2)):

b � b(; (�1; �2)) = 0

since b is the norm vector of the hyperplane. We can always choose b so that b and
b(; (�1; �2)) form 90 degree counter-clockwise.

By (9.39),
b � b(; (��1; �2)) = 0:

Starting from b(; (�1; �2)), one can select the vectors b(; �) counter-clockwise until one
reaches b(; (��1; �2)), which forms 180 degree with the starting “point” b(; (�1; �2)). By
(9.40), the number of vectors in fb(; �)g that form less than 180 degree counter-clockwise
with b(; (�1; �2)) is exactly one half of the total number of vectors in fb(; �)g.

Since � can take as many as 4`2 different values, there are 4`2 vectors in fb(; �)g.
Hence, for each (�1; �2), one can identify exactly 2`2 realizations of vt, each of which in-
duces b(; �) which forms less than 180 degree counter-clockwise with b(; (�1; �2)).

One can repeat the same exercise for each realization of vt. Thus, there are as many as
4`2 different collections of perturbations, each of which contains precisely 2`2 realizations
of vt so that (9.44) holds. Proposition 9.3 implies that the number of elements in the support
of f� along the dominant escape path cannot exceed 2`2.

Yet Proposition 9.3 admits that the support of f� can have fewer than 2`2 elements.
A standard result of stochastic approximation (e.g., Kushner and Yin (1997)) is that as
the gain function a ! 0, the sample paths generated by the stochastic algorithm (5.19)
converge to the trajectory of the mean dynamics (6.29) in probability. Following the same
logic, we prove that the sample paths must converge to the trajectory of the mean dynamics
conditioned on (9.44). For example, if vit is drawn from a binomial distribution, the sample
paths generated by two linearly independent b(; �) and b(; � 0) must converge to its mean
dynamics conditioned on the event fvt = � or vt = �0g with probability 1. In the binomial
specification, the probability that vt = � is 1=4 for all �. Therefore, the probability that
vt = �i (i = 1; 2) conditioned on vt 2 f�1; �2g is 1=2.

Proposition 9.4 Suppose that ' is the dominant escape path with exit time �e, and that

g(�) = Pr(vt = �):

Then for 8� 2 (0; �e),
_'(�) =

X
�

b('(�); �)g(� : �(�)) (9.45)

where �(�) satisfies
C (fb('(�); �) : � 2 �(�)g) � H+(b) (9.46)

for some b 2 <s. In particular, if vit (i = 1; 2) is drawn from a binomial distribution, there exists a
pair (�; �0) such that b('(�); �) and b('(�); �0) are linearly independent and

d'(�)

dt
=

1

2
b('(�); �) +

1

2
b('(�); �0): (9.47)
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Proof. See Appendix B.

Since the dominant escape path is one of the trajectories characterized by (9.45), we
have to examine at most 4`2 different trajectories induced by the different collections of
perturbations. Since we can obtain a closed form representation for the ordinary differen-
tial equation that dictates the dominant escape path when vit has the binomial distribution,
we shall first examine the dominant escape path when vit has the binomial distribution.

9.5 Binomial case

9.5.1 Preliminaries

If vit has the binomial distribution for each i = 1; 2, then Proposition 9.3 and Proposition
9.4 imply that along the dominant escape path ' with exit time � e, there exists a pair (�; �0)
such that 8� 2 (0; � e), f� is precisely the probability distribution of vt conditioned on
f�; �0g.

The vector field fb(; vt)g around  2 D consists of two pairs of linearly dependent
vectors. We can select at most four pairs of linearly independent vectors, and calculate the
conditional mean dynamics. If vt 2 f(�1; �2); (��1;��2)g, then the associated conditional
ordinary differential equation is

_' = R�1

2
4 U� � '0

1+'2
1

� '0'1
1+'2

1

�
U� � '0

1+'2
1

�
� (� + '1)�

2
2 + �1�2

3
5 (9.48)

which has the stable point

1;e =

 
U�
�
�� +

�1
�2

�2
;�� +

�1
�2

!
;

depicted in Figure 9. If vt 2 f(�1;��2); (��1; �2)g, then the associated conditional ordinary
differential equation is

_' = R�1

2
4 U� � '0

1+'2
1

� '0'1
1+'2

1

�
U� � '0

1+'2
1

�
� (� + '1)�

2
2 � �1�2

3
5 (9.49)

which has the stable point

2;e = R�1
 
�� �

�1
�2
; U�

 
1 +

�
�� �

�1
�2

�2!!
:

If vt 2 f(�1; �2); (�1;��2)g, then the associated conditional ordinary differential equation
is

_' = R�1

2
4 U� � '0

1+'2
1

+ �1

� '0'1
1+'2

1

�
U� � '0

1+'2
1

+ �1
�
� (� + '1)�

2
2

3
5 (9.50)

30                                                                                                                  ECB Working Paper No 23 ●  June 2000  



which has the stable point

3;e = (��; (U� + �1)(1 + �2)):

If vt 2 f(��1; �2); (��1;��2)g, then the associated conditional ordinary differential equa-
tion is

_' = R�1

2
4 U� � '0

1+'2
1

� �1

� '0'1
1+'2

1

�
U� � '0

1+'2
1

� �1
�
� (� + '1)�

2
2

3
5 (9.51)

which has the stable point

4;e = (��; (U� � �1)(1 + �2)):

Notice the relationship between  j;e (j = 1; : : : ; 4) and the perturbations that generate
each ordinary differential equation. For example, (9.48) is generated by vt 2 f(�1; �2); (��1;��2)g
which has 1;e as its stable point. As depicted in Figure 9, 1;e is the intersection of

f : z(; (�1; �2)) = 0g

and
f : z(; (��1;��2)) = 0g:

9.5.2 The dominant escape path

For the binomial case, from an infinity of possible escape paths, we have now narrowed the
set of most likely paths down to four, namely, the solutions of the four o.d.e.’s (9.48), (9.49),
(9.50), (9.51). We now narrow down the paths more. We can dispose of two of the four can-
didate escape paths easily, because they fail to escape far enough from the self-confirming
equilibrium. The remaining two paths do escape far enough but do so at different rates.
The path that escapes faster is the dominating escape route. To evaluate which of these two
remaining candidate escape paths escapes faster requires analyzing a pair of nonlinear or-
dinary differential equations. We do this numerically. The trajectory induced by (9.48) is
the dominant path, because along this path, t escapes from the neighborhood of s most
quickly. Thus, the dominant escape path is the trajectory of (9.48), along which t moves
very quickly from s to 1;e. We shall verify numerically that this path passes through the
 associated with the Ramsey outcome. This path affirms and explains the simulations.

Before turning to the numerical solutions of the o.d.e.’s, we give some local analytical
results.

9.5.3 Details

We can obtain an analytic characterization of the dominant path in a small neighborhood
of s. We are interested in the dynamics of recursive algorithm (5.19) when �1 and �2 are
small. Notice that

js � 3;ej ! 0
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and
js � 4;ej ! 0

as �1 ! 0. Hence, for a recursive algorithm with small perturbations (a “nearly deter-
ministic system”), escaping to 3;e or 4;e makes little difference from staying in the small
neighborhood of s, because 3;e and 4;e themselves are in the “small” neighborhood of
s.

For this reason, we choose as D a ball around s with radius large enough to include
3;e and 4;e in the interior, but small enough to exclude 1;e and 2;e. Then the only
possible candidates for the dominant escape path are

_' = R�1

2
4 U� � '0

1+'2
1

� '0'1
1+'2

1

�
U� � '0

1+'2
1

�
� (� + '1)�

2
2 + �1�2;

3
5 (9.52)

for which 1;e is the stable point, and

_~' = R�1

2
4 U� � ~'0

1+~'2
1

� ~'0 ~'1
1+~'2

1

�
U� � ~'0

1+~'2
1

�
� (� + ~'1)�

2
2 � �1�2

3
5 (9.53)

for which 2;e is the stable point.
To discriminate between the two remaining trajectories, we need to compare the size of

the norm of _' and _~' around s to see how quickly  is pushed away from s to @D. Since
the right hand side of (9.52) is continuously differentiable,

_'(�) = _'(0) +
d'(�)

d�
� +O(�2)

= _'(0) +

�
@'(0)

@'0

d'0
dt

+
@'(0)

@'1

d'1
dt

�
� +

@'(0)

@x

dx

dt
� +O(�2):

A straightforward calculation shows that�
_'(0) +

�
@ _'(0)

@'0

d'0
dt

+
@ _'(0)

@'1

d'1
dt

�
�

�
+

 
_~'(0) +

"
@ _~'(0)

@ ~'0

d ~'0
dt

+
@ _~'(0)

@ ~'1

d ~'1
dt

#
�

!
= 0 (9.54)

and

_'0(0) +

�
@ _'0(0)

@'0

d'0
dt

+
@ _'0(0)

@'1

d'1
dt

�
� < 0: (9.55)

One can show that

@ _'(0)

@x

dx

dt

����
'
�

@ _~'(0)

@x

dx

dt

�����
~'

=

"
�

s
0
(s
1
)2�2

1

(1+(s
1
)2)

0

#
: (9.56)

Note that the first element of the vector in (9.56) is negative. Combining (9.54) and (9.55)
with (9.56), we conclude that there exists � > 0 such that

k _'(�)k > k _~'(�)k 8� 2 (0; � ):

This inequality proves that it is much easier to escape from D through ' than ~'.
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Figure 10: Mean dynamics from r to s (solid line) and shortest escape route dynamics from s

to @D (dotted line) with �1 = �2 = :3.

Proposition 9.5 There exists � > 0 such that if the radius of the compact ball D around s is less
than �, then the dominant escape path is the trajectory of (9.52) with initial condition '(0) = s.

Our numerical analysis will further affirm the dominance of trajectory (9.52).

9.5.4 Numerical calculation of dominant escape path

Let r be the belief vector that supports the Ramsey outcome. Figures 10 and 11 display
the mean dynamics from r to s and the shortest escape dynamics in the reverse direction
for two settings of (�1; �2) with U� = 5; � = �1. The escape dynamics were calculated
by solving the differential equations (9.47) for our four different candidate selections of
the shocks, and then choosing the path that escaped the fastest. We shall soon compare in
detail two of these paths. But first it is fruitful to compare figures 10 and 11 with our simu-
lations. The escape path is the same nearly straight path from s to r that we encountered
in our simulations.

Figure (12) compares the two candidate escape routes from (9.48) and (9.49) for an
example where �1 = :3; �2 = :25. Notice that the escape occurs much faster for the path as-
sociated with (9.48), leading us to proclaim that it is the dominating escape route. Roughly
speaking, it is the dominating path because it takes less times – i.e., requires a shorter and
hence more likely sequence of unusual shocks – to happen.

That (9.48) yields the dominating escape path reflects the nonlinear dynamics associ-
ated with endogenous experimentation that occur along this path. Via the government’s
pseudo best response function, the government’s response to a change in  is to alter x̂
and thereby produce new observations that help to steepen the empirical Phillips curve.
Along the escape path determined by (9.48), this endogenous experimentation reinforces
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Figure 11: Mean dynamics from r to s (solid line) and shortest escape route dynamics from s

to @D (dotted line) with �1 = :3; �2 = :25.

the effects of the unusual shocks. However, along the escape path determined by (9.49),
this endogenous experimentation works against the effects on  of the unusual shock se-
quence. (It is a particular shock sequence peculiar to (9.49).) The resistance to the unusual
shock sequence caused by the learning from the endogenous experimentation accounts for
the slower movement along the escape route determined by (9.49).

Figure 13 shows the solution of the o.d.e. for the dominant escape path for a case in
which �1 6= �2. In this case, as we have seen, the rest point of the o.d.e. is not the Ram-
sey value r. But we have already seen from figures 10 and 11 that the path of the o.d.e.
passes through the Ramsey value of . Figure 13, which shows two snapshots of the same
path, with different time scales, shows that the move toward the Ramsey  is fast, while
the subsequent move away from it is very slow. The quickness of the movement toward
Ramsey reflects the force in the model whereby endogenous experimentation induces data
that appear to come from a vertical Phillips curve. It takes a long time (many more obser-
vations) to refine the estimates so that they move to the rest point of the dominant escape
path o.d.e. The force toward Ramsey is stronger than the subsequent force toward the
fixed point of the escape path o.d.e. This reflects what we remarked upon above, the rein-
forcement of the move toward Ramsey associated with endogenous experimentation, and
the resistance that endogenous experimentation puts to movements away from Ramsey.
The practical consequence of the slow movement of the escape path dynamics away from
Ramsey is to give ample room for the mean dynamics to push  back toward the Nash
equilibrium. This point can be coaxed from figure 14, the bottom panel of which shows
the mean dynamics for 1 from the Ramsey value toward the self-confirming value s1 . The
mean dynamics pushing toward s appear stronger than the escape route dynamics after
the Ramsey value for 1 has been passed.
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Figure 12: Top panel: the slope 1 of the Phillips curve along the shortest (i.e., fastest escape route
dynamics from s to @D (dotted line) with �1 = :3; �2 = :25 (from equation (9.48). Bottom panel:
the slope 1 along the alternative escape path (from equation (9.49)).
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Figure 13: The slope 1 of the Phillips curve along the shortest escape route dynamics from s to
@D (dotted line) with �1 = :3; �2 = :25. Note that the escape route passes through the ‘natural rate’
value 1 = 0 then slowly moves to the rest point of the escape o.d.e. Note the two different time
scales.
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Figure 14: Top panel: the slope 1 of the Phillips curve along the shortest (i.e., fastest escape route
dynamics from s to @D (dotted line) with �1 = :3; �2 = :25 (from equation (9.48). Bottom panel:
the slope 1 along the mean dynamics from the Ramsey value  = 0 toward s.

9.6 Multinomial case

If v1t and v2t have multinomial distributions described in (9.37), then there are as many
as 4`2 different collections of perturbations. Accordingly, we can construct 4`2 o.d.e.’s
conditioned on the collections of perturbations determined by different hyperplanes in
(9.44). Let 'i be the trajectory of (9.45) induced by the i-th collection of perturbations.

Proposition 9.4 implies that the direction of escape is generally determined by the asso-
ciated hyperplaneH(b). From the remark that follows Proposition 9.3, one can see that we
rotate the hyperplane 360 degrees to identify the most likely escape path to every possible
direction. Roughly speaking, 'i is the most likely escape path to the i-th direction. We are
trying to identify the most likely “direction” among these 4`2 candidates.

As we admit much more general distribution, it becomes difficult, if not impossible, to
derive a closed form representation of the o.d.e. that dictates the dominant escape path. As
a result, we use the numerical method. A good way to visualize the escape dynamics is to
solve the 4`2 o.d.e.’s (9.45) starting from (s; Rs), and then to plot the locus of points 'i(�),
i = 1; : : : ; 4`2 for larger and larger values of � . For each � , this locus of points describe the
results of a ‘race away from Nash’ driven by different equally likely possible constellations
of unlikely sequences of shocks. The o.d.e. that departs from  s fastest is the one whose
unusual sequence of shocks is most likely to be observed, conditioning on the rare event of
a departure of a given size from s. It is the most likely path because it takes fewer unusual
shocks to push a given distance away from s.

We numerically solved the o.d.e.’s for a multinomial distribution with ` = 6 that was
chosen to approximate Gaussian distributions for v1t; v2t with standard deviations (:3; :3).
We used a simple Euler method for solving the o.d.e.’s. In practice, this meant that we
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Figure 15: Loci of 'i(�) for various values of � . Larger values of � have larger loci.

−1.2
−1

−0.8
−0.6

−0.4
−0.2

0
0.2

4

6

8

10

12
0

10

20

30

40

50

Figure 16: Loci of 'i(�) for various values of � ; � is on the vertical axis.
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simply simulated the recursive algorithm itself with fixed a and deterministic shock se-
quences determined by (9.45). Figure 15 depicts the loci of 'i for various � ’s. Notice how
the family of loci are shaped like the escape route from the simulations in figure 6. The
dominant escape path points toward Ramsey. Figure 16 shows a three-dimensional view
of the loci, where artificial time � is recorded on the vertical axis.

9.7 General case

If we think of “pricing” unusual shock sequences, we can interpret the most likely escape
path as finding the cost-minimizing sequence of v shocks that drives the government’s
beliefs beyond D. Thus, we no longer require v to be multinomial, only to be such that
some functionals below are well defined.10 Given the recursive formula (5.19), define the
H-functional as

H(';�; t) = lim
n!1

1

n
logE exp

*
�;

nX
j=1

b('j ; vj)

+
(9.57)

where h�; �i is the inner product of two vectors. The action functional is defined to be

S(s; T; ') =

( R T
0 L('; _'; s)ds if ' is absolutely continuous

1 otherwise
(9.58)

with '(0) = s where
L(x; �; t) = sup

�
[h�; �i �H(x; �; t)]

is the LeGendre transformation of the H-functional. The path ' starting at ' =  s and
terminating on @Do that minimizes (9.58) is the dominant escape path. This elegant for-
mulation characterizes how the approximating model behaves as it heads away from a
self-confirming equilibrium.

Unfortunately, the characterization suffers because in general neither H nor L has a
closed form. Only in very special cases, e.g., Gaussian b('; v), does H have a convenient
form, quadratic in this case.11 The intractability of H and L for us at this time inspired the
alternative approach using the multinomial distribution described above.

Consider a sequence of multinomial distributions for vt that converge to the normal
distribution. At the same time, consider a sequence of the dominant escape paths, each of
which is associated with recursive algorithm (9.35) in which vt has a multinomial distribu-
tion. Kushner (1984) points out that the large deviation estimates (such as the dominant
escape path) need not converge even if a sequence of distributions converges. At the same
time, Kushner (1984) establishes a sufficient condition that if the H functional associated
with a multinomial distribution converges, then the large deviation estimates of the limit
process of the multinomial distributions also converge.

Note that b('; vt) is a smooth function. Thus, as the multinomial distribution converges
to the Gaussian distribution weakly, its H functional must converge to the H functional

10See Williams (1999) for an analysis based on the approach described in this section.
11Even if vt is distributed normally in our model, b('; v) is not distributed normally.
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when vt is normally distributed. Thus, the dominant escape path calculated for the multi-
nomial distribution is a reasonable approximation for the dominant escape path when vt
is distributed normally.

Figure 6 reports the escape routes when vt is distributed normally with �1 = �2 = 0:3.
On the other hand, Figure 15 obtains when vit has a multinomial distribution obtained
by discretizing the normal distribution with �i = 0:3 into 2 � 6 = 12 grids. The remark-
able similarity between the two figures is a consequence of the general result of Kushner
(1984).12

10 Conclusions

The theme of this paper and Sargent (1999) is how a misspecified non-expectational Phillips
curve can approximate an expectational Phillips curve and how the changing quality of
that approximation affects government policy and is affected by it. In this paper we have
assumed that the government fits a static Phillips curve. This oversimplifies things rel-
ative to historical macroeconometric practice, which routinely tried to detect the natural
rate hypothesis in terms of the coefficients of a distributed lag Phillips curve. Sargent
(1999) studies a generalization of the model in which the government fits a distributed lag
Phillips curve. This complicates both the construction of the government’s pseudo best
response mapping and how the distributed lag Phillips curve can approximate the nat-
ural rate hypothesis. Using a distributed lag Phillips curve to approximate the natural
rate hypothesis sends us back to issues that arose early in the rational expectations revolu-
tion: how econometrically to model anticipated inflation and how to impose invariance of
unemployment with respect to anticipated inflation. Before rational expectations, antici-
pated inflation was modeled as a distributed lag of inflation, often of geometric form, with
weights summing to unity. The natural unemployment rate hypothesis was formulated as
the restriction that in a regression of inflation on lagged inflation and current and lagged
unemployment, weights on lagged inflation should sum to one. Lucas (1972) and Sargent
(1971) showed that way of formulating the natural rate hypothesis contradicted rational
expectations, except in the special case that inflation has a unit root (see King and Watson
(1994)).

Despite Lucas and Sargent, many papers continued to process evidence about the nat-
ural rate hypothesis in terms of the sum of weights on inflation in a distributed lag Phillips

12Notice that we started with a discrete time recursive algorithm, and then build a continuous time process
by taking the linear interpolation of the discrete time process. One may wonder whether we can simplify the
analysis by considering the continuous time “limit” of our discrete time process by representing the contin-
uous time process by a diffusion process as in Freidlin and Wentzell (1984). The intuition of the law of large
numbers suggests that when the gain function a is sufficiently small, then the continuous time process should
be a good approximation of the discrete time process. However, as Kushner (1984) pointed out, the large devi-
ation process of the continuous time “limit” may not be the limit of the large deviation process of the discrete
time process, unless the associated H functional converges. While we believe that the large deviation prop-
erty calculated in this paper should prevail in the continuous time limit, the formal proof remains an open
question.
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curve.13 That evidence was against the natural rate hypothesis in the 1960’s but came to
favor it by the mid 1970’s.14

Sargent (1999) studies our system in the context of a distribution lag Phillips curve.
With the distributed lag Phillips curve, the self-confirming equilibrium again produces the
Nash outcome, and the system also recurrently visits an escape route to the Ramsey out-
come. Following Chung (1990), Sargent (1999) compared time series of the actual inflation
rate yt with xt = ho(t), where t now represents the time t estimates of the distributed lag
Phillips curve. The estimates indicate that the adaptive algorithms gave timely advice not
to exploit the Phillips curve, and lend credibility to the vindication of econometric policy
evaluation.

But the vindication is not complete, because the mean dynamics are destined to rekin-
dle inflation unless the government learns a more sophisticated version of the natural rate
hypothesis.

13See Fuhrer (1995) and King and Watson (1994).
14It has recently started pointing against the natural rate again. See Solow and Taylor (1998).
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Appendices

A Proof of Proposition 9.3

Let ' be the dominant escape path. If the conclusion of the proposition is false, then we
can find � 2 (0; �e) and fskg

1
k=1 such that

sk # 0

and 8sk > 0,
C(fb('(�); �) : fsk;� (�) > 0g) = <2 (A.59)

Lemma A.1 (A.59) holds, if and only if there exist �1, �2 and �� in the support of fsk;� such that

b('(�); ��) 2 C
� n
�b('(�); �1);�b('(�); �2)

o�
: (A.60)

If �1, �2 and �� satisfy (A.60), then any permutation of the three vectors satisfy (A.60).

Proof of Lemma A.1. The sufficiency is straightforward, and therefore its proof is omitted.
To prove the necessity, assume (A.59).

Note that in order to satisfy (A.59), the support of fsk;� must contain at least three
elements. Suppose that the support contains exactly three elements whose cone cover the
entire <2. Fix an arbitrary pair �1 and �2 in the support of fsk;� . We claim that for the
remaining element �3 in the support of fsk;� , there exists �1(�3); �2(�3) < 0 such that

b('(�); �3) = �1(�3)b('(�); �1) + �2(�3)b('(�); �2):

If �1(�3); �2(�3) > 0, then

C

� n
b('(�); �1); b('(�); �2); b('(�); �3)

o�
= C

� n
b('(�); �1); b('(�); �2)

o�

which is a proper subset of <2, violating (A.59). If �1(�3) < 0 and �2(�3) > 0, then

C

�n
b('(�); �1); b('(�); �2); b('(�); �3)

o�
= C

�n
b('(�); �1); b('(�); �2)

o�
[C

�n
�b('(�); �1); b('(�); �2)

o�
= H(b)

where b 2 <2 is orthogonal to b('(�); �1). Hence, (A.59) is not satisfied. The remaining
case in which �1(�3) > 0 and �2(�3) < 0 follows from the same logic.

Let us assume that the support of fsk;� now contains at least 4 elements. Choose a pair
of �1 and �2 from the support of fsk;� such that b('(�); �1) and b('(�); �2) are linearly
independent. If there is �� in the support of fsk;� satisfying (A.60), then the proof of
Lemma A.1 is done.
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Suppose that there is no such �� satisfying (A.60). By (A.59), there must exist a pair of
�3 and �4 such that

b('(�); �3) 2 C
� n

b('(�); �1);�b('(�); �2)
o�

(A.61)

and
b('(�); �4) 2 C

�n
�b('(�); �1); b('(�); �2)

o�
;

or equivalently, 9�j(�k) > 0 (j = 1; 2; k = 3; 4) such that

b('(�); �3) = �1(�3)b('(�); �1)� �2(�3)b('(�); �2)

and
b('(�); �4) = ��1(�4)b('(�); �1) + �2(�4)b('(�); �2):

A simple calculation shows that

b('(�); �1) =
�2(�4)b('(�); �3) + �2(�3)b('(�); �4)

�1(�3)�2(�4)� �1(�4)�2(�3)

and

b('(�); �2) =
�1(�4)b('(�); �3) + �1(�3)b('(�); �4)

�1(�3)�2(�4)� �1(�4)�2(�3)
:

Since we have assumed that (A.60) is not satisfied, the denominator of the above two equa-
tions must be positive, which implies that

C

� n
b('(�); �1); b('(�); �1)

o�
� C

� n
b('(�); �3); b('(�); �4)

o�
:

In particular, we can choose �3 such that

b('(�); �3)

jb('(�); �3)j
�
b('(�); �2)

jb('(�); �2)j
2 [�1; 0)

is minimized. Notice that the inner product must be bounded from below because �3 must
satisfy (A.61). Similarly, choose �4 to minimize

b('(�); �4)

jb('(�); �4)j
�
b('(�); �1)

jb('(�); �1)j
2 [�1; 0):

Then,C
��
b('(�); �3); b('(�); �4)

	�
is the largest cone containingC

��
b('(�); �1); b('(�); �1)

	�
,

and is also the largest cone spanned by any element b('(�); �) where � is in the support of
fsk;� . Hence, the cone spanned by any pair of b('(�); �) where � is in the support of fsk;�
is contained in a half space. This contradicts to (A.59).

Next, we prove the last part of Lemma A.1. Suppose that � 1, �2 and �� satisfy (A.60).
Then, there exists �1(��); �2(��) > 0 such that

b('(�); ��) = ��1(��)b('(�); �1)� �2(��)b('(�); �2):
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One can write

b('(�); �1) = �
1

�1(��)
b('(�); ��)�

�2(��)

�1(��)
b('(�); �2)

which implies that

b('(�); �1) 2 C
� n
�b('(�); ��);�b('(�); �2)

o�
:

Similarly,
b('(�); �2) 2 C

� n
�b('(�); ��);�b('(�); �1)

o�
;

which proves the last part of Lemma A.1. Q.E.D.

Fix s = sk > 0. Let
bs;� (') =

X
�

b('; �)fs;� (�)

be the mean directional vector at � . By Lemma A.1, we can choose �1, �2 and �� such that

C

�n
b('(�); �1); b('(�); �2); b('(�); �3)

o�
= <2:

Rename each vector so that

bs;� (') 2 C
� n

b('(�); �1); b('(�); �2)
o�

(A.62)

and let �3 = �� so that there exist �1(��) > 0 and �2(��) > 0 such that

b('(�); ��) = ��1(��)b('(�); �1)� �2(��)b('(�); �2):

To simplify notation, let us assume that there is only one such �� in the support of fs;� . The
general case follows from exactly the same logic, while the notation becomes significantly
more complicated.

Note that for ! 2 [0; 1],

bs;� (') =
X
�

b('(�); �)fs;� (�) +O(s)

=
2X

j=1

2
4 X
� 6=��

�j(�)fs;� (�) + �j(��)fs;� (�
�)

3
5 b('(�); �j) +O(s)

=
2X

j=1

2
4 X
� 6=��

�j(�)fs;� (�) + !�j(��)fs;� (�
�)

3
5 b('(�); �j)

+(1� !)fs;� (�
�)b('(�); ��) +O(s)

Since 2
4 X
� 6=��

�j(�)fs;� (�)

3
5 + �j(��)fs;� (�

�) > 0 8j = 1; 2;
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there exists hj 2 (0; 1) such that

hj

2
4 X
� 6=��

�j(�)fs;� (�)

3
5 + �j(��)fs;� (�

�) = 0

which implies that

fs;� (�
�) = �

hj

�j(��)

X
� 6=��

�j(�)fs;� (�):

Without loss of generality, assume that

�
1

�1(��)

X
� 6=��

�1(�)fs;� (�) < �
1

�2(��)

X
� 6=��

�2(�)fs;� (�);

which implies that
h1 > h2:

Hence,

h1

2
4 X
� 6=��

�2(�)fs;� (�)

3
5 + �2(��)fs;� (�

�) > 0:

We can write the mean dynamics as

bs;� (') =

2
4 X
� 6=��

�1(�)(1 � !h1)fs;� (�)

3
5 b(�(�); �1)

+

2
4 X
� 6=��

�2(�)(1 � !h1)fs;� (�) + �2(��)!(h1 � h2)f(��)

3
5 b('(�); �2)

+(1� !)fs;� (�
�)b('(�); ��) +O(s)

=

2
4(1� !h1)

X
� 6=��;�2

b('(�); �)fs;� (�)

3
5

+
h
(1� !h1)fs;� (�

2) + �2(��)!(h1 � h2)fs;� (�
�)
i
b('(�); �2)

+(1� !)fs;� (�
�)b('(�); ��) +O(s):

Note that h
(1� !h1)

P
� 6=��;�2 fs;� (�)

i
+ [(1� !)fs;� (�

�)]

+
�
(1� !h1)fs;� (�

2) + �2(��)!(h1 � h2)fs;� (�
�)
�
!
< 1

and that each term inside the bracket is strictly positive for a sufficiently small ! 2 (0; 1).
We can generate the same mean dynamics through

~f(�) =

8><
>:

(1� h1)fs;� (�) if � 6= ��; �2

(1� !h1)fs;� (�
2) + �2(��)!(h1 � h2)fs;� (�

�) if � = �2

(1� !)fs;� (�
�) if � = ��

(A.63)
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instead of fs;� . Since
P

�
~f(�) < 1, ~f is not an empirical frequency. After normalization,

we have

'(� + s)� '(�) = s
X
�

~f(�)

"X
�

~f(�)P
�
~f(�)

b('(�); �)

#
+ sO(s)

= s

"X
�

~f(�) +O(s)

# "X
�

~f(�)P
�
~f(�)

b('(�); �)

#
+ sO(s)

For a sufficiently small s = sk > 0,
X
�

~f(�) +O(s) < 1

which implies that we can construct a path from '(�) to '(� + s) which takes s[
P

�
~f(�) +

O(s)] instead of s.
Let '̂ be the escape path obtained by the above modification. Note that we have applied

the “modification” of the path between [�; � + s) to each individual sequence of escape
paths f'ag converging to '. If � e is the first exit time for ', then it takes approximately as
many as d�e=ae periods to escape from s to @D. Thus, the probability of each escape path
'a is proportional to (2`)�d�

e=ae, since the probability of each realization of vt is (2`)�1.
Given an escape path ~' with exit time � e, define

Na
� ( ~') =

(
'a(�) : sup

�2[0;�e]
j'a(�)� ~'(�)j < �

)
:

For each f'ag 2 Na�('), we save the escape time as much as

�s = s

"
1�

X
�

~f(�)�O(s)

#

which implies that there exists an exponential gain in probability of realization of each
escape path as we move from N a

� (') to Na
� ('̂). On the other hand, as we move from N a

� (')
to Na

� ('̂), the number of sample paths converging to '̂ may decrease. But, this decrease is
at the polynomial rate. Hence, for a sufficiently small � > 0,

Pr
�
Na

� (')
�

Pr
�
Na

� ('̂)
� / � 1

2`

�d�s=ae

! 0

as a! 0. We have constructed an alternative escape path, which has a neighborhood with
a higher probability of escape than the dominant escape path. This contradiction proves
the proposition.
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B Proof of Proposition 9.4

Consider

Eas;� =

8<
:'a

� :

P
�2�(�) f

a
s;� (�) � 1�O(s)

'a
� (s) = 'a

� (0) + a
Pd �+s

a
e

t=d�=ae b('
a
t ; vt)

9=
; (B.64)

where �(�) is defined in (9.46), and let Pa
s;� be the probability distribution over Eas;� (�; �

0).
Roughly speaking, Eas;� is the set of all sample paths where fs;� (�) is “almost” concentrated
over �(�).

We claim that as a! 0, Pa
s;� is concentrated at the path induced by

'0(�) =
X
�

b('(�); �)g(� : �(�)) +O(s): (B.65)

By letting s! 0, we obtain (9.47). By following a standard result of stochastic approxima-
tion (e.g., Kushner and Yin (1997)), we know

'a
� (s)� 'a

� (0)�

Z s

0
b('(s0))ds0 =

d �+s

a
eX

t=d�=ae

a�t +R(a)

where b(') is the expected value of b('a
t ; vt) conditioned on Eas;� when a > 0 is arbitrarily

small
�t = b('a

t ; vt)�Etb('
a
t ; vt);

which is the martingale difference, and R(a) is the interpolation error incurred between
the Riemann integral and the discrete sum, which disappears as a! 0. Then 8c > 0,

Pr

�����'a
� (s)� 'a

� (0) �

Z s

0
b('(s0))ds0

���� � c

�

= Pr

0
B@
�������
d �+s

a
eX

t=d�=ae

a�t +R(a)

������� � c

1
CA

� Pr

0
@
������ max
d�=ae+1�T 0�d �+s

a
e

T 0X
t=d�=ae

a�t

������ � c�R(a)

1
A (B.66)

�

d �+s

a
eX

t=d�=ae

a2E�2t
(c�R(a))2

! 0

as a! 0. In particular, (B.66) implies that

lim
a!0

Pr

 
9s00 2 (0; s);

�����'a
� (s

00)� 'a
� (0) �

Z s00

0
b('(s0))ds0

����� � c

!
= 0

which means that over the interval [�; � + s), the sample paths are piled up around the
mean dynamics conditioned on Eas;� .
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C Facts

Figures 17 and 18 display basic facts about the post WWII U.S. inflation-unemployment
correlation. The figures contain scatter plots and regression lines of U.S. quarterly inflation
and unemployment rates during selected periods. Inflation is measured by the CPI (all
items). Unemployment is measured for white males over 20 years of age. Figure 17 plots
the cumulative scatter of points from 1954 I to the last quarter of the indicated year. Thus,
successive panels of figure 1 add five years of data. The straight line is for the least squares
regression

Ut = ̂0 + ̂1yt;

where yt is inflation and Ut is unemployment. Figure 18 displays scatter plots and regres-
sion lines for successive clumps of five years of data for the dates indicated.15

Figure 17 shows how adding data gradually steepens the unconditional empirical Phillips
curve. By the late 1970’s the Phillips curve was vertical. Figure 18 indicates the propensity
of the Phillips curve to shift while preserving a negative slope. Thus, with a long enough
range of historical experience, the unconditional Phillips curve seems vertical; with brief
enough historical perspectives, the Phillips curve retains its negative slope but wanders.

15The direction of fit (e.g., y on U versus U on y) matters for our story. See King and Watson (1994) and
Sargent (1999).
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Figure 17: Cumulative scatters of C.P.I. inflation and white male unemployment
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Figure 18: Five year scatters of C.P.I. inflation and white male unemployment
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