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Abstract 

Statistical offices use the matched models method to compile consumer price indices (CPIs) 

to measure inflation. The prices of a sample of models are recorded, and then price collectors 

visit the same stores each subsequent month to record the prices of the same matched 

sample of models. The matched models method is designed to control for quality changes. 

But new, unmatched models launched in subsequent months have their prices ignored as do 

old unmatched models no longer available. The paper uses retailer’s bar-code scanner data 

on several consumer durables to show that serious sample degradation can take place and 

that the quality-adjusted prices of unmatched items differ from those of matched ones, leading 

to substantial underestimates of inflation. Hedonic indices use the whole sample. They are 

argued to be more useful to price measurement in markets with a rapid turnover of models in 

order to avoid the demonstrated bias. 

 
 
JEL classification: C43, E43, O47 
 
Keywords: Superlative index numbers; Cost of living indices; COLI; Consumer price indices; 

Hedonic regressions; Quality adjustment; Inflation. 
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Non-technical summary 
The proper measurement of inflation is critical both to macroeconomic analysis and the 

formation of economic policy, as well as to the indexation of state benefits and monetary 

instruments. Statistical offices use the matched models method to compile consumer price 

indices (CPIs) to measure inflation. Price collectors record the prices of a sample of models 

or varieties of selected products existing in an initial month, and then continue to record the 

prices of these same matched models in subsequent months.  The matched models method 

is designed to control for quality changes by ensuring that like is always compared with like. 

But new, unmatched models launched in subsequent months have their prices ignored, 

unless they are used as replacements. The matched models method also fails when an old 

model is no longer available and a matched comparison of like with like cannot take place. In 

markets where models change rapidly due to technological innovations the matched sample 

may, by the end of a year, be quite unrepresentative of what is, and what was, bought. But 

serious sample degradation need not necessarily lead to bias. It is also necessary for the 

prices of unmatched models to differ from matched ones. The paper thus argues that a form 

of sampling bias may exist as a by-product of the method used to control for quality 

changes. The bias is one not recognised in major studies of CPIs including Boskin (1996). 

An alternative approach to measuring quality-adjusted price changes is the use of hedonic 

indices, which can use data on matched and unmatched models.   Since CPI compilers 

collect data only on matched samples, it is difficult for them to compare the results with what 

is taking place outside of the sample.  A replication of CPI procedures is attempted on 

scanner data. Retailer’s bar-codes scanner data are particularly suited to this purpose 

covering the universe of transactions. Empirical work was undertaken for washing machines 

using monthly data, and key elements of the analysis are replicated using scanner data for 

four further products - dishwashers, television sets, cameras and vacuum cleaners. The data 

allows us to identify the extent of sample degradation, compare unmatched (new and old) 

prices and matched prices and their effects on price measurement.   The results of indices 

using the matched sample, with and without quality-adjusted replacements, chained and 

hedonic indices were compared.  Hedonic indices use the whole sample, while chained 

indices refresh the sample on a regular basis. They are argued to be more useful to price 

measurement in markets with a rapid turnover of models in order to avoid the demonstrated 

bias. 

 

The results for washing machines clearly demonstrate cause for concern. Similar findings 

arise for the other products studied. For the comparison of prices of models of washing 

machines over the 1998 in the U.K., it was found that for a sample selected in January, by 
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December, only 53% of the January basket of varieties were used for the December/January 

index, though these accounted for 81.6% of January expenditure.  Varieties with lower sales 

values dropped out quicker.  However, the remaining 0.53 (500) = 265 varieties in December 

only accounted for 48.2% of the value of transactions in December.  The active sample 

relating to the universe of transactions in December had substantially deteriorated.  

 

The quality-adjusted prices of matched models were found to be quite different from those of 

unmatched new and unmatched old ones. Unmatched new ones were on average higher, 

and unmatched old ones lower, even when quality adjusted using hedonic regression 

equations. Quality-adjusted prices fell faster for the matched sample, than the matched and 

unmatched samples - all the data. The differences were quite marked. By December 1998 

prices fell by 9.9 percent for matched data compared with 6.7 per cent for all data. When 

weighted matched indices were used, the falls in prices generally become less marked, at 

about 8 per cent. Yet when all the data were used – matched and unmatched –we have falls 

in prices of under 5 per cent with weights. As predicted from the theory, the combined effect 

of the relatively low unmatched old models and high priced unmatched new models combine 

to limit the fall in prices of the matched models method. The paper thus demonstrates the 

reason for the bias and its direction. Its direction depends on the economic strategy used by 

firms when pricing new and obsolete models. In these cases the general finding wee of 

relatively low quality-adjusted prices for old models and relatively high quality-adjusted 

prices for new ones leading to the matched models approach overstating falls and thus 

understating increases. Price statisticians only have the data they matched data they collect 

which, by its nature, cannot give them insights to this source of bias. Scanner data allows 

such an analysis.  Hedonic indices, which use the full sample, are advocated for product 

areas with high levels of model turnover. 
 
JEL classification: C43, C81, D12, E31, L15, L68, O47 
 
Keywords: Superlative index numbers; Cost of living indices; COLI; Consumer price indices; Hedonic 

regressions; Quality adjustment; Inflation. 
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1.  INTRODUCTION 

The matched models method is the universally accepted procedure for the compilation of consumer 

price indices (CPI) and the measurement of inflation. The details and prices of a representative 

selection of items are collected in some base/reference period, and their matched prices are collected 

in subsequent periods, so that ‘like’ is compared with ‘like’. It is no mean affair. The local (as opposed 

to central) collection of prices for the U.S. CPI includes about 835,000 price quotations (Armknecht, 

1996) and for the U.K. Retail Prices Index (RPI) some 110,000 quotations each month (Baxter, 1998). 

It has nonetheless been criticised for its inability to properly incorporate quality changes, substitution 

bias and the effects of new goods (Boskin et al., 1996 and 1998; Diewert, 1996; Cunningham, 1996; 

Hoffmann, 1998; Abraham et al., 1998; Schultze and Mackie, 2002). Results from hedonic regression 

studies have shown different, usually lower rates of price changes (recent examples including, 

Hoffmann (1998), Silver and Heravi (2001 and 2002), Koskimäki and Vartia (2001) and Pakes 

(2001)). Yet the matched method has its supporters. Alan Greenspan, in commenting on the need for 

better micro data for price measurement, reported on how the conceptually simpler matched model 

method can give comparable results to the hedonic approach when detailed micro data are used 

(Greenspan, 2001 citing Aizcorbe et al., 2000), though we comment on this later.  

Hedonic approaches use regression techniques whereby, in their simplest form, the price of an item is 

regressed on its quality characteristics and dummy variables for the time period to which the 

observations relate. The coefficients on these time dummies are estimates of the change in price over 

the period concerned, controlling for changes in the quality mix of what was bought. Studies have 

found substantial differences in the results from the matched and hedonic approaches. When 

comparing results there is often a preference for hedonic approach as the benchmark, though the 

basis for this is not always apparent Boskin et al., (1996 and 1998) and Hoffmann (1998).   

The matter is of some importance. Boskin et al., (1996 and 1998) estimated the cumulative additional 

national debt from over-indexing the budget over a dozen years would be more than $1 trillion.  For 

the U.K. a 0.1 percentage point overstatement of the RPI is estimated by the ONS to affect 

Government expenditure and receipts by about £100 million a year (Fenwick et al., 2002).  Such bias 

affects the targeting of inflation; taxation liability and bank payment adjustments; indexation in legal 

contracts, wages and benefits; current cost accounting; deflation of national accounts, wages and 

retail sales. 

So what is going wrong? Is there some problem with the matched models method from which the 

hedonic approach does not suffer? 

Three reasons are considered for why the matched models approach may fail us: 

Its static sampling universe: The matching procedure has at its roots a conundrum. Matching is 

designed to avoid price changes being contaminated by quality changes. Yet its adoption constrains 

us to a static universe of models which exist in both the reference and base period. Outside of this 

there is of course something more: models which exist in the reference period, but not in the current 
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period, and are therefore not matched, and similarly those new models existing in the current period 

but not the reference one – the dynamic universe (Dalén, 2001 and Sellwood, 2001).  Of course the 

new models not in the reference period may be the ones undergoing more rapid technological change 

and the old ones may incorporate an obsolete technology, both experiencing unusual (quality-

adjusted) price changes. The conundrum is that the very device used to maintain a constant-quality 

sample not marred by technological change, may itself give rise to a biased sample which excludes 

new, unmatched technological developments and old, unmatched obsolete ones.  

Missing items and quality adjustment: when items in subsequent periods are missing – the items 

are simply not available for any record to be made of their prices and their prices can no longer be 

matched. They may be obsolete or no longer stocked by the establishment. A number of procedures 

are available to statistical offices in such circumstances (Triplett, 2002): to impute the missing prices 

using current sample information, replace the missing prices with the prices of comparable models or 

with non-comparable ones with associated adjustments for quality differences. If this is being 

undertaken on a substantial basis and there is a bias in these procedures the matched models 

method fails us.  It should be noted that the use of replacement items will not ameliorate the sample 

bias.  Replacements are only used when an item is missing and the number of new items on average 

exceeds by far the number of ones going missing (Triplett, 1999).  Furthermore, replacement items 

are usually selected to be of a similar quality to the item being replaced, thus being near obsolesence 

with low sales (Lane, 2001). 

New products: A final potential source of error lies when something ‘new’ is introduced into the 

market place. There is a difficulty in distinguishing between new items and quality changes. When a 

quite new item is introduced there is a gain to consumers’ utility. For example the introduction of the 

video cassette recorder (VCR) was a completely new good that led to an initial gain to consumers’ 

utility. This welfare gain from its introduction could not be properly brought into the index by waiting 

until the index was re-based and a new basket of goods that included the VCR formed. We would 

include the subsequent price changes, but not the initial gain in welfare accompanying its introduction.  

A measure of the welfare gain requires an estimate of  some average of the reservation prices of the 

VCR in the period before its introduction (period 0), that is, when demand would be zero, by  the 

period 1 buyers (Hicks, 1940 and Hausman, 1997). 

The subject of bias in CPI measurement has a long history more recent interest following Boskin 

(1996). Here the focus was on quality adjustment bias when models are missing, substitution bias at a 

higher and lower level for products and items and also between outlets, and new product bias. The 

study of bias from different quality adjustment procedures when items go missing, has benefited from 

a number of useful studies including Reinsdorf et al., 1995, Moulton and Moses, 1997, Armknecht et 

al., 1997 and Moulton et al., 1998, Lowe (1998), Kokoski et al., 1999a, Silver and Heravi, 2002 and 

Triplett, 2001).  The concern of this paper is with the use of a static universe in a dynamic market, a 

subject that has been neglected since Cole et al. (1986). 

In section 2 of this paper we provide some background to the matched and hedonic approaches. 
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Section 3 continues by considering why the matched model method may fail and lays down the study 

objectives for the empirical section. These include sample degradation when matching, the results 

from some studies on, and an analytical framework for, the effects of dissimilarities between matched 

and unmatched models, the effect of weighting and leverage. Section 4 provides an outline of an 

experimental formulation and its use of scanner data on washing machines to replicate the matched 

model method. The scanner data are taken to be the active universe of transactions. In section 5 we 

start the empirical results: the effect of the matched models method on sample coverage is 

demonstrated for long run and short run Laspeyres and for more frequent intervals of sample rotation 

including chained indices. One reason why hedonic and matched indices (as used by statistical 

offices) may differ is that the latter, in matching, uses a depleted sample. A concern here is with 

whether the coverage is substantially depleted and the extent to which more regular sample rotation 

or chaining militates against this. Yet sample depletion is only a necessary condition for bias. If 

matched and unmatched models were priced in a similar manner, the depletion would not lead to 

discrepancies in the two approaches. Section 6 continues by considering the nature and impact on 

the index of the pricing of unmatched new and old models compared with matched models. Their 

different prices, characteristics, hedonic (quality-adjusted) prices and price changes, residuals from a 

common hedonic surface and leverage are all examined. Section 7 concludes the empirical analysis 

of washing machines with summary results from the matched models method which uses only 

matched models, hedonic indices using the full sample, chained monthly indices and more frequent 

sample rotation which refreshes the sample more regularly, and matching using explicit hedonic 

quality adjustment when models are missing. In section 8 key elements of the analysis are replicated 

on scanner data sets for four further products: television sets, dishwashers, cameras and vacuum 

cleaners. The aim is to see if there is evidence that the results might generalise to consumer 

durables. Overall conclusions are drawn in section 9. In particular it is proposed that the matched 

models method be no longer used for products areas where rapid changes in models take place. A 

sample of prices of all or major selling models can be taken in each period and hedonic or chained 

indices used. The matched models approach was developed for, and is suitable for use in, product 

areas where models that remain responsible for sizeable market shares continue over relatively long 

periods of time. Product areas such as personal computers, mobile phones, televisions, washing 

machines and many consumer durables are no longer like this and the matched models method can 

lead to bias in such circumstances, the nature of which is outlined in this study. 

A novel feature of the paper is its use of scanner data on the universe of transactions, which also 

allows us to follow a fixed base matched sample and compare matched and unmatched observations, 

something not available to studies using CPI matched data.  
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2. BACKGROUND 
 

a) Background to the matched models approach 
Consumer price indices serve as measures of changes in the cost of living. The conceptual basis for 

such indices is well established in economic theory. Konüs (1939) and Diewert (1976) define a 

theoretical cost-of-living index (COLI), Pc as the ratio of the minimum expenditures required to 

maintain a given level of utility, U, when the consumer faces period t prices compared with period t-1 

price, pt and pt-1; i.e. 

Pc(pt, pt-1,U) = E(pt, U)/E(pt-1,U)         (1) 

The above does not recognise that changes may occur in the quality of the items compared.  Fixler 

and Zieschang (1992) and Feenstra (1995) define an analogous hedonic COLI:    

� � � � � �UzpEUzpEUzzPP tttttttt ,1,1,,,1,,1,c /P
����

�       (2) 

i.e. the ratio of the minimum expenditures required to maintain a given level of utility when the 

consumer faces pt and pt-1 prices and items defined as tied bundles of quality characteristics zt and zt-1 

(Lancaster, 1971 and Triplett, 1988). 

Against these frameworks is the practical need to compile a consumer price index. Representative 

samples of prices are required in each period as are data on expenditure patterns to act as weights. 

There is also a need for an aggregator, which calculates some weighted average of price changes. 

Economic theory, along with axioms as to good properties of index numbers, has proved most useful 

to the selection of such formulae. Laspeyres is now well known to have a substitution bias as 

consumers substitute away from items, products and outlets with relatively high price changes. The 

Laspeyres fixed weights index corresponds to a Leontief utility function, which cannot adjust 

consumption patterns for such changes. It thus overstates its theoretical cost-of-living counterpart. A 

class of index numbers referred to a superlative has also been developed. These correspond to 

flexible functional forms that allow for substitution effects and include Fisher and Törnqvist indices 

(Diewert, 1976 and 1978). 

All of this is well and good, except for the fact that in many product areas the items that are purchased 

change over time, as new models/varieties are introduced to markets which are often highly 

differentiated with several brands each having different offerings to different segments. Also new 

models, which may be radically different to the old models, may appear on the market. Taking a 

random sample of prices and comparing some average to an average from a previous month will not 

provide a measure of price changes untainted by the quality changes. Prices of, for example personal 

computers may fall over time, but when the increased processing power of the PC is taken into 

account, the fall in terms of services rendered or utility derived, will be far greater than that of the 

measured price comparison. 
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So statistical offices use the matched models method to help get round this problem. In a reference 

month models are selected and their prices and details recorded so that matched prices can be 

collected and recorded in subsequent months and like is compared with like. It should be noted that 

the short-run matching is not of purchasers, since with consumer durables a purchaser is very unlikely 

to purchase an item again in a succeeding month, it is the matching of the model of the item. 

b) Background to the hedonic approach 

We distinguish here between four types of hedonic studies (see also Rosen (1974), Triplett (1988 and 

2002) and Griliches (1961 and 1971) and Dulberger  (1989) for early applications).   

(i) Filling in missing unmatched prices - patching 

The first is where the matched models method is being used and statistical agencies have missing 

unmatched models. The price collector can only find a replacement model which is not directly 

comparable and the coefficients from a hedonic regression are used to make a quality adjustment, so 

that the old and new price can be compared. This is a ‘patched’ solution in the sense that adjustments 

for quality differences are made to non-comparable models and the adjusted ‘patched’ price used for 

price comparisons.  Only the matched and (limited) replacements are used in the sample.  Any bias in 

the sample is carried over to the hedonic estimates if the hedonic regressions are estimated from this 

data. 

(ii) Hedonic price functions for given quality points 

The second method is an extension of the ‘patching’ approach to the whole data set. Hedonic 

regressions are estimated for period t and/or t+n. The features of models in period t are inserted into 

the hedonic regression equation for period t+n and price imputations made for each observation: the 

estimates are the prices in period t+n of the period t sample. Some average of the actual period t 

prices can then be compared with the imputed period t+n one. Alternatively the imputations could be 

made for period t using the period t regression and period t+n features: the imputations would be the 

prices in period t+n using period t valuations. Some average of the imputed period t prices would be 

compared with the actual period t+n ones.  

(iii) Dummy variable hedonic 

A third approach is the dummy variable method which again can use the whole data set. This is again 

separate from the matched models method. The sample required does not have to be matched. A set 

of (zk = 1,….K) characteristics of a product are identified and data over i=1,…N product varieties (or 

models) over t=1,…,T periods are collected.  A hedonic regression of the price of model i in period t 

on its characteristics set ztki is given by:   

� �
� �

����

T

t
ti

K

k
tkikttti zDnp

2 1
01 ����         (3) 
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where Dt are dummy variables for the time periods, D2 being 1 in period t=2, zero otherwise; D3 being 

1in period t=3, zero otherwise etc. 

The coefficients �t
 are estimates of quality-adjusted price changes, that is estimates of the change in 

the (the logarithm of) price between period t and period t+n, having controlled for the effects of 

variation in quality (via �
�

K

k
tkjk z

1

� ).  The regression controls for quality changes as opposed to the 

manual matching, thus allowing the extension to a wider data set. 

(iv) Superlative/exact hedonic framework 

The final approach arises out of the economic theory of price indices (see Rosen, 1974) and involves 

the compilation of superlative/exact hedonic indices (Fixler and Zieschang, 1992, Feenstra, 1995 and 

Diewert, 2001). Superlative indices can, and will, be calculated using matched scanner data. 

However, the superlative/exact hedonic framework attempts to minimise loss of data through failures 

to match. This is not the subject of this study but is considered in Silver and Heravi (2001 and 2002). 

3.  THE STATIC SAMPLING UNIVERSE AND FAILURE OF THE MATCHED MODELS METHOD 

(a) Some studies 

The matching of prices of identical models over time may also lead to the monitoring of a sample of 

models increasingly unrepresentative of the population of transactions. There are old models that 

existed when the sample was drawn, not being available in the current period and new ones that 

enter it, not being available in the base period. It may be that the exits have relatively low prices and 

the entrants relatively high ones and by ignoring these prices we introduce a bias.  

Cole et al. (1986) compared price indices from a matched models approach with those from hedonic 

regressions for computer processors, disk drives, printers and displays.  In each case the matched 

models method substantially underestimated the fall in prices; for example a fall of 3.0 percent per 

annum for the period 1972-1977 compared with three hedonic indices finding falls of 11.2, 9.2 and 

12.8 percent per annum. 

Koskimäki and Vartia (2001) attempted to match prices of models of personal computers (PCs) over 

three two-month periods (spring, summer and fall) using a sample of prices collected as part of 

standard price collection for the Finish CPI. Of the 83 spring prices only 55 matched pairs could be 

made with the summer, and then only 16 continued through to the fall. They noted the sample of 

matched pairs to get rapidly biased: of the 79 models in the fall, the 16 matched ones had a mean 

processor speed of 518MHz compared with 628MHz for the remaining 63 unmatched ones; the 

respective hard disk sizes were 10.2 and 15.0 Gb., and percentages of high-end processors (Pentium 

III and AMD Atl.) 25 and 49.2 respectively. Hardly any change in matched prices was found over this 

6 month period, while a hedonic regression analysis using all of the data found quality-adjusted price 

falls of around 10%. Instructions to price collectors to hold on to models until forced replacements are 

required may thus lead to an increasingly unrepresentative of the population and be biased towards 
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technically inferior variants. In this instance the hedonic price changes fell faster, the newer models 

being cheaper for the services supplied.  

Kokoski et al. (1999b) provides some interesting insights in an empirical study of inter-area price 

comparisons across U.S. urban areas using U.S. Consumer Price Index data. They provide the 

detailed regression results from data on prices, geographical area in which the prices were collected, 

and an extensive list of quality characteristics for over 6,700 separately priced potatoes, lettuces and 

tomatoes and bananas, 9,400 observations on apples, 12,000 on oranges, 14,200 on other fresh 

vegetables, and 26,009 on other fresh fruit. They regressed the price of, for example, potatoes each 

of the 43 geographical areas (42 dummy variables) in which the prices were collected, the 12 months, 

7 outlet types, 4 package types, 3 sizes and 9 varieties. They also included a variable if the price was 

collected from a sample, which was recently rotated, as opposed to being in the same sample as the 

previous month. This is of particular interest since the coefficient on this dummy variable for the ‘new 

sample’ is an estimate of the effect on prices of more recent sample selection. For all eight products 

the coefficients on the new sample were negative, though in only 3 cases were they statistically 

significant, with magnitudes of about minus 3 and 4 percent. The negative sign indicated that quality 

adjusted prices were lower for the newly included model than the old one. And this is for a product 

group in which technological quality change is not immediately apparent.  

Pakes (2001) estimated hedonic and matched indices for personal computers (PCs) sold between 

1995 and 1999. Using annual data he found that about 85 percent of base-period 1995 observations 

could not be matched in the comparison year and were dropped in the calculation of matched model 

indices. The results were compared with those from a hedonic equation: 

“The estimated matched model index is the opposite sign of the proper hedonic in every year 
and averages +.27 per cent over the years (compared to about -.16 per cent for the proper 
hedonics) indicating that the positive bias generated by the selection on survival dominates 
the fall in prices generated by technical change. Also there is a negative correlation between 
the matched model and proper hedonic over the years. The selection argument can also 
explain this finding. Selection effects should be most positive in the years with the largest rate 
of technical change as those are the years in which all but the mot superior of base period 
goods are obsoleted by entering products. Years with a lot of technical change are the years 
that we expect to also see the largest fall in prices.” [author’s emphasis](Pakes, 2001, p.38). 

Aizcorbe et al. (2000) undertook an extensive and meticulous study of high technology goods 

(personal computers and semiconductors) using quarterly data for the period 1993 to 1999 by dividing 

the product space into finely defined cells and compared  chained matched indices with hedonic 

indices run not on the original data, but on the data for the divided cells [direct correspondence with 

author and via Jack Triplett]. The results were very similar over the seven years of the study. For, 

example, for desktop CPUs the index between the seven years of 1993:Q1 and 1999:Q4 fell by 60.0 

% (dummy variable hedonic), 59.9% (Fisher) and 57.8% (geometric mean). So why are these results 

similar when matched  indices use a different sample space to hedonic studies which include 

unmatched ones? First, only chained indices were used so the sample was refreshed in each period. 

The number and proportion of models in a say, direct matched comparison between period 6 and 

period 0, would be very much smaller than in an index with chained comparisons. A chained index 
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compares prices of models in period 0 with period 1 (Index0,1) and then as a new exercise, studies the 

universe of models in period 1 and identifies matches in period 2 and links the result (Index1,2)  to the 

index Index0,1 by successive multiplication continuing to Index5,6  to form Index0,6.   Only computers 

available in both period 0 and period 6 would be used in normal CPI compilation. The differences in 

sample space were therefore less marked and the results therefore closer. Chained matching still 

suffers from excluding some new models: for example new models in period 2 would be excluded 

from Index1,2 , but included in Index2,3 ; the sample depletion is much less severe. We investigate the 

effect of chaining on the sample space later in this study. Second, the hedonic regressions were run 

on the already finely divided data for cells as opposed to the actual data. So hedonic indices are not 

being compared with fixed base static sample indices, the concern of this study and statistical 

agencies. 

Yet the authors found substantial differences for a few annual comparisons existed. For example for 

desktop CPUs in 1996:Q4 the 38.2 percent annual fall measured by the dummy variable hedonic 

method differed from the geometric mean index by 17 percentage points and from the Fisher index by 

22.2 percentage points. So why was there a difference between the (chained) geometric mean and 

the hedonic indices in this case? This should only happen if there was an unusually high proportion of 

models being turned over for the comparisons in question. In  1996:Q4 they reported 2 new 

observations (15.4% of all observations) entering the market which could not be matched with 

previous observations, and were therefore excluded from the chained matched analysis. And 2 exiting 

models which again were lost from the matched comparisons, though these 2 exiting models 

accounted for 15.4 percent of observations, but only 0.8 percent of revenue share. Other periods in 

which the indices diverged were marked by high model turnover. The study thus supports our 

contention regarding sample space. For chained indices with little model turnover there is little 

discrepancy between hedonic and matched models methods. It is only when binary comparisons or 

links have a high model turnover that differences arise.  

The conclusions from the study are worth considering in this light. First, for high frequency, very 

disaggregated data matched models methods will generally capture the rapid quality change. This is 

because for such data the “..market share of turnover varieties tends to be small.” Aizcorbe et al. 

(2000,p19).  This applies only for chaining and is a conclusion that cannot be carried on to normal CPI 

practice. This is an important caveat since the chaining matches models in period t with prices in the 

succeeding period. It thus misses data not available in both periods. It works well if these missing 

models are unimportant - a finding supported by Silver and Heravi, 2001 and 2002. Aizcorbe et al. 

(2000) note the need for alternative approaches to data collection to allow such chained matching. 

For now we want to know if fixed base matching as practically practised in CPI compilation works – 

and the sample turnover is likely to be much larger in this case as we will seek to show, than in the 

careful matching of chained indices used in Aizcorbe et al. (2000). 

The above is not to say that chained indices will always be close to hedonic indices. In studies of 

price changes of six consumer products Silver and Heravi (2001 and 2002) found OLS hedonic 

estimates to fall slower than matched estimates for five of the six products: vacuum cleaners, washing 
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machines, personal computers, televisions sets and cameras, the results for dishwashers being 

borderline. This supports the view that the matching is ignoring models benefiting from higher levels 

of technological developments, thus understating quality-adjusted price changes.  

 

(b) Coverage of dynamic universe 

The matching of prices of identical models over time, by its nature, is likely to lead to a serious 

depleted sample. Sellwood (2001:3-4) notes:  

“Matching is a procedure that is undertaken as part and parcel of the Laspeyres concept but it 
serves to prescribe a particular universe. In simple terms this is a ‘static sub-universe’ of 
transactions…in the current and reference periods for which there is a correspondence given 
by the matching criteria actually applied. That is where, for the purpose of the CPI there is 
deemed to be no product change and hence no quality change……….Matching of identical 
and ‘closely similar’ sample products in pairs implies a universe that is only part of the 
complete universe of all transactions. It is those transactions in products available at both t=1 
(the reference period) and t=2 (the current period but not transactions in those products only 
available at either t=1 or t=2 (but not both)….These transactions excluded from consideration 
by the matching are a “dynamic sub-universe’ the complement of the static sub-universe.” 

Instructions to price collectors to hold on to models until forced replacements are required has the 

effect of including unusual price changes of models as they become obsolete, and ignoring the 

unusual price changes of models on their launch. It is of course difficult to ascertain the extent to 

which matching constrains our penetration into the dynamic universe. Sellwood (2001) advocates 

simulations using the universe of scanner data –  the subject of the empirical section of the paper. We 

consider some recent studies which use hedonic approaches on the whole sample and matched 

approaches. 

(c) Similarity of matched and unmatched observations and their effects on measured price 
changes 

We borrow now on the valuable analytical framework used for analysis by Aizcorbe et al. (2000) and 

generalise it from one new unmatched model to include more than one new and more than one old 

unmatched model. The analysis is for period t and t-1 comparisons, but holds for period 0 to t+n 

comparisons - so the implications for longer term fixed base comparisons remain. An index from a 

semi-logarithmic (prices in logs) dummy variable hedonic regression for matched models can be 

shown to equal to: 

In pt/pt-1 = �
�Mtm

(ln pmt – Zm)/Mt  - �
�� 1Mtm

( ln pmt-1 – Zm)/Mt-1     (4) 

where Zt and Zt-1 are in principle the quality adjustments to the dummy variables for time in equation 

(3), that is, �
�

K

k
tkk z

1

� - in this context, since matched models are being used, they are fixed effect 
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dummy variables for each model. Equation (4) is simply the difference between two geometric means 

of quality-adjusted prices. The sample space m = Mt = Mt-1 is the same model in each period.  

Consider the introduction of a new model n introduced in period t with no counterpart in t-1 and the 

demise of an old model o so it has no counterpart in t.  So Mt is composed of m and n, and Mt-1 is 

composed of m and o and M are only the matched models m. The dummy variable hedonic 

comparison is now: 

ln pt/pt-1    =    [m/(m+n)�
m

(ln pmt – Zm)/m     +      n/(m+n)�
n

(ln pnt - Zn)/n]  

                -  [m/(m+o)�
m

( ln pmt-1 – Zm) /m +     o/(m+o)�
o

(lnpot-1 -  Zo)/o]         

          =    [m/(m+n)�
m

(ln pmt – Zm)/m     -    m/(m+o)�
m

( ln pmt-1 – Zm)/m] 

             +  [n/(m+n)�
n

(ln pnt - Zn) /n        -      o/(m+o)�
o

(lnpot-1 -  Zo)/o]   (5) 

Consider the second expression in equation (5). First there is the change for m matched 

observations. It is the change in mean prices of matched models m in period t and t-1 adjusted for 

quality. Note that the weight in period t for this matched component is the proportion of matched to all 

observations in period t. And similarly for period t-1 the matched weight depends on how many 

unmatched old observations are in the sample. In the last line of equation (5) the change is between 

the unmatched new and the unmatched old mean (quality adjusted) prices in periods t and t-1. Thus 

matched methods can be seen to ignore the last line in equation (5) and will thus differ from the 

hedonic dummy variable approach. The hedonic dummy variable approach in its inclusion of 

unmatched old and new observations can be seen from equation (5) to change the emphasis given to 

matched observations.  The nature and extent of the bias will depend on the economics of how firms 

price items at the start and end of their life-cycles.  For example, items at the end may have relatively 

low quality-adjusted prices, being dumped, and the new items may have relatively high ones, with 

firms ‘price skimming’ segments willing to pay a premium for the new model, then using only matched 

prices will be biased and understate any increase.  Alternatively, Cole et al. (1986) note in their study 

of computer processors and disk drives: 

“...the introduction of products embodying new technology leads initially to multiple 
prices with the products based on ‘non-best’ technologies selling for more.  The 
prices for older products decline rapidly until they either match the quality-adjusted 
price of products based on the new technology or the products disappear.  The claim 
that improved technology leads to reduced costs and, hence, to a lower quality-
adjusted price is consistent with a competitive marketplace in which the only quality-
adjusted price (the “best”) ultimately prevails.  It was found that in many cases price 
reductions permit an older technology to compete with a newer one for a limited time, 
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but as the new technology becomes diffused, its own age-related cost and price 
reductions eventually drive the older technology out of production.  The evidence 
presented here suggests that prices reflect this process of adjustment and that 
equilibrium is not reached within a period as short as 1 year.” (Cole et al., 1986: 47). 

Equation (5) clearly shows that the extent of any bias depends on the number of (weighting) new and 

old items (the shares n/(m+n) and o/(m+o) and the economic strategy used for pricing. 

(d) The weighting of matched and unmatched price changes 

Ideally the weights should relate to sales and not the number of observations, and the sales weights 

should correspond to a superlative formulation as outlined in Fixler and Zeischang (1992), Kokoski et 

al. (1999a and Silver (1999 and 2001).   In this study weighted (by sales) least square estimators are 

used for the hedonic regressions. 

(e) Differences between estimates from matched data and matched and unmatched data: 
leverage effects 

We develop here the analysis of the effects of excluding unmatched data on the measurement of 

price changes based on leverage effects. Consider the case where for simplicity the coefficients are 

constant between the two periods t and t+n. The only difference between their hedonic surfaces is an 

intercept shift reflecting an overall price change. The dummy variable method works well in such 

circumstances and we assume again that the quite simplistic functional form given by equation (3) is 

appropriate – though there is a case for more flexible forms (Curry, 1999 and Diewert, 2001). Assume 

a full data set of observations are available which includes (I) those observations that might be 

matched in periods t and t+n, (ii) those available in period t but not t+n (unmatched old t) and (iii) 

those available in period t+n but not t (unmatched new t+n).  

The concern here is that the unmatched observations may not lie on the matched hedonic surface 

given by equation (3). Bear in mind that equation (3) has two effective surfaces, one for period t and 

one for period t+n with an intercept shift. The concern is therefore that the unmatched period t 

observations do not lie on the former and the unmatched period t+n do not lie on the latter. Berndt 

(1995), Silver (1999), Triplett (2001) and Pakes (2001) have amongst others provided reasons why 

this might be the case. Unmatched period t models are near the end of their life cycle and unmatched 

period t+n near the start of theirs, and economic and marketing theory and practice has shown how 

pricing varies over the life cycle of a products and a brand’s differentiated varieties. So what is the 

effect on our estimates of including such additional data? 

This is not a difficult matter to investigate empirically. For an unmatched observation to have an 

influence on the hedonic results it needs to have unusual characteristics, say due to its technology 

have a relatively slow spin speed for a washing machine combined with being energy inefficient. 

However this may still have a price that can be explained by the regression – it can lie on the hedonic 

surface. To lie off the hedonic surface its price must be unusual given its characteristics, say due to 

high price skimming for a new model or low price dumping of an old one, i.e. the residuals should be 

high. To examine such issues the residuals and leverage effects for the unmatched new and old 
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observations are calculated for comparison with the matched ones.  Leverage effects are concerned 

with the influence observations have on the estimated parameters (see Annex 1 and Davidson and 

McKinnon, 1993).  In the empirical section unmatched observations are examined to identify whether 

on average they have different residuals and leverage effects. 

(f) Imputations 

When an item is missing, statistical offices often impute the missing price using information in the 

remaining matched sample (Turvey, 1989; Reinsdorf, 1995; Moulton and Moses, 1997; Armknecht  et 

al., 1997).  Imputations involve effectively dropping the missing models from the sample; they rely on 

assumptions of similar price changes for quality-adjusted missing models, were they available, and 

the active sample. Class means or targeted imputation relates this assumption to a more specific 

class of items (see Armknecht and Maitland-Smith, 1999, Feenstra and Diewert, 2001 and Triplett, 

2002). Yet, of course this implicitly equates the missing (quality adjusted) price change to the price 

change in the static universe. Yet what we want is the price change in the dynamic universe. The 

more representative the static universe, the better the imputations. In practice this will arise when the 

price change is closer to the base period in which the item sample was last rotated. One implication is 

that chaining and sample rotation has some merit as devices to refresh the sample. Another is that 

imputations should be short run as opposed to long-run comparisons. In the former case matched 

prices in period t are compared with t+n. In the latter case matched prices in period t are compared 

with those in period t+n-1, and multiplied by a comparison between matched prices in period t+n-1 

and period t+n. There are two effects. The first is that assumptions of similar price changes are more 

likely to hold over the short-run and the second that the sample space is larger. This is particularly 

true for the rotated sample and chaining, but also holds for short-run price changes. The comparison 

of say prices for 6 models in January may be depleted by one a month to 3 in April. Yet instead of 

having a sample space of three comparisons for the long-run January:April, we have 4 for 

January:March and 3 for March:April.  

(g) Comparable replacements 

The selection of comparable replacements by price collectors when a model is missing puts the 

coverage of the sample to some extent under the control of the price collectors. Replacement models 

should intrude into the universe of transactions in a substantial and representative sense, to be more 

representative of the dynamic universe. It is of little merit to substitute a new model with limited sales 

for a missing model, just because they have similar features, both being ‘old’. It is bad enough that the 

matched models method encourages price collectors to hang on to the model until it dies. It 

compounds the misdemeanour when guidelines encourage its replacement with a similar old variety 

with low sales - as Lane (2001:21) notes for the U.S. CPI:  “..when the outlet finally discontinued 

selling the item the regular replacement rules require the CPI field agent to replace it in the sample 

with the most similar thing that the store still sells. This could be something almost as obsolete.” The 

motivation behind this is of course to ease quality adjustment between the old and new item, so that 

the two models are similar. The institutional mechanism devised to help quality adjustment can lead to 
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bias due to their adherence to a sample of models which do not enjoy the benefits of recent 

technological innovations and are unrepresentative of what we buy. Quality adjustment and 

representativity are interrelated since the former affects the sample space of the index.  

4. DATA AND IMPLEMENTATION 

(a)  Data:  Scope and coverage 

The analysis and results presented in sections 4 to 7 are for monthly price indices for washing 

machines in 1998 using scanner data.  The analysis on this quite substantial database is quite 

detailed, though there remains an interest in identifying whether the findings hold for other products. 

In section 8 key elements of the analysis are replicated for four further products using scanner data - 

dishwashers, television sets, cameras and vacuum cleaners - and these findings, along with those for 

washing machines, are discussed in section 9.  The study of washing machines is thus used to 

illustrate the principles and more detailed analysis of the study, the findings for the other products 

being used to identify whether on replication, such bias extends more generally to consumer 

durables. 

Scanner data are compiled on a monthly basis from the scanner (bar code) readings of retailers.  The 

electronic records of just about every transaction includes the transaction price, time of transaction, 

place of sale and a code for the item sold – for consumer durables we refer to this as the ‘model’ 

number. Manufacturers provide information on the quality characteristics, including year of launch, of 

each model that can then be linked to the model number.  Retailers are naturally interested in 

analysing market share and pass on such data to market research agencies for analysis. By 

cumulating these records for all outlets (supplemented by visits to independent outlets without 

scanners) the agencies can provide, on a monthly basis, comprehensive data, for each model for 

which there is a transaction, on: price (unit value), volume of sales, quality characteristics, make, and 

outlet type. There is a reluctance for them to provide separate data for a given model in a given outlet. 

This would not only allow competitors to identify how each outlet is pricing a particular model, and the 

resulting sales, but also allow manufacturers, governmental and other bodies to check on anti-

competitive pricing. Data are however identifiable by broad types of outlets and models codes often 

apply to specific outlets, though they are not identifiable. 

It should be stressed that the data, unlike that collected by price collectors:  

�� covers all time periods during the month;  

�� captures the transaction price rather than then display price;  

�� are not concerned with a limited number of ’representative’ items;  

�� are not from a sample of outlets;  

�� allow weighting systems to be used at an elementary level of aggregation;  

�� include data on quality characteristics;  
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�� come in a readily usable electronic form with very slight potential for errors.  

The data are not without problems in that the treatment of multi-buys and discounts varies between 

outlets and the coverage varies between product groups. For example, items such as cigarettes sold 

in a variety of small kiosks are problematic. Nonetheless, they provide a recognised alternative, first 

proposed by Diewert (1993) and used by Silver (1995) and Saglio (1995), though see also, for 

example, Lowe (1998), Moulton, LaFleur and Moses (1998); as Astin and Sellwood (1998 p297-298) 

note in the context of Harmonised Indices of Consumer Prices (HICP) for the European Union: 

“Eurostat attaches considerable importance to the possible use of scanner data for 
improving the comparability and reliability of HICPs [Harmonised Indices of 
Consumer Prices], and will be encouraging studies to this end. Such studies might 
consider the various ways in which scanner data might be used to investigate 
different issues in the compilation of HICPs for example………..provide independent 
estimates as a control or for detection of bias in HICP sub indices;…….analyse the 
impact of new items on the index; carry out research on procedures for quality 
control.” 

Our observations (observed values) are for a model of the product in a given month in one of four 

different outlet types: multiples, mass merchandisers, independents and catalogue. We stress that we 

differentiate models as being sold in different types of outlets. Not all makes are sold in each type of 

outlet. In January 1998, for example, there were 266 models of washing machines with 500 

observations, that is each model was sold on average in 1.88 types of outlets.  

The coverage of the data is impressive both in terms of transactions and features. For the in 1998, 

there were 1.517 million transactions of washing machines involving 7,750 observations 

(models/outlet types) worth £550 million. The coverage of outlets is estimated (by GfK Marketing 

Services) to be “...well over 90%” with scanner data being supplemented by data from price collectors 

in outlets that do not possess bar-code readers.  

(b) Data: variables 

The variable set includes: 

Price - the unit value = value of sales/quantity sold of all transactions for a model in an outlet type in a 
month.  

Volume is the sum of the transactions during the period. Many of the models sold in any month have 
relatively low sales. Some only sell one of the model, in a month/outlet type. Showrooms often have 
alongside the current models, with their relatively high sales, older models, which are being dumped, 
but need the space in the showroom to be seen.  For example 823 observations - models of washing 
machines in a month (on average) differentiated by outlet type – each only sold 1 machine in 1998. 
There were 1,684 observations (models in outlet types) selling between 2 and 10 machines in a 
month (on average) selling about 8 thousand machines: so far a total of 2,407 observations managing 
a sales volume of about 8,800. Yet the 12 models achieving a sales volume of 5,000 or more in any 
outlet/month accounted for 71,600 transactions.  

Vintage is the year in which the first transaction of the model took place. With durable goods models 
are launched (usually) annually. The aim is to attract a price premium from consumers who are willing 
pay for the cachet of the new model, as well as to gain market share through any innovations which 
are part of the new model. New models can coexist with old models; 1.1787 million of the about 
1.517million washing machines sold in 1998 were first sold in 1997 or 1998 – about 77.7% leaving 
22.3% of an earlier vintage coexisting in the market.  
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Makes: transactions occurred in 1998 for machines of 24 different makes. The market was, however, 
relatively concentrated with the three largest selling (by volume) makes accounting for between about 
60% of the market. Hotpoint had a substantial 40% of sales volume in 1998. This was achieved with 
15% of models (observations).  Zannusi, Hoover and Bosch followed with not unsubstantial sales of 
around 10% each by volume.  

The characteristics set includes: 

Type of machine: 5 types – top-loader; twin tub; washing machine (WM) (about 90% of transactions); 
washer dryer (WD) with and without computer; 

WD with /without condensors (about 10% with); 

Drying capacity of WD – a mean 3.15kg and standard deviation of 8.2 KGs for a standard cotton load;  

Height of machines in cms - about 90% of observations being 85cms tall; 

Width - 94% being about 60cms. Depth - most observations taking values between 50 and 60 cms 
inclusive;  

Spin speeds: 5 main - 800rpm, 1000rpm, 1100rpm, 1200rpm and 1400rpm accounting for 10%, 32%, 
11%, 24%, and 7%v of the volume of sales respectively.  

Water consumption which is advertised on the displays as “..not a measure of efficiency since it will 
vary according to the programme, washload and how the machine is used.” It is highly variable with a 
mean of about 70 litres and standard deviation of 23 litres; 

Load capacity is another such measure for”…a maximum load when loaded with cotton” - a mean 
about 50Kgs with a standard deviation of about 13 Kgs;  

Energy consumption (kWh per cycle) is”…based on a standard load for a 60 degree cotton cycle - a 
mean of about 12kWh with again, a relatively large standard deviation of about 6kWh.; 

Free standing, built-under and integrated; built-under not integrated; built-in and integrated. 

Outlet-types include multiples, mass merchandisers, independents, multiples. 

(c) The experiment 

The purpose of this experiment is to replicate CPI data collection using scanner data to provide a 

means by which different CPI procedures can be emulated.  The formulation here is relatively crude.  

However, it is hoped it will be useful for experimental purposes.  We start by taking a January fixed 

basket of washing machines comprising all varieties for which there was a transaction in January.  It 

is assumed that statistical offices have unlimited resources to examine all transactions. Our varieties 

are for a model in one of four outlet types; multiples, mass-merchandisers, catalogue and 

independents.  Since many models are only sold in chains of particular outlets, the classification is in 

practice closer to a given model in a specific chain or even individual outlet, which is the price 

observed by a price collector.  The unit value of each variety in January is treated as the average 

display price collected by the price collectors.  Since the volume of transactions is known for each 

variety, the January sample is taken to be the universe of every transaction of each variety.  This 

January universe is the base period active sample.  We can of course subsequently modify this by 

using different sampling procedures and identify their effects on the index.  
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If the variety in each outlet type continues to exist over the remaining months of the year, matched 

comparisons are undertaken between the January prices and their counterparts in successive 

months.  Consider for illustration Table 1, the case of four varieties existing in January, each with 

relative expenditures of 521 ,, www and 6w  and prices of 512111 ,, ppp  and 61p .  A Laspeyres price 

index for February compared with January = 100.0 is straightforward.  In March the prices for varieties 

2 and 6 are missing.  Each of these were collected from different outlet types, multiples and mass 

merchandisers in this example.  

[Table 1 about here] 

It should be borne in mind that the price quotes may be unavailable because they are missing on a 

temporary  – seasonal or out-of-stock- or permanent basis. In the former case our concern is with 

imputations for the missing prices (Armknecht and Maitland-Smith, 1999 and Feenstra and Diewert, 

2000). For permanently ‘missing’ prices comparable substitutes may be available. If not, non-

comparable substitutes may be used with explicit, direct quality adjustments. Such explicit, direct 

methods are preferred, though often imputation techniques similar to those used for temporary 

missing price quotes are used. In this study, using scanner data, all missing prices will be treated in 

the same way irrespective of whether they are permanently or temporarily missing. At first it will be 

assumed that implicit indirect overall mean imputations are used – a widely used procedure that 

simply assumes prices of missing unmatched models follow those of the rest of the sample. The 

sample thus becomes degraded. The use of explicit methods will be considered later to counter any 

claim that we are unfairly comparing matching by using an ‘inadequate’, though widely used, form of 

imputation for our comparisons with hedonic methods. 

Missing varieties are not a trivial matter.  Moulton et al. (1999) examined the extent to which price 

collectors were faced with unavailable varieties of TVs in the U.S. CPI.  Between 1993 and 1997, 

10,553 prices on TVs were used of which 1,614 (15%) were replacements of which, in turn, 680 

(42%) were judged to be not directly comparable.  Canadian experience for TVs over an almost 

identical period found 750 of the 10,050  (7.5%), to be replacements of which 572 (76%) were judged 

to be not directly comparable (Lowe, 1998).  For international price comparisons the problem is much 

more severe (Feenstra and Diewert, 2000).  

The experimental framework and initial results were outlined in Silver and Heravi (2002). The study 

demonstrated how scanner data might be used to simulate CPI practices to help judge the veracity of 

alternative quality adjustment procedures. The concern of this study with the static sample is quite 

different. 

5. SAMPLE COVERAGE 

The active sample is first considered for the long-run matched Laspeyres. For a matched comparison 

between January and December, the coverage is the sample in January which can still be matched in 

December. Table 2 provides a summary of the data used.  In January 1998 there were 500 varieties 
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(models in one of the four outlet types – multiples, mass merchandisers, catalogue and independents) 

of washing machines accounting for 126,171 transactions.  The distribution was highly skewed with 

the top 5% and 10% of varieties (in an outlet type) accounting for 49% and 66% of transactions 

respectively in January. Table 2 shows that by December, only 53% of the January basket of varieties 

were used for the December/January index, though these accounted for 81.6% of January 

expenditure.  Varieties with lower sales values dropped out quicker.  However, the remaining 0.53 

(500) = 265 varieties in December only accounted for 48.2% of the value of transactions in December.  

The active sample relating to the universe of transactions in December had substantially deteriorated.  

[Table 2 about here] 

The short run modified Laspeyres is an alternative, though not widely used formula (Armknecht and 

Maitland-Smith, 1999). It combines the long run comparison between the base period and the 

preceding month and the short run comparison between the current month and its preceding one. For 

a comparison between January and December, for example, the short run comparison is first based 

on the long run January to November comparison using 54% of January observations accounting for 

83.5% of January expenditure, though only 49.4% of November expenditure. And second on the 

November to December comparison, which uses 47.9% of December expenditure. The short run 

comparisons always make slightly less intrusion into current expenditure than the long run ones. This 

is because the long run comparison requires price data to exist for January and December, while the 

short run one comparison is still based on the active January sample, but also requires November 

and December information on prices.  

Imputations based on short-run Laspeyres or with item rotation on a biannual, quarterly or monthly 

basis benefit not only from the more likely veracity of assumptions of similar price changes, but also 

because of the larger sample space upon which they rely. There is thus an increased likelihood that 

they replicate the price movements of the dynamic sample. The focus here is on the effects of sample 

coverage, returning in section 8 to the results for the indices. Table 2 presents results on coverage for 

Laspeyres long run comparisons using overall mean imputation with re-weighted sample rotation 

conducted on a biannual, quarterly and then monthly basis. The coverage relates to the percentage of 

the current month’s expenditure captured in the matching of prices between the base and current 

period. For example in the biannual comparison in October (compared with June 1998) 75.25% of 

expenditure in October was covered by the matching procedure, the remaining being implicitly 

imputed using the overall mean. The use of biannual sample rotation improves the coverage of the 

matching to at worst, a little over 70%, compared with 48.2% in Table 2 when rotating annually: a 

substantial improvement. Table 2 shows the upgrading of the rotation to a quarterly basis to further 

improve coverage to an at worst, 76.71% (September) and annual chaining to 83.33% (July).  The 

average coverage over the 12 months for the biannual, quarterly and monthly chained procedures 

were 73.5%, 79.8% and 86.8 % respectively compared with 48.2% for the annual sample rotation.    
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6. MATCHED AND UNMATCHED COMPARISONS 

(a) Characteristics of matched and unmatched models for long run comparisons 

Having established that long run matched and hedonic indices can in principle diverge, because of 

the limited coverage of the former (section 3). And having further established that the differences in 

coverage in practice can be substantial (section 5). And bearing in mind that this was undertaken by 

recourse to the special nature of scanner data that allows us to examine the universe of transactions. 

We now ask whether this depletion in coverage matters? Is it the case that the prices and 

characteristics of these matched and unmatched models differ and, if so, do they have an effect on 

the indices? It may be that the prices of new models entering the market after the base period –

hereafter unmatched ‘new’ - command a higher price, being at the initial stage of their life cycle. But 

incorporate new technology and have a lower quality adjusted price. It may also be the case that 

prices of models existing in the base period and then exiting the market – hereafter unmatched ‘old’ – 

have relatively low quality adjusted prices, say because they are being dumped to make way for new 

entrants. Alternatively they may coexist with the new model and continue to serve a special segment 

and even have a higher price than their quality merits (Berndt, 2001 and Pakes, 2001). Table 3 

provides some summary statistics on the price, number, value, vintage and spin-speed of matched 

and unmatched new and old models. 

[Table 3 about here] 

Table 3 clearly shows how prices differ between matched and unmatched observations. The mean 

January and current price of matched models were 440.57 and 424.35 pounds sterling respectively, 

the current price of a matched model falling over time. However, the mean price for old models, those 

available in January, but exiting in the current month, was lower than the January price, but higher, at 

435.60, than the matched current price. The former is as expected but the latter less so and we will 

revisit this issue in a more analytical framework. The mean price of new entrants is of course much 

higher, at 484.94, than existing matched prices. They are also newer, their mean launch date being 

half-way through 1996, as opposed to half-way through 1995 for matched models and nearly a year 

earlier for old exits. New entrants are also more advanced than matched ones in terms of their spin 

speeds (1118rpm compared with 1097rpm) and old exits are technologically inferior in this sense 

(1083 rpm). The different make-up or characteristics of the matched and unmatched models of course 

influence the above descriptive statistics on price. The growth in the number of new models again 

illustrates how the matched models method can lose out – their being 399 models in December not 

on the market in January, and thus not in the matched sample selection, compared with only 39 new 

models launched in February. The potential for error increases as we move away from the base 

month. 
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(b) Hedonic, quality-adjusted price differences between matched and unmatched models. 

The comparison between matched and unmatched prices in Table 3 takes no account of the 

differential qualities of the models being compared. Hedonic regressions were estimated on the whole 

sample in each month. For each month a model’s price (or its logarithm) was regressed on the 

characteristic set, outlet types and brand dummies described in section 4(b) - over 40 variables in all. 

The variable list was given in section 4(b) above and in the illustrative regression in Table 8, though 

this regression serves a different purpose. Also included were two dummy variables. The first took the 

value of 1 if the observation in that month was an unmatched new model, and zero otherwise, while 

the second took the value of 1 if the observation in that month was an unmatched old model, zero 

otherwise. Separate regressions were estimated for each month using linear and semi-logarithmic 

formulations and OLS and sales volume WLS. The t-statistics on these ‘old’ and ‘new’ unmatched 

variables provide test statistics on the null hypothesis of no difference in these matched and 

unmatched prices in the month in question. The sign and magnitude of the coefficients provide 

information, if statistically significant, on the nature and magnitude of their difference from matched 

models.  

[Table 4 about here] 

In Table 4 the results are only presented for the dummy variables on the new and old variables – 

though the regressions included all variables (full regression results are available from authors). 

Tables 3 and 4 show the mix of the sample: for example for the 1,047 models in August, 363 were 

unmatched new and 152 unmatched old. The 2R  in August for the regression equation with the full 

40 plus variable set was 0.81; the coefficient on the dummy variable for the old unmatched 

observations in this hedonic regression was an estimated –0.074, an about 7.4 per cent difference 

from their matched (omitted benchmark) counterparts, the difference being statistically significant at a 

5 per cent level (Table 4). It is apparent from Table 4 that there is a universal negative impact for old 

unmatched observations in each month, generally statistically significant at the 5 per cent level. 

Hedonic prices of old unmatched models are on average lower than matched existing ones. The 

average difference (OLS semi-logarithmic) is 6.1 per cent lower than matched ones.  We follow here 

Teekens, R. and Koerts, J. (1972) in adding one half the squared standard errors to the coefficients of 

these semi-logarithmic regression coefficients to correct for bias – though subsequently omit this to 

allow comparability between the text and the tables. The standard errors are in any event small and 

can be derived by the reader via the coefficients and t-statistics. 

There is also evidence of a positive difference for unmatched new models, though it is less clear. The 

OLS semi-logarithmic results found only two significant coefficients at the 5 per cent level and they 

were both positive. Yet the WLS counterpart had positive results for all but one month, with positive 

differences from zero statistically significant for six months. New entrants seem to have higher prices 

than matched ones. These new unmatched ones are the dynamic sample CPI compilers never see 
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because they are outside of the coverage of the initial selection. Note that the differences are after the 

influences of quality, outlet and brands have been controlled for in the regressions. 

Having established that the quality-adjusted prices of new and old unmatched and matched 

observations differ for individual months, the next question is whether these differences matter with 

regard to the measurement of quality adjusted price changes?  

(c) Differences in hedonic, quality-adjusted price changes between matched and unmatched 
models. 

Hedonic regressions akin to equation (3) were estimated. These were undertaken for data for January 

and February, then again for January and March, and continuing for January with September – 11 

regressions in all. Each regression had the full variable set as illustrated in Table 9 and discussed in 

section and were estimated using four different data sets: 

�� matched data only; 

�� matched plus unmatched old and unmatched new; 

�� matched plus unmatched old; 

�� matched plus unmatched new. 

Included in each regression was a dummy variable which was 1 for observations in the current period, 

for example for the January and December comparison/data, it was 1 for December, and zero 

otherwise. The coefficient is an estimate of the quality adjusted price change. There were three 

estimates in each month to identify whether the estimate of quality adjusted price changes differ 

according to the inclusion of unmatched new and old models. Any such differences would depend on 

the changes between the means for the respective matched and unmatched quality adjusted price 

changes and the weight given to such changes. For OLS estimates the weights would be the number 

of observations, though weighting systems based on sales would follow from a WLS estimator. 

Reminding ourselves of equation (5) for matched m and unmatched old o and new n models: 

  ln pt/pt-1       =    [m/(m+n)�
m

(ln pmt – Zm)/m     -    m/(m+o)�
m

( ln pmt-1 – Zm)/m] 

                  +    [n/(m+n)�
n

(ln pnt - Zn) /n     -      o/(m+o)�
o

(lnpot-1 -  Zo)/o]   (6) 

If the data are matched only, n and o are zero, equation (6) collapse to the ratio of the geometric 

means of the matched sample in the two periods. If there are only matched m and unmatched new n, 

o = 0, with some simple algebra: 
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 ln pt/pt-1     =    m/(m+n) [�
m

(ln pmt - ln pmt-1)/m] 

             +     n/(m+n) [�
n

(ln pnt - Zn) /n    -   �
m

( ln pmt-1 – Zm)/m]    (7) 

and for only matched m and unmatched old o, n=0: 

ln pt/pt-1   =      m/(m+o) [�
m

(ln pmt - ln pmt-1)/m]  

             +    o/(m+o) [�
m

(ln pmt – Zm)/m  -   �
o

(lnpot-1 -  Zo)/o]    (8) 

[Table 5 about here] 

Table 5 provides the results. Both linear and semi-logarithmic functional forms were used given their 

prevalence in the literature (discussed in Triplett, 1988, Griliches (1990), Triplett (1990), Gordon 

(1990), Arguea et al., 1994, and Berndt et al, 1995). OLS and weighted least squares (WLS) 

estimators were used on both forms, the WLS estimator being weighted by sales volume. Sales value 

weights were also used and similar results resulted not reported here but available from the authors. 

Table 5 contains the results for the single dummy variable on the current month from the 11 months x 

4 data sets x 2 functional forms x 2 estimators (OLS and WLS) = 176 estimated regression equations. 

The regression equations fitted the hedonic models well by the usual criteria, including a mean 2R  of 

0.85 with a standard deviation of a mere 0.0022, a minimum of 0.75 and maximum of 0.91. It is 

reiterated that the results are from fully specified regression equations each using about 40 variables 

as discussed in section 4(b), though only the coefficients on the time dummy are presented here. The 

detailed results are available on request.  Equations (7) and (8) show that if new models in period t 

are higher priced than matched ones in period t-1, and old ones in period t-1 lower priced than 

matched ones in t, then the matched results will fall faster. Equation (6) however, shows that for both 

new and old models, the joint effect is more than the individual effect; the combination of higher new 

prices and lower old ones will lead to a larger fall in the matched results compared with the 

unmatched ones. For example, if the average quality adjusted prices of new models in period t was 

120 for old models in t-1 80, and matched models in both periods 100, then the price change resulting 

from including both new and old unmatched models would be higher than if just new and just old were 

included. Equation (6) shows how the effect of including new and old unmatched models depends on 

their respective prevalence in periods t and t-1. The method can seriously understate (overstate) 

inflation (deflation) in a manner not previously recognised. The nature and extent of the bias can be 

seen to relate to the pricing policies of firms regarding old and new models and the patterns 

established here need not be indicative of all markets. Berndt (2001) for example has shown how the 
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prices of old, branded, pharmaceutical drugs can increase after the expiration of a patent and launch 

of new generic models. 

The results in Table 5 show first, that the quality adjusted prices fell faster for the matched sample, 

than the matched and unmatched samples, this result holding for both functional forms and all 

estimators (though there was a single exception – August semi-log by volume). Second, the 

differences were marked. By December 1998 prices fell by 9.9 percent for matched data compared 

with 6.7 per cent for all data. The exclusion of unmatched data seriously overstates these price falls.  

Third, the matched plus unmatched new and old does not fall as fast as the unmatched plus just new 

or unmatched plus just old. The combined effect of lower old prices and higher new prices, when 

weighted in various ways by the estimators, leads to lower overall falls. The differences can be 

substantial. For example, the weighted by volume semi-logarithmic OlS estimator in Table 5 finds falls 

of 6.7 percent for all data, compared with falls of 9.9 percent for matched, 7.0 percent for matched old 

and 8.9 percent for matched and new. 

Fourth, when sales weighted estimators are used, the falls in prices generally becomes less marked 

overall. This pattern hold for matched models and matched plus new models. More popular matched 

models and unmatched new models in period t have higher than average prices while more popular 

matched periods in t-1 have lower relative prices.  

The results confirm the differential quality adjusted prices and price changes of unmatched and 

matched models. They bring in the implicit weighting given to the old and new models apparent from 

equations (6), (7) and (8) and given via the number of observations in Table 3.  For example, Table 3 

shows that for the January to December comparison there were 1,013 prices in each month for 

matched models, 399 prices of new models in December and 235 for old models in January. The 

weighting for new and old models in December and January respectively using equation (11) are 

399/(399+1,013) and 235/(235+1,013). The use of the hedonic framework thus allows a comparison 

of how unmatched models influence overall hedonic price changes.  

(d) Residuals and leverage 

It was noted in section 3, that the unusual unmatched observations in a regression can take two 

forms. First they can have high residuals from the hedonic surface. That is, given their characteristics, 

the actual prices lies away from what would be predicted by the hedonic model. The second is 

leverage, the diagonal of the ‘hat matrix’ outlined in section 3.   

Table 6 provides the average leverage and residuals for matched and unmatched observations. 

Separate regressions were undertaken for each month using here the semi-logarithmic hedonic form 

and a WLS by sales volume estimator. The mean and standard deviation of the residuals and 

leverage indices (see section 3) were calculated on a (volume) weighted and unweighted basis. It is 

clear from Table 6 that residuals from unmatched new models are higher than matched ones, while 

residuals from unmatched old models are much lower. The residuals generally have high standard 
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deviations. The results for leverage are also very clear. Unmatched observations have nearly twice 

the (unweighted) leverage than matched ones – it is not just that they have high residuals not falling 

on the hedonic surface, but their influence in the estimation of the parameters of the regression 

equation is much greater, and their exclusion more serious. 

[Table 6 about here]  

7. STRATEGIES: CHAINING AND HEDONICS 

There are two alternatives worth considering for products with rapid turnover of models. They both 

involve abandoning the use of matched models and have price collectors sampling from all models 

each month, or taking data from catalogues, web sites, retailer lists and market research agencies. 

The hedonic aproach uses all the data in each month as outlined above. An alternative is to refresh 

the sample by updating it biannually, quarterly or preferably, monthly. The use of monthly, chained 

indexes has been championed by Turvey (1999) more recently and used in Silver and Heravi (2001).  

It does not use all the data. For example, in Table 1 a chained index for January compared with 

March would be made from the product of two links: January and February and February and March. 

In the first case models 1,2,5 and 6 would be used, but not p42 ; for the February to March link models 

1, 4 and 5 would be used, but not p22, p33, p62 and p73. . There is thus a preference for hedonics since 

each observation is used in the estimation. Furthermore, a chained index measures something quite 

different to, and is not strictly comparable with, a hedonic index as undertaken here. The chained 

indices are path dependent while fixed base CPI methodology for these within year monthly series are 

not. Hedonic indices as undertaken here compare prices in January directly, for example, with those 

in October, though have the advantage of being able to take a chained form built up from binary 

comparisons, if required. Table 7 provides results for indices with samples rotated on a biannual, 

quarterly and chained monthly basis.  

It was noted in section 2(b) that hedonic equations could also be used for direct, explicit imputations 

or ‘patching’ of missing old unmatched prices. Triplett (2002) provides a thorough account of such 

approaches. We estimated hedonic regressions in each month and identified when a model when 

missing and its nearest replacement using the following routine. Within each outlet type in each 

month a search was made for the best match first, by matching brand, then in turn by type, width and 

spin speed (see section 4(b)).  If more than one variety was found, the selection was according to the 

highest value of transactions (expenditure).   In our example in Table 1, varieties 1, 3 or 4 and 5 or 7 

would replace varieties 2 and 6 in March respectively. Any differences between the characteristics of 

the new replacement model and the old were ascertained. The subset of the k characteristics that 

distinguished the old and replacement new models were ascertained and the coefficients from the 

hedonic equations were applied to the difference in the values of the characteristics to first, correct 

the new model’s price to adjust it to the old model’s characteristics. This adjusted new price in the 

current period was compared to the old price in the base period. And then a similar procedure was 

undertaken to correct the old models’ price to make it comparable to the new one. A geometric mean 

was taken of the two resulting estimates and used for the models’ price change (see Triplett, 2001 

ECB •  Work ing  Pape r  No  144 •  May  2002 29



 

and Silver and Heravi, 2002 for details). The results are given in Table 7. This allows our hedonic 

index to be compared with best practice matching with hedonic adjustment (patching), the latter 

benefiting from some limited updating of the sample by way of the forced, quality adjusted 

replacements. The results of Table 7 will be discussed in the next, summary section. 

[Table 7 about here] 

8. EXTENDING THE ANALYSIS TO FURTHER PRODUCTS 

In this section the analysis is extended to four other product - dishwashers, cameras, television sets 

and vacuum cleaners – to provide some evidence on whether the results can be generalised to 

consumer durables. The data coverage is given below: 

 Number of 
transactions, 
millions 

Number of 
observations* 

Sales 
value, 
(£ million) 

Washing 
machines 

1.52 7,750 550 

Dishwashers 0.38 4,621 140 
Cameras 2.12 8,957 220 
Televisions 2.25 15,578 780 

Vacuum cleaners 3.01 9,043 420 

    *Model of a product in an outlet type and month. 

Table 9 provides results on sample deterioration.  By December 1998 the matched models covered 

about 75 per cent of December expenditure for dishwashers, vacuum cleaners and cameras, though 

only about 50 per cent for television sets. There was also a serious deterioration in the coverage in 

the January to December comparisons of the number of January model, about 40 per cent for 

dishwashers, television sets and vacuum cleaners falling to about 30 per cent for cameras. However, 

these old models excluded from the matched comparisons have limited sales, the coverage of 

January expenditure falling at worst to 12 per cent and about 20 per cent for dishwashers and 

washing machines.  

[Table 9 about here] 

The next question is whether the quality-adjusted prices differ for matched and unmatched prices. 

Equation (6) showed that such differences were critical determinants of the extent and nature of any 

bias.  The analysis in Table 6 was replicated with an OLS and WLS (quantity) hedonic regressions 

being estimated for each comparison (January on February, January on March etc.) and the average 

residuals and leverage for matched and unmatched (old and new) observations compared. The 

results were then averaged over all 11 comparisons and presented in Table 10. For all comparisons 

except, dishwashers (WLS) but including dishwashers (OLS), the old quality-adjusted prices fall below 

the matched ones. For washing machines, dishwashers, vacuum cleaners and television sets (WLS) 

the residuals for the new models exceed those of the matched comparison, and for cameras and 

televisions sets (OLS) the new model’s residuals exceed those of the old ones, but not the matched 
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ones. There is thus a clear general pattern of lower than average quality-adjusted prices for old 

unmatched models and higher than average prices for new matched quality-adjusted prices, which 

would give rise to bias. Leverage effects were higher on average for unmatched new and old 

observations when an OLS estimator was used, but not for a WLS estimator, the variance of the 

residuals being reduced in this latter case. These differences, along with the extent of the lack of 

coverage shown in Table 9 will determine discrepancies between the price indices based on the 

matched and unmatched sample. Table 11 provides the results. 

[Table 10 about here] 

Table 11 provides the results for OLS and WLS (quantities) hedonic indices using the full sample and 

matched sample. The results are quite clear, with the quality-adjusted matched hedonic indices falling 

further for cameras, television sets, vacuum cleaners and washing machines, when just the matched 

data are used, than when all the unmatched and matched data were used. The only exception was 

dishwashers for which the OLS indices fell at the same rate and the WLS indices fell faster when all 

the data were used. In Table 10 the residuals for dishwashers for WLS were higher for OLS models 

than matched ones giving rise to this exceptionally different market pattern. 

[Table 11 about here] 

9. CONCLUSIONS 

The results are exploratory in the sense that they arise from an experimental formulation. A major 

limitation is that the observations are for a product variety in a specific outlet type, as opposed to in a 

specific outlet (in a geographical place).  That some models are specific to some outlet chains helps, 

but we cannot distinguish here between the locations of the outlets, though in principle this is possible 

with scanner data.  This in itself may not be problematic for price comparisons since there is still some 

debate over the validity of using the aggregated unit values over outlets for price comparisons (Balk, 

1999, Diewert, 1990 and de Haan and Opperdoes, 1998, Silver and Webb, 2001a).  However, the 

concept of ‘missing’ prices used here is not completely appropriate since a price collector may, for 

example, find a price missing for a variety in an outlet in one city, while other price collectors may find 

price quotes for the same variety in different stores/locations.  The experiment would only treat prices 

as missing if there were no transactions anywhere for the product variety. Furthermore all missing 

prices were treated in the same way irrespective of whether they were permanently or temporarily 

missing. Scanner data does allow a search to see if the variety returns, though our data is aggregated 

at the outlet type level and ‘missing’ in our sense refers to no further transactions being conducted for 

that model in one of four store types.  

The matched models approach can fail because of its use of a static sampling universe. Long run 

Laspeyres comparisons over the period of 12 months were found to seriously degrade the active base 

period sample and its coverage of the current population of transactions. There are a number of 

responses to this. First, biannual, quarterly and monthly sample rotation using imputations did much 

to improve the coverage of the current new transactions, though not the old ones. Though, second, 
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the use of the short run, modified Laspeyres did little to ameliorate the poor coverage of the sample. 

Finally, the use of hedonic indices has the advantage of using the full sample. 

The above was concerned with the degraded coverage of the dynamic universe and response to limit 

the degradation. However, this degradation is only a necessary condition for bias. Matched models 

indices will only differ from hedonic indices if prices of unmatched new and unmatched old models 

differ from matched ones. The prices of unmatched and matched models were found to differ, as were 

their vintage and quality. Even when quality adjusted using hedonic regressions, prices of unmatched 

old models were found to be lower than matched ones, there also being evidence of higher prices for 

unmatched new models. These new unmatched ones are the dynamic sample CPI compilers never 

see because they are outside of the coverage of the initial selection.  The next question was whether 

these differences mattered with regard to the measurement of quality adjusted price changes?  

Quality-adjusted prices fell faster for the matched sample, than the matched and unmatched samples. 

The differences were substantial. The exclusion of unmatched data seriously overstated these price 

falls. We repeat some of these results in Table 7 for clarification. The simple geometric mean and 

semi-log OLS estimator using matched data naturally provide similar results of an about 10 per cent 

fall. Similar results arose when ‘best practice’ explicit hedonic adjustments to forced, non-comparable 

replacements for missing old unmatched models. When weighted estimators were used, the falls in 

prices generally become less marked at about 8 per cent. This was similar to the result from a 

chained matched Laspeyres, which also takes account of the weights. Yet when all the data were 

used – matched and unmatched –we have falls in prices of under 7 per cent without weights and 

under 5 per cent with weights. As predicted from equation (5) the combined effect of the relatively low 

unmatched old models and high priced unmatched new models combine to limit the fall in prices of 

the matched models. 

The analysis of unmatched new and old models and matched models was further developed to see if 

any differences arose from their residuals from a common hedonic surface and/or their leverage. The 

residuals from unmatched new models were higher than matched ones, while residuals from 

unmatched old models were much lower. Unmatched observations had nearly twice the (unweighted) 

leverage than matched ones - their influence in the estimation of the parameters of the regression 

equation was much greater, and their exclusion more serious.  

The matched models method may also fail because of the effect the quality adjustment procedures 

used for dealing with missing values have on the sample space.  The procedures used for selecting 

comparable replacements were argued to have possible serious adverse effects. One way round this 

is to rotate or update the sample more regularly, or use the short-run modified formulation. Biannual 

rotation provided similar indices to the long run Laspeyres, though with quarterly and monthly 

(chained) rotation the results were more favourable. Yet the disparities between the results of the 

hedonic indices, and the matched, chained matched and matched with hedonic adjustments on forced 

replacements, clearly shows the need for including a sample of unmatched new and old prices when 

compiling indices.  
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The key elements of the analysis were replicated on four further product areas and the findings were 

found to generalise to these other consumer durables. This study has shown current procedures for 

products with high model turnovers in today’s dynamic markets to be biased and why the hedonic 

approach provides a useful approach to solve this problem.  Scanner data need not be used for such 

indices if price collectors are asked to collect data on prices and characteristics of  a few major-selling 

models, as opposed to matching the characteristics.  
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Annex: Influential observations 

It is first noted that an OLS vector of � estimates is a weighted average of the individual y elements, the prices of 

individual models, and x the explanatory variables. 

β̂ = (XTX)-1XTy          (A.1) 

and  (XTX)-1XT are the weights given to the prices with some observations likely to have more influence than 

others. If there are a number of such unusual observations belonging to a different data generating process, the 

larger the number of such observations the more influence they will have. Our concern is with the effect of adding 

a, for simplicity, single new unmatched observation to the regression estimate in period t, though via equation (6), 

the extension to several new observations is straightforward and considered later. 

Following Davidson and McKinnon (1993) we compare β̂  with β̂ (t) where the latter is an estimate of � if OLS 

was used on a sample omitting the period t unmatched observation, hereafter - the tth observation. We distinguish 

between the leverage of the tth observation, ht and its residual, tû . An influential observation may, for example, 

have high leverage, that is influence on at least one element of β̂ , but a smaller impact on tû , or it may have 

little leverage but have a high residual.  The leverage for observation t is given by: 

ht =  Xt (XTX)-1Xt
T                                       where 0 1�� th       (A.2) 

and the difference between the hedonic coefficients with the tth observation omitted and included given by: 

β̂ (t)  - ��
�

�
��
�

�

�
�

th1

1ˆ - β (XTX)-1Xt
T
tû        (A.3) 

When tû  is large and/or ht is small the effect of the tth observation on at least some of β̂ is likely to be 

substantial. It follows that including the tth observation in the regression affects the fitted value for that observation 

by: 

Xt β̂  =  Xt β̂ (t) + t
t

t u
h
h

ˆ
1 ��

�

�
��
�

�

�
        (A.4) 

and therefore the change in the tth residual by including the tth observation by: 

- t
t

t u
h
h

ˆ
1 ��

�

�
��
�

�

�
          (A.5) 

Naturally if a dummy variable was added to the model, which took the value of 1 for the unusual observations and 

zero otherwise, then β̂  = β̂ (t). It can be shown that ht must on average equal k/n where there are k explanatory 

variables and n observations. If all ht were equal to k/n then every observation would have the same leverage. 
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The matched sample is not equivalent to this balanced design, in which the only regressor would be a constant, 

but it is an attempt to be close to it. The quantity ht may be used to measure potential leverage of an observation, 

a value greater than say, 2*k/n denoting high leverage. However it can be seen from the above equations that 

when ht is large, dropping observation t will only have a relatively large effect on β̂  if tû is very close to zero. 

The leverage ht only has a potentially large effect and whether this is realised depends on tû  and thus yt.  

We can thus explore on an empirical basis the values of t
t

t u
h
h

ˆ
1 ��

�

�
��
�

�

�
 and ht for both matched and unmatched 

observations and identify whether or not the unmatched observations are unduly influential and whether such 

influence is realised. In the context of CPI construction the analysis is of whether the characteristics of the 

unmatched observations are sufficiently different to give them the potential to allow them to have an undue effect 

on the hedonic estimates.  And, if so, whether the associated prices are not aligned with what would be expected 

from the hedonic relationship, say due to price skimming or dumping, to allow large residuals to be created which 

will realise the potential of the leverage. The above statistics will provide measures of these effects. 
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Table 1: Illustration of matching and approaches to quality adjustment 

Outlet-type Model Weight January February March April 
       
Multiple 1 w1 p11 p12 p13 p14 
 2 w2 p21 p22   
 3    p33 p34 
 4   p42 p43 p44 
       
Mass merchandiser 5 w5 p51 p52 p53 p54 
 6 w6 p61 p62   
 7    p73 p74 
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Table 3, Descriptive statistics on matched and unmatched sample  
  Unmatched Unmatched Unmatched Unmatched 

 Matched Matched old new old new 

 January current (exits) (entrants) Matched (exits) (entrants) 

  Price  price price   price vintage vintage vintage 

February 436.00 437.59 457.38 493.27 95.4 94.6 95.3 
March 438.73 440.37 440.55 485.14 95.4 94.6 95.3 
April 441.13 438.48 430.11 504.80 95.5 94.6 95.8 
May 441.69 437.76 429.86 508.12 95.4 94.9 96.2 
June 444.64 427.30 418.47 507.19 95.4 94.8 96.5 
July 440.37 421.45 434.81 492.00 95.5 94.8 96.8 
August 441.73 420.48 432.91 479.23 95.5 94.9 96.9 
September 441.01 416.62 435.17 480.30 95.5 95.0 97.0 
October 439.90 415.82 437.72 474.43 95.6 94.9 97.0 
November 439.18 408.00 438.87 462.24 95.6 94.9 97.1 
December 441.91 403.95 435.80 447.65 95.7 94.9 97.2 
Mean 440.57 424.35 435.60 484.94 95.5 94.8 96.5 

  
 Unmatched Unmatched Unmatched Unmatched 

 old new old new  
 Matched (exits) (entrants) Matched (exits) (entrants)  
 spin speed spin speed spin speed No. of 

models 
No. of models No. of models 

February 1095 1076 1097 846 71 59  
March 1092 1095 1102 933 85 190  
April 1089 1104 1127 953 95 220  
May 1094 1086 1128 986 112 259  
June 1100 1066 1137 1038 107 318  
July 1097 1080 1122 1069 120 364  
August 1095 1086 1132 1047 152 363  
September 1097 1082 1123 1047 169 386  
October 1093 1091 1113 1038 201 396  
November 1114 1067 1109 994 230 373  
December 1103 1080 1114 1013 235 399  
Mean 1097.1 1083.0 1118.5 996.7 143.4 302.5  
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Table 4, Hedonic regression coefficients for unmatched new and old dummy variables
 Unmatched new Unmatched old Total  

 Coefficient t-statistic No.  of obs. Coefficient t-statistic No.  of obs. no. of obs. 2R  

  
Semi-logarithmic - OLS  
February 0.006 0.17 59 -0.081 2.22* 71 846 0.83 
March 0.006 0.28 190 -0.080 2.37* 85 933 0.80 
April 0.035 2.04* 220 -0.070 2.26* 95 953 0.83 
May 0.020 1.12 259 -0.100 3.24** 112 986 0.82 
June 0.038 2.36* 318 -0.094 3.00** 107 1038 0.81 
July -0.007 0.25 364 -0.048 2.00* 120 1069 0.76 
August -0.002 0.15 363 -0.074 3.13** 152 1047 0.81 
September 0.008 0.43 386 -0.043 1.80 169 1047 0.78 
October -0.014 0.69 396 -0.027 1.22 201 1038 0.76 
November -0.029 1.60 373 -0.032 1.60 230 994 0.79 
December -0.031 1.77 399 -0.025 1.32 235 1013 0.77 

Table 4 continued  
Semi-logarithmic – WLS by volume  

  
 Unmatched new Unmatched old 

 Coefficient t-statistic Coefficient t-statistic 

February -0.042 2.29*  -0.039 1.83 
March 0.040 1.67  -0.090 2.36* 
April 0.098 3.22**  -1.220 5.08*** 
May 0.099 3.98***  -0.086 2.96** 
June 0.080 3.52***  -0.064 2.80** 
July 0.068 3.00**  -0.019 0.70 
August 0.050 2.11*  -0.005 0.20 
September 0.024 0.90  -0.079 3.15** 
October 0.058 2.01*  -0.059 2.17* 
November 0.014 0.54  -0.045 1.86 
December 0.034 1.17  -0.084 3.02** 

   

***, **, * denote statistically significant at a  0.1%, 1% and 5% level respectively for two-tailed t-tests. 
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Table 5, Hedonic regression coefficients for dummy variable on time for matched and unmatched samples
Semi-logarithmic – OLS    

 Matched plus old and new Matched  Matched plus old Matched plus new 

 Coefficient:   Coefficient:  Coefficient:  Coefficient:  

 Time 
dummy 

t-statistic time 
dummy 

t-statistic time 
dummy 

t-statistic time 
dummy 

t-statistic 

    
February 0.017 1.52  0.008 0.75  0.016 1.50  0.008 0.77 
March 0.011 0.96  0.000 0.02  0.010 0.79  0.001 0.08 
April 0.010 0.84  -0.010 0.83  0.001 0.07  -0.001 0.08 
May 0.013 1.16  -0.013 1.16  0.006 0.54  -0.005 0.45 
June -0.015 1.29  -0.050 4.40  -0.033 2.63  -0.033 3.01 
July -0.034 2.36  -0.055 4.07  -0.012 3.15  -0.049 3.40 
August -0.024 2.17  -0.059 4.87  -0.036 2.83  -0.048 4.34 
September -0.034 2.69  -0.070 5.21  -0.049 3.34  -0.053 4.14 
October -0.049 3.30  -0.078 4.94  -0.055 3.35  -0.066 4.34 
November -0.054 4.20  -0.080 6.02  -0.056 3.85  -0.076 5.59 
December -0.067 5.48  -0.099 7.63  -0.070 5.39  -0.089 6.84 

            

Semi-logarithmic - WLS by volume        

 Matched plus old and new Matched   Matched plus old  Matched plus new 

 Coefficient:   Coefficient:   Coefficient:   Coefficient:  

 time 
dummy 

t-statistic time 
dummy 

t-statistic time 
dummy 

t-statistic  time 
dummy 

t-statistic 

            
February -0.005 0.59  -0.005 0.52  -0.004 0.47  -0.006 0.62 
March -0.003 0.40  -0.006 0.66  -0.006 0.69  -0.004 0.42 
April -0.004 0.34  -0.017 1.97  -0.016 1.89  -0.006 0.54 
May -0.007 0.60  -0.026 2.70  -0.025 2.58  -0.008 0.73 
June -0.026 2.27  -0.046 4.28  -0.045 4.05  -0.028 2.48 
July -0.025 2.04  -0.046 4.77  -0.045 4.83  -0.026 2.18 
August -0.043 4.32  -0.025 2.27  -0.045 4.75  -0.044 4.53 
September -0.027 2.35  -0.045 4.54  -0.043 4.55  -0.034 2.92 
October -0.023 1.76  -0.047 5.01  -0.046 4.83  -0.027 1.88 
November -0.038 3.19  -0.056 5.20  -0.055 5.38  -0.041 3.25 
December -0.047 3.20  -0.075 6.83  -0.074 6.78  -0.058 4.27 
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Table 5 continued          

Linear - OLS           

 Matched plus old and new Matched   Matched plus old  Matched plus new 

 Coefficient:   Coefficient:   Coefficient:   Coefficient:  

 time 
dummy 

t-statistic time 
dummy 

t-statistic time 
dummy 

t-statistic  time 
dummy 

t-statistic 

            
February 6.974 1.34  1.809 0.36  6.070 1.21  2.682 0.51 
March 7.809 1.47  0.958 0.18  5.618 1.06  2.724 0.52 
April 6.830 1.30  -3.115 0.60  1.448 0.28  2.740 0.53 
May 6.523 1.23  -4.235 0.80  2.174 0.41  0.828 0.16 
June -3.301 0.60  -18.987 3.17  -12.057 2.08  -9.503 1.66 
July -5.707 0.97  -19.655 3.42  -13.584 2.38  -11.978 2.04 
August -9.998 1.85  -22.497 3.79  -13.435 2.28  -18.624 3.38 
September -11.438 1.94  -25.287 4.13  -18.202 2.96  -17.044 2.81 
October -15.341 2.51  -24.240 3.54  -17.756 2.72  -19.090 2.85 
November -19.426 3.23  -31.476 4.70  -20.738 3.22  -26.217 4.03 
December -30.739 5.23  -38.874 6.14  -31.723 4.83  -35.246 5.74 

          

Linear - WLS by volume          

 Matched plus old and new Matched   Matched plus old  Matched plus new 

 Coefficient:   Coefficient:   Coefficient:   Coefficient:  

 time 
dummy 

t-statistic time 
dummy 

t-statistic time 
dummy 

t-statistic  time 
dummy 

t-statistic 

            
February -1.547 0.49  -1.799 0.53  -1.371 0.43  -1.975 0.59 
March -0.029 0.01  -1.485 0.45  -1.473 0.47  -0.105 0.03 
April 0.008 0.00  -5.251 1.61  -4.852 1.56  -0.583 0.16 
May -1.151 0.29  -8.432 2.46  -7.944 2.39  -1.540 0.38 
June -8.864 2.18  -16.021 4.15  -15.557 3.99  -9.479 2.32 
July -8.566 1.98  -16.516 4.34  -16.146 4.46  -9.174 2.10 
August -8.976 2.25  -15.783 4.21  -15.380 4.16  -9.781 2.40 
September -9.297 2.33  -14.947 3.92  -14.163 3.94  -11.849 2.85 
October -7.065 1.57  -15.618 4.22  -15.225 4.14  -8.407 1.73 
November -12.804 3.06  -19.923 4.72  -19.377 4.78  -14.252 3.16 
December -16.112 3.22  -26.168 6.09  -25.793 6.11  -20.896 4.41 
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Table 6, Descriptive statistics of leverage for matched and unmatched observations
Semi –logarithmic, WLS by volume - dummy variable hedonic regression: January and current month 

 Residuals   Leverage  
 Matched Unmatched old Unmatched new Matched Unmatched old Unmatched new 

 Standard  standard Standard standard Standard standard 

 mean  Deviation Mean  deviation mean  Deviation mean  deviation mean  Deviation mean  deviation 

Unweighted    
    

February 0.0040 0.1450 -0.0589 0.2404 0.0022 0.2045 0.0434 0.0400 0.0999 0.1879 0.0938 0.1713 
March 0.0043 0.1647 -0.0567 0.2302 0.0033 0.1716 0.0383 0.0344 0.0840 0.1701 0.0687 0.1250 
April 0.0012 0.1515 -0.0529 0.2249 0.0174 0.1634 0.0379 0.0343 0.0769 0.1566 0.0735 0.1437 
May 0.0059 0.1417 -0.0746 0.2475 0.0105 0.1887 0.0362 0.0310 0.0782 0.1580 0.0626 0.1159 
June 0.0015 0.1546 -0.0843 0.2577 0.0224 0.1592 0.0356 0.0343 0.0710 0.1490 0.0548 0.1251 
July 0.0043 0.1737 -0.0525 0.1920 0.0066 0.2350 0.0340 0.0312 0.0645 0.1201 0.0463 0.0792 
August 0.0089 0.1496 -0.0657 0.2279 0.0080 0.1592 0.0350 0.0353 0.0570 0.1026 0.0500 0.1050 
September 0.0039 0.1711 -0.0457 0.2324 0.0123 0.1730 0.0332 0.0294 0.0563 0.1029 0.0513 0.1041 
October 0.0067 0.1906 -0.0359 0.2196 0.0062 0.1751 0.0336 0.0301 0.0542 0.1003 0.0507 0.1054 
November 0.0119 0.1553 -0.0354 0.2146 0.0024 0.1680 0.0341 0.0276 0.0567 0.0929 0.0523 0.0973 
December 0.0108 0.1523 -0.0335 0.2195 0.0036 0.1704 0.0341 0.0341 0.0534 0.0918 0.0535 0.1117 

             
Mean 0.0058 0.1591 -0.0542 0.2279 0.0086 0.1789 0.0360 0.0329 0.0683 0.1302 0.0598 0.1167 
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Table 6 continued          

 Residuals     Leverage     

 Matched  Unmatched old Unmatched new Matched  Unmatched old Unmatched new 

  Standard  standard  standard  standard  Standard  standard

 mean  Deviation Mean  deviation mean  deviation mean  deviation mean  Deviation mean  deviation

Weighted            

             
February -0.0153 0.0092 -0.0398 0.0075 -0.0661 0.0122 0.0282 0.0005 0.2920 0.1650 0.0613 0.0080 
March -0.0151 0.0099 -0.0227 0.0073 -0.0078 0.0204 0.0250 0.0005 0.7197 0.1421 0.0536 0.0070 
April -0.0227 0.0100 -0.0445 0.0104 0.0434 0.0158 0.0248 0.0005 0.4573 0.1936 0.0366 0.0076 
May -0.0187 0.0104 -0.0328 0.0133 0.0411 0.0156 0.0241 0.0005 0.3839 0.1812 0.0300 0.0032 
June -0.0129 0.0101 -0.0372 0.0090 0.0321 0.0169 0.0228 0.0004 0.3305 0.1730 0.0301 0.0051 
July -0.0053 0.0103 -0.0460 0.0119 0.0309 0.0167 0.0225 0.0004 0.1383 0.0390 0.0252 0.0017 
August -0.0148 0.0100 -0.0355 0.0067 0.0070 0.0169 0.0230 0.0005 0.0677 0.0134 0.0263 0.0024 
September 0.0054 0.0136 -0.0718 0.0082 -0.0015 0.0224 0.0221 0.0005 0.0477 0.0110 0.0282 0.0043 
October 0.0102 0.0144 -0.0602 0.0098 0.0122 0.0243 0.0225 0.0005 0.0519 0.0124 0.0283 0.0035 
November 0.0005 0.0107 -0.0576 0.0062 -0.0166 0.0206 0.0238 0.0005 0.0399 0.0042 0.0283 0.0022 
December 0.0068 0.0133 -0.0810 0.0093 -0.0105 0.0251 0.0228 0.0005 0.0367 0.0048 0.0306 0.0045 

    
Mean -0.0074 0.0111 -0.0481 0.0090 0.0058 0.0188 0.0238 0.0005 0.2332 0.0854 0.0344 0.0045 
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Table 7, Indices of quality adjusted price changes, January 1998=1.00   
 Matched data:  Sample rotation     All data
 ratio of  semi-log  with  Laspeyres Fisher  semi-log 
 geometric semi-log WLS by hedonic Laspeyres Laspeyres monthly chained  semi-log  WLS by 
 means OLS volume  adjustments* biannual Quarterly chained index  OLS volume 

    
    

February 1.006 1.008 0.995 0.994 0.995 0.995 0.995 0.993  1.017 0.995 
March 1.001 1.000 0.994 0.992 0.993 0.993 0.995 0.992  1.011 0.997 
April 0.991 0.990 0.983 0.983 0.983 0.986 0.988 0.984  1.010 0.996 
May 0.987 0.988 0.974 0.971 0.971 0.974 0.979 0.974  1.013 0.993 
June 0.951 0.950 0.954 0.950 0.950 0.958 0.965 0.958  0.985 0.974 
July 0.947 0.945 0.954 0.932 0.943 0.947 0.958 0.950  0.966 0.975 
August 0.945 0.941 0.975 0.942 0.939 0.947 0.950 0.939  0.976 0.957 
September 0.935 0.930 0.955 0.933 0.930 0.942 0.942 0.931  0.966 0.973 
October 0.927 0.922 0.954 0.914 0.925 0.940 0.941 0.929  0.951 0.977 
November 0.921 0.920 0.944 0.908 0.917 0.934 0.934 0.920  0.946 0.962 
December 0.908 0.901 0.926 0.912 0.906 0.921 0.921 0.907  0.934 0.953 

OLS and WLS dummy variable regression estimates include an adjustment to the coeffficient on the    
Semi-logarithmic form of half the squared standard error following Teekens, R. and Koerts, J. (1972)   
* semi-logarithmic WLS with forced replacements quality-adjusted using hedonic coefficients   
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Table 8, Regression results for semi-logarithmic hedonic equation for 1998 
Dependent variable: ln PRICE; OLS estimator   
 
Variable 

Estimated Coefficient Standard Error 

C                 2.466***                              7.01 
Months (benchmark: January) 
February 0.017 1.52 
March 0.011 0.96 
April 0.009 0.85 
May 0.013 1.16 
June -0.015 1.29 
July -0.034* 2.36 
August -0.024* 2.17 
September -0.034** 2.70 
October -0.049*** 3.30 
November -0.054*** 4.20 
December -0.067*** 5.48 
Characteristics 
Height (cms.)       -0.003*** 3.88 
Depth (cms.)DEP 0.010*** 9.06 
Width (cms.)WID 0.014*** 6.08 
Water consumption (litres) -0.001** 2.85 
Load capacity (kgms.) -0.00005 0.43 
Spin speed (rpm) 0.00074*** 34.59 
Drying capacity-W/Dryer (kgms.) 0.00084 1.42 
Condensor-W/Dryer 0.077*** 7.38 
Energy consumption (kWh.per cycle) 0.00074*** 4.06 
Vintage 0.016*** 6.85 
Type of machine (benchmark:front loader washing machine (WM) 
Top loader 0.562*** 14.89 
Twin tub -1.610*** 35.98 
W/Dryer 0.157*** 10.50 
WM with computer 0.147*** 10.79 
WD with computer 0.253*** 8.80 
Installation (benchmark: free standing) 
Built-under integrated  0.563*** 35.99 
Built-under -0.007 0.19 
Built-in integrated 0.307*** 7.16 
Outlet type (benchmark: multiples) 
Mass merchandisers 0.077*** 12.31 
Independents 0.089*** 15.00 
Catalogue 0.242*** 36.25 
Makes (benchmark: Bosch) 
AEG 0.188*** 16.88 
Siemens 0.193*** 14.04 
Hoover -0.166*** 18.83 
Miele 0.475*** 28.97 
Candy -0.215*** 18.69 
English Electric 0.002 1.04 
Ariston -0.114*** 8.80 
New Pol -0.332*** 5.01 
Beko -0.370*** 22.71 
Zanussi 0.052*** 5.43 
Electro 0.057** 3.16 
Indesit -0.173*** 8.84 
Neff 0.180*** 4.63 
Philco -0.235*** 6.43 
Ignis -0.0946*** 4.77 
Creda -0.171*** 10.56 
Tricity/Bendi -0.150*** 13.50 
Hotpoint -0.092*** 8.25 
Servis -0.222*** 18.16 
Asko 0.318** 2.88 
Adm 0.6918*** 5.20 
Ocean -0.123*** 4.02 
Number of observations †:  6694;  Std. error of regression = 0.180218; Adjusted R-squared = 0.792; F-statistic (zero slopes) = 
456.5 
***, **, * denote statistically significant at a  0.1%, 1% and 5% level respectively for two-tailed t-tests. 
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Table 9, Summary of coverage results for five products 

 % of  % of   % of   % of  % of   % of  % of  % of   % of  
 Januar
y 

January current  January January current January January current 

 obs. expend. expend.  obs. expend. expend. obs. expend. expend. 
   
 Washing machines  Cameras Television sets
   

February 85.80 97.20 97.10  78.28 96.71 96.42  82.85 97.85 98.37 
March 83.00 99.10 91.10  79.83 97.36 96.55  81.57 97.29 97.13 
April 81.00 98.70 81.80  77.01 96.75 92.36  80.66 97.51 95.51 
May 77.60 98.30 76.60  76.59 96.92 90.45  76.74 96.67 94.60 
June 78.60 98.00 72.90  77.72 96.90 88.08  76.51 96.89 89.04 
July 76.00 97.10 64.20  75.74 96.11 85.76  72.21 95.91 83.25 
August 69.60 93.50 57.50  72.92 95.78 82.66  69.03 95.23 79.64 
September 66.20 86.40 54.20  70.94 94.91 82.42  68.43 94.08 74.15 
October 59.80 87.10 51.60  70.66 94.48 78.08  64.35 92.86 68.58 
November 54.00 83.50 49.40  69.25 94.79 77.04  62.24 91.22 64.50 
December 53.00 81.60 48.20  70.80 94.62 74.15  60.73 91.77 56.87 

            
 Dishwashers   Vacuum cleaners     
            

February 77.06 95.20 96.31  83.51 99.31 97.95     
March 76.81 96.21 95.83  82.72 98.86 94.81     
April 74.56 96.26 93.48  80.89 99.02 93.27     
May 74.06 94.94 93.75  79.45 98.44 90.70     
June 71.32 95.18 93.34  78.40 98.40 87.55     
July 72.32 94.16 89.10  74.61 97.85 81.04     
August 67.58 93.89 85.78  69.50 97.52 77.52     
September 69.08 93.86 80.62  66.36 96.60 78.67     
October 60.10 93.41 79.29  63.22 95.58 75.32     
November 55.11 90.05 78.39  62.96 94.58 73.00     
December 55.86 87.78 72.14  63.61 95.32 72.60     
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Table 10, Residuals and leverage for matched and unmatched new and old models 

Means   
Residuals  Leverage  

 Unmatched Unmatched  
Matched old new Matched old new 

   
Washing machines    
   OLS unweighted resid. 0.006 -0.054 0.009  0.036 0.068 0.060 
   WLS unweighted resid. -0.007 -0.048 0.006  0.024 0.233 0.034 
Cameras        
   OLS unweighted resid. 0.015 -0.077 -0.025  0.055 0.076 0.081 
   WLS unweighted resid. 0.060 -0.049 0.018  0.063 0.046 0.052 
Television sets        
   OLS unweighted resid. 0.006 -0.032 -0.003  0.015 0.021 0.022 
   WLS unweighted resid. -0.016 -0.073 0.003  0.017 0.011 0.016 
Dishwashers        
   OLS unweighted resid. 0.001 -0.008 0.003  0.033 0.043 0.049 
   WLS unweighted resid. 0.043 0.047 0.055  0.041 0.019 0.030 
Vacuum cleaners        
   OLS unweighted resid. 0.013 -0.098 0.019  0.017 0.022 0.020 
   WLS unweighted resid. -0.014 -0.123 0.022  0.020 0.009 0.013 

   
 
 
 
 
 
 
 
 
 

 
 
 
 

ECB •  Work ing  Pape r  No  144 •  May  2002 51



 

Table 11, Hedonic indices for matched and all data 
 Matched data:  All data: Matched data: All data:
 semi-log    semi-log semi-log semi-log 
 semi-log WLS by  semi-log WLS by semi-log WLS by semi-log WLS by 
 OLS volume   OLS volume OLS volume OLS volume 
   
 Cameras   Television sets 

February 0.986 0.998  0.979 0.993  0.994 0.998  0.997 0.999 
March 0.971 0.978  0.973 0.974  0.979 0.993  0.983 0.991 
April 0.953 0.953  0.948 0.949  0.969 0.982  0.981 0.983 
May 0.922 0.935  0.947 0.933  0.954 0.986  0.976 0.992 
June 0.92 0.927  0.921 0.923  0.929 0.971  0.95 0.983 
July 0.913 0.921  0.925 0.918  0.921 0.963  0.949 0.977 
August 0.898 0.904  0.93 0.906  0.913 0.934  0.939 0.964 
September 0.874 0.892  0.912 0.892  0.885 0.928  0.877 0.954 
October 0.876 0.885  0.905 0.891  0.875 0.899  0.865 0.933 
November 0.856 0.883  0.882 0.886  0.854 0.878  0.884 0.922 
December 0.853 0.847  0.878 0.857  0.843 0.861  0.868 0.889 

            
 Dishwashers     Vacuum cleaners   

February 1.01 1.01  1.012 1.01  0.997 1.009  1.021 1.009 
March 1.005 1.01  1.005 1.006  0.988 1.008  1.018 1.008 
April 0.991 1.006  1.002 1.005  0.984 1.005  1.012 1.006 
May 0.986 0.994  0.98 0.99  0.975 1.011  1.001 1.017 
June 0.963 0.959  0.976 0.961  0.974 1.004  1.008 1.013 
July 0.963 0.973  0.959 0.973  0.958 0.977  0.992 0.983 
August 0.948 0.965  0.966 0.966  0.943 0.972  0.979 0.975 
September 0.941 0.958  0.951 0.955  0.909 0.959  0.965 0.966 
October 0.936 0.979  0.921 0.967  0.897 0.949  0.967 0.956 
November 0.91 0.971  0.93 0.959  0.894 0.959  0.961 0.976 
December 0.932 0.973  0.932 0.958  0.902 0.964  0.961 0.974 

            
 Washing machines         

February 1.008 0.995  1.017 0.995 
March 1.000 0.994  1.012 0.997 

 47

April 0.990 0.983  1.010 0.996 
May 0.988 0.974  1.013 0.993 
June 0.949 0.955  0.985 0.974 
July 0.946 0.955  0.966 0.976 
August 0.943 0.956  0.976 0.975 
September 0.932 0.956  0.966 0.974 
October 0.925 0.955  0.953 0.977 
November 0.919 0.946  0.948 0.963 
December 0.906 0.928  0.936 0.954 

   
 
 
 
 

ECB •  Work ing  Pape r  No  144 •  May  200252



European Central Bank Working Paper Series 
 
 
  1 “A global hazard index for the world foreign exchange markets” by V. Brousseau and F. 

Scacciavillani, May 1999. 
 
  2 “What does the single monetary policy do? A SVAR benchmark for the European Central 

Bank” by C. Monticelli and O. Tristani, May 1999. 
 
  3 “Fiscal policy effectiveness and neutrality results in a non-Ricardian world” by C. Detken, 

May 1999. 
 
  4 “From the ERM to the euro: new evidence on economic and policy convergence among EU 

countries” by I. Angeloni and L. Dedola, May 1999. 
 
  5 “Core inflation: a review of some conceptual issues” by M. Wynne, May 1999. 
 
  6 “The demand for M3 in the euro area” by G. Coenen and J.-L. Vega, September 1999. 
 
  7 “A cross-country comparison of market structures in European banking” by O. de Bandt 

and E. P. Davis, September 1999. 
 
  8 “Inflation zone targeting” by A. Orphanides and V. Wieland, October 1999. 
 
  9 “Asymptotic confidence bands for the estimated autocovariance and autocorrelation 

functions of vector autoregressive models” by G. Coenen, January 2000. 
 
10 “On the effectiveness of sterilized foreign exchange intervention” by R. Fatum,  

February 2000. 
 
11 “Is the yield curve a useful information variable for the Eurosystem?” by J. M. Berk and  

P. van Bergeijk, February 2000. 
 
12 “Indicator variables for optimal policy” by L. E. O. Svensson and M. Woodford,  

February 2000. 
 
13 “Monetary policy with uncertain parameters” by U. Söderström, February 2000. 
 
14 “Assessing nominal income rules for monetary policy with model and data uncertainty” by  

G. D. Rudebusch, February 2000. 
 
15 “The quest for prosperity without inflation” by A. Orphanides, March 2000. 
 
16 “Estimating the implied distribution of the future short term interest rate using the 

Longstaff-Schwartz model” by P. Hördahl, March 2000. 
  
17 “Alternative measures of the NAIRU in the euro area: estimates and assessment” by S. 

Fabiani and R. Mestre, March 2000. 
 
18 “House prices and the macroeconomy in Europe: Results from a structural VAR analysis” 

by M. Iacoviello, April 2000. 

ECB •  Work ing  Pape r  No  144 •  May  2002 53



 
19 “The euro and international capital markets” by C. Detken and P. Hartmann, April 2000. 
 
20 “Convergence of fiscal policies in the euro area” by O. De Bandt and F. P. Mongelli,  

May 2000. 
 
21 “Firm size and monetary policy transmission: evidence from German business survey data” 

by M. Ehrmann, May 2000. 
 
22 “Regulating access to international large value payment systems” by C. Holthausen and  

T. Rønde, June 2000. 
 
23  “Escaping Nash inflation” by In-Koo Cho and T. J. Sargent, June 2000. 
 
24 “What horizon for price stability” by F. Smets, July 2000. 
 
25 “Caution and conservatism in the making of monetary policy” by P. Schellekens, July 2000. 
 
26 “Which kind of transparency? On the need for clarity in monetary policy-making” by  

B. Winkler, August 2000. 
 
27 “This is what the US leading indicators lead” by M. Camacho and G. Perez-Quiros,  

August 2000. 
 
28 “Learning, uncertainty and central bank activism in an economy with strategic interactions” 

by M. Ellison and N. Valla, August 2000. 
 
29 “The sources of unemployment fluctuations: an empirical application to the Italian case” by 

S. Fabiani, A. Locarno, G. Oneto and P. Sestito, September 2000. 
 
30 “A small estimated euro area model with rational expectations and nominal rigidities” by 

G. Coenen and V.  Wieland, September 2000. 
 
31 “The disappearing tax base: Is foreign direct investment eroding corporate income taxes?” 

by R. Gropp and K. Kostial, September 2000. 
 
32 “Can indeterminacy explain the short-run non-neutrality of money?” by F. De Fiore, 

September 2000. 
 
33 “The information content of M3 for future inflation” by C. Trecroci and J. L. Vega,  

October 2000. 
 
34 “Capital market development, corporate governance and the credibility of exchange rate 

pegs” by O. Castrén and T. Takalo, October 2000. 
 
35 “Systemic risk: A survey” by O. De Bandt and P. Hartmann, November 2000. 
 
36 “Measuring core inflation in the euro area” by C. Morana, November 2000. 
 
37 “Business fixed investment: Evidence of a financial accelerator in Europe” by P. Vermeulen,  

November 2000. 

ECB •  Work ing  Pape r  No  144 •  May  200254



 
38 “The optimal inflation tax when taxes are costly to collect” by F. De Fiore,  

November 2000. 
 
39 “A money demand system for euro area M3” by C. Brand and N. Cassola,  

November 2000. 
 
40 “Financial structure and the interest rate channel of ECB monetary policy” by B. Mojon, 

November 2000. 
 
41 “Why adopt transparency? The publication of central bank forecasts” by P. M. Geraats, 

January 2001. 
 
42 “An area-wide model (AWM) for the euro area” by G. Fagan, J. Henry and R. Mestre, 

January 2001. 
 
43 “Sources of economic renewal: from the traditional firm to the knowledge firm” by  

D. R. Palenzuela, February 2001. 
 
44 “The supply and demand for eurosystem deposits – The first 18 months” by U. Bindseil 

and F. Seitz, February 2001. 
 
45 “Testing the Rank of the Hankel matrix: a statistical approach” by G. Camba-Mendez and 

G. Kapetanios, February 2001.  
 
46 “A two-factor model of the German term structure of interest rates” by N. Cassola and  

J. B. Luís, February 2001. 
 
47 “Deposit insurance and moral hazard: does the counterfactual matter?” by R. Gropp and  

J. Vesala, February 2001. 
 
48 “Financial market integration in Europe: on the effects of EMU on stock markets” by  

M. Fratzscher, March 2001. 
 
49 “Business cycle and monetary policy analysis in a structural sticky-price model of the euro 

area” by M. Casares, March 2001. 
 
50 “Employment and productivity growth in service and manufacturing sectors in France, 

Germany and the US” by T. von Wachter, March 2001. 
 
51 “The functional form of the demand for euro area M1” by L. Stracca, March 2001. 
 
52 “Are the effects of monetary policy in the euro area greater in recessions than in booms?” 

by G. Peersman and F. Smets, March 2001. 
 
53 “An evaluation of some measures of core inflation for the euro area” by J.-L. Vega and  

M. A. Wynne, April 2001. 
 
54 “Assessment criteria for output gap estimates” by G. Camba-Méndez and D. R. Palenzuela, 

April 2001. 
 

ECB •  Work ing  Pape r  No  144 •  May  2002 55



55 “Modelling the demand for loans to the private sector in the euro area” by A. Calza,  
G. Gartner and J. Sousa, April 2001. 

 
 56 “Stabilization policy in a two country model and the role of financial frictions” by E. Faia, 

April 2001. 
 
57 “Model-based indicators of labour market rigidity” by S. Fabiani and D. Rodriguez-

Palenzuela, April 2001. 
 
58 “Business cycle asymmetries in stock returns: evidence from higher order moments and 

conditional densities” by G. Perez-Quiros and A. Timmermann, April 2001. 
 
59 “Uncertain potential output: implications for monetary policy” by M. Ehrmann and  

F. Smets, April 2001. 
 
60 “A multi-country trend indicator for euro area inflation: computation and properties” by  

E. Angelini, J. Henry and R. Mestre, April 2001. 
 
61 “Diffusion index-based inflation forecasts for the euro area” by  E. Angelini, J. Henry and  

R. Mestre, April 2001. 
 
62 “Spectral based methods to identify common trends and common cycles” by G. C. Mendez 

and G. Kapetanios, April 2001. 
 
63 “Does money lead inflation in the euro area?” by S. N. Altimari, May 2001. 
 
64 “Exchange rate volatility and euro area imports” by R. Anderton and F. Skudelny,  

May 2001. 
 
65 “A system approach for measuring the euro area NAIRU” by S. Fabiani and R. Mestre,  

May 2001. 
 
66 “Can short-term foreign exchange volatility be predicted by the Global Hazard Index?” by 

V. Brousseau and F. Scacciavillani, June 2001. 
 
67 “The daily market for funds in Europe: Has something changed with the EMU?” by  

G. P. Quiros and H. R. Mendizabal, June 2001. 
 
68 “The performance of forecast-based monetary policy rules under model uncertainty” by  

A. Levin, V. Wieland and J. C.Williams, July 2001. 
 
69 “The ECB monetary policy strategy and the money market” by V. Gaspar, G. Perez-Quiros 

and J. Sicilia, July 2001. 
 
70 “Central Bank forecasts of liquidity factors: Quality, publication and the control of the 

overnight rate” by U. Bindseil, July 2001. 
 
71 “Asset market linkages in crisis periods” by P. Hartmann, S. Straetmans and C. G. de Vries, 

July 2001.  
 
72 “Bank concentration and retail interest rates” by S. Corvoisier and R. Gropp, July 2001. 

ECB •  Work ing  Pape r  No  144 •  May  200256



 
73 “Interbank lending and monetary policy transmission – evidence for Germany” by 

M. Ehrmann and A. Worms, July 2001. 
 
74 “Interbank market integration under asymmetric information” by X. Freixas and 

C. Holthausen, August 2001. 
 

75  “Value at risk models in finance” by S. Manganelli and R. F. Engle, August 2001. 

 
76   “Rating agency actions and the pricing of debt and equity of European banks: What can we 

infer about private sector monitoring of bank soundness?” by R. Gropp and A. J. Richards, 
August 2001. 

 
77   “Cyclically adjusted budget balances: An alternative approach” by C. Bouthevillain, P. Cour-

Thimann, G. van den Dool, P. Hernández de Cos, G. Langenus, M. Mohr, S. Momigliano 
and M. Tujula, September 2001. 

 
78   “Investment and monetary policy in the euro area” by B. Mojon, F. Smets and  

P. Vermeulen, September 2001. 
 
79   “Does liquidity matter? Properties of a synthetic divisia monetary aggregate in the euro 

area” by L. Stracca, October 2001. 
 
80   “The microstructure of the euro money market” by P. Hartmann, M. Manna and 

A. Manzanares, October 2001. 
 
81   “What can changes in structural factors tell us about unemployment in Europe?” by  

J. Morgan and A. Mourougane, October 2001. 
 
82   “Economic forecasting: some lessons from recent research” by D. Hendry and  

M. Clements, October 2001. 
 
83   “Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts” 

by K. F. Wallis, November 2001. 
 
84   “Data uncertainty and the role of money as an information variable for monetary policy” by 

G. Coenen, A. Levin and V. Wieland, November 2001. 
 
85   “Determinants of the euro real effective exchange rate: a BEER/PEER approach” by  

F. Maeso-Fernandez, C. Osbat and B. Schnatz, November 2001. 
 
86   “Rational expectations and near rational alternatives: how best to form expecations” by  

M. Beeby, S. G. Hall and S. B. Henry, November 2001. 
 
87   “Credit rationing, output gap and business cycles” by F. Boissay, November 2001. 
 
88 “Why is it so difficult to beat the random walk forecast of exchange rates?” by L. Kilian and 

M. P. Taylor, November 2001. 
 

ECB •  Work ing  Pape r  No  144 •  May  2002 57



89 “Monetary policy and fears of financial instability” by V. Brousseau and C. Detken, 
November 2001.  

 
90 “Public pensions and growth” by S. Lambrecht, P. Michel and J.-P. Vidal, November 2001.  
 
91 “The monetary transmission mechanism in the euro area: more evidence from VAR 

analysis” by G. Peersman and F. Smets, December 2001. 
 
92 “A VAR description of the effects of monetary policy in the individual countries of the euro 

area” by B. Mojon and G. Peersman, December 2001. 
 
93 “The monetary transmission mechanism at the euro-area level: issues and results using 

structural macroeconomic models” by P. McAdam and J. Morgan, December 2001. 
 
94 “Monetary policy transmission in the euro area: what do aggregate and national structural 

models tell us?” by P. van Els, A. Locarno, J. Morgan and J.-P. Villetelle, December 2001. 
 
95 “Some stylised facts on the euro area business cycle” by A.-M. Agresti and B. Mojon, 

December 2001. 
 
96 “The reaction of bank lending to monetary policy measures in Germany” by A. Worms, 

December 2001. 
 
97 “Asymmetries in bank lending behaviour. Austria during the 1990s” by S. Kaufmann, 

December 2001. 
 
98 “The credit channel in the Netherlands: evidence from bank balance sheets” by L. De Haan,  

December 2001. 
 
99 “Is there a bank lending channel of monetary policy in Spain?” by I. Hernando and  

J. Martínez-Pagés, December 2001.  
 
100 “Transmission of monetary policy shocks in Finland: evidence from bank level data on 

loans” by J. Topi and J. Vilmunen, December 2001. 
 
101 “Monetary policy and bank lending in France: are there asymmetries?” by C. Loupias,  

F. Savignac and P. Sevestre, December 2001. 
 
102 “The bank lending channel of monetary policy: identification and estimation using 

Portuguese micro bank data” by L. Farinha and C. Robalo Marques, December 2001. 
 
103 “Bank-specific characteristics and monetary policy transmission: the case of Italy” by  

L. Gambacorta, December 2001. 
 
104 “Is there a bank lending channel of monetary policy in Greece? Evidence from bank level 

data” by S. N. Brissimis, N. C. Kamberoglou and G. T. Simigiannis, December 2001. 
 
105 “Financial systems and the role of banks in monetary policy transmission in the euro area” 

by M. Ehrmann, L. Gambacorta, J. Martínez-Pagés, P. Sevestre and A. Worms,  
December 2001. 

 

ECB •  Work ing  Pape r  No  144 •  May  200258



106 “Investment, the cost of capital, and monetary policy in the nineties in France: a panel data 
investigation” by J.-B. Chatelain and A. Tiomo, December 2001. 

 
107 “The interest rate and credit channel in Belgium: an investigation with micro-level firm 

data” by P. Butzen, C. Fuss and P. Vermeulen, December 2001. 
 
108 “Credit channel and investment behaviour in Austria: a micro-econometric approach” by 

M. Valderrama, December 2001. 
 
109 “Monetary transmission in Germany: new perspectives on financial constraints and 

investment spending” by U. von Kalckreuth, December 2001. 
 
110 “Does monetary policy have asymmetric effects? A look at the investment decisions of 

Italian firms” by E. Gaiotti and A. Generale, December 2001. 
 
111 “Monetary transmission: empirical evidence from Luxembourg firm level data” by  

P. Lünnemann and T. Mathä, December 2001. 
 
112 “Firm investment and monetary transmission in the euro area” by J.-B. Chatelain,  

A. Generale, I. Hernando, U. von Kalckreuth and P.  Vermeulen, December 2001. 
 
113 “Financial frictions and the monetary transmission mechanism: theory, evidence and policy 

implications” by C. Bean, J. Larsen and K. Nikolov, January 2002. 
 
114 “Monetary transmission in the euro area: where do we stand?” by I. Angeloni, A. Kashyap, 

B. Mojon, D. Terlizzese, January 2002. 
 
115 “Monetary policy rules, macroeconomic stability and inflation: a view from the trenches” 

by A. Orphanides, December 2001. 
 
116 “Rent indices for housing in West Germany 1985 to 1998” by J. Hoffmann and C. Kurz., 

January 2002. 
 
117 “Hedonic house prices without characteristics: the case of new multiunit housing” by  

O. Bover and P. Velilla, January 2002. 
 
118 “Durable goods, price indexes and quality change: an application to automobile prices in 

Italy, 1988-1998” by G. M. Tomat, January 2002. 
 
119 “Monetary policy and the stock market in the euro area” by N. Cassola and C. Morana, 

January 2002. 
 
120 “Learning stability in economics with heterogenous agents” by S. Honkapohja and K. Mitra, 

January 2002. 
 
121 “Natural rate doubts” by A. Beyer and R. E. A. Farmer, February 2002. 
 
122 “New technologies and productivity growth in the euro area” by F. Vijselaar and R. Albers, 

February 2002. 
 

ECB •  Work ing  Pape r  No  144 •  May  2002 59



123 “Analysing and combining multiple credit assessments of financial institutions” by E. Tabakis 
and A. Vinci, February 2002. 

 
124 “Monetary policy, expectations and commitment” by G. W. Evans and S. Honkapohja, 

February 2002. 
 
125 “Duration, volume and volatility impact of trades” by S. Manganelli, February 2002. 
 
126 “Optimal contracts in a dynamic costly state verification model” by C. Monnet and  

E. Quintin, February 2002. 
 
127 “Performance of monetary policy with internal central bank forecasting” by S. Honkapohja 

and K. Mitra, February 2002. 
 
128 “Openness, imperfect exchange rate pass-through and monetary policy” by F. Smets and  

R. Wouters, February 2002. 
 
129 “Non-standard central bank loss functions, skewed risks, and certainty equivalence” by  

A. al-Nowaihi and L. Stracca, March 2002. 
 
130 “Harmonized indexes of consumer prices: their conceptual foundations” by E. Diewert, 

March 2002. 
 
131 “Measurement bias in the HICP: what do we know, and what do we need to know?” by  

M. A. Wynne and D. Rodríguez-Palenzuela, March 2002. 
 
132 “Inflation dynamics and dual inflation in accession countries: a “new Keynesian” 

perspective” by O. Arratibel, D. Rodríguez-Palenzuela and C. Thimann, March 2002. 
 
133 “Can confidence indicators be useful to predict short term real GDP growth?” by  

A. Mourougane and M. Roma, March 2002. 
 
134 “The cost of private transportation in the Netherlands, 1992-1999” by B. Bode and  

J. Van Dalen, March 2002. 
 
135 “The optimal mix of taxes on money, consumption and income” by F. De Fiore and  

P. Teles, April 2002.  
 
136 “Retail bank interest rate pass-through: the new evidence at the euro area level” by  

G. de Bondt, April 2002.  
 
137 “Equilibrium bidding in the eurosystem’s open market operations” by U. Bindseil, April 

2002. 
 
138 “New” views on the optimum currency area theory: what is EMU telling us?” by  

F. P. Mongelli, April 2002. 
 
139 “On currency crises and contagion” by M. Fratzscher, April 2002. 
 
140 “Price setting and the steady-state effects of inflation” by M. Casares, May 2002. 
 

ECB •  Work ing  Pape r  No  144 •  May  200260



141 “Asset prices and fiscal balances” by F. Eschenbach and L. Schuknecht, May 2002.  
 
142 “Modelling the daily banknotes in circulation in the context of the liquidity management of 

the European Central Bank”, by A. Cabrero, G. Camba-Mendez, A. Hirsch and F. Nieto, 
May 2002.  

 
143 “A non-parametric method for measuring new goods”, by I. Crawford, May 2002.  
 
144 “A failure in the measurement of inflation: results from a hedonic and matched experiment 

using scanner data”, by M. Silver and S. Heravi, May 2002.  

ECB •  Work ing  Pape r  No  144 •  May  2002 61


	A failure in the measurement of inflation: results from a hedonic and matched experiment using scanner data
	Contents
	Abstract
	Non-technical summary
	1. Introduction
	2. Background
	3. The static sampling universe and failure of the matched models method
	4. Data and implementation
	5. Sample coverage
	6. Matched and unmatched comparisons
	7. Strategies: chaining and hedonics
	8. Extending the analysis to further products
	9. Conclusions
	Annex: Influential observations
	References
	European Central Bank Working Paper Series

