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1. Introduction

The uncertainty of equity returns is commonly measured by the equity returns’
variance. However, empirical evidence indicates that a stationary normal distri-
bution is only a very approximate unconditional model for equity returns. In
particular, unconditional return distributions tend to be fat-tailed.! As a possible
explanation for the latter phenomenon, it can be proposed that conditional return
variance may vary over time.

While models of conditional autoregressive heteroskedasticity (ARCH) have
become the most commonly used econometric models of time-varying variance,
they do not offer an economic explanation of the phenomenon. Given the stylized
fact that there are fat-tails in the distribution of returns, the objective in this pa-
per is to examine to what degree fat-tailedness is associated with trading volume.
We are interested in two related features of the return-volume relationship. First
we re-examine the relationship under “normal” market conditions. We then en-
ter into a new area of empirical research by studying conditions of market stress.
The relationship between returns, trading volume and conditional volatility under
“normal” market conditions is potentially important in understanding how infor-
mation is transmitted to the market as well as embedded in stock prices. The
return volume relationship under market stress is central to an understanding of
crashes and rapid run-ups in stock prices.

We contribute in several ways to previous work on return-volume dependence,
which was mostly focusing on the U.S. equity market. First, we study depen-
dence for the U.S. as well as for six additional large international equity markets:
Holland, France, Germany, Hong Kong, the U.K., and Japan. This allows for a
cross-sectional check of the robustness of the features found for single markets.
Second, we propose a new proxy measure of private information flow, called “sur-
prise volume”, which is defined as unpredictable above-average trading volume.
This measure of heterogeneity offers an economically intuitive indicator of private
information arrival as commonly used in the trading volume literature based on

IThe empirical study of fat-tailed return distributions has a long tradition. Mandelbrot
(1963) proposed the sum-stable class of distribution functions as a model of returns. More
recently, results from statistical extreme value theory have been applied in finance, providing
results on the tail behavior of a broad class of stationary fat-tailed return distributions. Em-
pirical studies include Jansen and de Vries (1991), Longin (1996) and Jondeau and Rockinger
(1999) on tail behavior as well as Longin and Solnik (2001), Poon et al. (2004), and Silvapulle
and Granger (2001) who also consider extreme dependence.



noisy rational expectations. Third, we conduct a study on the joint distribution
of extreme trading volumes and returns by applying a model from bivariate ex-
treme value theory. Lastly, we study separately the asymptotic joint distribution
of large drops and run-ups in stock prices. Our objective in focusing on extreme
returns and volumes is to infer how volume, information flow and returns depend
on each other in the tails of their joint distribution. We already suspect that this
dependence is not “usual” in the sense that it seems difficult to associate large
market moves with observable information events; see e.g. Haugen et al. (1991).
Also, the results in Gallant et. al. (1992) and Balduzzi et. al. (1996) suggest that
the tail-behavior of the price-volume relation may differ from that of the overall
joint distribution. However, the findings are not based on an asymptotic model
of extremes and do not allow for a characterization of situations of market stress.
The extreme value model allows us to examine the price-volume relationship under
market stress, which includes the examination of potential asymmetry between
booms and crashes, as well as to test the implications of models of market stress.

Using daily data over the period from January 1988 to November 1997, we ap-
ply a new flexible filtering technique to capture stochastic trends, seasonality, and
linear dependence in trading volume. We then retest many of the features as doc-
umented for the U.S. market. In particular, when fitting a GARCH-M model, we
find that price variability and volume are significantly related for all international
markets excluding the French. Surprise volume—unpredictable above-average
trading activity—is significantly associated with the variation in conditional re-
turn variance. Volume surprises also reveal a positive risk-return relation. The
latter finding is consistent with volume as a proxy of private information flow
which plays an important role in the determination of equity return premiums.
In fact, while these features are quite robust over our cross-section of markets,
we find the U.S. serving as a benchmark market yielding the most pronounced
results. Only for the U.S. market, surprise volume completely dominates GARCH
as well as leverage effects in explaining volatility persistence.

Excess kurtosis in the returns of our sample of international markets can gen-
erally be captured quite well by a GARCH-M cum volume model. However, the
model cannot fully explain fat-tailedness; our examination of the asymptotic be-
havior of extreme returns and volume can shed light on this characteristic. We find
that although the relationship between return variability and trading volume is on
average weaker for extreme observations, independence between extreme absolute
return and volume can be rejected for five out of seven markets. The finding of a



weaker return variability-volume dependence in the tails can be attributed to the
very largest return and especially volume observations. The dependence relation
is quite symmetric for the majority of the markets in our sample, i.e. the decrease
in dependence for large extreme returns and small extreme volume is of the same
order of magnitude as the one for small extreme returns and large extreme vol-
ume. Interestingly, however, in Holland and Japan, the dependence relation is
weaker for large extreme volume, indicating large volume being a bad proxy for
information flow. In France and Germany, the extreme dependence relation is the
weakest in our sample. The occurrence of sharp price changes under moderate
trading volume, as particularly in France and Germany, is consistent with the
explanation of market crashes in terms of the misinterpreted-trade hypothesis by
Gennotte and Leland (1990).

Furthermore, we use the extreme value model to estimate the price-volume
dependence for negative and positive extreme returns separately. Given our 1988
to 1997 sample which contains several episodes of market stress, we again find
the U.S. market to serve as a benchmark where the return variability-volume
dependence remains symmetric in the upper and lower tail. That is, the estimated
elasticity of price decreases to volume is equal to the elasticity for price increases.
This result can not be attested to the European and Asian markets of our sample.
The estimation results for Holland, the U.K., Hong Kong, and Japan demonstrate
that prices and volume are less dependent for large price decreases than for large
price increases. This finding cannot be captured in existing models of the return-
volume relation which imply symmetry. Also, since it seems hard to argue that
short-sale restrictions are more substantial in the U.S. than in the other countries,
the documented cross-sectional elasticities do not seem to be consistent with the
Hong and Stein (2003) hypothesis that investors are rational but crashes occur
because of more intrusive restrictions on selling than buying stocks. At the same
time, in none of the countries do we see the dependence between returns and
volume strengthening for large extreme volume, i.e. we do not observe high volume
that tends to be accompanied by sharp price changes as would be predicted by
cascading or behavioral explanations of market crashes.

The remainder of the paper is organized as follows. A brief review on earlier
findings on the return-volume dependence in the U.S. equity market is given in
Section 2. Section 3 outlines the methodological framework including the GARCH
and the extreme value model. Section 4 introduces the data set and describes the
approach to filtering market volume. Model estimation and the empirical results



are given in Section 5. Section 6 contains the conclusion.

2. The Mixture Model and Earlier Empirical Findings

Fat-tailed return distributions can be explained by non-stationary models with
time-varying variance. Two common approaches to time-varying variance are
models of the autoregressive conditional heteroskedasticity class and the subor-
dination model. The first approach is based on discrete time series modeling
documented in a vast collection of papers; a classical survey is given by Bollerslev
et al. (1992). The second approach provides a theoretical explanation of fat-tailed
return distributions in which the distribution of prices and volume is jointly sub-
ordinate to an unobservable directing process. The model goes back to Clark
(1973), among others. An extension within the Grossman and Stiglitz (1980)
noisy rational expectations framework is given by Tauchen and Pitts (1983). In
the literature, the model is also referred to as the mixture model or the mixture
of distributions hypothesis.

The subordination model is especially appealing from a market microstruc-
ture perspective, since it makes assumptions about the underlying process which
jointly generates price changes and trading volume. Returns over a fixed pe-
riod such as one trading day are given as a random sum of subperiod returns with
common distribution function. The arrival of traders is driven by an unobservable
directing process. An implication of the model is a positive dependence between
return variability and the unobservable directing process, since a higher trading
intensity increases the variability over a fixed return measurement period. The
noisy rational expectations framework offers an economic interpretation of the un-
observable directing process. Assuming that traders share a common information
set and additionally receive noisy private information signals, trading will occur
due to differences in private information sets. Therefore, proxy variables for the
directing process are for example the number of transactions or trading volume.?

Karpoff (1987) reviews early empirical studies on trading volume and return
variability. The results show a positive relation between price variability and

2Since in general, the latter is more easily observed, volume is frequently used in empirical
investigations, although the number of transactions might be a preferable variable; see e.g.
Jones et al. (1994). Also order flow, i.e. the net of buyer and seller initiated transactions, may
provide a useful proxy variable as shown by Marsh and Rock (1986) for equity markets and
more recently by Evans and Lyons (2002) in the area of exchange rate modeling.



volume consistent with the mixture of distributions hypothesis. Lamoureux and
Lastrapes (1990) examine Clark’s subordination hypothesis in the context of a
GARCH model with a volume variable. The authors find that volume can explain
GARCH effects in U.S. single stocks. We will use an extended Lamoureux and
Lastrapes model in the following.

Gallant et al. (1992) estimate the joint conditional return-volume density for
the U.S. market over a 57 year period. The authors detrend their price and vol-
ume series and apply seasonal adjustments in order to provide an approximately
stationary return and volume series. In line with the earlier studies, a positive re-
turn volatility-volume dependence is found. The estimation results indicate that
the positive dependence relation has non-linear features. Whereas the relation is
nearly flat for negative standardized volume realizations, it is increasing for pos-
itive standardized volume. For volume observations above a level of about two,
the relation weakens (see their figure 6). The authors also find that a negative
conditional risk-return relation turns into a positive one when volume is incorpo-
rated into the analysis. Additionally, the results suggest that a leverage effect is
jointly explainable by returns and volume.

Lamoureux and Lastrapes (1994) extend the Tauchen and Pitts bivariate mix-
ture model by assuming a dependent directing process and find no evidence that
volatility persistence in stock returns is explainable by volume data. Richardson
and Smith (1994) test a joint set of moment restrictions of the mixture of distri-
butions model. Under a lognormally distributed directing process®, the fit seems
superior as compared to other distributional assumptions, however overall evi-
dence is not overwhelming. Andersen (1996) adopts a noisy rational expectations
framework and explicitly allows for non-informational trading and common infor-
mation arrivals. He shows that this improves the empirical fit of the implemented
moment restrictions. In a dynamic setting, the model allows for a reduction in
the estimated volatility persistence of U.S. single stocks.*

3This is a common assumption in the literature. Note however, that it is not strictly model-
consistent as a continuous distribution can only be regarded as an approximation to the under-
lying integer valued directing process.

4Evidence on the model remains diverse: Liesenfeld (1998) tests Andersen’s model by as-
suming a dependent directing process. Like Lamoureux and Lastrapes, he finds no evidence
that volatility persistence is explainable by volume data. Bollerslev and Jubinski (1999) sug-
gest that long-memory characteristics in the directing process may help to explain earlier model
rejections. Fleming et al. (2001) propose a modification of the mixture model under the indepen-
dence assumption. In the present paper we argue that it theoretically seems difficult to justify



3. The Methodological Framework

This section contains the methodological framework for our empirical investiga-
tion. First, a brief outline of the mixture of distributions hypothesis is given,
focusing on its empirically relevant implications. The corresponding GARCH
model specification follows. After a discussion of the return variability-volume
relation for large observations, the bivariate extreme value model is specified.

3.1. Return and Volume in the Mixture Model

The evolution of prices and volume in the mixture of distributions model can
either be measured with respect to standard calendar time or with respect to some
operational time measure. A natural measure of operational time is given by the
random number of transactions N(7) in an intra-day time interval [0;7]. Intra-
day equilibrium asset prices P;, and corresponding trade volumes V,, are observed
at random time points. The counting sequence {N(7)}o<r<1 is called directing
process, where N; = Ny(1) denotes the number of transactions for the ¢th trading
day. Observed intra-day prices {P;, }1<r<n, and trade volumes {V,, }1<,,<n, are
subordinated to a common directing process. Assuming continuously compounded
returns, R, = In(P,,/P,,_,), it follows that the cumulative day t return R; and
the cumulative volume V; is given by the random sums R; = Zfitl R, and V; =
Zfﬁl V., respectively. This setup forms the basis of the mixture of distributions
hypothesis.®

For a comprehensive summary of the model’s moment conditions refer to
Harris (1987). Assuming finite second moments, an independent price and di-
recting process, and iid intra-day returns for simplicity, it follows: Var(R;) =
Var(N;)E(R,,)?+ E(N;)Var(R,,). The latter result shows that the unconditional
daily return variance is a function of the unobservable directing process. When the
daily return expectation is small, one can write: Var(R;) ~ E(N;)Var(R,,). For
the conditional daily return variance it follows: Var(R;| N; = n;) = niVar(R.,).
Another important model implication is the prediction of a positive covariance

the assumption of dependence in a directing process which represents unobservable information
flow, since information is commonly regarded to be an independent random phenomenon.

®In the empirical part of the paper we consider aggregate index returns and volumes which
result as weighted sums of the individual values of R; and V;, respectively. This leaves the
mixture assumptions valid while increasing the number of summands from which the aggregate
terms are obtained.



between squared returns and volume, Cov(R?;V;) > 0 and hence also between
absolute returns and volume, Cov(|R;|;V;) > 0. The mixture of distributions
hypothesis provides a formal basis for the assertion that trading volume relates
to daily return volatility.

In an empirical setting the unobservable directing process must be specified.
In Clark’s classical model, prices and volume are assumed to be driven by an #id
directing process that represents the number of transactions. Under the informa-
tion flow interpretation of the directing process, more structure is imposed. Using
an economic model such as the noisy rational expectations framework, trading
volume is explained by two components, namely by individual non-informational
trading and by differences in the traders’ private information sets. In this setting,
the directing process can be characterized as an unobservable flow of noisy pri-
vate information. Assuming that non-informational trading volume is given by
some stationary random V/, one may write: V;, = V/ + Zivzfll V. Trading volume
is obviously a relevant observable variable for the unobservable information flow,
but it serves as a proxy only. When common information events on day ¢ cause
price variability h? without trading, conditional daily variance is

Var( Ry N} = n}) = h? + njVar(R,,). (3.1)

In order to perform a univariate test of the mixture of distributions hypothesis,
the exogenous unobservable directing process in (3.1) is proxied by realizations
of an observable endogenous volume variable. Particularly, the information flow
interpretation of the directing process has two implications. First, above-average
volume which proxies the realizations Z:il v, should explain return variance
better than volume itself. Second, the same holds for unpredictable volume being
a more suitable proxy for the number of day ¢ information arrivals n} than volume

itself.

3.2. The GARCH Model Specification

A GARCH with mean specification (GARCH-M, Engle et al. (1987)) is chosen
to fit the overall conditional return variability-volume dependence. Apart from
the standard GARCH(1,1) terms, the variance equation contains an asymmetric
ARCH-term. In the first model, no volume variable enters the variance equation.

A volume variable, as motivated by the preceding section, is added in models 2
and 3.



3.2.1. Conditional Return

For all model specifications, the conditional return equation contains a constant,
a first order autoregressive and an in-mean term:

Rt :/,L—FpRt,l—i—)\O'Z}-t +€t, € (0,0'Z]:t), t= 1,...,T. (32)

The noise terms ¢; are independent draws from a possibly fat-tailed distribution
function with conditional variance o7 ,. The AR(1) term pR;_; allows for possible
linear dependence in index returns due to asynchronous trading of the member
stocks, a phenomenon that is well-documented in the literature. Conditional
variance is related to conditional return by the in-mean term )\Uz 7,- A justification
for the above in-mean specification can be provided e.g. by the evidence of Genotte
and Marsh (1993) who find an approximately linear variance return relation in
monthly U.S. equity returns. Note that, as shown in the model of the latter
authors, a theoretical statement about the sign of the relation is ambiguous in a
consumption based asset pricing framework and depends on the risk aversion of
the representative investor. As pointed out by Gallant et al. (1992) and Golsten
et al. (1993), this makes empirical calibration an important issue.

3.2.2. Conditional Variance

The conditional return variance o7 z, = Var(R| F;) in equation (3.2) is assumed
to follow a discrete Markov process conditioned on the set F; = {e ;,07 ;}
for given initial (e3,03). Referring back to equation (3.1), three different model
specifications are chosen. The base model (model specification 1) defines the
variance component h? by

0r 5, = hi = wo+wi€f_| + woey 1T, <o} +W30; 1 5, (3.3)
where I 43 denotes an indicator variable for the event A. The term € ; I, , <oy is
introduced in order to allow a possible asymmetric response of conditional variance
to positive and negative return innovations. In case of a positive coefficient ws, a
negative return shock in ¢ will cause an increased return variance in ¢ 4 1. This
observation is then frequently denoted as a “leverage effect”.

Models 2 and 3 include a stationary random variable U; which measures ab-
normal trading volume. The latter is given by U, = V; — V, where V, denotes



average volume for period ¢. Under F;, = {€?_;,07 |, U;}, the conditional variance
equation in model specification 2 is given by

o; 7, = h; +waly. (3.4)

The parameter wy is predicted to be positive under the prediction of the mixture
model. An implication of the mixture of distributions hypothesis based on a noisy
rational expectations framework is that only trading due to private information
arrivals, not overall trading, should relate to return variability. Interpreting the
directing process as an unobservable flow of private information as in equation
(3.1), it is above-average volume that should serve as a potential proxy for in-
formation flow.® Using Uil{y,>0y as volume variable, a corresponding non-linear
specification is chosen in model 3

o; 7, = hi + wU(y,~0}- (3.5)

To summarize, specification 1 is a standard GARCH-M model with a leverage
term (equations (3.2) and (3.3)). Model specification 2 uses all realizations of the
volume variable in order to explain conditional return variance (equations (3.2)
and (3.4)). In contrast, model 3 only uses above-average volume proxying private
information flow (equations (3.2) and (3.5)).

3.3. Extreme Returns and Volume

An especially interesting domain for testing the predictions of the mixture of
distributions hypothesis is certainly in the tails of the joint return-volume distri-
bution. Of course, if the return variability-volume relation was linear, a separate
examination of the tails would be redundant. However, there is reason to believe
that non-linearities in the relation make it worthwhile to address the question of
whether the tails of the return distribution can be explained by trading volume.
A positive answer can be interpreted as evidence for the dependence prediction of
the mixture of distributions model. Otherwise, the question arises as to why the
relation changes and how this phenomenon can be explained.

There are at least two potential theoretical explanations of why a breakdown
of the return variability-volume dependence may occur in the tails. First, ex-
treme volume observations might be a bad proxy for the unobservable directing

6Lagged volume was found to be much less predicitve in this and previous studies of return-
volume dependence, also providing evidence of an information flow interpretation.

9



process. As volume is not only given by the number of transactions but also by the
number of shares traded, errors in the measurement of the directing process are
unavoidable and might be particularly biased for large volume observations. This
problem, denoted as the bad proxy hypothesis, is hard to deal with in detail when
no transactions data are available. However, under the assumption that extreme
volumes overestimate the magnitude of the directing process, a testable impli-
cation of the hypothesis is that the correlation of extreme volume with extreme
return variability is weaker than in the overall distribution. Particularly, extreme
volume should on average be observable jointly with moderate return variability,
i.e. moderate absolute returns. Second, extreme return observations might not be
due to information events, but due to temporary market illiquidity. A correspond-
ing hypothesis put forward by Gennotte and Leland (1990) assumes that liquidity
constraints may cause non-informational traders to have an impact on return vari-
ability. This is because traders may occasionally misinterpret non-informational
liquidity trading as being informational.” As opposed to the standard rational
expectations model, high return variability may thus occur in the absence of com-
mon information releases and/or high trading activity. A typical application of
the model is to market crashes, i.e. large price declines under moderate volume
where a change in the common information set of the traders is improbable; see
Haugen et al. (1991) for related empirical evidence. A testable implication is that
the return variability-volume correlation weakens in the tails and particularly that
extreme returns are jointly observable together with moderate trading volume.

3.4. The Extreme Value Model

Testing for return variability-volume dependence in the tails involves inferring
whether there is statistical evidence that the asymptotic joint distribution of ab-
solute returns and volume converges to two independent marginal distributions or
not. This is done by examining extreme return and volume observations. Since
the data in the tails are sparse by definition, we rely on a statistical model in
order to robustify our results. This model is given in the context of extreme value
theory as outlined for example in Embrechts et al. (1997) and Coles (2001).

“A note on private information versus liquidity: Under liquidity constraints, large transac-
tions have a price-impact which rational discretionary liquidity traders will avoid as outlined in
the Admati and Pfleiderer (1988) model. If liquidity traders do not time their trades, their trad-
ing may be misinterpreted as informational following the Gennotte and Leland (1990) framework.

10



3.4.1. Univariate Model

Classical univariate extreme value theory examines the asymptotic distribution
of properly normalized extrema of a series of #id random variables. Although
the returns R; from the GARCH model of Section 3.2. are not iid, a stationary
marginal return distribution function Fr(r) can be assumed to exist under quite
general conditions on the model parameters.® It then follows that the return
maximum Mg r = max(Ry, ..., Rr)? obeys the same types of limiting distributions
as in the iid-case, with the only difference that the extreme return observations
will tend to occur in clusters.

Therefore, classical extreme value theory provides a valid approach to make
inferences about the extreme behavior of the stationary return series (R:)i<i<r.
With the norming constants ar > 0 and by € R, the asymptotic distribution of the
return maximum is derived as the limit of Pr{a;'(Mpr—br) < r} = FL (arr+br)
as T'— oo. If a limiting distribution exists, it has to be a member of the class of
distribution functions which satisfy the max-stability condition

lim Fg(apr + br) = Hg(r),
T—oo
where Hp is a non-degenerate distribution function. A general representation of

the distribution functions satisfying the above stability condition is given by the
generalized extreme value distribution (GEV):

Hpe(r) = exp [— {1+ {r}fl/g] , 1+&r>0. (3.6)

The shape parameter, £ € R, also denoted as tail index, characterizes the ex-
treme behavior of the returns. Particularly, the GEV corresponds to the Fréchet
distribution for & > 0,

0, r<0
e(r) = exp [{—T}fl/g} , r>0"
to the Weibull extreme value distribution for £ < 0,

U (r) = { exp [— {—r}l/ﬂ , r<0 7

r>0

Y

8Related results can be found for example in Mikosch and Stérica(2000) for the GARCH(1,1)
model and in Borkovec and Kliippelberg (1998) for an AR(1) process with heteroskedastic noise.

9Clearly, for Fr defined on the entire real axis, the results hold equivalently for minima since
min(Ry, ..., Ry) = —max(—Ry, ..., —Rr).

11



and to the Gumbel distribution in the limit when & — 0:

A(r) = exp [—exp{—r}].

The location-scale family of the GEV distribution additionally includes a location
parameter u € R and a scale parameter ¢ > 0. Its distribution function, which is
particularly useful for estimation purposes, is given by:

Hpig (1) = exp [_ {1 e <%> }1/1 e (%) - (3.7)

3.4.2. Bivariate Model

Bivariate extreme value theory describes the asymptotic joint behavior of normal-
ized componentwise maxima of a vector of random variables. Given the station-
ary sequence of volume data Uy, the random return-volume vectors (Ry, U;) have
a common joint distribution function F(r,u). With Myr = max(Uy, ..., Ur), the
focus is now on the limit of the joint probability distribution of the maxima

lim PI‘{CLE}T(MR’T — bR,T) S T, CL;]}T(MU’T — bU,T) S U} =

T—o00

= qlggo F"(apyr +brr, ayru+byr) = H(r,u), (3.8)
where arr > 0, bgr € R and ayr > 0, byr € R again denote suitable norming
constants. It follows from the univariate case that the marginal distributions
H(r,00) and H (oo, u) are each given by the GEV distributions Hg(r) and Hy (u).

Since a random variable from one type of the three limiting extreme value
distributions can mathematically be easily transformed into one of the two others,
it is a matter of convenience which unique marginal distribution is used in the
bivariate model. Hence, without loss of generality, standard Fréchet margins
can be assumed. For the return variable it follows H(r,00) = ®,(r) = exp(—r~1!)
under the transformation B = {1 4 & (R — p)/1)}"/¢; the volume variable follows
accordingly. By the representation theorem of Pickands (1981) it can then be
shown that H satisfying the stability condition (3.8) has to be of the form:

H(r,u)zexp{— (%—{_i)A(Tiu)} r, u> 0. (3.9)

12




The function A(w) with w = r/(r+u) characterizes bivariate extreme dependence.
If Alw) =1, 0 < w < 1, the tails of the joint distribution are independent,
whereas A(w) = max(w,1 —w), 0 < w < 1, indicates perfect dependence.

Several parametric models can be chosen for the dependence function A(w).
A standard model is the bivariate logistic model with a single parameter v > 1;
see also Smith et al. (1990), Kliippelberg and May (1998), and Coles (2001). The
choice of the symmetric function A,(w) = {(1 — w)” + w?}¥7 in (3.9) yields a
joint extreme value distribution function

H, (1, u) = exp {— (% + %) W} | (3.10)

The above model is chosen for the investigation of extreme returns and volume
as there is no a priori implication from the mixture model regarding asymmetric
dependence. On the other hand, both, the bad proxy and the misinterpreted-
trade hypothesis as outlined in Section 3.3, predict asymmetric features for the
tail dependence. Therefore, in the empirical part of the paper, the results for the
above model are reviewed with respect to possible dependence asymmetries.

4. The Dataset and Volume Adjustments

This section briefly introduces the data set used in the empirical study and de-
scribes the adjustments made to the raw volume series.

4.1. The Dataset

The dataset consists of daily closing price data p; and turnover data v; for seven
major international stock market indices in the time period January 4, 1988 to
November 14, 1997, with t = 1,...,2575. All data were obtained from Datastream.
The countries together with the symbol for the corresponding index, are Holland
(Amsterdam EOE Index, ’AEX’), France (CAC 40, ’CAC’), Germany (DAX 30,
'DAX’), Hong Kong (Hang Seng Index, "HSI’), the U.K. (FTSE 100, 'FTS’), the
U.S. (Standard and Poor’s 500, 'SPX’) and Japan (Topix, 'TPX’). Note that
the dataset contains several episodes of market stress; examples are the so-called
October 1989 “Mini-Crash”, the 1990/91 oil crisis, the August 1991 “Gorbatchev
Crash” as well as the October 1997 Asian currency crisis.
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The study of international capitalization-weighted market index data enables
us to analyze the return-volume behavior of a broad class of stocks which typically
show above average liquidity. The data set represents a local currency perspec-
tive. Apart from the case of the DAX-index, dividends are not included in the
calculation of the indices. Since focus on return-volume dependence and the tail-
properties of the joint distribution, we do not regard these as important issues in
our following examination.

4.2. Volume Adjustments

The dependence implication of the mixture of distributions model can be tested
by examining the relation between the proxy variable for the directing process
and a measure of return variability. If trading volume is related to the underlying
directing process and the relation is linear in the given range of observations,
then there should be a significant correlation between the volume variable and
return variability. As outlined in Section 3.1, an information flow interpretation
of the directing process implies characteristics that differ from those of a pure
transaction based interpretation of the directing process. Hence, the utilization
of volume data in empirical specifications is not straightforward.
Non-stationarity and time-series dependence of volume data is a major issue
in empirical investigations of the return-volume relationship. In the present ap-
plication the task is to filter a stationary, uncorrelated series of trading volume.
For other investigations on returns and volume which apply adjustments to the
raw volume series see Gallant et al. (1992), Campbell et al. (1993), and Ander-
sen (1996). As also proposed for example in Lo and Wang (2000), we follow an
approach which imposes rather little structure on the raw volume series of the dif-
ferent markets in our sample. However, in contrast to these previous studies, we
do not apply moving averages but a more flexible data-efficient filtering technique
to capture stochastic trends in volume. Also, we additionally apply the linear
Box/Jenkins time-series methodology to capture seasonality and dependence.

4.2.1. Trends in Volume: Filtering Abnormal Volume

In a first step, we transform the volume data by the application of the natural
logarithm. As volume data are restricted to non-negative values, the distribution
of the resulting series Inv; is better approximated by the normal. The transfor-
mation also improves the stationarity properties of the volume series under a long
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run constant volume growth rate and a volume variance that relates to the volume
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Figure 1: Logarithmic volume Inv,, filtered abnormal volume w2 and con-
tinuously compounded returns 7, for the S&P 500 (left column) and the Topix
(right column).
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In order to remove a stochastic time trend in overall volume, the Hodrick and
Prescott (1997) filtering method is applied. The method minimizes the sum of
squared deviations between the original and the smoothed series given a smooth-
ness constraint for the fitted series.'® The output of the method provides a series
of normal logarithmic trading volume. Taking the difference between actual and
normal volume yields a stationary series of abnormal logarithmic volume. This
series, denoted by w1, is used as a volume series in our empirical investigation.

4.2.2. Volume Seasonality and Dependence: Filtering Uncorrelated Ab-
normal Volume

In a second step, the time-series dependence structure of the abnormal volume
series u;; is examined within a linear filter framework. Applying the classical
Box/Jenkins-methodology shows that a suitable overall representation of the data
is given by a first order autoregressive moving average with a five-weekday season-
ality component. In order not to overfit, the chosen ARIMA((1,0,1) x (1,0,1)5)-
model is estimated for all markets’ abnormal volume series %, ;. Model estimation
is carried out by least squares. This can be considered a useful approach even
in the presence of fat-tailedness in the volume series (compare Embrechts et al.
(1997)).

The estimation results show that the volume series exhibit a high degree of
linear predictability. The adjusted R2-statistics for the fitted models are 0.205,
0.179, 0.326, 0.321, 0.567, 0.283 and 0.526 for the Dutch, French, German, U.K.,
Hong Kong, U.S. and Japanese markets, respectively. The finding of a statisti-
cally significant weekly seasonality implies volume level effects for each weekday.!!
Filtering the w; 1-series by the fitted model yields a residual series of uncorrelated
abnormal logarithmic volume u; . This is the second volume variable used in the
empirical investigation. A graphical illustration of the data for the S&P 500 and
the Topix is given in Figure 1.

10A value of 5- 106 is chosen for the smoothing parameter in the Hodrick and Prescott filter.
The results are not sensitive with respect to the choice of this parameter. Common alternative
filtering techniques are rolling centered moving averages.

HUTo keep matters simple, we did not model potential monthly seasonality. For previous
empirical results on weekday effects see also Foster and Viswanathan (1993).
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5. Empirical Results

The introduction raised a number of issues concerning the relation between return
and volume. Based on the adjusted volume series, the relation between fat-tailed
return distributions and trading volume is examined, where the information flow
interpretation of the directing process and its empirical validation is of special
interest. We also analyze the role of volume with respect to conditional expected
return and a possible asymmetric response to positive versus negative return inno-
vations. Finally, the extreme dependence between return variability and volume
is addressed.

5.1. Estimates of the GEV Distribution

A statistical method of making inferences about the tails of the return distribu-
tions is by estimating the parameters of the GEV distribution. In the finance
literature, this approach has been used for example by Longin (1996).

Two different approaches are commonly applied for inferences about the GEV
given in equation (3.7): maximum likelihood estimation (MLE) and the method of
probability weighted moments (PWM). Considering MLE, Prescott and Walden
(1980) point out that the usual regularity conditions hold under the assump-
tion £ > —1/2. PWM-estimation is an alternative approach, which is especially
promising in small samples. Hosking et al. (1985) derive the method under the
assumption £< 1. Valid asymptotic standard errors follow with £ < 1/2. Fortu-
nately, these parameter restrictions do not imply severe limitations in financial
applications where typically 0 < & < 1/2.

Due to its better theoretical foundation and a moderate given sample size,
ML-estimation is chosen for fitting the marginal GEV distributions. The PWM-
estimator is used additionally in order to check for a proper convergence of the
iterative MLE. In case of non-convergence of the MLE, PWM estimators are given,
which is indicated in the presentation of our results (Tables I and III).
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The parameters of the extreme value distribution are estimated based on
monthly extrema which are chosen as a compromise between convergence towards
the extreme value model and the available amount of data. Monthly subsample
maxima 7,7 are extracted from the absolute daily return observations |ry|. For
the volume data, we pick monthly maxima w,, r from the filtered abnormal vol-
ume data u; 9, where m = 1,...,118. For a detailed description of the estimation
technique see also Embrechts et al. (1997).

Parameter estimates are summarized in Table I. The results show that the
maximal absolute returns of all markets are in the domain of attraction of the
Fréchet extreme value distribution, i.e. they exhibit Pareto-like tail behavior.
All the estimates of the tail coefficient ¢ are significantly larger than zero. The
estimate of the tail coefficient is largest for the Hang Seng index. The estimates
for the other markets range from 0.298 for the DAX index down to 0.194 for the
CAC index, indicating decreasingly fat-tails in these markets. Interestingly, the
maxima from the filtered volume series provide evidence partly for the Fréchet,
partly for the Gumbel extreme value distribution where & = 0. Note that the
Gumbel law indicates exponential tail behavior, which is given for example under
the normal distribution.

5.2. Overall Return-Volume Dependence

The estimation of the GARCH-M models in equations (3.2) to (3.5) is based on
the quasi maximum likelihood (QML) methodology. Deviations from normality in
the noise terms are accounted for by using the Bollerslev and Wooldridge (1992)
approach. This yields the parameter estimates (i, p, /):, Wo, Wy, Wy, W3, W4) and
their standard errors.

Apart from fitting the standard GARCH model of Section 3.2 (model 1), the
models with volume variable in the conditional variance equation (model 2 and
model 3) are fitted each alternatively with the realizations u; = uz; or u; = uzs.
A judgment of the empirical fit of the five different model specifications is based
on the Akaike information criterion (AIC). The latter is defined as the fitted log-
likelihood penalized for the number of parameters in the model, given by: AIC
=—2-In L+ 2 - #(parameters).
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5.2.1. Empirical Fit to the Specified Log-Likelihood

In Table IT the AIC statistic is given as a diagnostic for overall model fit of the
five different GARCH specifications.!?

The results show that model 3 with the uncorrelated abnormal volume variable
provides the most suitable model specification. When using the AIC to select the
model with the best fit for each market, this model is chosen for six out of seven
markets. The exception is the French market, where all estimated specifications
show results that are equivalent to the model without volume variable. The AIC
statistics for model 2 also demonstrate that volume per se does not necessarily
improve model fit when taking the increased number of model parameters into
account.

These findings on overall model fit indicate that positive innovations to the
volume variable have superior power in explaining conditional return variance in
the given GARCH model setting. This is somewhat surprising considering the
fact that roughly half of the volume information is neglected. However, based on
the discussion in Section 3.1, the finding provides evidence for the information
flow interpretation of the directing process. This interpretation is also consistent
with uncorrelated abnormal volume providing a better fit than the raw abnormal
volume variable. As uncorrelated above-average volume —surprise volume- is a
superior proxy for unobservable information flow, the results suggest that private
information flow rather than volume per se is correlated with return volatility.'?

5.2.2. Distribution of the Model Residuals

In the following, the model residuals are given by the standardized residuals
€ /07 of the fitted GARCH models. The distributional characteristics of the
residuals provide evidence on the extent to which fat-tails in the return series can

12\While private information flow is approximately controlled for by the volume variable in
models 2 and 3, the effect of a possible accumulation of common information arrivals on Mondays
is not captured by the GARCH models. Note that empirically a model extension including a
Monday-dummy variable does not seem too promising. A Monday-dummy shows slight AIC
improvements for the Dutch and the Hong Kong market, while the AIC increases or stays
constant in all other cases. The estimated parameters of our models remain basically unchanged.

13This result does not imply however, that total volume is generally non-informative. Espejel
(1997) provides empirical evidence in a microstructure context showing that below average
volume can also be informative although to a weaker extend than above average volume.
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be explained by the fitted model specifications.*

First, we consider kurtosis estimates. Results for the raw return series are
reported in the first column of Table II which demonstrate significant excess kur-
tosis relative to the normal for all markets. The estimates range from a moderate
value of 2.19 for the U.K. to up to 37.31 for the Hong Kong market. Table II fur-
ther provides estimates of excess kurtosis of the residual series from the GARCH
models. The GARCH model without volume variable (model 1) yields a decrease
in the estimated excess kurtosis of model residuals versus raw returns only for
three out of the seven markets (U.K., Hong Kong and Japan). Obviously, the
model without volume variable does not unambiguously explain fat-tailedness of
the raw return series. Adding the volume variable reduces excess kurtosis in the
fitted model residuals to relatively moderate levels for all markets but the French.
The largest reduction in excess kurtosis is achieved under the model with the
best fit according to the AIC criterion. Excess kurtosis estimates below values of
four result for the AEX, the CAC, the DAX , the Topix and even for the Hang
Seng index. The reduction in sample kurtosis is relatively low for the S&P 500.
Interestingly, sample kurtosis nearly vanishes for the fitted GARCH residuals of
the U.K. market.

Table II also reports sample skewness. Most market return distributions are
negatively skewed, where the U.K. and Japanese markets are exceptions. Return
sample skewness is larger than sample skewness in the residuals from model 3
(with uncorrelated volume variable) for the DAX, the Hang Seng and the Topix,
while it is smaller for all the other markets. This indicates that the GARCH model
with volume variable explains some of the skewness in the returns of the DAX,
the Hang Seng and the Topix. For the other markets, smaller sample skewness
together with reduced sample kurtosis in the model residuals as compared to raw
returns suggests that fat-tailedness for positive returns is better explained than
fat-tailedness for negative returns. We conclude that in contrast to kurtosis, the
results do not reveal a common pattern on the relation between skewness and the
GARCH cum volume effects.

Considering the results on the asymptotic extreme distributional properties

4 Correlation analysis reveals that there is some positive dependence between the volume
variable and the standardized model residuals. Fitting a generalized model where the volume
variable also enters the conditional return equation (3.2), shows that the correlation vanishes
while the in-mean term and especially volume jointly explain conditional return. All our fol-
lowing basic results on the distribution of the model residuals and the significance of the other
model parameters remain the same.
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of the residuals shows that there is still strong evidence of fat-tailedness. Table
IIT reports the estimated GEV parameters for the absolute residuals of GARCH
model specifications 2 and 3. The hypothesis of exponential tail behavior (i.e. a
Gumbel type extreme value distribution) has to be rejected for all indices with the
exception of the FTSE 100. This asymptotic result obviously confirms the finding
of low sample excess kurtosis for the U.K. market (see also Table II). Comparing
the results of Table IIT with those of Table I shows that the residuals for the AEX,
CAC, FTS, SPX and TPX yield roughly the same or lower estimates of the tail
coefficient while the estimates are even larger for the DAX and the HSI data.
Hence, although sample kurtosis decreases substantially for most markets when
GARCH effects and return variability-volume dependence is taken into account,
the fitted GARCH models do not offer a complete explanation for fat-tailed equity
returns.
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Figure 2: S&P 500 QQ-plots of returns (left) and standardized residuals
(right) on the x-axis each against quantiles of the normal distribution.

An illustration of these observations on fat-tailedness is given in Figures 2
to 4, where return or residual quantiles are plotted against the quantiles of a
theoretical distribution function yielding so-called QQ-plots; see e.g. Embrechts
et al. (1997). All residual series are taken from GARCH model specification 3 with
the uncorrelated volume variable. Figure 2 shows S&P 500 return and residual
quantiles in comparison to normal quantiles. The deviations from the plotted
straight line demonstrate fat-tailed behavior compared to the normal distribution.
As can be seen in the plot of Figure 3, the student-t distribution with four (eight)
degrees of freedom shows a good fit to negative (positive) S&P 500 residuals.
QQ-plots for the CAC and the Topix model residuals are given in Figure 4. It
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can generally be noted that the class of student distributions provides a useful
distributional approximation. However, the plots also show single outlying tail
observations which are not captured by the student distribution.

12
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Figure 3: S&P 500 QQ-plots of standardized residuals on the x-axis against
quantiles of the student-t distribution with four degrees of freedom (left) and with
eight degrees of freedom (right).
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Figure 4: QQ-plot of standardized CAC residuals on the x-axis against quan-
tiles of the student-t distribution with eight degrees of freedom (left). QQ-plot
of standardized Topix residuals on the x-axis against quantiles of the student-t
distribution with six degrees of freedom (right).
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5.2.3. Time Series Properties of the Model Residuals

The time series properties of the residuals from model 3 which contains the un-
correlated volume variable u; 5 are examined in Table IV. The given statistics test
for dependence in the residuals and their squared values. They include sample au-
tocorrelations (SACF'), sample partial autocorrelations (SPACF) and Ljung/Box
statistics Q(I) up to a lag of I = 4 trading days. It is well-known that for #id
random variables with finite variance, the sample autocorrelations are asymptot-
ically normal with a standard error of 1/4/T. The Ljung/Box statistic Q(I) tests
for uncorrelatedness up to lag [, where, again, the variance of the variables has to
exist.

The results for the GARCH residuals indicate that the AR(1) term in the
conditional return equation (3.2) cannot account for the dependence in all of the
index returns. Based on the ()(4)-statistic, uncorrelatedness has to be rejected
for three markets. While the DAX and the Topix shows evidence of an AR(2)
dependence structure, the Hang Seng yields highly significant PACF estimates
up to lag three. Market microstructure might explain part of these results.!®
The implication of this model violation is weak, however. Autocorrelation in the
residuals can be reduced by introducing additional higher order autoregressive
terms in the conditional return equation (3.2). Additional estimation results not
reported here, show that changes in parameter estimates are small and do not
impact our following conclusions.

As the results of Table III indicate, the statistics for examining the dependence
structure of the squared residuals in Table IV must be interpreted more cautiously.
The hypothesis & > 0.25 cannot be rejected for the model residuals based on
common significance levels. Therefore, the existence of the fourth moment of the
residual series is questionable. Mikosch and Starica (2000), for example, point out
that, when the moment is nonexistent, convergence of the sample autocorrelation
function is much slower than the usual 1/y/T-rate, since the limiting distribution
will be given by a stable law. The empirical results in Table IV show that the
autocorrelation statistics for the CAC, the Hang Seng and the Topix stay within
their usual 1/ v/ T-bands, indicating that the squared residuals are uncorrelated.
For the Dutch and the U.S. market, autocorrelation statistics lie somewhat outside

15In the Japanese market, limits are imposed on daily stock price changes. Comparable
trading rules are given in Hong Kong, where admissible price ranges are defined depending on
current bid and ask prices, the previous closing price and the lowest transaction price of the
day.
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the 1/ VT-bands. Evidence against uncorrelatedness is strongest for the DAX
and especially the FTSE 100 index. Here, the model might not capture volatility
persistence completely. Still, the results indicate that the GARCH model with
volume variable can adequately describe a great amount of dependence in squared
returns, which is a highly significant feature for all markets.

5.2.4. Results: Normal Market Conditions

In the following, the discussion of the estimation results is based on the GARCH
model specifications 1 and 3, the latter containing the uncorrelated volume vari-
able u; 9. Table V gives the results for the model with no volume variable, Table
VI gives the results for the model with volume variable.

Conditional Variance Considering the return variability-volume dependence,
the uncorrelated abnormal volume variable provides strong evidence for the mix-
ture of distributions hypothesis. Six out of seven parameter estimates of w, in
Table VI are significant at the 99 percent confidence level.

The CAC-index is the only data set showing an insignificant positive return
variability-volume dependence. Note that although the volume variable is in-
significant, the constant wy in the variance equation has the lowest significance
level in the sample, which indicates that model 3 describes time variation in vari-
ance quite well.'® Another exception in the conditional return variability-volume
dependence is found for the U.S. market. The S&P 500 is the only index where
the volume variable is highly significant while the GARCH coefficients are statis-
tically insignificant. Comparing the results of Table VI to those reported in Table
V, volume obviously captures large parts of the volatility persistence in returns
which is highly significant in a model without the volume variable. By setting the
variables equal to their unconditional means in the conditional variance equation
(3.5), our results indicate that roughly 60 percent of the U.S. market volatility
can be attributed to common information arrivals together with statistically in-
significant volatility persistence, whereas roughly 40 percent can be attributed to
above-average trading activity.

6These particular results for the French market may relate to the definition of the CAC
volume series; see www. euronext . fr for details. The authors thank Bertrand Maillet for pointing
out this issue.
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The result of a statistically insignificant volatility persistence component for
the U.S. market is particularly interesting as it is achieved under the uncorrelated
volume variable. A possible explanation for this puzzling finding is that random
common and private information arrivals are positively cross-correlated. When
common information events cause private information flow and hence above-
average volume as indicated by the empirical findings in Hiemstra and Jones
(1994), volatility persistence is found in model 1 while abnormal volume captures
volatility persistence in model 3. Our results for the U.S. market are therefore
consistent with the hypothesis that volatility persistence is explainable by return-
volume causality.

For all other markets, the wo and the ws coefficients in Table VI are significant
at the 99 percent level. Comparing the results to those in Table V shows that
volume can at least partly explain volatility persistence in these markets as well,
since the magnitude of the w3 coefficients decreases remarkably. The volume
variable accounts for roughly 25 percent of market volatility for the AEX, the
DAX and the FTSE 100 and for about 10 percent in the case of the Hang Seng
and the Topix.

Evidence of the so-called leverage effect in Table V shows that the effect is
significant for five out of seven markets in model 1. When the volume variable is
added, the ws coefficient becomes significant for the Dutch and German markets,
but insignificant for the U.S. market (see Table VI). The latter result for the U.S.
market is in line with the finding of volume dominating GARCH effects. The
results for the non-U.S. markets suggest that the leverage effect is stronger than
the standard ARCH effect, i.e. there is evidence of an asymmetric response of
volatility with respect to positive and negative return innovations.

Conditional Return As the mixture of distributions model does not make
predictions about the risk-return relation and since the implications of economic
theory are ambiguous, it is of particular interest to empirically study the role of
volume. The results presented here show that volume can increase the significance
of the GARCH in-mean component. Our finding of a positive return-variance
relation is in accordance with the results for the U.S. market in Gallant et al.
(1992).17

17Using monthly data, Gennotte and Marsh (1993) find a positive, though not highly signifi-
cant relation. A negative relation for monthly data is found in Golsten et al. (1993).
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Table V illustrates that in the GARCH-M setting without volume, the evi-
dence of a significant conditional risk-return relation is weak. Only the U.K. data
show a significant positive relation. When the volume variable is introduced into
the model in Table VI, the results change to positive coefficients for all markets,
where significance at the 99 percent level is given for five out of seven markets.
The results indicate that the risk premium is varying through time, positively de-
pending on conditional variance. As the conditional variance can be explained by
volume, it seems that this evidence helps to explain, in an economically plausible
way, the puzzling positive volume return premium as documented for example
in Karpoff (1987) and more recently in Gervais et al. (2001). However, since
the volume variable is essential for the explanation of the conditional risk-return
relation, risk considerations can only partly explain a time-varying risk premium
in international market returns (see also the footnote in Section 5.2.2). In other
words, there is also evidence of a positive high volume premium, i.e. conditional
expected returns are closely related to the arrival of private information.*®

Comparing the results of Table V with those of Table VI furthermore gives
some results which show that autocorrelation in index returns is related to ab-
normal trading volume. Particularly, above-average trading volume can explain
positive autocorrelation in U.K. and U.S. index returns (compare also Table IV).
Evidence for the other markets of our sample is weaker. The strong autocor-
relation in the Asian equity market returns cannot be explained, indicating mi-
crostructure issues as outlined in Section 5.2.3.

5.3. Return Variability-Volume Dependence in the Tails

The examination of the return variability-volume dependence in the tails of the
joint return-volume distribution is based on estimates of the bivariate extreme
value model. A test of the null hypothesis of independence is performed. Addi-
tionally, asymmetries in the dependence structure are analyzed considering the
predictions of the bad proxy and the misinterpreted-trade hypothesis as outlined
in Section 3.3.

8In order to explain the positive sign of the relation, on average, the positive price pre-
mium that informed buyers pay to uninformed sellers tends to be larger than the negative price
premium informed sellers give to uninformed buyers. This corresponds for example to a mi-
crostructure finding by Kalay et al. (2002) who document that buys are more informative and
have a larger price impact than sells.
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5.3.1. Estimation

Following Tawn (1988), the parameters of the marginal GEV distributions (3.7)
are first estimated for the absolute returns and the abnormal volume observations
individually. This was done in Section 5.1, where the results were summarized in
Table I. In a second step, the dependence parameter of the joint limiting extreme
value distribution function H,(r, u) given by (3.10) is estimated. With the corre-
sponding density function h,(r, u) and M = 118 standardized subsample extremes
Tm1 and u,, r from our dataset, the ML-estimate of the dependence parameter is
given by:

M

~ = arg max In Ay (T, 1, U, 7)) - (5.1)
v€[L,00) S—

For v > 1 the usual regularity conditions of the MLE are satisfied. The estimate
of v yields the parametric estimate of the dependence function A, (w).

5.3.2. Testing for Independence

Under independent upper tails of the absolute returns and the abnormal volume
variable, the dependence parameter v equals one. At the boundary v = 1, the
score function of the mth observation,

. d lIl h,y (?m,Ty amg“)

> , (5.2)

r=1

Sm

has expectation E(s,,) = 0 and variance E(s?,) = oo. It can be shown that
the normalized score statistic of the log likelihood function then converges to a
standard normal distribution:

S

[AMInM] 72> s, 5 N(0;1). (5.3)

m=1

As the rate of convergence is rather slow, Tawn (1988) recommends the use of
simulated critical values for inference in small samples. When the tails of abso-
lute returns and abnormal volume are dependent, i.e. for v > 1, it follows that

E(sy,) > 0.
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5.3.3. Asymmetric Dependence

The bivariate extreme model estimated above is based on the assumption of sym-
metric dependence. The latter implies that dependence is strongest under equally
large standardized absolute return and volume extremes and that an equal reduc-
tion in the magnitude of either standardized extreme yields the same reduction
in dependence as measured by A(w).

Possible asymmetric dependence is for example captured by an alternative
non-parametric estimator of the dependence function derived in Pickands (1981).
Under unit Fréchet margins, and w = [(1/u)/(1/u+ 1/7)] = 7/(7 + @), the esti-
mator is given by:

A@) =M (Z min {[(1 = @)Fpmr] " [@ﬂm,T]1}> , 0<w<l.
m=1 (54)

Furthermore, the score statistic (5.2) can provide information about the de-
pendence between extreme return and volume observations versus the magnitude
of each extreme observation. In order to test for a linear relation between the score
statistic and the magnitude of the extreme observations, the following regression
model is used:

8m = Bo + B1 [Tm,r| + Botbm,r + M- (5.5)

If there is no linear relationship, the constant model,

Sm = a + Up, (5.6)

should perform equally well with model (5.5). The coefficient « in the latter model
is predicted to be positive in the dependence case.

The estimation of the above models by standard OLS would make statistical
inference non-robust with respect to the independence case which, as noted above,
implies F(s,;,) = 0 and E(s?,) = oo. In order to robustify the inference, a Huber
M-estimator is used. Estimation is carried out by iteratively re-weighted least
squares, where a cutoff point of 1.345 is chosen. For details refer for example to
Venables and Ripley (1999).
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5.3.4. Results: Market Stress

Return Variability-Volume Dependence in the Tails The results for re-
turn variability-volume dependence are given in Table VII. In order to compare the
estimation results with evidence for the overall unconditional return variability-
volume dependence, Newey/West (1987) heteroskedasticity and autocorrelation
consistent estimates of the correlation between |r;| and u; are given in the first
column. The results for the dependence parameter 7, its standard error and
Tawn’s normalized score statistic (5.3) are reported in column two. The extreme
correlation coeflicient, éorr(Mpr; Myr) = 7 'T(2/9)'T'(1/7)? — 1, is given in
column three.'? As the tail coefficient estimates E are particularly subject to sam-
pling error, a sensitivity analysis is performed. Column two additionally gives the
estimates of the dependence parameters which result for a one standard deviation
variation in the estimated tail coefficient of the return distribution. The results
turn out to be quite stable, showing that a potential errors-in-variables problem
due to the estimation of the marginal GEV parameters in a first step is not too
severe.

The parametric estimation results in Table VII show that the tail independence
hypothesis for the joint distribution of absolute returns and abnormal volume
can be rejected for five out of the seven markets in the sample. The two-step
estimation procedure gives a confidence level of 90 percent based on Tawn’s score
statistic under the assumption that the parameters of the GEV distribution are
known. The dependence relation is most significant for the U.S. and the U.K.
market. For all the markets with exception of the Dutch and the U.K., the
estimated extreme correlation between absolute returns and volume is smaller
than the overall correlation estimate. For the CAC and the DAX market data,
the hypothesis of tail independence for absolute returns and volume cannot be
rejected. This particularly indicates that return variability-volume dependence for
the DAX, which was found to be highly significant in the GARCH model setting,
breaks down in the tails. For the French market the finding is not surprising as
the volume variable has no significant explanatory power in the GARCH model.
Generally however, it can be concluded that there is evidence of return variability-
volume dependence also in the tails of the joint return-volume distribution.

9Note that dependence in the extreme value model is based on the range of the monthly data
as measured by the observed monthly maximum. Our Newey/West daily estimator of overall
return variability-volume dependence is also a consistent estimator of dependence on a monthly
basis.
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Evidence on an Asymmetric Dependence Function Referring to Section
5.3.3, non-parametric estimates (5.4) of the dependence function for all indices
except the CAC are given in Figure 5. The plots of a smoothed version of the non-
parametric estimator suggest some asymmetry particularly for the AEX, DAX and
TPX data. While dependence for the DAX is stronger than under the symmetric
model for small w < 1/2, the same holds for w > 1/2 in the case of the AEX
and the Topix. Recalling the definition w = r/(r + u), these results indicate that
dependence weakens for large (absolute standardized) return observations for the
German market and for large (abnormal standardized) volume observations for
the Dutch and Japanese markets. As discussed in Section 3.3, this is evidence
for the misinterpreted-trade hypothesis, especially for the German market, and
evidence of the bad proxy hypothesis for the other two markets.

The regression models (5.5) and (5.6) offer a different perspective in addressing
the question of asymmetry. Estimation results are given in columns four to eight
in Table VII. The regression results for model (5.6) yield a significantly positive
estimate of the intercept a for the AEX, DAX, FTS, HSI and SPX. These results
confirm the conclusions drawn from the Tawn-Statistic (5.3). Under the regres-
sion model, evidence of dependence turns out to be weaker for the Topix, but
stronger for the DAX. The rescaled median absolute deviation (MAD) provides a
robust estimate of the standard deviation of the residuals. It shows that for the
S&P 500 and the FTSE 100, model (5.5) does not explain variation in the score
statistic better than the simple constant model (5.6). We therefore conclude that
empirically, there is no linear relationship as suggested by the model. In other
words, evidence of asymmetry is weak.

For the other markets, the MAD-statistics indicate that model (5.5) has bet-
ter explanatory power than model (5.6). Evidence of asymmetry in the price
variability-volume dependence is given for the Dutch, Hong Kong and Japanese
markets. An examination of the estimated regression equations shows that large
extreme volume is significantly negatively correlated with the score-statistic. As
in the previous section, this can be interpreted as evidence consistent with the bad
proxy hypothesis, i.e. extreme volume is a bad proxy for information flow. The
results for the CAC and the DAX show that the score statistic is also significantly
negatively correlated with the extreme absolute return observations. This again
indicates evidence consistent with the misinterpreted-trade hypothesis. That is,
the weakness of the extreme return variability-volume dependence in the French
and German markets may be regarded as related to temporary liquidity issues.
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AEX - of the Bivariate Di Function A(w) DAX - of the Bivariate Di Function A(w)

0.5 . . . . . . . . , 0.5 . . . . . . . . ,
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11~ 11-

o 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 o 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
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w w

Figure 5: Parametric (solid) and smoothed non-parametric (dotted) esti-
mates of the bivariate dependence function A(w), w = r/(r + u), for the AEX,
the DAX, the FTSE 100, the Hang Seng, the S&P 500 and the Topix.
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(Insert Table VIII from the back of the paper here)
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Altogether the results suggest that a weakening of the return variability-
volume dependence in the tails can be attributed to the very largest return and
especially volume observations. Also, in none of the markets do we see the depen-
dence between returns and volume significantly strengthening for large extreme
volume.

Asymmetric Return-Volume Dependence in the Tails So far the results
considered return variability-volume dependence in the tails by examining depen-
dence between monthly maxima of |ry| and u;. Table VIII gives a comparison
of the results on tail dependence when the dependence parameter « is estimated
separately for three different cases: dependence between maximum r; and uy, i.e.
the upper tail return-volume dependence, dependence between maximum —r; and
uy, i.e. the lower tail return-volume dependence, and finally dependence between
maximum —7r; and preceding months u;’s, i.e. a one-month lagged lower tail
return-volume dependence.

The results in columns two to seven of Table VIII indicate that dependence is
weaker on average when not only the size but also the sign of the return observa-
tions is considered. For the German, French and the U.S. market, there is little
difference in the return-volume dependence in the upper versus lower tail. This is
not surprising for the German and the French market where the dependence rela-
tion is found to be insignificant. Hence, the U.S. market is the only market in the
sample for which return variability-volume dependence in the tails is significant,
symmetric, and, as the last two columns of Table VIII indicate, contemporaneous.

For all the other markets with significant extreme return variability-volume
dependence, the estimation results indicate that return-volume dependence is
stronger in the upper tail of the return distribution.?® This provides evidence
that the relation between minimal returns and volume is weaker than the rela-
tion between maximal returns and volume. Under the plausible assumption that
investors do not face more substantial short-sale restrictions in the U.S. as com-
pared to the other markets in our sample, cross-sectional evidence does not seem
to be consistent with a hypothesis that crashes occur under releases of hidden
information which is in turn accumulated due to short-sale restrictions. Under
such hypothesis the return-volume dependence in the lower tail of the return dis-
tribution should be stronger for the non-U.S. markets.

20T hese findings of tail asymmetry are reconfirmed for less liquid emerging markets in a study
by Qi (2001); this supports a liquidity story in explaining asymmetry.
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When we consider the lagged lower tail relationship in the last two columns
of Table VIII, cross-sectional evidence of crash-predictability in the sense of a
volume-return lead-lag relation turns out to be weak. Interestingly, lagged depen-
dence is strongest for France, where contemporaneous dependence is weak.

In summary, in none of the markets extreme stock price drops tend to have
a higher correlation with volume than do extreme stock price upswings. Overall
evidence of crash-predictability in the sense of extreme volume leading extreme
return is weak.

6. Conclusion

This paper provides empirical evidence on the return-volume relationship for a
cross-section of seven large international equity markets. The results show that
trading volume is important to the understanding of expected equity returns,
return variability and large price movements. Consistent with the mixture of
distributions hypothesis, we find an overall significant return variability-volume
dependence. It turns out that the U.S. market, where the S&P 500 proxies the
largest and most liquid national stock market portfolio, has characteristics that
appear more straightforward than those for the other markets in the study. For the
U.S. benchmark, surprise volume explains ARCH- as well as leverage-effects and,
under market stress, the return variability-volume dependence remains significant
and symmetric.

Referring to the cross-section of equity markets, our empirical results pro-
vide several implications which shed a new light on the return variability-volume
relation in international stock markets:

e As opposed to standard applications of volume in financial modeling, we
find surprise volume to be a superior proxy for unobservable information
flow. Apart from being more informative, surprise volume, within a non-
linear specification of the conditional variance equation, significantly drives
conditional volatility and expected return dynamics.

e Surprise volume, which is time-series uncorrelated, is found to explain fat-
tails and particularly ARCH-effects. This is contrary to a hypothesis in the
mixture of distributions literature where ARCH-type volatility persistence
is assumed to be due to time series correlation in the proxy variable for
unobservable information flow.
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e Surprise volume explaining ARCH-effects is consistent with return-volume
causality as documented in Hiemstra and Jones (1994). When large re-
turn innovations cause lagged volume innovations, these may exhibit low
time series correlation and still explain lagged increased conditional return
volatility.

e Asymmetric volatility, or the so-called leverage effect, appears to be a feature
which vanishes for the U.S. market but partly strengthens for the other
markets once surprise volume is introduced. It seems an open question as to
whether negative returns cause larger lagged heterogeneity among investors
than positive returns.

Our empirical findings are partly consistent, partly inconsistent with models
for understanding the mechanics of financial crises and market stress. The return-
volume relation in the tails of the joint return-volume distribution exhibits the
following characteristics:

e The price variability-volume dependence is significant, albeit weaker in the
tails. Further analysis suggests that weaker dependence is mostly due to the
very largest absolute return and especially large volume observations. This
may indicate large volume being a bad proxy for private information flow.

e Estimating dependence in the upper return-volume and lower return-volume
tail separately, indicates that, on average, the return-volume dependence is
weaker for minimal returns and volume than for maximal return and volume.
This finding is inconsistent with the mixture model which does not provide
implications regarding such asymmetric dependence.

e Empirical evidence of asymmetric dependence appears to be consistent with
the non-linearity in price elasticity as put forward with the Gennotte and
Leland (1990) mis-interpreted trade hypothesis. Large run-ups in prices
tend to be accompanied by corresponding trading activity, while large price
drops may occur without substantial trading volume. Evidence by Haugen
et al. (1991) shows that such drops also tend not to be explainable by
public information releases. This supports a liquidity explanation of drops
consistent with the Gennotte and Leland model.
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e In none of the markets do we see the dependence between return variabil-
ity and volume strengthen for large extreme volume. Also, evidence of
asymmetric dependence predicts price drops under moderate volume. These
findings appear to be inconsistent with models predicting negative skewness
and hence the probability of crashes to be larger conditional on high levels
of trading volume such as the Hong and Stein (2003) hidden information
hypothesis for market crashes.

e While negative skewness in stock returns was found to be predictable by
preceding abnormal trading volume in Chen et al. (2001), the authors indi-
cate that forecasting crashes remains a difficult task (p. 348). We test for
extreme dependence in extreme abnormal volumes during one month and
subsequent month’s extreme returns. Our evidence of crash-predictability
in the sense of extreme volume leading extreme return is weak.
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