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Abstract

In recent years results from the theory of martingales has been successfully applied to problems

in �nancial economics. In the present paper we show how e�cient and elegant this \martingale

technology" can be when solving for complex options. In particular we provide closed form solutions

for several new classes of exotic options including the cliquet, the ladder, the discrete shout and

the discrete lookback. We also provide a derivation of the price of an option on the maximum of

n assets to demonstrate the power of the multi-dimensional Girsanov theorem. Although some of

the results presented are well known, the treatment of the material in this paper is new in that

it focuses on the application of the martingale technology to concrete problems in option pricing,

methods that until now have mostly been used for purely theoretical purposes.



Pricing Derivatives the Martingale Way

1 Introduction

There are two main approaches to the pricing of derivative securities. The �rst, due to Black and

Scholes (1973) and Merton (1973), is the \partial di�erential equation" (PDE) approach. This

technique consists of constructing a PDE along with appropriate boundary conditions for the price

of a derivative security. The PDE can then be solved using various analytical or numerical methods.

The second approach, initiated by Cox and Ross (1976) and Harrison and Kreps (1979), is the

\martingale method." This approach consists of writing the value of the security as the expected

value of the discounted payo� under a risk neutral measure Q and calculating this expectation

using probabilistic methods. In the present paper we show how to powerfully apply the second

method when solving for complex options, and in particular we provide closed form solutions for

several new classes of exotic options.

We begin the paper by deriving the Black and Scholes European call option formula using the

martingale approach. The derivation here allows us to introduce the essential technology of the

martingale method in an example well known to most readers. In the succeeding sections, we apply

the martingale method to a series of more complicated exotic options, where we hope the elegance

and computational simplicity of the approach will become readily apparent.
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2 The Black and Scholes Case

From standard �nancial economics theory the value of the Black and Scholes European option can

be written as

VBS = EQ
h
e
�rT max (�(ST �K); 0)

i
(2:1)

where � = 1 for a call option and � = �1 for a put option. Here EQ denotes the expectation,

conditional on all information at time 0, with respect to the risk neutral probability measure Q.

The stock price St has dynamics given by

d logSt = �
Q
dt+ �dw

Q
t
; (2:2)

where the risk-neutral drift is

�
Q = r � q � 1

2
�
2
: (2:3)

In this equation, r is the riskless instantaneous interest rate over the period considered, q is the

continuous dividend yield paid out by the stock, and w
Q
t is a Wiener process under the probability

measure Q.

Consider the valuation of the call option. The value of the call can be rewritten as:

CBS = EQ
h
e
�rT

ST1fST>Kg
i
�Ke

�rTEQ
h
1fST>Kg

i

� V1 � V2: (2.4)

From the de�nition of the indicator function, EQ[1fAg] = Q[A]. Hence, we have

V2 = Ke
�rTQ [ST > K] : (2:5)

Integrating the log-process for St given above, we have

ST = Se
�
Q
T+�wQ

T (2:6)
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where S without subscript denotes the value of the stock price at time 0 (this notation will be used

for the remainder of the paper).

Hence, we have

V2 = Ke
�rTQ

"
�w

Q
Tp
T
< d

Q(K; T )

#

= Ke
�rT

N

�
d
Q(K; T )

�
(2.7)

where we have de�ned

d
Q(K; T ) =

log(S=K) + �
Q
T

�
p
T

(2:8)

and N(�) denotes the standard normal cumulative distribution function. This result follows because

�wQ
T
=
p
T is a standard normal random variable under Q.

The �rst term in (2.4) can be calculated as follows. De�ne

�T =
ST

S
e
�(r�q)T = e

�w
Q

T
��2T=2

: (2:9)

Note that �T is strictly positive and that EQ[�T ] = 1. Hence, as shown in the Appendix, �T is a

Radon-Nikodym derivative which can be used to de�ne a probability measure R equivalent to Q

such that

ER[1fAg] = EQ[�T1fAg]: (2:10)

Furthermore, if we de�ne w
R
t

= w
Q
t
� �t, then as also shown in the Appendix, wR

t
is a Wiener

process under R. Hence the dynamics for the stock process can be written as

d logSt = �
R
dt+ �dw

R
t (2:11)

where the drift �R of the return under the R measure is

�
R = r � q +

1

2
�
2 = �

Q + �
2
: (2:12)
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Hence the �rst term can be rewritten as:

V1 = Se
�qTEQ

h
�T1fST>Kg

i

= Se
�qTER

h
1fST>Kg

i

= Se
�qTR

"
�w

R
Tp
T
< d

R(K; T )

#

= Se
�qT

N

�
d
R(K; T )

�
(2.13)

where we de�ne

d
R(K; T ) =

log(S=K) + �
R
T

�

p
T

= d
Q(K; T ) + �

p
T: (2:14)

Combining the expressions for V1 and V2 then leaves us with the usual Black-Scholes result.

Similar calculations can be used to value the put option. Both formulas can be conveniently

summarized in the following formula:

VBS(S;K; T; �; r; q; �) = �Se
�qT

N

�
�d

R(K; T )
�
� �Ke

�rT
N

�
�d

Q(K; T )
�
: (2:15)

Note that the martingale methodology requires no integrals to be evaluated!

This example is meant to familiarize the reader with the probability measure R which will be

used often in the following sections. Note that this change of measure is similar to the so-called

\forward neutral" change of measure often used in �xed income securities pricing.1 Note that the

R measure is the equivalent martingale measure when the stock mutual fund Xt = Ste
qt is used

as numeraire, as opposed to the Q measure which is the equivalent martingale measure when the

money market fund e
rt is used as numeraire. In particular, this means that for any derivative price

Vt, we have

Vt

Xt

= ER
t

�
VT

XT

�
; (2:16)
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or

Vt = Ste
�q(T�t)ER

t

�
VT

ST

�
: (2:17)

3 The Cliquet

Consider three dates, 0 < tc < T . At the terminal date T , the cliquet option pays

max[�(ST �K); �(Stc �K); 0] (3:1)

where � = 1 for a call option and � = �1 for a put option. We refer to the intermediate date tc as

the cliquet date.

Consider then the evaluation at date 0 of the cliquet call option. By the usual risk-neutral

argument we have

CCL = e
�rTEQ

h
1fStc>ST ;Stc>Kg(Stc �K)

i
+ e

�rTEQ
h
1fST>Stc ;ST>Kg(ST �K)

i

� V1 + V2: (3.2)

Using the law of iterated expectations the �rst term can be written as

V1 = e
�rTEQ

h
1fStc>Kg(Stc �K)EQtc

h
1fStc>ST g

ii
: (3:3)

But

ST = Stce
�
Q(T�tc)+(wQT �wQtc ) (3:4)

and hence we have

EQtc
h
1fStc>ST g

i
= Q

 
w
Q
T
� w

Q
tcp

T � tc

< ��
Q

�

p
T � tc

!
= N

 
��

Q

�

p
T � tc

!
(3:5)
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Since this expression is a constant it can be taken out of the expectation. We are thus left with:

V1 = e
�r(T�tc)N

 
��

Q

�

p
T � tc

!
EQ

h
e
�rtc1fStc>Kg(Stc �K)

i

= e
�r(T�tc)N

 
��

Q

�

p
T � tc

!
CBS(S;K; tc; �; r; q) (3.6)

where CBS is the familiar Black-Scholes European call option formula as given in (2.15).

For the second term we split the expectation into two parts and use the change of measure

introduced in the previous section to �nd

V2 = Se
�qTER

h
1fStc<ST ;ST>Kg

i
�Ke

�rTEQ
h
1fStc<ST ;ST>Kg

i
: (3:7)

As above, we �nd

EQ[1fStc<ST ;ST>Kg] = Q
 
�w

Q
T
� w

Q
tcp

T � tc

<
�
Q

�

p
T � tc;�

w
Q
Tp
T
< d

Q(K; T )

!

= N2

0
@�

Q

�

p
T � tc; d

Q(K; T );

s
T � tc

T

1
A (3.8)

where N2(a; b; �) is the bivariate cumulative normal distribution function with correlation �. Note

that to get the second equality we have made use of the fact that at date 0, �w
Q

T
�wQtcp
T�tc and �w

Q

Tp
T

are standard normal random variables. The correlation between them is found by noting that

Cov(�w
Q

T
�wQtcp
T�tc ;�

w
Q

Tp
T
) =

q
T�tc
T

.

Similarly, the �rst term of V2 is

ER[1fStc<ST ;ST>Kg] = R

 
�w

R
T
� w

R
tcp

T � tc

<
�
R

�

p
T � tc;�

w
R
Tp
T
< d

R(K; T )

!

= N2

0
@�

R

�

p
T � tc; d

R(K; T );

s
T � tc

T

1
A (3.9)

where dQ and d
R are as de�ned in (2.8) and (2.14). Hence we have:

V2 = Se
�qT

N2

0
@�

R

�

p
T � tc; d

R(K; T );

s
T � tc

T

1
A�Ke

�rT
N2

0
@�

Q

�

p
T � tc; d

Q(K; T );

s
T � tc

T

1
A :

(3:10)
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Similar calculations can be used to value the cliquet put option. Both the put and the call can

be conveniently summarized by the following expression:

VCL(S;K; T; �; r; q; tc; �) = e
�r(T�tc)N

 
���

Q

�

p
T � tc

!
VBS(S;K; tc; �; r; q; �)

+�Se�qTN2

0
@��R

�

p
T � tc; �d

R(K; T );

s
T � tc

T

1
A

��Ke
�rT

N2

0
@��Q

�

p
T � tc; �d

Q(K; T );

s
T � tc

T

1
A : (3.11)

4 The Ladder

De�ning L > K to be the ladder price the payo� to a Ladder option is:8>>><
>>>:

max[ST �K;L�K]; if S has reached L before maturity, or

max[ST �K; 0]; otherwise.

If L � K the problem is trivial and the value of the ladder call option reduces to the value of a

simple Black Scholes call.

Since the payo� of the ladder option will depend on the value of the maximum price attained

by the stock price during the life of the option (which we de�ne by S(T )), its price will depend on

the joint distribution of the stock price at maturity ST and S(T ). More formally let us introduce

the general notation for the running maximum of a process Xt:

X(t) = max
0�s�t

Xs (4:1)

Using the martingale approach developed in the previous section the value of the ladder call option

can be expressed as follows:

CL(S;K; T; �; r; q; L) = e
�rTEQ

h
1fS(T )<L;ST>Kg(ST �K)

i
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+e�rTEQ
h
1fS(T )>L;ST>Lg(ST �K)

i

+e�rTEQ
h
1fS(T )>L;ST<Lg(L�K)

i
(4.2)

Using the same trick, namely splitting the expectations and applying Girsanov's theorem when

necessary we can rewrite the value of the option as follows:

CL(S;K; T; �; r; q; L) = Se
�qTER

h
1fS(T )<L;ST>Kg

i
�Ke

�rTEQ
h
1fS(T )<L;ST>Kg

i

+Se�qTER
h
1fS(T )>L;ST>Lg

i
�Ke

�rTEQ
h
1fS(T )>L;ST>Lg

i

+e�rT (L�K)EQ
h
1fS(T )>L;ST<Lg

i
(4.3)

But this can be rewritten with our previously de�ned notation as:

CL(S;K; T; �; r; q; L) =

Se
�qTR

 
XTp
T
< l;

XTp
T
> k)

!
�Ke

�rTQ
 
XTp
T
< l;

XTp
T
> k

!

+Se�qTR
 
XTp
T
> l;

XTp
T
> l

!
�Ke

�rTQ
 
XTp
T
> l;

XTp
T
> l

!

+(L�K)Q
 
XTp
T
> l;

XTp
T
< l

!
(4.4)

Where we use the following notations:

Xt = log(St=S) (4.5)

l = log(L=S) (4.6)

k = log(K=S) (4.7)

Note from our previous results that Xt is a (�Q; �) standard (i.e starting at 0) brownian motion

under Q and (�R; �) standard brownian motion under R. Whence, using the formulas for the

joint distribution of the running maximum of a brownian motion and the value itself given in the
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appendix B, we get the following result:

VL(S;K; T; �; r; q; L) =

VBS(S;K; T; �; r; q)+ �(L�K)e�rT
�
L

S

�2�Q

�2

N

 
��l + �

Q
T

�

p
T

!

�Se�qT
�
L

S

�2�R

�2

"
N

 
��l + �

R
T

�

p
T

!
�N

 
�
k � 2l� �

R
T

�

p
T

!#

+Ke
�rT

�
L

S

� 2�Q

�2

"
N

 
��l + �

Q
T

�
p
T

!
�N

 
�
k � 2l � �

Q
T

�
p
T

!#
(4.8)

5 The Discrete Shout

The continuous shout is an option that allows its holder to \shout" at any one date before expiration

and obtain the following payo� at expiration:

max [�(Ss �K); �(ST �K); 0] (5:1)

where Ss is the value of the stock on the shout date ts, and � = 1 (�1) for a call (put). A discrete

shout is like the continuous version, except that shouting is allowed on only a discrete set of dates.

Note that the option holder can shout at most once during the life of the option. If only one

intermediate shout date is allowed, then the discrete shout reduces to the cliquet option studied in

the previous section.

In this section we apply the martingale methodology to evaluate the discrete shout option.

The continuous shout can be obtained as the limit of the discrete shout as the maximum time

interval between shout dates tends to zero, and hence can be arbitrarily closely approximated by

the discrete shout.2

Consider now the evaluation of the n-date discrete shout call option. Assume that the allowed

shout dates are 0 < t1 < t2 < � � � < tn < tn+1 � T . Let Cn

SH(S;K; T; �; r; q; t1; : : : ; tn) denote

9



the value of the shout with maturity T and n remaining shout dates. Suppose that at date tj the

option holder has not yet shouted. If he shouts at tj , the value of the option at this date is given

by

CSH(tj) = e
�r(T�tj)EQ

j
[max (Sj �K;ST �K; 0)]

= e
�r(T�tj)EQ [(Sj �K)] + e

�r(T�tj)EQ
h
(ST � Sj)1fST>Sjg

i

= (Sj �K)e�r(T�tj) + CBS(Sj; Sj ; T � tj ; �; r; q): (5.2)

If he does not shout at tj , he is left with C
n�j
SH (S;K; T � tj ; �; r; q; tj+1; � � � ; tn). Thus the option

holder will shout at date tj , j = 1; : : : ; n, if and only if the stock price is greater than a critical

value S�
j
determined recursively by

(S�j�K)e�r(T�tj)+CBS(S�j ; S
�
j ; T�tj ; �; r; q) = C

n�j
SH (S�j ; K; T�tj; �; r; q; tj+1�tj ; : : : ; tn�tj) (5:3)

where we use the convention that C0
SH = CBS.

Using the shouting criterion derived above, the value of the discrete shout is given by

C
n

SH(S;K; T; �; r; q; t1; � � � ; tn) = (5.4)

n+1X
j=1

e
�rtjEQ

�n
(Sj �K)e�r(T�tj) + CBS(Sj; Sj ; T � tj ; �; r; q)

o
1fS1<S�1 ;S2<S�2 ;���;Sj�1<S�j�1 ;Sj�S�j g

�

with

S
�
n+1 � K (5:5)

and S
�
1 ; : : : ; S

�
n are de�ned by (5.3).

We proceed to solve this as in the previous sections. De�ne functions IQj and IRj as

IQj = EQ
�
1fS1<S�1 ;���;Sj<S�j g

�
(5.6)

IRj = ER
�
1fS1<S�1 ;���;Sj<S�j g

�
: (5.7)
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Using the Black-Scholes formula, simple algebra leads directly to

C
n

SH(S;K; T; �; r; q; t1; � � � ; tn) =
n+1X
j=1

n
Se

�qtj (IRj�1 � IRj)Aj �Ke
�rT (IQj�1 � IQj)

o
(5:8)

where Aj is de�ned by:

Aj = e
�q(T�tj)N

 
�
R

�

q
T � tj

!
+ e

�r(T�tj)N

 
��

Q

�

q
T � tj

!
: (5:9)

Note that IQj and IRj can be rewritten more explicitly as follows

IQj = Q
 
w
Q
1p
t1

< �dQ(S�1 ; t1); : : : ;
w
Q
jp
tj

< �dQ(S�j ; tj)
!

= Nj

�
�dQ(S�1 ; t1); � � � ;�dQ(S�j ; tj); fCikg

�
(5.10)

where

Cik =

s
ti^k
ti_k

(5:11)

Here, Nj(a1; � � � ; aj ; f�i;kg) denotes the joint j-nomial standard normal cumulative distribution

function with correlation matrix f�ikg. Similarly we �nd

IRj = Nj

�
�dR(S�1 ; t1); : : : ;�dR(S�j ; tj); fCikg

�
: (5:12)

The same method can be used to derive the price of the discrete shout put option. Setting

� = 1 (�1) if the discrete shout is a call (put), the general formula can then be written as

V
n

SH(S;K; T; �; r; q; �; t1; � � � ; tn) =
n+1X
j=1

n
�Se

�qtj(IRj�1 � IRj)Aj

o
� �Ke

�rT (1� IQn+1) (5:13)

where IR0 = 1 and for j = 1; : : : ; n+ 1

IQj = Nj

�
��dQ(S�1 ; t1); : : : ;��dQ(S�j ; tj); fCikg

�
(5.14)

IRj = Nj

�
��dR(S�1 ; t1); : : : ;��dR(S�j ; tj); fCikg

�
(5.15)

Aj = e
�q(T�tj)N

 
�
�
R

�

q
T � tj

!
+ e

�r(T�tj)N

 
���

Q

�

q
T � tj

!
: (5.16)
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The critical prices S�1 ; S
�
2; : : : ; S

�
n+1 are de�ned recursively by

S
�
n+1 = K (5:17)

�(S�
j
�K)e�r(T�tj)+VBS(S�j ; S

�
j
; T�tj ; �; r; q; �) = V

n�j
SH (S�

j
; K; T�tj ; �; r; q; �; tj+1�tj ; : : : ; tn�tj):

(5:18)

6 Option on a Discrete Maximum

In this section we apply the same methodology to a new option|an option on a discrete maximum.

Consider a set of dates, 0 � t1 < t2 < � � � < tn � T . The payo� at maturity of this option de�ned

to be

V
n

DM(T ) = max [� (max[S1; S2; : : : ; Sn]�K) ; 0] (6:1)

where Si is the value of the stock at date ti, and � = 1 for a call and � = �1 for a put.

The value of a call option on the discrete maximum at time 0 is given by

C
n

DM = e
�rTEQ

h
max(S1; : : : ; Sn)1fmax(S1 ;:::;Sn)>Kg

i
�Ke

�rTEQ
h
1fmax(S1;:::;Sn)>Kg

i

� V1 + V2: (6.2)

The second term can be simpli�ed by noting that

V2 = Ke
�rTQ (max(S1; : : : ; Sn) > K)

= Ke
�rT [1� Q (max(S1; : : : ; Sn) < K)]

= Ke
�rT [1� Q (S1 < K; S2 < K; : : :; Sn < K)]

= Ke
�rT

h
1�Nn

�
�dQ(K; t1); : : : ;�dQ(K; Tn); fC(1)

ik
g
�i
; (6.3)
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where the correlation matrix is

C
(1)

ik
=

s
ti^k
ti_k

: (6:4)

The �rst term can be reexpressed in the following form:

V1 = e
�rT

nX
j=1

EQ
h
Sj1fSj>S1 ;:::;Sj>Sn;Sj>Kg

i

�
nX

j=1

V1j : (6.5)

Applying the law of iterated expectations, the V1j term simpli�es to

V1j = e
�rTEQ

h
Sj1fSj>S1;:::;Sj>Sj�1;Sj>KgE

Q
tj

h
1fSj>Sj+1 ;:::;Sj>Sng

ii
: (6:6)

We now de�ne

In�j = EQtj
h
1fSj>Sj+1 ;:::;Sj>Sng

i

= Nn�j

 
��

Q

�

p
tj+1 � tj ;�

�
Q

�

p
tj+2 � tj ; : : : ;�

�
Q

�

p
tn � tj ; fC(2)

ik
g
!

(6.7)

where

C
(2)

ik
=

s
tj+i^k � tj

tj+i_k � tj
; 1 � i; j � n� j: (6:8)

Notice that In�j is nonstochastic and thus can be taken out of the expectation. We are then

left with

V1j = In�jEQ
h
e
�rT

Sj1fSj>S1 ;:::;Sj>Sj�1 ;Sj>Kg
i
: (6:9)

Applying the same change of measure from Q to R as in the previous sections, we obtain

V1j = In�je�rTSe(r�q)tjER
h
1fSj>S1 ;:::;Sj>Sj�1 ;Sj>Kg

i
: (6:10)

De�ning the expectation to be Hj and evaluating, we �nd

Hj = ER
h
1fSj>S1;���;Sj>Sj�1;Sj>Kg

i

= Nj

 
�
R

�

p
tj � t1;

�
R

�

p
tj � t2; : : : ;

�
R

�

p
tj � tj�1; dR(K; tj); fC(3)

ik
g
!

(6.11)

13



where the correlation matrix is given by

C
(3)

ik
=

s
tj � ti_k
tj � ti^k

; i; k 6= j

C
(3)
ij

= C
(3)
ji

=

s
tj � ti

tj

; i 6= j: (6.12)

Combining the above results yields the �nal answer for the call. The put option on the discrete

maximum can be calculated in a similar manner. We can summarize both results in the following

formula:

V
n

DM(S;K; T; �; r; q; �; t1; : : : ; tn) = (6.13)

nX
j=1

�HjIn�jSe(r�q)tj�rT � �Ke
�rT

h
1�Nn

�
��dQ(K; t1); : : : ;��dQ(K; Tn); fC(1)

ik
g
�i
(6.14)

with

Hj = Nj

 
�
�
R

�

p
tj � t1; �

�
R

�

p
tj � t2; : : : ; �

�
R

�

p
tj � tj�1; �dR(K; tj); fC(3)

ik
g
!

(6.15)

In�j = Nn�j

 
���

Q

�

p
tj+1 � tj ;��

�
Q

�

p
tj+2 � tj ; : : : ;��

�
Q

�

p
tn � tj ; fC(2)

ik
g
!
: (6.16)

The above results can also be used to price a discrete lookback put option. The continuous

lookback put option (Goldman, Sosin, and Gatto (1979)) has terminal payout

PCLB(T ) = max
0�t��T

S(t)� S(T ): (6:17)

The discrete version we consider here has a similar terminal payout, namely

PDLB(T ) = max (S1; S2; : : : ; Sn)� S(T ): (6:18)

The value of the discrete lookback put can be obtained using our above results, setting K = 0 and

subtracting the present value of the terminal stock price. The procedure is straightforward and

yields the �nal answer

PDLB(0) = V
n

DM(S;K = 0; T; �; r; q; �= 1; t1; : : : ; tn)� Se
�qT

: (6:19)
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7 Options on the Maximum of n Assets

In Stulz (1982) and Johnson (1987), closed form solutions are derived for the option on the maximum

of, respectively, two and n correlated assets. We show here that these solutions can be found easily

using the martingale approach. Besides showing how computationally e�cient this method can be,

our example also shows how the Girsanov theorem can be applied in a multidimensional framework

(that is with n correlated sources of risk).

Consider a generalized Black-Scholes economy with n correlated stocks and a money market

fund. The interest rate r, the dividend yields qi, and the correlations �ij , are all assumed constant.

Such an economy is known to be viable and dynamically complete, hence any derivative security

can be priced by arbitrage in a risk-neutral setting. In particular, under the risk-neutral measure

Q, the stock prices are given by

dSi(t)

Si(t)
= (r � qi)dt+ �idw

Q
i
(t); i = 1; : : : ; n: (7:1)

By de�nition, the correlation between w
Q
i
and w

Q
j
is �ij.

Consider now an option on the maximum terminal value of these n stocks. The payo� of this

option is

V
n

MX(T ) = max [� (max[S1(T ); � � � ; Sn(T )]�K) ; 0] ; (7:2)

where as usual � = 1 for a call and � = �1 for a put. Note that the payout of this option is

super�cially similar to that of the option on the discrete maximum studied in the previous section.

But here, Si refers to the terminal value of stock i, while previously it referred to the value of a

single stock at a previous date ti.

Consider the value at date 0 of a call option:

C
n

MX = EQ
h
e
�rT max[S1(T ); � � � ; Sn(T )]1fmax[S1(T );���;Sn(T )]>Kg

i
�Ke

�rTEQ
h
1fmax[S1(T );���;Sn(T )]>Kg

i
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� V1 + V2: (7.3)

The second term can easily be computed:

V2 = Ke
�rTQ (max[S1; S2; : : : ; Sn] > K)

= Ke
�rT [1� Q (S1(T ) < K; : : : ; Sn(T ) < K)]

= Ke
�rT

h
1�Nn

�
�dQ1 (K; T ); � � � ;�dQ

n
(K; T ); f�ijg

�i
(7.4)

with d
Q
i
de�ned for the stock Si as d

Q is for stock S in the previous sections.

The �rst term can be rewritten as the following sum:

V1 =
nX

j=1

EQ
h
e
�rT

Sj(T )1fSj(T )>S1(T );:::;Sj(T )>Sn(T );Sj(T )>Kg
i

�
nX

j=1

V1j (7.5)

To determine V1j, begin by de�ning

�
(j)

T
= e

�(r�qj)TSj(T )=Sj(0): (7:6)

Note that �
(j)

T
is strictly positive and has Q-expectation one. Hence we can de�ne a new probability

measure R(j), equivalent to Q, by

R(j)[A] � EQ[�(j)
T
1fAg]: (7:7)

The likelihood ratio �
(j)
t = EQt [�

(j)

T
] is an exponential Q-martingale with the following dynamics

d�
(j)
t

�
(j)
t

= �jdw
Q
j
(t) � �

(j)>
dw

Q(t) (7:8)

where �
(j) = (0; : : : ; 0; �j; 0; : : : ; 0)

> and w(t) is the n-dimensional vector of correlated Wiener

processes.
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As shown in the Appendix, the vector process

dw
(j) = dw

Q � ��
(j)
dt (7:9)

is a vector of Wiener processes under the equivalent measure R(j) with the same correlation struc-

ture as the wQ's have under Q. That is,

Cov(dw
(j)
i
; dw

(j)

k
) = �ikdt: (7:10)

For our case here, this simpli�es to

dw
(j)
i

= dw
Q
i
� �ij�jdt: (7:11)

Hence we may rewrite the stock processes relative to the fw(j)g as follows:

d logSi = �
(j)
i
dt+ �idw

(j)
i
; i = 1; : : : ; N; (7:12)

where

�
(j)
i

= r � qi + �ij�i�j �
1

2
�
2
i ; i = 1; : : : ; N: (7:13)

Hence note that under the new measure the terminal stock prices are still lognormally distributed

with only a constant shift in the drift term.

With these results in mind, then, we can write V1j as

V1j = Sje
�qjTERj

h
1fSj(T )>S1(T );:::;Sj(T )>Sn(T );Sj(T )>Kg

i

= Sje
�qjTRj

0
@��jw(j)

j
(T )� �kw

(j)

k
(T )


jk

p
T

< ejk ; 8k 6= j;�w
(j)
j
(T )p
T

< d
(j)
j
(K; T )

1
A

= Nn

�
ej1; : : : ; ejj�1; d

(j)
j
(K; T ); ejj+1; : : : ; ejn; fCikg

�
(7.14)

where


jk =
q
�
2
j
� 2�jk�j�k + �

2
k

(7.15)
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ejk =
log(Sj=Sk) + (qk � qj +
2

jk
=2)T


jk

p
T

(7.16)

d
(j)
j
(K; T ) =

log(Sj=K) + (r � qj + �
2
j
)T

�j

p
T

(7.17)

and the correlation matrix C is

Cik =
�
2
j
+ �ik�i�k � �ij�i�j � �jk�j�k


ij
jk

; i; k 6= j (7.18)

Cjk =
�j � �jk�k


jk

; j 6= k: (7.19)

The �nal answer can be expressed for both the put and call using the above notation. We �nd

V
n

MX(fSig; f�ig; f�ijg; r; q; �) =
nX

j=1

�Sje
�qjTNn

�
�ej1; : : : ; �ejj�1; �d

(j)
j
(K; T ); �ejj+1; : : : ; �ejn; fCikg

�

� �Ke
�rT

h
1�Nn

�
��dQ1 (K; T ); : : : ;��dQn (K; T ); f�ikg

�i
: (7.20)

8 Conclusion

Our goal in this paper has been to show the power and simplicity of the martingale method in

pricing several classes of complex exotic options. We have also introduced closed-form solutions

for the cliquet, the ladder, the shout and the discrete lookback. We hope that our results help

convince wary readers that the martingale technology is an important practical tool in derivative

pricing, and that readers previously unfamiliar with these tools can pro�t from them in the future.
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A Girsanov's Theorem

In this Appendix we present an intuitive overview of the body of results generally referred to as

Girsanov's theorem. There are many rigorous treatments of this material, and the mathematically

inclined reader is encouraged to refer to these works.3 Here, we purposely keep the presentation

simple in order that the martingale methodology may reach a wider audience.

A.1 One-Dimensional Case

We begin by de�ning a Wiener process and the probability space it generates in a discrete approx-

imation to the usual continuous-time economy. Consider a time interval [0; T ] partitioned into N

equal subintervals, 0 � t0 < t1 < � � � < tN � T , where ti = i�t and �t = T=N . For notational

convenience, for an arbitrary process x(t) de�ne xi = x(ti) and �xi = xi � xi�1. By de�nition, a

process w(t) is a Wiener process if and only if its increments (�w1;�w2; : : : ;�wN ) are independent

and identically distributed (IID) normal random variables with mean 0 and variance �t. De�ne a

probability space 
 to consist of all possible N -tuples of increments f(�w1;�w2; : : : ;�wN)g, and

de�ne a corresponding probability measure P by

P (�w1 2 dx1; : : : ;�wN 2 dxN) =
NY
i=1

e
�x2i =2�tp
2��t

� dxi: (A:1)

(The notation �wi 2 dxi means that xi < �wi < xi + dxi.) Note that this is just the distribution

function for N IID normal variables with mean 0 and variance �t.

A random variable Z de�ned on (
;P) is a function from 
 ! R. Hence, for a point ! =

(�w1; : : : ;�wN ) 2 
, we may write

Z(!) = z(�w1; : : : ;�wN ) (A:2)
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for some function z : RN ! R. The expectation of Z under P can thus be expressed as

EP [Z] =
Z
� � �
Z  NY

i=1

dxi
e
�x2

i
=2�t

p
2��t

!
z(x1; : : : ; xN): (A:3)

Similarly, the conditional expectation of Z at time t = tn can be written as

EP
t
[Z] =

Z
� � �
Z 0@ NY

i=n+1

dxi
e
�x2

i
=2�t

p
2��t

1
A z(x1; : : : ; xN): (A:4)

Stochastic integrals of the Ito form can be approximated by sums in the following way:

Z
T

0
f(t)dw(t) �

NX
i=1

fi�1�wi: (A:5)

Note here that the function f is evaluated at the left endpoint of the time interval, as required in

the de�nition of the Ito integral.

Let us now turn to the main assertion of this section. Consider an adapted process �(t), where

here adapted means that �(t) depends at most on the path of w up to date t, and perhaps t

explicitly. That is, for t = tn, we may write

�(t) = �n(�w1;�w2; : : : ;�wn): (A:6)

Suppose we de�ne a new stochastic process w0(t) by

w
0(t) = w(t)�

Z
t

0
�(s) ds: (A:7)

We claim that there exists a probability measure Q, equivalent to P, under which w
0(t) is itself a

standard Wiener process.

To prove this assertion, and to �nd an explicit form for Q, begin by writing the di�erential

of (A.7) in discrete form as

�w0i = �wi � �i�1�t: (A:8)
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Note that because � is an adapted process, there is an invertible relation between the paths

(�w1;�w2; : : : ;�wN) and (�w01;�w
0
2; : : : ;�w

0
N
). Furthermore, the Jacobian of the transforma-

tion between the primed and unprimed spaces is

J =

�����@�w
0
i

@�wj

����� = 1: (A:9)

Now, let us de�ne a candidate probability measure Q by

Q(�w1 2 dx1; : : : ;�wN 2 dxN ) = P (�w1 2 dx1; : : : ;�wN 2 dxN) � �(x1; : : : ; xN) (A:10)

where � is given by

�(�w1; : : : ;�wN ) = e

PN

i=1
�i�1�wi� 1

2

PN

i=1
�2
i�1

�t
: (A:11)

Note that � is the discrete version of the continuous variable exp
�R

T

0 �(t)dw(t)� 1
2

R
T

0 �(t)2(t)dt
�
.

We claim that Q is in fact a probability measure on 
, that Q is equivalent to P , and that w0(t)

is a Wiener process under Q.

To show that Q is a probability measure, note only that

Q(
) =

Z
� � �
Z
P(�w1 2 dx1; : : : ;�wN 2 dxN)�(x1; : : : ; xN)

=

Z
� � �
Z  NY

i=1

e
�x2

i
=2�t

p
2��t

dxi

!
e

PN

i=1
�i�1xi� 1

2
�
2
i�1�t

=

Z
� � �
Z  NY

i=1

e
�x02

i
=2�t

p
2��t

dx
0
i

!

= 1; (A.12)

where x0
i
= xi��i�1�t. Note that on the third line we have made use of the fact that the Jacobian

of the transformation between the primed and and unprimed variables is one. Equivalence of P

and Q follows because � is strictly positive, hence Q(A) = 0 if and only if P(A) = 0. To show that
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w
0(t) is a Wiener process under Q, note that

Q(�w01 2 dx
0
1; : : : ;�w

0
N
2 dx

0
N
) = Q(�w1 2 dx1; : : : ;�wN 2 dxN)

=

 
NY
i=1

e
�x2i =2�tp
2��t

dxi

!
� �(x1; : : : ; xN)

=
NY
i=1

e
�x02

i
=2�t

p
2��t

dx
0
i

(A.13)

where x0
i
= xi � �i�1�t. We recognize the �nal line of this equation as the formula for the joint

density of N IID normal variables with mean 0 and variance �t, hence w0(t) is a Wiener process

under Q as claimed.

Note that the above results imply that expectations under Q are related to expectations under

P by

EQ [Z] = EP [�Z] : (A:14)

We may derive how conditional expectations are related as follows. De�ne the likelihood ratio

�(t) = EPt [�] : (A:15)

Note that �(0) = 1 and �(T ) = �. We may derive an explicit expression for �(t) as follows. Note

that for t = tn, we have

�(t) =

Z
� � �
Z
P(�wn+1 2 dxn+1; : : : ;�wN 2 dxN)�(�w1; : : : ;�wn;�xn+1; : : : ;�xN)

= e

Pn

i=1
�i�1�wi� 1

2

Pn

i=1
�
2
i�1�t

Z
� � �
Z 0@ NY

i=n+1

e
�x02i =2�tip
2��t

dx
0
i

1
A

= e

Pn

i=1
�i�1�wi� 1

2

Pn

i=1
�
2
i�1�t; (A.16)

and hence in continuous form

�(t) = e

R t
0
�(t)dw(t)� 1

2

R t
0
�(t)2dt

: (A:17)
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The expectation under Q of some random variable Z, conditional on information at time t = tn,

can then be written as

EQ
t
[Z] =

Z
� � �
Z 0@ NY

i=n+1

e
�x02

i
=2�t

p
2��t

dx
0
i

1
A

z(�w01 + �0�t; : : : ;�w
0
n
+ �n�1�t; x0n+1 + �n�t; : : : ; x

0
N
+ �N�1�t)

=

Z
� � �
Z 0@ NY

i=n+1

e
�x2

i
=2�t

p
2��t

e
�i�1xi� 1

2
�
2
i�1�t dxi

1
A z(�w1; : : : ;�wn; xn+1; : : : ; xN)

=

 
nY
i=1

e
�i�1�wi� 1

2
�
2
i�1�t

!�1 Z
� � �
Z 0@ NY

i=n+1

e
�x2

i
=2�t

p
2��t

dxi

1
A �(�w1; : : : ;�wn; xn+1; : : : ; xN)

z(�w1; : : : ;�wn; xn+1; : : : ; xN); (A.18)

and hence

EQ
t
[Z] =

1

�(t)
EPt [�Z] : (A:19)

Consider now a slight twist on the above problem. Suppose we have a probability space P

generated by a Wiener process w(t), 0 � t � T . Suppose that � is a strictly positive random

variable de�ned on this probability space such that EP [�] = 1. Then we can create a new probability

measure Q, equivalent to P , by de�ning for any event A

Q(A) = EP
h
�1fAg

i
: (A:20)

The fact that EP [�] = 1 insures that Q is a probability measure, and the positivity of � assures us

that P and Q are equivalent. We want to �nd a process w0(t) which is a Wiener process under Q.

Note that this problem is in e�ect the inverse of the problem studied above. There we consider a

process w0(t) and �nd an equivalent measure under which it is a Wiener process. Here we are given

an equivalent measure Q and want to �nd a process w0(t) which is a Wiener process under Q.

To �nd w
0(t), proceed as follows. The likelihood ratio �(t) = EPt [�] is a positive P-martingale,
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and hence its dynamics can be written as

d�(t) = �(t)�(t)dw(t) (A:21)

for some adapted process �(t). De�ne w0(t) = w(t)� R t0 �(s) ds. We claim that w0(t) is a Wiener

process under Q. This can be easily proven by noting that

Q(�w01 2 dx
0
1; : : : ;�w

0
N
2 dx

0
N
) = EP

h
�1f�w012dx01;:::;�w0N2dx0Ng

i

= EP
h
�1f�w12dx1;:::;�wN2dxNg

i

=
NY
i=1

e
�x2i =2�tp
2��t

e
�i�1xi� 1

2
�
2
i�1�t

=
NY
i=1

e
�x02

i
=2�t

p
2��t

dx
0
i

(A.22)

Hence, the increments of w0(t) are IID normal variables with mean 0 and variance �ti, and therefore

w
0(t) is a Wiener process under Q.

A.2 Multidimensional Case

The results of the previous section can be generalized to multiple dimensions in a straightfor-

ward manner. Consider a K-dimensional vector of Wiener processes w(t), with correlation matrix

�(t). The probability space 
 in the discrete-time approximation will again consist of all paths

f(�w1;�w2; : : : ;�wN )g, and the probability measure P is de�ned by

P(�w1 2 dx1; : : : ;�wN 2 dxN ) =
NY
i=1

e
�x>

i
��1xi=2�tq

(2��t)K det �
� dxi: (A:23)

Now, suppose we have an adapted K-vector process �(t), and we de�ne a new stochastic process

w
0(t) by

w
0(t) = w(t)�

Z
t

0
�(s) ds: (A:24)
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We claim that there exists a probability measure Q, equivalent to P , under which w0(t) is a vector

of Wiener processes with correlation �.

We prove this assertion along the lines established in the previous section. In discrete di�erential

form, we have

�w0
i
= �wi � �i�1�t: (A:25)

Again, because � is adapted, there is an one-to-one relationship between the paths (�w1;�w2; : : : ;�wN)

and (�w0
1;�w

0
2; : : : ;�w

0
N
) and the Jacobian of the transformation is

J =

�����@�w
0
i

@�w0
j

����� = 1: (A:26)

Now, de�ne the candidate probability measure Q by

Q(�w1 2 dx1; : : : ;�wN 2 dxN ) = P(�w1 2 dx1; : : : ;�wN 2 dxN ) � �(x1; : : : ;xN) (A:27)

where � is given by

�(�w1; : : : ;�wN ) = e

PN

i=1
�
>

i�1�
�1
i
�wi� 1

2

PN

i=1
�
>

i �
�1
i
�i�t: (A:28)

Note that in the continuous limit, we have

� = e

R T
0
�(t)>��1dw(t)� 1

2

R T
0
�(t)>�(t)�1�(t)dt

: (A:29)

We claim that Q is a probability measure on 
, that Q is equivalent to P , and that w0(t) is a

K-vector of Wiener processes under Q with correlation matrix �.

The proof of this assertion consists of completing the square of the multivariate normal distri-

butions, just as in the one-dimensional case above, and is omitted. Also, as in the one-dimensional

case, we have the following relationships between expectations under P and Q:

EQ [Z] = EP [�Z]

EQt [Z] =
1

�(t)
EPt [�Z] ; (A.30)
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where the likelihood ratio �(t) = EPt [�] is

�(t) = e

R t
0
�(s)>�(s)�1dw(s)� 1

2

R t
0
�(s)>�(s)�1�(s)ds

: (A:31)

We may also consider the inverse problem in multiple dimensions. Suppose we have a probability

space P generated by a K-vector of correlated Wiener processes w(t), 0 � t � T . Suppose � is a

strictly positive random variable on this probability space such that EP [�] = 1. Then we can de�ne

a new measure Q, equivalent to P , by de�ning for any event A

Q(A) = EP [�1fAg]: (A:32)

We want to �nd a vector process w0(t) which is a Wiener process under Q with correlation matrix

�.

We solve this problem in a manner similar to the one-dimensional problem. Since the likelihood

ratio �(t) is a positive P-martingale, there exists an adapted process �(t) such that

d�(t) = �(t)�(t)>dw(t): (A:33)

Let us de�ne

w
0(t) = w(t)�

Z
t

0
�(s)�(s) ds: (A:34)

It is straightforward to show that w0 has the desired properties.
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B Appendix B

Throughout the appendix we consider a (�; �) Brownian motion starting at zero at time t = 0

which we call X(t). X(t) is de�ned by the following equation:

X(t) = �t + �w(t) (B:35)

where w(t) is a wiener process. We also de�ne P(X(t) 2 dx) to be the density function for the

random variable X . Similarly P(X(t) 2 dx;X0(t) < l)is the density of a brownian motion with

absorbing barrier at l. Capital letters are used in general when we denote the random variable (as

in X) and small letters when we denote values taken by this random variable. Finally 1fgA denotes

the indicator function of set A,which is equal to one if event A is realized and zero else.

B.1 Maximum of a Brownian Motion

We de�ne the running maximum of a process to be:

X0(t) = max
0�s�t

X(s)

Moreover, we consider in this section a constant l such that:

l > 0

However, all the results can be straightforwardly extended to the case where l < 0, using the fact

that for a Brownian motion starting at zero there is a zero probability that the maximum X0(t)

attained by x during the time t is negative.

By de�ntion of the wiener process, X(t+ s) �X(t) is normally distributed with mean �s and

variance �2s. Thus the transition density p(t; t+ s; x; y)dy (the probability density of X(t+ s) = y
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when X(t) = x) is given by:

p(t; t+ s; x; y) =
1p

2��2s
e

(y�x��s)2

2�2s

and veri�es the backward equation:4

@

@s
p(t; t+ s; x; y) =

 
�
2

2

@
2

@x2
+ �

@

@x

!
p(t; t+ s; x; y)

with initial conditions

p(t; t; x; y) = �(x� y)

where �(x� y) is the dirac delta function.

The transition densities of regulated brownian motion verify the same backward equation, but

with modi�ed boundary conditions. Thus for example the transition density for a brownian motion

with absorbing boundary at l > 0 is the solution of the following partial di�erential equation:

@

@s
p(t; t+ s; x; y) =

 
�
2

2

@
2

@x2
+ �

@

@x

!
p(t; t+ s; x; y)

p(t; t; x; y) = �(x� y)

p(t; t+ s; l; y) = 0

We can then calculate the following joint densities:

P(X(t) 2 dx) =
1p

2��2t
[e
� (x��t)2

2�2t ] (B.36)

P(X(t) 2 dx;X0 < l) =

8>>><
>>>:

1p
2��2t

[e
� (x��t)2

2�2t � e
2�l

�2 e
� (x��t�2l)2

2�2t ] if x < l

0 if x > l

(B.37)

P(x;X0 > l) = P(x)� P(x;X0 < l) (B.38)

=

8>>><
>>>:

1p
2��2t

e
2�l

�2 e
� (x��t�2l)2

2�2t if x < l

1p
2��2t

e
� (x��t)2

2�2t = P(x) if x > l
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By simple integration we get:

P(X(t) < k) = N(
k� �t

�
p
t
) (B.39)

P(X(t)< k;X(t+ s) < l) = N2(k; l; s) (B.40)

P(X0 < l) =

Z
l

�1
P(x;X0 < l)dx (B.41)

= N(
l� �t

�
p
t
)� e

2�l

�2 N(
�l� �t

�
p
t

)

P(X0 > l) = 1� P(X0 < l) (B.42)

= N(
�l+ �t

�
p
t

) + e
2�l

�2 N(
�l � �t

�
p
t

)

P(x < k;X0 < l) =

Z
k

�1
P(x;X0 < l)dx (B.43)

=

8>>><
>>>:

N(k��t
�
p
t
)� e

2�l

�2 N(k�2l��t
�
p
t

) if k < l

N(�l+�t
�
p
t
) + e

2�l

�2 N(�l��t
�
p
t
) = P(X0 < l) if k > l

P(x < k;X0 > l) = Pr(x < k)� P(x < k;X0 < l) (B.44)

=

8>>><
>>>:

e
2�l

�2 N(k�2l��t
�
p
t

) if k < l

N(k��t
�
p
t
)�N( l��t

�
p
t
) + e

2�l

�2 N(�l��t
�
p
t
) if k > l

P(x > k;X0 < l) = Pr(X0 < l)�P(x < k;X0 < l) (B.45)

=

8>>><
>>>:

N( l��t
�
p
t
)�N(k��t

�
p
t
)� e

2�l

�2

h
N(�l��t

�
p
t
)�N(k�2l��t

�
p
t

)
i

if k < l

0 if k > l

P(x > k;X0 > l) = Pr(X0 > l)�P(x < k;X0 > l) (B.46)

=

8>>><
>>>:

N(�l+�t
�
p
t
) + e

2�l

�2

h
N(�l��t

�
p
t
)�N(k�2l��t

�
p
t

)
i

if k < l

N(�k+�t
�
p
t
) = P(x > k) if k > l
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Notes

1See, for example, El Karoui and Rochet (1989) and Jamshidian (1991).

2As in Geske and Johnson (1984), an e�cient approximation algorithm for the continuous shout

can be obtained using a Richardson extrapolation procedure on the discrete shout. Thomas (1993)

describes a binomial tree approximation for the continuous shout.

3 See, for example, Karatzas and Shreve (1991), Section 3.3.5.

4as can be veri�ed by direct calculation.
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