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On the Relation Between Binomial and Trinomial Option Pricing Models

Mark Rubinstein
April 20, 2000

Abstract

This paper shows that the binomial option pricing model, suitably
parameterized, is a special case of the explicit finite difference method.

To prepare for writing the sequel volume of my new book Derivatives: A PowerPlus
Picture Book, I recently reviewed the work on trinomial option pricing since Boyle’s
1988 JFQA paper.  I found myself attracted to the Kamrad and Ritchken (1991) trinomial
model because it seemed to be the “natural” generalization of the binomial model
described by Cox, Ross and Rubinstein (1979).

In that model, as is quite well known, the underlying asset price moves by return  x  over
each period of elapsed time  h, where  x  equals either  u  or  d, while cash earns return  r
for sure.  The resulting corresponding binomial tree is designed to emulate continuous-
time risk-neutral geometric Brownian motion with annualized logarithmic mean  µ ≡
log(r/d) – ½σ2  and variance  σ2, where  r  is the annualized riskless return (discrete)  and
d  is the annualized payout return (discrete) of the asset.

The idea is to choose a parameterization for (r, u, d, and p) in terms of (r, µ and σ) so that
for a fixed total time  t,  r → rh,  E(log x) → µh  and  Var(log x) → σ2h  as  h → 0  where
the expectation and variance are measured using the probability  p  of an up move.
Cox/Ross/Rubinstein proposed the following parameterization:1

                   r = rh             u = eσ√h                 d = 1/u             p = (1/2) + (1/2)(µ/σ)√h

An alternative parameterization suggested by Jarrow and Rudd (1983) is:

        r = rh             u = eµh + σ√h                 d = eµh – σ√h            p = 1/2

In the trinomial model,  x  can take one of three possible values (U, 1, D) over a single
period of elapsed time  H  with corresponding  probabilities  (PU, (1 – PD  – PU), PD).  In
the Kamrad/Ritchken parameterization,

R = rH            U = eλσ√H         D = 1/U

PU = (1/2λ2) + (1/2λ)(µ/σ)√H             PD = (1/2λ2) – (1/2λ)(µ/σ)√H

                                                
1 For both the Cox/Ross/Rubinstein and Jarrow/Rudd parameterizations, p so defined is only approximately
equal to the risk-neutral probability  p that (in the absence of payouts) satisfies   pu + (1 – p)d = r.



Science traditionally tries to unify alternative theories and methodologies that deal with
the same questions.  So it is natural to ask how alternative parameterizations of trinomial
trees are related to each other.   To my surprise, and it does not appear to have been
previously noted, simple inspection shows that the Kamrad/Ritchken trinomial model has
exactly the same parameterization (except for a negligible difference in the riskless
return2) that Brennan and Schwartz (1978) prove is the solution to the explicit finite
difference method when the coefficients of the finite difference equation are generated
under a logarithmic transformation.  By this I mean that the portion of the rectangular
grid in the finite difference model that overlaps the triangular tree produced by the
Kamrad/Ritchken trinomial model has exactly the same nodes, and therefore will produce
exactly the same current option value.

Several years ago, when I studied the Brennan/Schwartz paper carefully, it was again
natural to ask the question of how binomial trees were related to the trinomial tree
produced by explicit finite differences.  I had a sense that if the world worked elegantly,
a binomial tree ought to be a special case of a trinomial tree.  Trinomial trees ought to be
composed of binomial trees, somewhat like molecules are composed of atoms.  That is,
one could hope that the trinomial tree could be parameterized so that it could be
interpreted more fundamentally as a binomial tree in which every other period were
simply skipped:

For example, at the node with option value  Ci, instead of valuing this by first working
backward from two nodes into the future  (Ciuu, Ciud, Cidd)  to one node into the future
(Ciu, Cid), then to Ci, this intermediate step is simply skipped and  Ci  is determined
directly from  (Ciuu, Ciud, Cidd).

In my recent review, I was again surprised to discover that despite the lapse of 20 years
since the Brennan/Schwartz and Cox/Ross/Rubinstein articles and despite the extensive
literature now extant on trinomial models, the following theorem has apparently never
been published:

                                                
2 Kamrad/Ritchken assume that  R = rH, while the explicit finite difference model sets  R = 1 + (log r)H.  In
practice, this difference is negligible.  For example, if  h = .001  and  r = 1.1, then the former estimate sets
R = 1.000095310 and the latter estimate sets  R = 1.000095315.
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Theorem: The explicit finite difference method under a logarithmic transformation (=
Kamrad/Ritchken trinomial model) is formally equivalent to the binomial method, where
only every other period is examined and the binomial tree is parameterized as follows:

r  = [1 + 2(log r)h]1/2             u = exp(σ2h – µ2h2)1/2               d = 1/u

p = ½{ 1/(2(σ2h – µ2h2)) + [1/(σ2h – µ2h2)1/2)](µ/σ)√(2h) }1/2

Proof: Brennan/Schwartz show that the explicit finite difference approach is equivalent to
solving with backwards recursion:

[1 + (log r)H]Ci = PUCiU  +  (1 – PU – PD)CiM  + PDCiD (I)

Skipping one step in the binomial method gives us the parallel equation:

r2Ci = p2Ciuu + 2p(1-p)Ciud + (1-p)2Cidd (II)

Consistency between these two methods requires that equations (I) and (II) be the same.
In particular, that:

Ciuu = CiU CiM = Ciud CiD = Cidd    (1)
r2 = 1 + (log r)H (2)
p2 = PU (3)
(1 – p)2 = PD (4)

Of course, if equations (1) and (2) hold, then the option value  Ci  will be the same in
equations  (I) and (II).  In addition, if (1) and (2) hold, then it immediately follows that

2p(1 – p) = (1 – PU – PD)

We naturally require the trinomial time interval  H  to be twice the binomial interval  h,
so that H = 2h, and the trinomial spacing  (U, 1, D) to be the square of the binomial
spacing (u, d), so that  U = u2, D = d2 and 1 = ud.   This gives us one of our conditions:

d = 1/u

It also insures that at the expiration date of the option, the boundary conditions have
identical values for the two models.   So, in particular, if  i  were one trinomial period or
two binomial periods prior to expiration,  equations (1) will hold.  Clearly, we are free to
require equation (2).   This gives us another of our conditions:

r  = [1 + 2(log r)h]1/2

We are also free to require equation (3).  A little algebra shows, this gives us another of
our conditions:



p = ½{ 1/(2(σ2h – µ2h2)) + [1/(σ2h – µ2h2)1/2)](µ/σ)√(2h) }1/2

It then merely remains to be shown, that under these conditions, equation (4) must also
hold.   Observe that in the trinomial model, defining  a ≡ (1/2λ2)  and  b ≡ (1/2λ)(µ/σ)√H,
we can alternatively write  PU = a + b   and   PD = a – b,  so that  p2 = (a + b).  Our proof
is done if we can show that (1 – p)2 = a – b  so that   (1 – p)2 = PD.  For arbitrary
parameterization of  u  this will not be true.  However, we will now show that  (1 – p)2 =
a – b  if and only if   u = exp(σ2h – µ2h2)1/2.  First, we show if  u = exp(σ2h – µ2h2)1/2,
then  (1 – p)2 = a – b.

Since  u2 = eλσ√(2h), then  (2 log u)2 = λ2σ2(2h).   Therefore,  1/(2λ2) = ¼(σ2h)/(log u)2.
Substituting the supposition for  u,  1/(2λ2) = ¼ σ2/[(σ2 – µ2h)].   Now

a – b2 = [1/(2λ2)] – [1/(2λ2)](µ/σ)2h = [1/(2λ2)][1 – (µ2h/σ2)] = [1/(2λ2)][(σ2 – µ2h)/σ2)]

Substituting into this the above expression for 1/(2λ2),  a – b2 = ¼  so  a = b2 +  ¼.   Since
p2 = a + b, then  p = (a + b)1/2.   Substituting for a,  p = (b2 + b + ¼)1/2 = b + ½.
Therefore, (1 – p)2 = (1 – b – ½)2 = (b – ½)2 = b2 – b + ¼  = a – b.   The converse of this,
if (1 – p)2 = a – b, then u = exp(σ2h – µ2h2)1/2, follows since this argument may be
reversed.

Comments: Four comments are in order.  First, in addition to the two better known
parameterizations of the binomial model stated above from Cox/Ross/Rubinstein and
Jarrow/Rudd, I have provided here a third which also converges to lognormality in the
limit (it must converge because it makes the binomial method equivalent to the explicit
finite difference method which is known to converge3).

Second, this comparison of binomial and trinomial methods emphasizes Ritchken’s
(1995) well-made point that the advantage of the trinomial method over the binomial is
that it provides another degree of freedom since the move spacing can be set
independently of move timing.  In the binomial method, the requirement that  u =
exp(σ2h – µ2h2)1/2  ties together the spacing  u  and timing  h  in a particular way.

Third, under the above binomial parameterization, u = exp(σ2h – µ2h2)1/2, and in the
trinomial method U = eλσ√H.  Since  U = u2  and  H = 2h, consistency requires that
λ = (√2)[1 – (µ/σ)2h]1/2.  In practice, for a reasonably small H, say H = 1/50 or smaller,
λ= ≅  √2.  That is, simulation shows there will be little difference in standard option values
calculated with the exact or approximate parameterization of  λ.  But if we set λ = √2,
then  u = eσ√h,  the exact parameterization of the Cox/Ross/Rubinstein version of the
binomial option pricing model.

                                                
3 It is well known that necessary and sufficient conditions for convergence of the explicit finite difference
method are  H ≤ σ2/µ2  and  log U ≤ σ2/|µ|.  In the consistent binomial model these conditions are
h ≤ ½(σ/µ)2  and  log u ≤ ½σ2/|µ|.  It is easily shown that u = exp(σ2h – µ2h2)1/2 is consistent with this.
That is, under this parameterization for  u,  h ≤ ½(σ/µ)2  if and only if  log u ≤ ½σ2/|µ|.  Therefore, in
applying the consistent binomial model, convergence is assured if and only if  h ≤ ½(σ/µ)2.



Fourth, in speed of convergence comparisons between binomial and trinomial methods, if
the binomial is given a fair chance by skipping every other period, under the
parameterization in the theorem, there can be no difference.  For the trinomial method to
be superior requires a different relation of the spacing and timing parameters.
Preliminary simulation comparing the trinomial method to Black-Scholes values for
European near-the-money standard options, suggests that setting λ = √2 usually gives
good results.  Testing whether a different parameterization typically improves the rate of
convergence of the trinomial method is a task I leave to others who may find that
question more interesting than I do.
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