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Abstract
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1 Introduction

A key puzzle in the economics of payments is the large different between the cost of intraday

liquidity, which is typically very close to zero, and the cost of overnight liquidity, which is

typically an order of magnitude higher. In this paper, we propose a new explanation for

this pattern. Intraday liquidity should have a low cost so that the return on money is that

same as the return on other riskless short-term assets. This is the argument brought fourth

by Friedman (1969). Overnight liquidity should be costly because overuse of overnight

liquidity leads to a reduction in output.

We study a random-relocation economy similar to Champ, Smith, and Williamson

(1996). The setting is a two-period lived overlapping generations model where limited com-

munication and random relocation create an endogenous transactions role for fiat money.1

Agents are ex ante identical but before the end of their first period of life receive a ‘liquid-

ity shock’ with some probability. Agents who receive the shock are relocated and the only

asset they can carry with them is money. Agents who are not relocated when young may

be relocated at the beginning of their second period of life. Agents can exert costly effort

to reduce the probability of having to move in their first period of life.

An important feature of our model is that the use of overnight liquidity affects output.

We think that this is a natural assumption in the light of the fact that most central banks

use short-term interest rates, and often the overnight rate, to steer the economy. We assume

a storage technology that transforms period t goods into period t + 1 goods. The return

on storage is affected by the fraction of young relocated agents. For example, relocation

may prevent these agents from monitoring the technology. Further, the cost imposed by

relocation is not completely internalized by moving agents.

In contrast, the fraction of old relocated agents does not affect the return on storage.

The idea is that monitoring has already taken place. This is a standard assumption as
1Economies with spatial separation and limited communication were first studied by Townsend (1980,

1987).
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intraday liquidity is thought to be used mainly for the purpose of settlement. Accordingly,

in our model intraday liquidity does not serve to transfer resources intertemporally but

only affects the distribution of resources between different types of agents.

We show that a planner would like to distort the consumption of young movers but not

of old movers. The planner wants to provide incentives for young agents to exert effort

to reduce the probability with which they must move. It is possible to decentralize the

planner’s allocation by setting a high cost of liquidity for young movers and no cost of

liquidity for old movers.

The main insight of our paper is that the cost of liquidity should be related to its role in

payments or as a substitute for other assets that contribute to output. If liquidity is used

only to make payments, then it should have a very low cost so as to share risk between

ex-ante identical agents. If liquidity can be used as a substitute for other assets, then it

should have a high cost to reduce the incentive to overuse it.

The payments literature has provided several explanations for the low cost of intraday

liquidity. Angelini (1998), and Bech and Garratt (2003) argue that a high cost of intraday

liquidity can lead to costly delay of payments. Zhou (2000) and Martin (2004) argue that

a low cost of liquidity provides risk-sharing when payments need are random. In all of

these models, the focus is on the cost of intraday liquidity rather than on the relationship

between intraday and overnight liquidity.

In contrast to these earlier papers, we consider an environment in which costly overnight

liquidity is necessary to obtain the planner’s allocation. In such an environment, the fact

that intraday liquidity should have a low cost naturally arises as an application of the

Friedman rule. For this reason, our paper is also related to the literature concerned with

the optimality of the Friedman rule.2 In our model a deviating from the Friedman rule is

desirable because money is overused if it is “too good an asset”. Specifically, excessive use

of money reduces output. This argument is similar to Camera (2001), who considers an
2See Bhattacharya, Haslag, and Martin (2005) and the references therein.
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economy in which the use of money promotes illegal activities.

Our paper is also related to recent attempts to study optimal monetary policy in envi-

ronments with hidden effort. For example, da Costa and Werning (2003) use the dynamic

taxation approach of Golosov, Kocherlakota and Tsyvinski (2003) in an environment where

money enters in the utility function. Waller (2006) considers a similar approach in an over-

lapping generations model.

To highlight the role of the different elements of our model, we introduce them one at

a time. Section 2 describes the basic features of the physical environment. In section 3 we

assume that the effort exerted by agents observable. In this case, the planner does not need

to distort consumption to achieve the desired level of effort. The planner’s allocation can

be decentralized with a low cost for overnight liquidity. Section 4 considers the case where

effort is unobservable. With hidden effort, the planner chooses to distort consumption to

provide incentives for agents to exert effort. The planner’s allocation can be decentralized

if the cost of overnight liquidity is high. Finally, in section 5 we introduce intraday liquidity

in the model and show that its cost should be zero.

2 The environment

We extend a standard random relocation to include an effort decision. There is an infinite

sequence of time periods. Dates are indexed by t = ... − 1, 0, 1, ....3 The world is divided

into two spatially separated locations. Each location is populated by a continuum of agents

of unit mass. Agents live for two periods. There is a single, perishable consumption good.

The economy’s key friction is a physical restriction keeping the consumption good from

moving between the two locations: One unit of the consumption good on Island A cannot

be transported to Island B, and vice-versa. In contrast, agents may have to move between
3It is standard in this literature to have an initial period and an initial old generation but to ignore the

welfare of that initial generation. To simplify the exposition we choose instead to have no initial period.

Bhattacharya, Haslag, and Martin (2006) contrast economies with or without an initial date.
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islands. Young agents face uncertainty regarding where they will spend their old age and Π

denotes the probability that a young agent will be relocated to the other island. We assume

that Π also denoted the fraction of young agents who are relocated. The two islands are

symmetric so that the flow of relocated agents to and from an island offset each other,

leaving the population unchanged. We refer to relocated agents as movers and the others

as non-movers.

2.1 Endowments and Technology

At each date a young agent is endowed with ω units of the single consumption good.

In addition, each young agent is endowed with one unit of time. Old agents receive no

endowment. The young agent can divide their time between leisure and effort, denoted by

lt and et, respectively, and lt + et = 1.

Effort affects the probability that a person will be relocated. The function Π (.) satisfies

Π′ < 0, Π′′ > 0, Π(0) = Π̄ ≤ 1, and Π(1) = Π ≥ 0. Also, lime→0 Π′ = −∞ and

lime→1 Π′ = 0. Hence, as effort approaches zero, the marginal effect on the probability

of being relocated is large. As effort approaches its maximum level, the effect on that

probability vanishes.

There is a storage technology on each island transforming date t goods into date t + 1

goods. The return on the storage technology depends on the monitoring activity of young

agents. Monitoring is costless but only non-movers are able to monitor the technology

adequately. Hence, the return on storage is negatively related to the fraction of movers.

We assume this return is given by x [1−Π(1− φ)] > 1. The return of each individual

project thus depends on the fraction of movers on the island. The higher the mass of

movers, the lower is the island’s average return.

The expression for the return of the storage technology can be justified as follows: Each

individual project has some probability to have a high return and some probability to have

a return of zero. Before agents have to make their choice of effort, a financial market opens

5



on which agents can trade claims on stored goods. Agents have an incentive to diversify

the risk attached to their project and choose to hold a diversified portfolio of projects.

Ex-post, the projects of movers have a higher probability of having a return of zero so the

return of the portfolio of each individual agent depends on the fraction of movers on the

island.

2.2 Preferences

Agents derive utility from old-age consumption and from enjoying lesiure when young. Util-

ity is additively separable in consumption and leisure. Let ct denote old-age consumption

enjoyed by members of the generation born at date t; utility derived from the consumption

good is represented by the function U(ct). We assume that U(.) is twice continuously

differentiable and strictly concave; formally, U ′ > 0 and U ′′ < 0. Let V (1 − et) char-

acterize the function mapping leisure into utility, where we apply the constraint on time

with lt = 1 − et. V (.) is increasing and strictly concave. In other words V ′ ≥ 0, V ′′ < 0,

liml→0 V ′ = ∞, and liml→1 V ′ = 0.

3 An economy with observable effort

In this section, we assume that effort is observable. We show that in this case the planner

wants to equalize consumption between movers and non-movers. Then we show how the

planner’s allocation can be decentralized.

3.1 The Planner’s problem

We derive the allocation chosen by a planner who can observe the effort exerted by agents.

Since all generations are identical, the planner seeks to maximize the expected utility of a

young agent in a representative generation.

Since goods cannot be moved between islands, the planner must distribute the goods
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available on an island to the agents present. At the planner’s disposal are the goods stored

on behalf of the date t generation, denoted by st, and the goods available from the date

t + 1 generation’s endowment. We focus on stationary allocation so the amount of goods

of the date t + 1 generation’s endowment that is stored, st+1, must be equal to st.

The planner takes into account the fact that agents’ efforts affect the probability with

which they are relocated and, indirectly, the return on investment. The planner can punish

agents who do not exert the desired amount of effort, since it is observable. We assume

that the punishment can be severe enough to make agents choose the effort prescribed by

the planner.

The planner’s problem is given by

max
cm
t ,cn

t ,et,st

Π(e)U(cm
t ) + [1−Π(e)]U(cn

t ) + V (1− et), (1)

subject to

Π(et)cm
t + [1−Π(et)]cn

t = x [1−Π(et)(1− φ)] st + ωt+1 − st+1, (2)

st ≤ ωt, (3)

where cm
t denotes the quantity of the consumption good allocated to movers, cn

t denotes

the quantity of the consumption good allocated to non-movers. We let λt and µt denote

the lagrange multipliers associated with the first and second constraints, respectively.

The first-order conditions for the planner’s problem are

Π(et)U ′(cm
t )− λtΠ(et) = 0, (4)

[1−Π(et)]U ′(cn
t )− λt [1−Π(et)] = 0, (5)

Π′(et) [U(cm
t )− U(cn

t )]− V ′(1− et)− λt

{
Π′(et) [x(1− φ)st − cm

t + cn
t ]

}
= 0, (6)

λt [x(1−Π(et)(1− φ)]− µt − λt+1 = 0. (7)

All constraints hold with equality because the planner chooses positive levels of con-

sumption, effort, and storage. In a stationary allocation, since st+1 = st and x [1−Π(et)(1− φ)] >

7



1, the planner wants to store as many goods as possible. It follows that st+1 = st = ωt. In

effect, the planner stores all the endowment goods of the young, and distributes the stored

goods from the previous generation between old movers and old non-movers on the island.

Equations equations (4) and (5) imply that U ′(cm
t ) = λt = U ′(cn

t ). This implies cm
t =

cn
t = ct. In other words, the planner provides the same amount of consumption to movers

and non-movers and the risk of relocation is shared perfectly.

With cm
t = cn

t = ct and st = ω, equation (6) simplifies to

V ′(1− et) = −U ′ (x [1−Π(et)(1− φ)]ω) Π′(et)[x(1− φ)ω]. (8)

The LHS of equation (8) is positive and increases from 0 to infinity as effort goes from 0

to 1. Since Π′ < 0, the RHS of equation (8) is positive. Hence there will be an interior

solution for the effort level. A sufficient condition for the effort level to be unique is that

the RHS of equation (8) be decreasing.

We let e∗ denote the effort level chosen by the planner. The planner trades off between

the marginal cost of the effort to the individual agent versus the marginal benefit in terms

of additional resources available to the society.

3.2 A decentralized economy

In this section, we show how the planners allocation can be decentralized. We assume the

existence of a public sector which we call the CB. The CB can issue fiat money at no cost

and can choose prices at which it buys and sells goods. We associate the liquidity provided

by the CB in this case with overnight liquidity. The CB redistributes any profits in a lump

sum fashion. Since effort is observable, we also assume that the CB can punish agents

who do not choose the level of effort consistent with the planner’s allocation. The CB is

subject to the physical restriction that keeps goods from moving across islands, while cash

is transportable across the two islands.

The timing goes as follows: First, young agents receive their endowment and invest

it in the storage technology. They must also decide how much effort to exert. After the
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effort decision is made, agents learn whether they must relocate. The CB opens and agents

can exchange fiat money for the claims on stored goods they hold. Then movers relocate.

In their second period of life, nonmovers consume the goods to which they have a claim.

Movers buy goods from the CB with the money they hold.

Note that the CB does not need to keep track of agents from one island to another.

While the CB operates on both islands, the branch on one island does not need to know

whom the branch on the other island has traded with. Also, in contrast to the standard

random relocation model, there is no need for banks in this economy. It is enough for the

central bank to buy and sell goods, as we show below.4

Let m̄t denote the amount of money given to agents in exchange for qt goods. Let vt

denote the units of goods per unit of money (the inverse of the price level). It follows that

qt = vtm̄t. m̄t and vt are choice variables of the CB. We assume that the CB buys and

sells goods at the same price. Formally, at each date the CB receives goods from young

movers worth vtm̄t. The CB also gives good to old movers worth vtm̄t−1. The difference,

denoted by Tt is distributed in lump-sum fashion to young agents:

vtm̄t − vtm̄t−1 = Tt. (9)

Each unit of good held by the CB at date t− 1 turns into x [1−Π(1− φ)] units of goods

at date t.

Young non-movers cannot consume any more by obtaining cash from the CB. For this

reason, we assume that non-movers do not exchange goods for money at the CB even if

they are indifferent between doing so or not. Young movers cannot do worse than getting

money from the CB since they would consume nothing in the absence of the cash.5

All agents choose effort e∗ since the CB can punish agents who do not choose the level
4See Schreft and Smith (1997) for an exposition of a standard random relocation model. See Haslag and

Martin (forthcoming) for more details on the role of the central bank in providing liquidity.
5One interpretation for this arrangement is that the CB makes discount window loans to agents, as in

Antinolfi and Keister (2006) or Haslag and Martin (forthcoming). However, our arrangement requires less

information as the CB does not need to keep track of moving agents, as noted above.
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or effort consistent with the planner’s allocation. Let Π∗ ≡ Π(e∗). The representative

young person born at date t solves the following problem:

max
cm
t ,cn

t ,st

Π∗U(cm
t ) + [1−Π∗]U(cn

t ) + V (1− e∗t ), (10)

subject to

st ≤ ω + Tt, (11)

cn
t ≤ x [1−Π∗(1− φ)] st, (12)

vtm̄t ≤ st, (13)

cm
t ≤ vt+1m̄t. (14)

Equation (11) states that agents cannot store more than their endowment and the transfer

from the CB. Equation (12) indicates that the consumption of non-movers cannot exceed

the return on their storage. Equation (13) tells us that the real money balances received

from the CB cannot exceed the goods that are offered in exchange. Finally, equation (14)

states that the consumption of movers it bounded by the amount of goods obtained in

exchange for money from the CB.

If the money supply is constant, T must be equal to zero. Consumption of movers and

non-movers will thus be equal if and only if

vt+1

vt
= x [1−Π(1− φ)] . (15)

This means that the return on money between periods is equal to the return on storage.

In other words, this is the Friedman rule. By implementing the Friedman rule, the CB is

able to obtain the efficient allocation.

In this economy, vt is a policy variable and not a market determined price level. This is

because money does not circulate between agents. We thus have a model of “intermediated

money” as money only circulates between the CB and the agents. In particular, the steady-

state return on money in not equal to one. Martin and Haslag (forthcoming) show in a
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related framework, that this economy is the limiting case of an economy in which the money

circulate between agents and in which the CB implements the Friedman rule.

4 An economy with hidden effort

In the remainder of this paper, we assume that an agent’s choice of effort is unobservable.

First, we study an agent’s effort choice. Next, we characterize the planner’s allocation.

Finally, we show how the planner’s allocation can be decentralized.

4.1 Effort choice

First, we consider the choice of effort of an agent who takes cm and cn as given. We let π

denote the probability that a given agent will be relocated, to distinguish it from Π, the

relocation probability of the population of young agents. The individual’s problem can be

written as

max
e

π(e)U(cm) + [1− π(e)]U(cn) + V (1− e). (16)

Taking the partial derivative of the objective function with respect to e and setting it

to zero yields

π′ (e) [U(cm)− U(cn)]− V ′ (1− e) = 0. (17)

Since V ′(1) = 0, it is apparent from equation (17) that when cn = cm, the optimal choice

of effort is e = 0. That is, an agent who is completely insured against the risk of relocation

exerts no effort to reduce this risk. Effort will be positive only if cm < cn. Intuitively, if

movers receive less consumption than non-movers, consumers will be try to avoid being

relocated.

Since the effort level chosen by an agent depends on cn and cm, we can write e =

e(cm, cn) by invoking the implicit function theorem.
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Lemma 1 Consumer’s optimum effort is (i) decreasing in the quantity of consumption

good allocated to movers; and (ii) increasing in the quantity of the consumption good allo-

cated to non-movers.

The proof is provided in the appendix.

4.2 The planner’s problem

The planner chooses how much to save and how to allocate available goods between movers

and nonmovers to maximize the expected utility of a representative generation. Physically,

the planner collects endowments from the young on each island. These goods can be

consumed by consumers alive in that period or invested in the technology. The planner

also collects goods that were invested last period. The planner knows the effect that

movers have on the return to the technology. Since the planner can identify movers and

non-movers, each type may receive different quantities of goods.

Recall that the planner’s problem is

max
cm
t ,cn

t ,et,st

Π(et)U(cm
t ) + [1−Π(et)]U(cn

t ) + V (1− et),

subject to

Π(et)cm
t + [1−Π(et)]cn

t = x [1−Π(et)(1− φ)] st + ωt+1 − st+1,

st ≤ ωt.

In a steady state, st = st+1 = s ≤ ω. The constraints can thus be combined into

Π(e)cm + [1−Π(e)]cn = x [1−Π(e)(1− φ)]ω. (18)

We can substitute the effort function from the previous section, et = e(cm
t , cn

t ), and

take the partial derivatives with respect to cm and cn to get two first-order conditions:

emΠ′[U(cm)− U(cn)− λ(cm − cn + x(1− φ)ω)]− emV ′ + Π(e)
[
U ′(cm)− λ

]
= 0
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and

enΠ′[U(cm)− U(cn)− λ(cm − cn + x(1− φ)ω)]− enV ′ + (1−Π(e))
[
U ′(cn)− λ

]
= 0

where λ is the Lagrange multiplier on constraint (18) and en ≡ ∂e
∂cm and en ≡ ∂e

∂cn .

Solve both equations for λ to get

emΠ′[U(cm)− U(cn)]− emV ′ + Π(e)U ′(cm)
emΠ′[cm − cn + x(1− φ)ω] + Π(e)

= λ,

and
enΠ′[U(cm)− U(cn)]− enV ′ + (1−Π(e))U ′(cn)

enΠ′[cm − cn + x(1− φ)ω] + (1−Π(e))
= λ.

We can eliminate λ and obtain one equation in cn and cm. The planner’s resource constraint

gives us a second equation in cn and cm so we can solve for these two unknowns. Let cm∗∗

and cn∗∗ denote the level of consumption chosen by the planner. Next we can solve for the

effort level: e∗∗ = e(cm∗∗, cn∗∗).

Proposition 1 The planner gives less consumption to movers than non-movers: cm∗∗ <

cn∗∗.

Proof. Suppose, instead, that the planner chooses cm∗∗ = cn∗∗ = c. We can rearrange the

expression ∆1
∆2

= Γ1
Γ2

, to get

[x (1− φ) ω]U ′(c)Π′ = V ′. (19)

The left hand side of this expression is strictly positive. If cm∗∗ = cn∗∗ = c, consumers

exert no effort and V ′(1) = 0, so equation (19) cannot hold. We know from lemma 1 that

some effort will be exerted if cn∗∗ is increased, cm∗∗ is decreased, or both.

The intuition is that the planner wants agents to exert some effort to reduce their

chance of relocation. Note that the level of effort desired by the planner is different when

effort is hidden than when effort is observable, e∗∗ < e∗. When effort is hidden, the planner

chooses lower effort because the benefit from increasing effort must be traded-off with the

cost of distorting consumption. In other words, if the planner were to choose e∗∗ = e∗, the
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cost of a marginal decrease in effort would be of second order while the benefit of improving

risk sharing between movers and nonmovers would be of first order.

It is clear from our specification of the planner’s problem that both hidden effort and

the cost imposed by movers are important features of the model economy. Together,

these features can account for why the planner does not want to offer perfect insurance to

consumers in this economy. If movers did not impose a cost on the economy, the planner

would not be concerned with reducing the mass of movers. It would then be optimal to

provide equal consumption to all agents since they are risk-averse and ex-ante identical.

Instead, if movers imposed a cost but the probability of moving was exogenous, then the

planner would again choose to provide equal consumption to all agents since it would not

be possible to mitigate the cost imposed by movers.

4.3 The decentralized economy with hidden effort

With hidden effort, the CB can no longer punish agents directly for not choosing the ap-

propriate level of effort. The representative young agent born at date t solves the following

problem:

max
cm
t ,cn

t ,st

ΠU(cm
t ) + [1−Π]U(cn

t ) + V [1− e (cm, cn)] , (20)

subject to constraints (11), (12), (13), and (14). Combining the last three equations we

can write
cm

cn
=

vt+1

vt

1
x [1−Π (1− φ)]

. (21)

The CB can obtained the ratio cm/cn it desires by choosing vt+1 and vt appropriately.

As vt/vt+1, the rate at which the price level changes, increases, the ratio cm/cn decreases

because the rate of return of money decreases. This stimulates agents to provide more

effort. The CB chooses vt/vt+1 in order to set

cm

cn
=

cm∗∗

cn∗∗ .
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Deviating from the Friedman rule works particularly well in this environment because

only movers use money. Hence, while the CB is unable to distinguish movers from non-

movers, it knows that changes in the ratio vt/vt+1 will modify the relative consumption of

the two types of agents. In section 5.3 we show that our results extend to an environment

where it is difficult to distinguish different types of agents.

5 Late movers and intraday liquidity

It is well documented that the liquidity provided by CB overnight is considerably more

costly than the liquidity provided intraday.6 Our model can help shed some light on this

pattern.

In order to have both intraday and overnight liquidity provision, we need to modify the

pattern of relocations slightly. As above, there is a probability Π that a young agent most

relocate and Π is a function of the agent’s effort. We call such agents early movers. Agents

who are not relocated when young may be relocated at the beginning of their second period

of life with probability α. We call such agents late movers. As above, α is also the fraction

of relocated agents. The effort that affect the probability Π has no effect on α and for

simplicity we make α exogenous.

We assume that late-movers must leave their island before stored goods pay off. Thus,

they may need money for the same reason as early movers. In contrast to early-movers,

however, late-movers do not affect the return on the storage technology as the benefits

from their monitoring activity are already realized. This distinction between intraday and

overnight liquidity is key. It can also be related to the fact that overnight liquidity is used

to transfer resources intertemporally while intraday liquidity is not.

The expected utility of a young agent in this economy can be written as

Π(e)U(cem
t ) + [1−Π(e)]

[
αU(clm

t ) + (1− α) U(cn
t )

]
+ V (1− et), (22)

6See Bech and Garratt (2003), Zhou (2000).
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where cem
t is the quantity of the good consumed by the early mover, clm

t is the quantity of

the good consumed by a late mover, and cn
t is the quantity consumed by a non-mover.

5.1 The case with observable effort

When effort is observable, it is straightforward to see that the planner will choose cem
t =

clm
t = cn

t . The amount of storage and effort are the same than in section 3.1. With

observable effort, the planner does not need to distort the agents’ consumption and chooses

to insure them perfectly against the risk of relocation.

As in section 4.3, we assume that the CB can impose a punishment high enough so

that agents choose effort e∗. The representative young agent solves

max
cem
t ,clm

t ,cn
t ,st

Π∗U(cem
t ) + [1−Π∗]

[
αU(clm

t ) + (1− α) U(cn
t )

]
+ V (1− e∗), (23)

subject to

st ≤ ω + Tt, (24)

cn
t ≤ x [1−Π∗(1− φ)] st, (25)

vtm̄
em
t ≤ st, (26)

cem
t ≤ vt+1m̄

em
t , (27)

vt+1m̄
lm
t ≤ x [1−Π∗(1− φ)] st, (28)

clm
t ≤ vt+1m̄

lm
t . (29)

The last two constraints show that clm
t = cn

t . Then by the same argument as in section

3.2, the CB can set clm
t = cem

t = cn
t by choosing

vt+1

vt
= x [1−Π∗(1− φ)] . (30)

The Friedman rule can achieve the planner’s allocation in this environment. Under the

Friedman rule, the real cost of liquidity to agents is zero, whether money is needed intraday

or overnight.
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5.2 The case with hidden effort

From the perspective of the planner, late-movers and non-movers are equivalent. Neither

type has a negative effect on the return to the storage technology and, conditional on not

being an early-mover, the probability of being a non-mover is exogenous. Hence, inspection

of the expected utility function given by expression (22) reveals that the planner will choose

to set clm
t = cn

t . With clm
t = cnt the planner’s problem is the same as it was in section 4.

In particular, lemma 1 and proposition 1 both hold.

We can now turn to the problem faced by a CB is a decentralized economy. An repre-

sentative agent chooses cn
t , cem

t , clm
t , et, and st to maximize

ΠU(cem
t ) + [1−Π]

[
αU(clm

t ) + (1− α) U(cn
t )

]
+ V (1− e), (31)

subject to constraints (24),(25), (26), (27), (28), and (29).

Combining equations (28), and (29), at equality, we get clm = x [1−Π(1− φ)] st = cn.

With clm = cn, this problem is equivalent to the problem of section 4.3. The CB can

achieve the planner’s allocation by deviating from the Friedman rule. In contrast to the

previous section, the real cost of liquidity is not the same intraday and overnight. Intraday,

the cost of liquidity is zero since late-movers and non-movers enjoy the same consumption.

The real cost of overnight liquidity is strictly positive since cem
t < cn

t .

Note that the CB could make clm 6= cn. For example, if the price at which goods are

sold is different from the price at which goods are bought in the same period. But the

CB prefers to set clm = cn. By buying and selling goods at the same price, the CB’s

interactions with late-movers resemble a collateralized loan at an interest rate of zero.

This model suggests a reason why central banks provide intraday and overnight liquidity

at very different costs. Intraday, the need for liquidity is only related to making payments

and no effect on aggregate real activity. It only role is to allocate available resources.

In contrast, the cost of overnight liquidity has implications for aggregate real activity in

our model. From the perspective of young agents, money and storage are two ways of
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transferring resources between periods. When money is as good an asset as storage, agents

have no incentives to avoid holding money. In our environment, this reduces the return on

storage because there are too many movers.

The CB can make money a less attractive asset by deviating from the Friedman rule.

As money becomes a worse alternative to storage, agents have more incentives to avoid

having to hold money. This is beneficial as it increases the return on storage.

5.3 Indistinguishable movers

Our model is special in that the planner, and the CB, can perfectly discriminate agents

needing overnight liquidity and those needing intraday liquidity. Hence, the only agents

affected by a deviation from the Friedman rule are the agents the CB is trying to target.

We can modify our model slightly to address this issue. Assume that early-movers and

late-movers are indistinguishable. This may happen because the early-movers of generation

t move at the same time as the late-movers of generation t− 1 and the planner cannot tell

them apart.

We retain the assumption that the fraction of early-movers affects output while the

fraction of late-movers does not. Hence, while the planner would like to choose different

levels of consumption for each type of movers, it cannot do so. The planner’s problem in

this case is given by

max
cm,cn,e

α [U(cm) + V (1− e)] + (1− α) {Π(e)U(cm) + [1−Π(e)]U(cn) + V (1− e)} ,

subject to

αcm + (1− α) {Π(e)cm + [1−Π(e)]cn} = x [1−Π(e)(1− φ)]ω. (32)

Here we have already taken into account the fact that the planner chooses s = ω. The first

order conditions with respect to cn and cm are

(1− α)
{
emΠ′[U(cm)− U(cn)− λ(cm − cn + x(1− φ)ω)]− emV ′ + Π(e)

[
U ′(cm)− λ

]}
−α

{
emV ′ + U ′(cm)− λ + λemx(1− φ)ω

}
= 0(33)
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and

(1− α)
{
enΠ′[U(cm)− U(cn)− λ(cm − cn + x(1− φ)ω)]− enV ′ + (1−Π(e))

[
U ′(cn)− λ

]}
−αen

{
V ′ + λΠ′x(1− φ)ω

}
= 0(34)

Note that the first term in each of the two expressions is the first order condition of

the planner from section 4.2. At the allocation {cn∗∗, cm∗∗, e∗∗}, the RHS of the above

conditions become

−α
{
emV ′ + U ′(cm)− λ + λemx(1− φ)ω

}
(35)

and

−αen

{
V ′ + λΠ′x(1− φ)ω

}
. (36)

The sign of these expression in ambiguous. This opens the possibility that when early and

late movers are indistinguishable, the planner could choose either more or less consumption

inequality as in the case where movers are distinguishable, depending on the sign of these

expressions. Intuitively, on the one hand the planner may not want to impose as much

consumption inequality because it hurts late movers. On the other hand, because a given

amount of consumption inequality provides fewer incentives, the planner may want to

impose more consumption inequality. This resembles the standard trade-off between a

‘substitution’ and an ‘income’ effect.

This allocation can be decentralized along the same line as was done previously, by

setting the cost of overnight liquidity appropriately. It would, of course, be possible to

reintroduce intraday liquidity by assuming that some late movers are distinguishable. The

main insight of this section is that the results of our model do not depend on the planner

and the central bank being able to perfectly discriminate between early and late movers.

6 Conclusion

This paper proposed a new explanation for the puzzling difference between the costs of

overnight and intraday liquidity. We argue that the low cost of intraday liquidity is simply
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an application of the Friedman rule in an environment where a deviation of the Friedman

rule is optimal with respect to overnight liquidity.

Our model has a number of desirable features: The cost of overnight liquidity can affect

output so there is a role for a high cost of overnight liquidity. Agents can choose the com-

position of their asset portfolio between money and storage and, if money is ‘too good an

asset,’ money is overused. Intraday liquidity is not used to transfer goods intertemporally,

but only to make payments.

With these features, we show that a central bank can implement a planner’s allocation

by setting a high cost to overnight liquidity and a low cost to intraday liquidity. We also

showed that this result persists when it is difficult to distinguish agents needing intraday

liquidity from those needing overnight liquidity.
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7 Appendix

Proof of lemma 1

After substituting the e(cm, cn) into the first-order condition and differentiating, we get

π′′[U(cm)− U(cn)]de + V ′′de + π′U ′dcm = 0.

After collecting terms and rearranging, we can write

de

dcm
= − π′U ′

π′′[U(cm)− U(cn)] + V ′′ .

As usual, the denominator is the second-order condition. If π′′ > 0 and V ′′ < 0, the sign of

the denominator is negative, ensuring that the second-order condition is satisfied. In other

words, the value of e that satisfies the first-order condition is indeed a maximum.7 With

π′ < 0 and positive marginal utility, the implication is that ∂e
∂cm < 0. An increase in the

quantity of the consumption given to movers will result in less effort by the consumer. As

movers get more of the consumption, holding everything else constant, there is less need

to use effort to try to indirectly insure themselves against moving.

It is straightforward to show that ∂e
∂cn > 0 along the same lines as above.

7So, π′′ > 0 corresponds to a case in which the impact of effort on the probability of moving is getting

algebraically bigger; that is, a smaller negative number.
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