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1 Introduction

As Sarno and Taylor (2001) emphasize, understanding how official intervention in the for-
eign exchange rate market works is of major policy importance. Greater comprehension
of the implications of the established models of the effects of exchange rate intervention is
essential in achieving this understanding. Nonlinearity is of course a key feature in many
exchange rates models. Sarno (2003), for example, reviews nonlinear exchange rate mod-
els. Transaction costs may cause nonlinearities in real exchange rates (Sercu et al., 1995;
Michael et al., 1997; Taylor et al., 2001). Taylor and Peel (2000) model similar nonlin-
earities in nominal exchange rates. Other authors, such as Bessec (2003), Altavilla and
De Grauwe (2005), and Crespo-Cuaresma et al. (2007), use regime-switching models to
introduce nonlinearity into the relationship between an exchange rate and its fundamental.

In the target zone exchange rate literature (e.g., Krugman, 1991; Flood and Garber,
1991; Bertola and Caballero, 1992; Bertola and Svensson, 1993), nonlinearity due to ex-
change rate intervention is critical. Krugman’s prototypical target zone model posits that
exchange rates are driven by a nonlinear function of an unobserved economic fundamental.
The Krugman model has not held up well to empirical tests in the literature. Subsequent
modifications have been explicitly made for realignments (e.g., Bertola and Caballero, 1992;
Bertola and Svensson, 1993), intramarginal interventions (e.g., Flood and Garber, 1991;
Bartolini and Prati, 1999; Bessec, 2003), and other policy aberrations.

This paper provides a novel technique for testing an important but often overlooked
assumption of the prototypical target zone model – that the fundamental is bounded. While
the main innovation of the Krugman model was to illustrate a honeymoon effect in the
adjustment process of target zone exchange rates, many additional target zone models have
relied on the critical assumption that the fundamental has a random walk component, which
may potentially be unbounded. These include theoretical models of Flood et al. (1990),
Flood and Garber (1991), Svensson (1991), Bertolla and Caballero (1993), Anthony and
MacDonald (1998), and empirical models of de Jong (1994), Beetsma (1995), Iannizzotto
and Taylor (1999), Taylor and Iannizzotto (2001), and surveys by Svensson (1992) and
Taylor (1995). Determining the empirical relevance of the boundedness assumption is a
needed contribution to the target zone literature.

I use a logistic functional approximation to the target zone model (Lundbergh and
Teräsvirta, 2006; Miller and Park, 2008) that is robust to violations of the boundedness
assumption. The unscented Kalman filter (Julier and Uhlmann, 1997; Julier et al., 2000),
a relatively new nonlinear filtering technique, provides estimates of the unobserved series
(the fundamental) from a nonlinearly transformed series (the exchange rate). Because the
economic fundamental follows a random walk if no intervention occurs (by assumption and
with the support of empirical evidence), I conduct unit root tests to test the boundedness
assumption for 16 fundamentals estimated from exchange rates during targeting episodes.
I use both standard unit root tests (Phillips-Perron and KPSS) and non-standard unit root
tests based on rescaled range tests, which are robust to bounded, nonlinear alternatives.
Empirical evidence suggests that the assumption does not generally hold.

In the following section, I review the basic target zone model, and I explain the im-
plications of an unbounded fundamental by showing precisely where the derivation of the
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prototypical nonlinear target zone function relies on the boundedness assumption. I discuss
respecification, estimation, and testing in Section 3. I present empirical findings in Section
4 and offer some concluding remarks in Section 5.

2 Model and Bounds

2.1 Basic Target Zone Model

A cornerstone of target zone models similar to Krugman’s (1999), which has provided the
basis for many subsequent target zone models in the literature, is an economic fundamental
that drives the exchange rate. This fundamental Xt is defined by

Xt ≡ Mt + Vt,

where Mt represents the log of the domestic money stock, and Vt is an all-inclusive term
representing exogenous velocity shocks. Krugman assumed that Vt follows Brownian motion
with drift µ and constant diffusion σ and that Mt is a VF process.3 Empirical evidence
for the Brownian assumption may be found in free-floating exchange rates (Meese and
Rogoff, 1983). Subsequent authors (e.g., Svensson, 1991) expanded on the VF assumption
to allow Xt to be regulated Brownian motion, such that Mt = Lt − Ut, where Lt and Ut

are non-decreasing VF processes that regulate the lower and upper bounds respectively.
(See Harrison, 1985, for detailed exposition on regulated Brownian motion.) Under this
assumption,

Xt = X0 + µt+ σWt + Lt − Ut (1)

where Wt is a standard Wiener process.
A basic present value model is assumed to hold, so that

St = Xt + γEt(dSt/dt) (2)

or, alternatively,

St =
1

γ
Et

∫

∞

t
e−(r−t)/γXrdr (3)

where γ is the interest rate semi-elasticity of money demand and Et denotes the expected
value operator conditional on the natural Brownian filtration. These two equations – cor-
responding to equations (1) and (9) of Krugman (1991) – reflect that the exchange rate is
simply the present discounted value of future changes in the fundamental up to a constant
elasticity.

Equations (2) and (3) theoretically hold for any exchange rate. In the case of a free-
floating exchange rate, Lt = Ut = 0 and so Et(dSt/dt) = µ. There is thus a linear relation-
ship between the exchange rate and fundamental. In the target zone case, the monetary
authorities use unsterilized interventions in the domestic money market in order to try to

3Harrison (1985) defines a VF function Z as one for which the supremum over all finite partitions of∑
i
|Y (ti)− Y (ti−1)| are finite. A stochastic process Y satisfying this property is a VF process. An important

characteristic of VF processes from the point of view of Ito calculus is that their quadratic variation is zero.
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maintain the zone. As markets anticipate these interventions, this relationship becomes
nonlinear as Et(dSt/dt) < 0 near the upper bound and Et(dSt/dt) > 0 near the lower
bound. Krugman and subsequent authors postulated a nonlinear relationship

St = s (Xt) (4)

between the exchange rate and fundamental.4

2.2 Formulation of the Differential Equation to Determine s (X)

For some general VF processes L and U in (1), the Ito Lemma gives

ds(X) = σs′ (X) dW + Γs (X) dt+ s′ (X) dL− s′ (X) dU

for Γs ≡ σ2s′′/2 + µs′. Using the integration by parts formula (Harrison, 1985, pg. 73),

e−T/γs(XT ) = s(Xt) +

∫ T

t
e−(r−t)/γds(X)−

1

γ

∫ T

t
e−(r−t)/γs(X)dr

= s(Xt) +MT −
∫ T

t
e−(r−t)/γ

(

1

γ
s(X)− Γs (X)

)

dr

+

∫ T

t
e−(r−t)/γs′ (X) dL−

∫ T

t
e−(r−t)/γs′ (X) dU

where MT ≡ σ
∫ T
t e−(r−t)/γs′ (X) dW is an Ito integral. Taking conditional expectations

and limits as T → ∞,

s(Xt) = Et

∫

∞

t
e−(r−t)/γ

(

1

γ
s(X)− Γs (X)

)

dr (5)

−Et

∫

∞

t
e−(r−t)/γs′ (X) dL+Et

∫

∞

t
e−(r−t)/γs′ (X) dU

This expression is similar to Harrison’s (1985, pg. 83, line 5), but with a critical difference.
Nothing special has yet been assumed about L and U other than that they are VF.

Defining z+ ≡ max(z, 0) and z− ≡ min(z, 0), so that z = z+ + z−, the mean value
theorem allows

s′ (X) dL = s′(X)dL+ s′′(X∗)(X −X)+dL+ s′′(X∗)(X −X)−dL (6)

and
s′ (X) dU = s′(X)dU + s′′(X

∗

)(X −X)−dU + s′′(X
∗

)(X −X)+dU (7)

for X∗ ∈ (min(X,X),max(X,X)) and X
∗ ∈ (min(X,X),max(X,X)).

4An error term (εt) is often added (Meese and Rose, 1990; Flood et al., 1990; inter alia) to allow for
estimation error and idiosyncratic deviations from the target zone.
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2.3 Solution in Special Cases

There are two important special cases. If X is Brownian motion with drift and without
regulators, then dL = dU = 0. In this case, the second and third terms of (5) are zero.

If X is regulated Brownian motion with regulators dL and dU such that X is bounded
on the interval [X,X], then (X − X)− and (X −X)+ are zero due to the bounds. If the
regulators act as in Harrison (1985) and Krugman (1991) – in particular, no intramarginal
interventions – then dL = 0 when (X − X)+ > 0 and dU = 0 when (X − X)− > 0. In
other words, no intervention occurs unless the fundamental is exactly at one of the bounds.
Under boundedness and no intramarginal interventions, (6) and (7) reduce to s′(X)dL and
s′(X)dU . At X and X, s′ is assumed to be known constants c1 and c2 (equal to zero, in
particular).

In both special cases, the second and third terms of (5) are known. Problems of the
type

s(Xt) = Et

∫

∞

t
e−(r−t)/γ (µ(X)dr − c1dL+ c2dU) (8)

for known function µ may be solved by solving the second-order differential equation

1

γ
s(X)− Γs (X) = µ(X)

or

s′′(X) +
2µ

σ2
s′ (X)−

2

γσ2
s(X) +

2

σ2
µ(X) = 0

with boundary conditions given by s′(X) = c1 and s′(X) = c2. The solution (see Harrison,
pg. 86) is given by

s0(Xt) = Et

∫

∞

t
e−(r−t)/γµ(X)dr +B1 exp(ρ1Xt) +B2 exp(ρ2Xt)

where

ρ1,2 ≡ −
µ

σ2

(

1±

√

1 +
2σ2

µ2γ

)

with ρ1 < 0 and ρ2 > 0.
In Krugman’s model (1988, pg. 676), µ(X) = X/γ, so that

Et

∫

∞

t
e−(r−t)/γµ(X)dr =

1

γ

∫

∞

t
e−(r−t)/γ(µ(r − t) +Xt)dr = γµ+Xt

and
s0(Xt) = γµ+Xt +B1

(

X,X
)

exp(ρ1Xt) +B2

(

X,X
)

exp(ρ2Xt) (9)

is the solution, up to constants B1

(

X,X
)

and B2

(

X,X
)

. The boundary conditions give
constants of

B1

(

X,X
)

=
γσ2ρ2

2

exp(ρ2X) (1− c2)− exp(ρ2X) (1− c1)

exp(ρ1X + ρ2X)− exp(ρ1X + ρ2X)
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and

B2

(

X,X
)

=
γσ2ρ1

2

exp(ρ1X) (1− c1)− exp(ρ1X) (1− c2)

exp(ρ1X + ρ2X)− exp(ρ1X + ρ2X)

for general c1, c2.
In the prototypical target zone model, c1 = c2 = 0 (See Iannizzotto and Taylor, 2001,

e.g.), giving the target zone model its standard “S” shape. Alternatively, if the derivatives
are set equal to 1 at X,X , then B1 = B2 = 0 and the linear case is obtained.

2.4 A Closer Look at the Bounds

What if the fundamental is allowed to exceed its bounds
(

X,X
)

? If no monetary policy
action is taken, then dL = dU = 0. The linear case is obtained. On the other hand, if the
targeting policy is maintained,

lim
X→−∞

B1

(

X,X
)

= 0 and lim
X→∞

(

X,X
)

= 0

as the bounds are extended. This result holds for any c1, c2 < ∞. These are extreme cases.
In general, if the band is nominally maintained, but empirically exceeded, the third

terms of (6) and (7) become non-zero. That is, (X −X)− < 0 and (X −X)+ > 0.
Consider the lower bound. The second term of (5) becomes

Et

∫

∞

t
e−(r−t)/γs′ (X) dL = Et

∫

∞

t
e−(r−t)/γc1dL+Et

∫

∞

t
e−(r−t)/γs′′(X∗)(X −X)−dL

which involves the unknown function s. Since this term involves s, the solution for s(Xt)
given above does not generally hold. The only cases in which this problem is quickly reme-
died are (i) dL = 0, the target zone policy is dropped; (ii) s′′(X∗) = 0 for unknown X∗; or
(iii) X → −∞ so that (X −X)− → 0.

If there is a de facto lower bound X such that X < X , then the mean value theorem
allows

s′ (X) dL = s′(X)dL+ s′′(X∗)(X −X)+dL+ s′′(X∗)(X −X)−dL+ s′′(X∗)(X −X)dL

In this case, for s′(X) = c3, the second term of (5) becomes

Et

∫

∞

t
e−(r−t)/γs′ (X) dL = Et

∫

∞

t
e−(r−t)/γc3dL+Et

∫

∞

t
e−(r−t)/γs′′(X∗)(X −X)dL

(10)
since min (X −X, 0) + (X −X) = X −X. Note that the second term of (10) is not zero,
because EtdL > 0 when X ≤ X ≤ X. The solution above (with c3 instead of c1) applies if
the new lower bound X is expected, in which case EtdL = 0 when (X −X) > 0, or if there
is no longer a lower bound, so that s′ = 1 and s′′ = 0. The same logic applies for the upper
bound.

The prototypical target zone model of Krugman (1991) therefore relies heavily on an
assumption that either (i) X is bounded with known bound, or (ii) there is no bound, in
which case the exchange rate floats. The latter case no longer describes a target zone model.
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Figure 1: Krugman target zone function with explicit target zone (horizontal lines) and
implicit fundamental bounds (vertical lines).

2.5 A Graphical Interpretation

Figure 1 illustrates the Krugman function given by (9). As long as the fundamental stays
within (X,X), delineated by the two vertical lines, the familiar “S”-shaped function maps
an exchange rate within the explicit target zone, given by the three horizontal lines. (The
central horizontal line in this and subsequent figures represents the exchange rate target
or central parity, while the outer lines represent the edges of the target zone.) To avoid
confusion, I henceforth refer to the vertical band as the fundamental band defined by fun-
damental bounds X and X , while the horizontal band is the usual target zone or exchange
rate band.

The fundamental bounds are critical to the derivation of the model, as discussed above.
If the model is taken literally, out of context of the solution to the stochastic differential
equation above, the fundamental bounds are still critical. The economic intuition of the
model breaks down when the fundamental exceeds these bounds if the model is taken
literally. Beyond the bounds, either a new solution – and therefore new model – must be
considered, or else the predicted exchange rate begins to move in the opposite direction of
the fundamental. Even for moderate deviations, the predicted exchange rate deviates from
the target zone in the opposite direction.

The exogenous velocity shocks will exceed the fundamental bounds eventually (both
by assumption and from empirical evidence). The log of the money stock must therefore
increase or decrease – potentially without bound – in order to counteract velocity shocks
beyond the fundamental bounds, and thus to bound the fundamental and therefore also the
exchange rate. A test of the boundedness of the fundamental therefore amounts a test of
the target zone policy itself.
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Figure 2: Comparison of s0 and s1 (a) within the band, and (b) beyond the band.

3 Specification and Testing

3.1 Specification

Estimation of the unobserved fundamental may be accomplished by viewing (4) as a state-
space model. Consistently with Meese and Rose (1990) and Flood et al. (1990), I add an
error term to allow for estimation error and idiosyncratic deviations from the target zone.
I consider the discrete-time model

st = s (xt) + εt, (11)

so the error sequence (εt) also allows discretization error. I subsequently use lower case
letters for discrete-time processes, which replace the continuous-time process denoted with
capital letters above.

For the purposes of estimation, I assume a state equation of xt = xt−1 + ηt. Although
it may appear otherwise, this state equation does not impose a random walk structure on
the estimated series (x̂t). If s were linear, Chang et al. (2009) showed that the estimated
series (x̂t) from the linear Kalman filter would be a linear process constructed from (xt)
with absolutely summable coefficients. The summability means that (x̂t) would inherit
persistence from (xt). In other words, if (xt) were stationary, then (x̂t) would be stationary,
but if (xt) were a random walk, then (x̂t) would have a unit root. Any nonlinear filter is
of course much more complicated than the linear Kalman filter. However, many nonlinear
filters (such as the one used in this research) use linear updating equations. The persistence
properties of (x̂t) should be inherited from (xt), as in the linear case.

Identification of this model is problematic. As seen in Figure 1 and Figure 2(b), the
function in (9) maps three different values of the fundamental to each exchange rate within
the target zone. A filtering strategy based on (9) must deal with this problem.

Previous authors (de Jong, 1994; Beetsma, 1995; Iannizzotto and Taylor, 1999; Taylor
and Iannizzotto, 2001; inter alia), whose focus has generally been on the model parameters
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rather than the fundamental, solved this problem by simply enforcing the bounds. These
authors in particular use the method of simulated moments to estimate the function. The
fundamental may be estimated subsequently by inverting the exchange rate function after
the functional parameters have been estimated. This approach necessitates distributional
assumptions that explicitly bound the simulated fundamental. Imposing the restriction in
estimation is problematic for subsequent tests of the restriction – at least for the type of
tests considered here, which aim to test the time series behavior of the fundamental, rather
than the comparative fit of different models or techniques.

An alternative would be flatten the function beyond the fundamental bounds, so that
all fundamentals beyond these bounds are mapped exactly to the respective exchange rate
bounds. This strategy would allow the fundamental to exceed the bounds, which would be
appropriate for subsequent testing. However, identification in estimation would be impos-
sible.

In order to allow identification but also allow fundamentals beyond the bounds to map
to reasonable exchange rates within the target zone band (up to idiosyncratic error), a
monotone increasing function may be used. Lundbergh and Teräsvirta (2006) and Miller
and Park (2008) used logistic functions for target zone exchange rates. Specifically, consider

s1 (xt) = ν − h/2 + h/ (1 + exp (− (xt − ν) /β)) , (12)

where exp ν is the central parity, 2 (exph/2− 1) is the bandwidth, and β is a slope pa-
rameter. Although this function does not explicitly solve the continuous time model, it
approximates the solution within the band, as illustrated in Figure 2(a), while allowing
identification of the fundamental within and outside of the band. As is clear from Figure
2(b), s1 is robust to potentially unbounded fundamentals, since large fundamentals are still
mapped inside the band. Moreover, the fundamental is identified up to the error term
(εt). Essentially, s1 replaces the smooth pasting requirements used to derive s0 with the
requirement of monotonicity for identification.

All empirical results below use (11) with s given by s1 in (12), estimated using the
unscented Kalman filter (Julier and Uhlmann, 1997; Julier et al., 2000) with smoothing,5

a nonlinear filter that is more robust to biases inherent in the more well-known extended
Kalman filter. As above, estimates of the fundamental are denoted by (x̂t).

6

3.2 Testing the Bounds

Standard linear unit root tests, such as the Phillips-Perron tests, may not have high power
against bounded, nonlinear alternatives. In the specific context of target zone exchange

5Following Julier et al. (2000), I set the tuning parameter θ = 2, since (xt) is univariate, and do not use
additional tuning parameters.

6The fundamental is often defined explicitly based on assumptions of the flexible price monetary model.
See, for example, Meese and Rose (1990), Flood et al. (1990), Svensson (1991). In principle, we may use
this definition to incorporate income, money stock, and other covariates directly into the model. Such an
approach has at least two serious drawbacks: (a) Lower frequency data for these series lead to very small
sample sizes, and (b) assumptions about purchasing power parity and uncovered interest parity must be
addressed. Pursuing this approach for the first five exchange rates below (with time periods over which
sufficiently monthly data are available) yielded qualitatively similar test results to those reported below.
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rates, this lack of power has been noted by Taylor and Iannizzotto (2001), Taylor et al.
(2001), and Cavaliere (2005) for nominal exchange rates and by Kapetanios et al. (2003)
for real exchange rates. Such tests are consequently not appropriate for testing boundedness
of the target zone exchange rates themselves.

However, linear unit root tests may still be appropriate for an estimated fundamental
series. Recall that the fundamental is defined as Brownian motion (with possible drift) with
the log of the domestic money stock Mt playing the role of the regulators Lt − Ut to keep
the fundamental bounded. Under a hypothesis of no bounds (or poorly defined bounds),
Mt plays little role in moderating the persistence of the fundamental. In this case, the unit
root hypothesis (in discrete time) is appropriate.

On the other hand, if Mt is an effective regulator, then Xt will be bounded. Although
the bound does not imply covariance stationarity, the discrete-time analog of the linear
combination Mt + Vt may be approximately cointegrating in a loose sense, so that the
fundamental is strongly mean-reverting.

I construct KPSS tests for the exchange rates themselves, but not for the fundamentals.
Although the covariance stationary null would be convenient to reject the boundedness
assumption, the fundamental is composed of a random walk plus a nonlinear function of
the same random walk. Although the fundamental may be bounded, these bounds are not
sufficient for covariance stationarity.

For both exchange rate and fundamental, I construct Phillips-Perron Zc (coefficient test)
and Zt (t-test) statistics. The I(1) nulls may provide evidence against the boundedness of
the fundamentals. On the other hand, since the fundamental is not directly observed and
estimation is explicitly nonlinear, a testing strategy robust to nonlinear, bounded alter-
natives may be more appropriate. Cavaliere (2005) used variations of the rescaled range
statistic (Hurst, 1951; Mandelbrot and Wallis, 1969; Lo, 1991) to test boundedness of the
exchange rates themselves. Similarly to Cavaliere (2005), I use test statistics

R ≡ n−1/2(maxt=1,...,n(x̂t)−mint=1,...,n(x̂t))/ω̂n

Λ ≡ −n−1/2mint=1,...,n (x̂t − x̄n) /ω̂n

Υ ≡ n−1/2maxt=1,...,n (x̂t − x̄n) /ω̂n

where x̄n is the sample mean of x̂t and ω̂n is a consistent estimator of the limiting variance
of n−1/2

∑n
t=1 η̂t. Under the null, (x̂t) ∼ I (1). If the de facto bounds of the data – given

by the range and the upper and lower bounds – increase with the sample size, these tests
point to the absence of bounds. If they do not increase with the sample size, then the series
may be bounded.

4 Data and Empirical Results

Empirical results focus on ten exchange rate mechanism (ERM) I exchange rates, five ERM
II exchange rates, and one US dollar peg.

Many empirical estimates of target zone models – whether favorable or unfavorable
– have used data from the ERM I period. The ERM crisis of the early 1990’s resulted



10

Dates Band (±) Dates Band (±)

Belgian franc (BEF/DEM) 04/02/91-08/02/93 2.25% 08/03/93-12/31/98 15%

French franc (FRF/DEM) 04/02/91-08/02/93 2.25% 08/03/93-12/31/98 15%

Dutch guilder (NLG/DEM) 04/02/91-12/31/98 2.25%

Danish krone (DKK/DEM) 01/04/91-08/02/93 2.25% 08/03/93-12/31/98 15%

Danish krone (DKK/EUR) 01/04/99-09/28/07 2.25%

Irish pound (IEP/DEM) 08/02/93-12/31/98 15%

Austrian schilling (ATS/DEM) 01/09/95-12/31/98 15%

Spanish peseta (ESP/DEM) 03/06/95-12/31/98 15%

Portuguese escudo (PTE/DEM) 03/06/95-12/31/98 15%

Finnish markka (FIM/DEM) 10/14/96-12/31/98 15%

Italian lira (ITL/DEM) 11/25/96-12/31/98 15%

Greek drachma (GRD/EUR) 01/04/99-12/29/00 15%

Slovenian tolar (SIT/EUR) 06/28/04-12/29/06 15%

Cyprus pound (CYP/EUR) 05/02/05-12/31/07 15%

Latvian lats (LVL/EUR) 05/02/05-12/31/07 1%

Saudi riyal (SAR/USD) 08/24/98-12/31/07 1%

Table 1: Exchange rates, time periods, and bandwidths.

in a widening of the target zones for many ERM I rates. The bands were so wide, in
fact, that one could argue that exchange rates were almost floating during this period. As
illustrated in Figure 3, the persistence and volatility of the Belgian franc, French franc,
and Danish krone increased immediately after the bands were widened. This change is
consistent with a regime shift either to a float or to a wider band. However, since a target
policy was maintained and since the empirical characteristics do not suggest a random walk
(which would be characteristic of a float), an expanded model similar to the discussion of X
above is appropriate for this period. Moreover, since especially volatile fundamentals that
exceeded the theoretical fundamental bounds may be estimated during this period, tests
may shed light on some of the rejections of target zone models during this period. In order
to estimate the fundamental for these three rates, I explicitly model the (known) change
in the bandwidth and allow for a contemporaneous structural break in estimation of the
(unknown) slope parameter β.

ERM II exchange rates provide insights into more contemporary target zone arrange-
ments, since several non-euro EU members are still bound by the ERM II, as of this writing.
Saudi Arabia has pegged the Riyal to the US dollar, unofficially since 1986 and officially
since 2003. The Riyal is allowed to fluctuate within a narrow ±1% band around this peg.
Maintaining the peg became a controversial issue for Saudi Arabia in 2007, as a weak dollar
drove other oil-exporting countries to drop their pegs.

Table 1 details the exchange rates used in this research, with sample periods and target
zone characteristics. All European rates were obtained from EuroStat and Saudi rates were
obtained from the Pacific Exchange Rate Service (University of British Columbia). The
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beginnings of most series coincide either with the last realignment of the respective central
rates or with entrance of the country into the ERM. The central parity for the drachma
rate was realigned roughly halfway through its two-year target zone period. Since this
realignment was small in percentage terms and relative to the bandwidth of the zone and
the actual fluctuations of the exchange rate, I do not model it explicitly.

Figure 3 shows the exchange rates and estimated fundamentals. The fundamentals
exhibit stochastic trends, straying from their mean when the respective exchange rates near
the edge of their band. Since any potential fundamental bounds do not coincide with the
bounds imposed on the exchange rate, boundedness of these stochastic trends is an open
question. Note that most of the ERM I and ERM II exchange rates and fundamentals
appear to converge to their targets leading up to the adoption of the euro.7 Interestingly,
the krone/mark rate also seems to show convergence, even though Denmark did not adopt
the euro. The last two exchange rates, which were sampled through 2007, show pressure
to move outside of their respective bands. Clearly, Latvia has struggled throughout this
period against pressure to appreciate the lats. Saudi Arabia began to face similar pressure
to maintain its peg to the dollar in the face of US rate cuts. Saudia Arabia has not dropped
the dollar peg (as of this writing) as Kuwait did in 2007.

Test results for the exchange rates are shown in Table 2, with significance at the 5%
level indicated. The KPSS test fails to reject the I(0) null for most of the exchange rates,
and the I(1) null is rejected by at least one of the other unit root tests for eleven exchange
rates, at least two tests for eight rates, at least three tests for six rates, and all five tests
reject the null for the Saudi riyal. The tests suggest many of the exchange rates themselves
are bounded.

In order to evaluate unit root test statistics for the estimated fundamentals, I use both
standard and bootstrapped critical values. Although the fundamental is filtered with error,
the nonstationarity of the fundamental may asymptotically dominate the error, so that
standard critical values may be asymptotically valid. As this is a conjecture, it is natural
to consider bootstrapping to take into account the nonlinearity of the filter.

In constructing the bootstrap, I randomly draw (with replacement) from the estimated
residuals (ε̂t) and increments of the estimated fundamental (η̂t). Note that even if (x̂t)
is stationary, sums of randomly drawn increments are still unit root processes, so critical
values for unit root nulls are legitimate. Each bootstrapped critical value is constructed
from 10, 000 bootstrap repetitions.

I do not re-estimate the parameters of s in the bootstrap. Rather, I apply the nonlin-
ear filter to the bootstrapped exchange rates with originally estimated parameters for the
respective rates. Based on a comparison using the krone/euro rate (the longest series) with
a smaller number of bootstraps, I found that critical values from bootstrapping using the
same parameters and using re-estimated parameters were very similar. As re-estimation

7As von Hagen and Traistaru (2005) noted, markets reacted to expected convergence of the exchange
rates to their central parities as early as September 1997. An alternative model might feature a gradual
narrowing of the implicit band described by the function – i.e., a time-varying band parameter ht – or by a
gradual tightening of expectations around the parity – i.e., a time-varying slope parameter βt. The empirical
result of tightening bands would be to increase the volatility of the fundamental during this period. Since the
tests are not well-equipped to deal with changing volatility, I maintained the announced bands throughout.
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Figure 3: Target zone exchange rates (solid lines) and estimated fundamentals (dashed lines). Hor-

izontal lines represent the target and target zone (not the fundamental band).
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BEF/DEM 0.46 -14.10 -2.86 0.97 0.46 0.46

04/02/91-12/31/98 0.09 -20.86 ** -3.12 ** 1.35 0.13 ** 1.22

FRF/DEM 0.46 -14.10 -2.86 0.97 0.46 0.46

04/02/91-12/31/98 0.16 -14.20 ** -2.64 0.91 ** 0.24 ** 0.68

NLG/DEM 0.46 -14.10 -2.86 0.97 0.46 0.46

04/02/91-12/31/98 0.11 -9.29 -2.23 0.96 ** 0.57 0.39 **

DKK/DEM 0.46 -14.10 -2.86 0.97 0.46 0.46

01/04/93-12/31/98 0.30 -8.97 -1.92 1.28 0.26 ** 1.02

DKK/EUR 0.46 -14.10 -2.86 0.97 0.46 0.46

01/04/99-09/28/07 0.15 -9.86 -2.35 0.78 ** 0.37 ** 0.41 **

IEP/DEM 0.46 -14.10 -2.86 0.97 0.46 0.46

08/02/93-12/31/98 0.30 -4.48 -1.42 1.57 0.77 0.79

ATS/DEM 0.46 -14.10 -2.86 0.97 0.46 0.46

01/09/95-12/31/98 0.26 -37.45 ** -2.80 0.97 0.49 0.49

ESP/DEM 0.46 -14.10 -2.86 0.97 0.46 0.46

03/06/95-12/31/98 0.26 -15.88 ** -3.79 ** 1.77 0.40 ** 1.36

PTE/DEM 0.46 -14.10 -2.86 0.97 0.46 0.46

03/06/95-12/31/98 0.25 -5.66 -1.92 1.85 0.91 0.94

FIM/DEM 0.46 -14.10 -2.86 0.97 0.46 0.46

10/14/96-12/31/98 0.41 -14.09 -2.23 1.12 0.84 0.28 **

ITL/DEM 0.46 -14.10 -2.86 0.97 0.46 0.46

11/25/96-12/31/98 0.17 -20.44 ** -3.03 ** 1.03 0.44 ** 0.59

GRD/EUR 0.46 -14.10 -2.86 0.97 0.46 0.46

01/04/99-12/29/00 279.6 ** 0.04 0.14 2.55 1.34 1.21

SIT/EUR 0.46 -14.10 -2.86 0.97 0.46 0.46

06/28/04-12/29/06 0.23 -10.20 -1.61 1.57 0.60 0.97

CYP/EUR 0.46 -14.10 -2.86 0.97 0.46 0.46

05/02/05-12/31/07 3.07 ** 0.63 0.20 2.43 0.98 1.45

LVL/EUR 0.46 -14.10 -2.86 0.97 0.46 0.46

05/02/05-12/31/07 0.36 -11.83 -2.50 0.89 ** 0.12 ** 0.77

SAR/USD 0.46 -14.10 -2.86 0.97 0.46 0.46

08/24/98-12/31/07 2.29 ** -1971 ** -9.02 ** 0.76 ** 0.39 ** 0.37 **

ΥKPSS Z c Z t R Λ

Table 2: Test results for original exchange rates. ** denotes significance of test test statistics at the

5% level. No other significance levels are noted.
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Z c CV0 CVB CVB* Z t CV0 CVB CVB* R CV0 CVB CVB* Λ CV0 CVB CVB* Υ CV0 CVB CVB*

BEF/DEM -14.10 -6.25 -2.86 -2.82 0.97 0.95 0.46 0.44 0.46 0.44

04/02/91-12/31/98 -5.58 -2.86 ** 1.50 0.21 ** ** 1.29

FRF/DEM -14.10 -5.47 -2.86 -2.78 0.97 0.96 0.46 0.45 0.46 0.45

04/02/91-12/31/98 -3.92 -2.56 0.88 ** ** 0.25 ** ** 0.63

NLG/DEM -14.10 -5.60 -2.86 -2.80 0.97 0.95 0.46 0.44 0.46 0.45

04/02/91-12/31/98 -3.30 -1.95 1.07 0.63 0.44 ** **

DKK/DEM -14.10 -4.71 -2.86 -2.70 0.97 0.96 0.46 0.45 0.46 0.45

01/04/93-12/31/98 -1.34 -2.10 1.19 0.24 ** ** 0.95

DKK/EUR -14.10 -5.69 -2.86 -2.81 0.97 0.96 0.46 0.45 0.46 0.45

01/04/99-09/28/07 -3.35 -2.32 0.76 ** ** 0.37 ** ** 0.39 ** **

IEP/DEM -14.10 -5.06 -2.86 -2.75 0.97 0.96 0.46 0.45 0.46 0.45

08/02/93-12/31/98 -1.13 -1.50 1.57 0.71 0.86

ATS/DEM -14.10 -5.61 -2.86 -2.75 0.97 0.95 0.46 0.45 0.46 0.44

01/09/95-12/31/98 -3.73 -2.91 ** ** 0.76 ** ** 0.44 ** ** 0.32 ** **

ESP/DEM -14.10 -3.38 -7.67 -2.86 -2.67 -2.88 0.97 1.76 0.96 0.46 0.78 0.44 0.46 0.81 0.45

03/06/95-12/31/98 -13.34 ** ** -5.23 ** ** ** 2.02 0.42 ** ** ** 1.59

PTE/DEM -14.10 -4.83 -2.86 -2.70 0.97 1.10 0.46 0.52 0.46 0.52

03/06/95-12/31/98 -2.72 -1.97 1.89 0.93 0.96

FIM/DEM -14.10 -5.10 -2.86 -2.68 0.97 0.98 0.46 0.46 0.46 0.46

10/14/96-12/31/98 -2.47 -1.64 1.28 0.91 0.37 ** **

ITL/DEM -14.10 -5.58 -2.86 -2.74 0.97 0.93 0.46 0.44 0.46 0.44

11/25/96-12/31/98 -5.93 ** -2.70 1.07 0.44 ** 0.62

GRD/EUR -14.10 -2.58 -11.66 -2.86 -2.86 -3.40 0.97 2.90 0.95 0.46 1.45 0.45 0.46 1.23 0.43

01/04/99-12/29/00 0.37 -0.13 2.69 ** 1.43 ** 1.26

SIT/EUR -14.10 -4.80 -2.86 -2.60 0.97 1.08 0.46 0.51 0.46 0.51

06/28/04-12/29/06 -1.57 -1.54 1.85 0.69 1.16

CYP/EUR -14.10 -4.68 -2.86 -2.60 0.97 1.02 0.46 0.49 0.46 0.48

05/02/05-12/31/07 0.96 -0.13 1.82 0.74 1.08

LVL/EUR -14.10 -16.50 -2.86 -4.16 0.97 0.81 0.46 0.15 0.46 0.22

05/02/05-12/31/07 -5.02 -2.06 1.24 0.29 ** 0.95

SAR/USD -14.10 -0.93 -3.49 -2.86 -1.36 -3.77 0.97 1.92 0.65 0.46 0.93 0.30 0.46 0.91 0.30

08/24/98-12/31/07 12.98 0.04 1.47 ** 1.22 0.25 ** ** **
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requires numerical optimization of a highly nonlinear function, estimation may take an in-
ordinate length of time to converge or may not converge at all. The high marginal cost
of numerical optimization does not outweigh the low marginal benefit of a very small gain
in precision. Moreover, the main benefit of the bootstrap lies in accounting for nonlinear
filtering rather than for estimation.

The results are shown in Table 3 for Zc, Zt, R, Λ and Υ. The test statistics appear in
the first column under each of these labels. The second column contains standard critical
values with bootstrapped critical values following.

Notice that the bootstrapped critical values for Zt and all of the range-based tests
are remarkably close to the standard critical values for most of the exchange rates. This
observation provides some empirical evidence in favor of the robustness of the range tests
in particular to lower-order nonlinearity from estimation error. In contrast, the Zc critical
values are substantially different.

For several of the exchange rates, the range-based critical values appear unusually large.
Consider the drachma, with a bootstrap critical value of 2.90 compared to 0.97. Notice that
the estimated fundamental contains many more increases than decreases over the sample
period. Redrawing from the empirical distribution of its increments creates a range too
large relative to

√
n. While such an estimated fundamental provides evidence against the

boundedness assumption, redrawing from its increments makes it easier to reject the unit
root to find evidence for boundedness. In order to balance this small-sample problem, I
apply a random sign change to the bootstrapped increments for the drachma, and also for
the peseta and the riyal. The resulting critical values are shown in the fourth column for
each test statistic.

The empirical results are mixed. Using the bootstrapped critical values, six rates (the
Irish pound, escudo, drachma, tolar, Cyprus pound, and lats) show no evidence that the re-
spective estimated fundamentals are bounded. Another five rates (the guilder, krone/mark,
markka, lira, and riyal) show evidence with only one test. For all of these five except the
lira, the evidence points to a bound in one direction only. For the Belgian and French franc
rates, the evidence is more mixed. From Figure 3, it appears that the boundedness assump-
tion for the Belgian franc fundamental is reasonable over most of the sample period (except
during the ERM crisis of the early 1990’s). For the remaining three rates (the krone/euro,
schilling, and peseta), the evidence clearly supports the boundedness assumption. Clearly,
the fundamental bands for the krone and peseta must be much wider than the exchange
rate bands shown in the figure.

It is instructive to examine differences between the tests on the estimated fundamentals
and those on the exchange rates themselves. The most striking are the lira and riyal rates.
For both of these, the evidence strongly favors bounded exchange rates but much less so
for the estimated fundamentals.

5 Concluding Remarks

The empirical test results raise doubts about the fundamental bounds, a key assumption of
the Krugman and many subsequent target zone models. These findings support an apparent
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skepticism of these models in the literature. A new and specific explanation for possible
model failure is offered by examining these bounds.

A new paradigm for structural modeling of target zone exchange rates is needed. While
reduced form approaches in the literature – approaches by Bessec (2003), Crespo-Cuaresma,
et al. (2005), Lundbergh and Teräsvirta (2006), inter alia – provide greater modeling
flexibility by requiring only lagged exchange rate data, they do not allow for inference
about some of the structural macroeconomic parameters of interest.

A recent approach by Bauer et al. (2009), building on work by Frankel and Froot (1986),
Brock and Hommes (1998), and De Grauwe and Grimaldi (2005, 2006), using a heteroge-
neous agent structure, shows promise in the direction of developing an alternative approach
to modeling target zone exchange rates. They derive a model in which the fundamental is
driven by a nonlinear stochastic differential equation, which they show through simulations
may generate exchange rate behavior more consistent with target zone exchange rate data.
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