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Preferences and the Dynamic Representative

Consumer

Abstract This paper provides families of time-separable, twice continuously differen-

tiable, and strictly concave utility functions of a group of consumers that are both sufficient

and necessary in order to have linear aggregation in a single-commodity-type deterministic

dynamic environment, in the presence of consumer wealth-, labor-productivity, and pref-

erence heterogeneity, for alternative settings where the rates of time preference can be the

same or different across consumers. The employed concept of linear aggregation pertains the

existence of a representative consumer with a time-separable utility function. It is proved

that when the rates of time preference are choice-independent and heterogeneous across con-

sumers, a representative consumer exists if, and only if, the momentary utility functions of

all consumers are exponential. Results are also provided for, (i) common across consumers

choice-independent rates of time preference, and, (ii) heterogeneous choice-dependent rates

of time preference, and compared with previously identified sufficient conditions for aggre-

gation in the existing literature.
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1. Introduction

The findings of Gorman (1953) on the necessary and sufficient conditions for the existence

of social indifference curves in static frameworks, have provided us with a pure message for

demand aggregation: social preferences (represented by a ‘social’ utility function over aggre-

gated equilibrium demands) exhibit indifference curves under all price domains and under

all domains of income- and preference heterogeneity if, and only if, consumer preferences

imply that all consumer Engel curves are parallel at the same prices.1 In that case, social

preferences can be seen as the preferences of a single, not necessarily existing consumer,

the ‘representative consumer,’ whose choice of goods, by construction, always coincides with

aggregate demand. Later on, Pollak (1971), fully characterized the family of additively

separable utility functions of consumers over many commodities that deliver the Gorman

(1953)-type of aggregation result in a static framework.

This paper shares a similar goal to this of Pollak (1971), but in a dynamic environment.

In particular, the goal of the present study is to identify the comprehensive family of time-

separable, twice continuously differentiable, and strictly concave utility functions that lead

to a representative consumer with a time-separable utility function in deterministic dynamic

environments with one commodity type. In such an environment, at each point in time,

Engel curves depend on both wealth- and labor income, and also on future savings and

consumption paths, a key complication that necessitates a different treatment.

Gorman’s (1953) study was motivated by the desire to build static demand systems

with tractable features in order to facilitate the applied analysis of consumer choice. Yet,

in modern theory of the dynamic consumer who has savings options and forms optimal

consumption plans over time, the need for aggregation results is more essential. Static

1 This type of aggregation is usually called “exact linear aggregation.”
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models stress wealth heterogeneity as an exogenous economic attribute. On the contrary,

in dynamic analysis, the evolution of the wealth distribution is endogenous, and, above all,

it depends on individual demands. The distribution of individual demands determine the

distribution of savings that maps to a new distribution of future consumption possibilities

for each household.

A key determinant of demands in a dynamic environment is also the consumers’ time

preferences, i.e. their preferences for waiting until the consumption of a quantity of a good in

the future. Our insights for exact linear aggregation in static environments that are provided

by the existing literature on the subject, can fail to be generalized for dynamic environments,

especially when the rates of time preference vary across consumers. The present study pays

special attention to examining the potential for aggregation in dynamic economies with

heterogeneous rates of time preference.

In an infinite-horizon dynamic world, the commodity space for each individual is infinite-

dimensional. It is understandable that the existence of Gorman (1953)-type social indiffer-

ence curves in an infinite-dimensional commodity space requires a special mathematical

treatment. The scope of this paper is not up to that. Instead, the goal is to show neces-

sary and sufficient conditions on the community preference profile so that there exist social

preferences consistent with the independence axiom of Koopmans (1960), namely that if

two different intertemporal paths have a common outcome at a certain point in time, pref-

erences over these two paths should always, and solely, be determined by comparing them

with remaining outcomes at that particular date that differ. In other words, the focus of

this paper is on characterizing community preference profiles where social preferences are

time-separable and, at each point in time, social indifference curves exist.

This focus has a strong motive. The fact that the implied (and identified) utility function
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of the representative consumer is time-separable, allows the extension to general-equilibrium

models, where the computation of future prices becomes tractable through solving a simple

dynamic-programming problem of the representative consumer using the aggregate-economy

consumer wealth and productivity. This can be a great facility, if it is applicable to an

economic question of distribution dynamics, especially through paper-and-pencil methods.

Several authors, starting with the contribution of Chatterjee (1994), which was followed

by Atkeson and Ogaki (1996), Caselli and Ventura (2000), Maliar and Maliar (2001) and

(2003), provide dynamic setups and suggest specific parametric forms for individual utility

functions that are sufficient for the existence of a dynamic representative consumer. All

these studies provide insights about the qualitative and quantitative relationship between

the specific utility functions they employ and wealth distribution dynamics. In light of the

powerful and directly testable analytics of these applications, a complete characterization

of the family of preferences that lead to a representative consumer seems crucial. Such a

characterization can define the scope of further questions on heterogeneity that can be asked,

while retaining the analytical facility provided by the linear aggregation property.

The first part of the analysis of the present paper pertains deterministic economies with

a single type of commodity, and time-invariant momentary utility functions, similarly to

Chatterjee (1994). Under the restrictions of no preference heterogeneity and of time-invariant

momentary utility functions, Chatterjee (1994) has provided the complete family of utility

functions that lead to a representative consumer, although he presents these utility functions

only as sufficient, but not as necessary. In Pollak (1971), these utility functions were also

proved to be the only ones to deliver the aggregation result in a static framework with

time-separable preferences over multiple goods.

But the scope of the necessary and sufficient community preference profiles for a repre-
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sentative consumer is more restricted while considering another issue that has been rather

unexplored. Since Becker’s (1980) result that heterogeneity in (constant) choice-independent

rates of time preference leads asymptotically to a degenerate wealth distribution, the prim-

itives that may lead to a representative consumer have not been studied. It is proved that,

with heterogeneity in choice-independent rates of time preference, a representative consumer

exists if, and only if, the momentary utility functions of all consumers are exponential.

Moreover, a more general setting is studied, with time-variant momentary utility func-

tions when individual rates of time preference have a consumption-choice-independent part

wich is common-across agents, and a consumption—choice-dependent part implied by their

momentary utility function. The case of Caselli and Ventura (2000) arises as a special case.

Yet, it is proved that one cannot generalize much more than in Caselli and Ventura (2000):

the only parameter that can be time-variant is the subsistence levels (or bliss points- if any),

with additional restrictions for the case where consumer utility functions are all exponential.

The starting point of the paper, Section 2, deals with the economy where consumers have

choice-independent rates of time preference and time-invariant momentary utility functions.

Section 2 is split into two subsections, one studying the case where all agents have the same

rate of time preference but heterogeneous momentary utility functions, and one subsection

where rates of time preference can be, in addition, heterogeneous. Section 3 deals with the

case where agents have time-variant momentary utility functions. Section 4 summarizes the

results.

2. Choice-independent rates of time preference (time-invariant
momentary utility functions)

Time is continuous and the time horizon is infinite, t ∈ [0,∞). Consumers are all infinitely-

lived and comprise a constant set I of different types, with generic element i. The set of
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consumer types can be countable, finite, or a continuum. It can also be that all consumers

are of the same type, but in all cases there is a “large” number of households, making

each of them having negligible impact on the aggregate economy, or else, all consumers are

price-takers. Assume a measure µ : I → [0, 1], which has a density, dµ, with,

inf {dµ (i) | i ∈ I} > 0 . (1)

So, if I is finite, dµ (i) > 0 for all i ∈ I, whereas if I is a compact interval, dµ (i) is

continuous on I and bounded away from 0. Consumers of different types can differ with

respect to their initial endowment of capital claims (assets) and also with respect to their

labor productivity which is given by the exogenous function of time, θi : R+ → R+. Asset

holdings for household i ∈ I at time 0 are denoted as ai0.

There is a single private consumable good. Consumer preferences of each i ∈ I, are given

by the general additively-separable utility function with the rate of time preference captured

by the positively-valued function ρi : R+ → R++, where

U i
((

ci (t)
)
t≥0

, t
)
=

∫ ∞

0

e−
∫ t
0 ρi(τ)dτui

(
ci (t)

)
dt . (2)

Assumption 1 For all i ∈ I, ui : R+ → R, is twice-continuously differentiable and

such that ui
1 (c) > 0 and ui

11 (c) < 0 on some interval, Ci ⊆ R+, with both ui
1 (c) < ∞ and

−∞ < ui
11 (c) for all c ∈ Ci ⊆ R+,with ci ≡ inf (Ci) < sup (Ci) ≡ c̄i.

Assumption 1 simply secures that, for all i ∈ I, there is a choice domain, Ci ⊆ R+, which

is an interval, and where standard desirable properties of momentary utility functions are

present.

Another restriction on preferences pertains the rates of time preference.

Assumption 2
∫∞

0
e−

∫ t
0 ρi(τ)dτdt < ∞ for all i ∈ I.

Apart from the technical facility provided by Assumption 2 in developing proofs of the
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theorems below, one of its implications is that any agent can choose a consumption path

such that the consumption level is asymptotically non-decreasing.

All consumers are endowed with the same amount of time at each moment, that is

supplied inelastically for labor. The momentary time endowment is normalized to one.

Regardless of the production process underlying the economy, for any given price vector

(r (t) , w (t))t≥0 >> 0, with r (t) being the interest rate and w (t) the labor wage at each

moment, the budget constraint faced by household i ∈ I is,

ȧi (t) = r (t) ai (t) + θi (t)w (t)− ci (t) , (3)

for all t ≥ 0, and the transversality condition is,

lim
t→∞

e−
∫ t
0 r(τ)dτai (t) = 0 . (4)

Last, to define the domains of wealth- and productivity heterogeneity at any given price

vector, for which the existence of a representative consumer is conceptually relevant. That is

the domain that guarantees interiority of solutions to each individual optimization problem.

The following assumption states this formally.

Assumption 3 Given a community preference profile captured by the collection

of functions (ρi, ui)i∈I , the domain of initial distribution of assets (ai0)i∈I, of the

collection of labor-productivity functions
(
θi
)
i∈I

, and of prices (r (t) , w (t))t≥0,

is restricted so that the problems of all consumers i ∈ I are well-defined and the

solution to each individual problem is interior for all t ≥ 0.

Given Assumption 3, maximizing (2) subject to the constraints (3) and (4) for any given

ai0 is an optimal-control problem with necessary optimal conditions given by,

ċi (t) = −
ui
1 (c

i (t))

ui
11 (c

i (t))

[
r (t)− ρi (t)

]
, (5)
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together with (3) and (4), that lead to decision rules of the form,

ci (t) = Ci
(
ai (t)

∣∣∣ (r (τ) , w (τ) , θi (τ)
)
τ≥t

)
, (6)

i.e., consumption rules at each moment are memoryless, depending only on current personal

assets and current and future prices. Assumptions 1 and 4 have a particular connection,

that is revealed from equation (5). The term −
ui
1(ci(t))

ui
11(c

i(t))
must be always well-defined in order

to have interiority. Thus, in order to meet Assumption 3 (interior solutions), it is necessary

that ci (t) ∈ Ci, for all t ≥ 0, and all i ∈ I.

The solution to the partial-equilibrium problem of the households yields all individual

consumption demands and asset supply functions that can be combined with a large class of

settings for the production side guaranteeing that market-clearing prices are such that both

general-equilibrium decision rules and prices can be either memoryless or time-invariant,

depending only on the distribution of household assets at each moment. Such supply-side

settings are not discussed. The focus is on the basic partial-equilibrium household problem,

and, in particular, on the conditions on the utility function that lead to a representative

consumer with time-separable preferences.

Definition 1 Given a community preference profile captured by the collection

of functions (ρi, ui)i∈I , complying with Assumptions 1 and 2, a representative

consumer (denoted by “RC”) is a (fictitious) consumer who has time-separable

preferences,
∫∞

0
vRC (c (t) , t) dt, with vRC

1 (c, t) , vRC
11 (c, t) and vRC

12 (c, t) existing,

and with vRC
1 (c, t) < ∞ and −∞ < vRC

11 (c, t) , vRC
12 (c, t) for all consumption

levels, c ∈ CRC ≡
{
c ∈ R+

∣∣c = ∫
I
cidµ (i) , ci ∈ Ci, i ∈ I

}
, for all t ≥ 0, and

who possesses the economy-wide aggregate wealth and productivity at all times,

and whose demand functions coincide with the aggregate demand functions of the
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economy at all times, namely,

cRC (t) = CRC

(∫
I

ai (t) dµ (i)

∣∣∣∣∣
(
r (τ) , w (τ) ,

∫
I

θi (τ) dµ (i)

)
τ≥t

)
=

=

∫
I

Ci
(
ai (t)

∣∣∣ (r (τ) , w (τ) , θi (τ)
)
τ≥t

)
dµ (i) , (7)

for all t ≥ 0, for the complete domain of prices (r (t) , w (t))t≥0, initial dis-

tributions of assets, (ai0)i∈I, and functions
(
θi : R+ → R

)
i∈I

that comply with

Assumption 3.

It is emphasized, again, that this is a strong concept of a representative consumer that

aims at providing the facility of solving only the representative-cosumer’s problem using

standard optimal-control techniques, in order to derive aggregate demands at all times.

2.1 Common choice-independent rates of time preference among
all consumers at all times

The case where ρi : R+ → R++ is such that ρi = ρ for all i ∈ I is a standard convention in

most literature with dynamic consumers. The first theorem pertains this special case, pro-

viding a complete characterization of the collection of momentary utility functions, (ui)i∈I ,

in order that a representative consumer exists. This is done under an additional assumption

in this setting.

Assumption 4 ∩
i∈I

Ci is non-empty and not a singleton.

Assumption 4 places a constraint on the scope of preference heterogeneity. It says that

nobody’s bliss point (if any), should be lower than (or equal to) anyone else’s subsistence

level of consumption (if any), hence ∩
i∈I

Ci is an interval.
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Theorem 1 When ρi (t) = ρ (t) for all i ∈ I and all t ≥ 0, under Assumptions

1 through 4, a representative consumer exists iff

ui (c) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(αc+βi)
1− 1

α−1

α(1− 1
α)

or

−e
− 1

βi
c

with α > 0 and βi ∈ R or α < 0 and βi ∈ R++

with βi > 0

,

(8)

for all i ∈ I. The representative consumer has the common, across households,

rate of time preference, ρ (t), at all times, and momentary utility function given

by,

uRC (c) =

⎧⎪⎨
⎪⎩

(αc+βRC)1−
1
α−1

α(1− 1
α)

−e
− 1

βRC
c

for α �= 0

else
, (9)

with

βRC =

∫
I

βidµ (i) .

Proof of Theorem 1

Part 1: Necessity

Fix any function ρ : R+ → R++, and any collection (ui)i∈I , with properties complying

with Assumptions 1,2 and 4. Assume that a representative consumer exists with some

momentary utility function vRC : CRC×R+ → R, of the form vRC (c (t) , t), at each point in

time. Under Assumption 3, from Definition 1 and (5) it must be that,

vRC
1

(∫
I
ci (t) dµ (i) , t

)
vRC
11

(∫
I
ci (t) dµ (i) , t

)
[
r (t) +

vRC
12

(∫
I
ci (t) dµ (i) , t

)
vRC
1

(∫
I
ci (t) dµ (i) , t

)
]
=

∫
I

µ (i)
ui
1 (c

i (t))

ui
11 (c

i (t))
di [r (t)− ρ (t)] ,

(10)
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where the term

−
vRC
12

(∫
I
ci (t) dµ (i) , t

)
vRC
1

(∫
I
ci (t) dµ (i) , t

)
is the temporal rate of time preference of the representative consumer.

(Necessity) Step 1: preliminary characterization of the function
∫∞

0
vRC (c (t) , t) dt.

According to Definition 1, the existence (and the implied preference primitives) of the

representative consumer should be independent from any price regime. The case where

r (t) = ρ (t) for all t ≥ 0, should always be included in the price domain. To see this, fix any

moment in time, t ∈ R+, pick any consumer i ∈ I, and multiply her budget constraint, (3),

by the integrating factor e−
∫ τ
t
r(s)ds, integrate over all τ ∈ [t,∞), and apply the transversality

condition, to get,∫ ∞

t

e−
∫ τ
t
r(s)dsci (t) dτ = ai (t) +

∫ ∞

t

e−
∫ τ
t
r(s)dsθi (τ)w (τ) dτ . (11)

For the case r (t) = ρ (t) for all t ≥ 0, under Assumption 3, (5) implies that ċi (t) = 0 for all

t ∈ R+, and all i ∈ I, so, (11) implies that

ci (t) = ĉi =
ai (t) +

∫∞

t
e−

∫ τ
t
ρ(s)dsθi (τ)w (τ) dτ∫∞

t
e−

∫ τ
t
ρ(s)dsdτ

, for all t ≥ 0. (12)

For the given (ui)i∈I , (12) implies that there are always
(
ai0, θ

i
)
i∈I

and (w (t))t≥0 securing

that ĉi ∈ Ci for all i ∈ I, and for all t ≥ 0, so, Assumption 3, indeed, holds. Therefore, the

case r (t) = ρ (t) for all t ≥ 0, is always part of the domain complying with Assumption 3,

for any (ui)i∈I that satisfies Assumptions 1 and 2.

Thus, if we set r (t) = ρ (t) for all t ≥ 0, pick an appropriate
(
ai0, θ

i
)
i∈I

and (w (t))t≥0

securing that ĉi > ci for all i ∈ I, and for all t ≥ 0, and also set,

c≡

∫
I

µ (i) ĉidi ,
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equations (10) and (12) imply that the necessary optimality conditions of the representative

consumer are,

−
vRC
12 (c, t)

vRC
1 (c, t)

= ρ (t) ,

so, standard Riemann integration with respect to t over the time interval [0, t] implies that,

vRC
1 (c, t) = e−

∫ t
0 ρi(τ)dτvRC

1 (c, 0) ,

or,

vRC (c, t) = e−
∫ t
0 ρ(τ)dτvRC (c, 0) ,

ignoring the constant, since this is a utility function. Setting,

uRC (c) ≡ vRC (c, 0) ,

we conclude that the objective of the representative consumer must be of the form,

URC
(
(c (t))t≥0 , t

)
=

∫ ∞

0

e−
∫ t
0 ρ(τ)dτuRC (c (t)) dt . (13)

For notational ease, let, fRC : CRC → R++ and (f i : Ci → R++) i∈I , with

fRC (·) = −
uRC
1 (·)

uRC
11 (·)

and f i (·) = −
ui
1 (·)

ui
11 (·)

for all i ∈ I.

Combining (13) with (10), it follows that,

fRC

(∫
I

ci (t) dµ (i)

)
=

∫
I

f i
(
ci (t)

)
dµ (i) , (14)

for all
(
ci (t) ∈ C

i
)
i∈I

, that are consumer-equilibrium choices, and t ≥ 0 .

13



(Necessity) Step 2: characterization of fRC : R+ → R++ and (f i : R+ → R++) i∈I . In this

step it is shown that,

(14) ⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f i (c) = αc+ βi , and,

fRC (c) = αc+
∫
I
βidµ (i) ,

for some α ∈ R and some βi ∈ R, for all i ∈ I

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (15)

The sufficiency part of (15) is both straighforward and not needed for the proof of the

theorem, so, the focus is on proving the necessity part of (15). So, let (14) hold, being the

only information available about fRC : R+ → R++ and the collection (f i : R+ → R++) i∈I .

Suppose, again, that r (t) = ρ (t) for all t ≥ 0, and, given (12), find a common distribution

of
(
ai0, θ

i
)
i∈I

and (w (t))t≥0, where a
i
0 = a0 and θi = θ, so that ci (t) = c̃ for all i ∈ I, and all

t ≥ 0, also with c̃ ∈ ∩
i∈I

Ci.

Let,

ΦRC (c) ≡ fRC (c)− fRC (c̃) , (16)

and,

Φi (c) ≡ f i (c)− f i (c̃) , for all i ∈ I . (17)

For this distribution, (14) implies that,

fRC (c̃) =

∫
I

µ (i) f i (c̃) di . (18)

Moreover, given (1), set µ such that,

0 < µ ≤ inf {dµ (i) | i ∈ I} . (19)

Now pick any arbitrary consumer type i ∈ I, keep prices as before and modify the previous

distribution by just adding to µ of this consumer type different wealth or productivity that

yields ci (t) = (c̃+∆c) ∈ ∩
i∈I

Ci, for all t ≥ 0. Since prices are the same, cj (t) = c̃, for
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all j ∈ I\{i} and for some consumers of type i with measure µ (i) − µ, and for all t ≥ 0.

Combining (14), (18), (16) and (17), it is,

ΦRC
(
µ∆c+ c̃

)
= µΦi (∆c+ c̃) . (20)

Since the choice of i ∈ I, ∆c, and c̃ ∈ ∩
i∈I

Ci, were arbitrary, and since we can construct the

same distribution of consumption choices for all i ∈ I, (20) holds for all i ∈ I, so,

Φi (c) = Φ (c) for all c ∈ ∩
i∈I

C
i and for all i ∈ I. (21)

Given (12), we are able to construct any interior optimal path with distribution of consump-

tions with ci (t) = c ∈ ∩
i∈I

Ci for all i ∈ I, and all t ≥ 0. Therefore, (14), (18) and (21) imply

that,

ΦRC (c) = Φi (c) = Φ (c) for all c ∈ ∩
i∈I

C
i and for all i ∈ I , (22)

and most importantly,

Φ

(∫
I

ci (t) dµ (i)

)
=

∫
I

Φ
(
ci (t)

)
dµ (i) , for all

(
ci (t) ∈ ∩

i∈I
C

i

)
i∈I

, and t ≥ 0 , (23)

i.e. for the whole domain of wealth/labor-productivity heterogeneity and prices where con-

sumer choices fall in ∩
i∈I

Ci and are interior, as imposed by Assumption 4. Equation (23)

gives us the chance to further characterize Φ. In particular,

(23) ⇔ Φ is affine on ∩
i∈I

C
i. (24)

The sufficiency part of (24) is straightforward, so for the necessity part of (24) let’s set,

zi ≡ ci − c̃ , (25)

with c̃ defined as above for an arbitrary c̃ ∈ ∩
i∈I

Ci, in the case where r (t) = ρ (t) for all t ≥ 0.

So, fix c̃ and set,

Ψ(z) ≡ Φ(z)− Φ(0) , (26)
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since we know that for the transformed variable, z, the choice of 0 falls in the class of interior

solutions to a distribution in the domain of (ui)i∈I , namely the case where all consumers

choose c̃ ∈ ∩
i∈I

Ci at all times. It is now shown that Ψ is a linear functional. For any partition

of consumers, irrespective of their consumer types, say, I1,I2 ⊂ I, with I1 ∩ I2 = ∅,

and
∫
I1
dµ (i) = µ, retaining r (t) = ρ (t) for all t ≥ 0, provide the same a0 and a labor-

productivity function θ to all i ∈ I1, so that consumption is equal to (∆c+ c̃) ∈ ∩
i∈I

Ci for

all i ∈ I1 at all times, provide to the remaining consumers ã0 and a labor-productivity θ̃, so

that their consumption is equal to c̃ ∈ ∩
i∈I

Ci for all i ∈ I2 at all times. Then, zi = ∆c for all

i ∈ I1, and zi = 0 for all i ∈ I2, so,

Φ(µ∆c) = Φ (µ∆c+ (1− µ) 0) ,

and (23) and (26) imply that,

Φ(µ∆c) = µΦ(∆c) + (1− µ) Φ (0) ,

or,

Ψ(µ∆c) = µΨ(∆c) . (27)

It is important to notice that the choices of ∆c and µ were arbitrary. So, we can take any

µ1, µ2 ∈ (0, 1) with (µ1∆c+ c̃) , (µ1∆c+ c̃) ∈ ∩
i∈I

Ci and µ2

µ1
= ξ ∈ R+. Repeating the same

steps, (27) yields, Ψ(µ1∆c) = µ1Ψ(∆c) and Ψ(ξµ1∆c) = ξµ1Ψ(∆c), or,

Ψ(ξµ1∆c) = ξΨ(µ1∆c) , for all ξ ∈ R+ . (28)

Since Ψ is a univariate function, (28) is sufficient to prove that it is linear. So, let,

Ψ(z) = αz , α ∈ R,

and, due to the linearity of Ψ, the transformation (25) can be ignored, having (26) and (22)

implying that, Φ(c) = αc+Φ(0). But since (16) and (17) imply that Φ(c̃) = 0, Φ(0) = −αc̃,
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so,

ΦRC (c) = Φi (c) = Φ (c) = αc− αc̃ , α ∈ R, for all c ∈ ∩
i∈I

C
i and for all i ∈ I . (29)

With (29) at hand, it is easy to show that,

Φi (c) = Φ (c) = αc− αc̃ , α ∈ R, for all c ∈ C
i and for all i ∈ I . (30)

To prove (30), consider the case where an arbitrary cj ∈ Cj is such that cj ≤ inf

(
∩
i∈I

Ci

)

or cj ≥ sup

(
∩
i∈I

Ci

)
for some j ∈ I, whenever any of the two is possible (i.e. whenever

inf

(
∩
i∈I

Ci

)
> 0, or sup

(
∩
i∈I

Ci

)
< ∞). There always exist some µ ∈ (0, 1), with µ ≤ µ (j),

such that (µcj + (1− µ) c̃) ∈ ∩
i∈I

Ci. So, retaining r (t) = ρ (t) for all t ≥ 0, provide a level a0

and a labor-productivity function θ to a mass of µ of type j ∈ I, so that consumption is equal

to cj at all times, and also provide to the remaining consumers ã0 and a labor-productivity

θ̃, so that their consumption is equal to c̃ ∈ ∩
i∈I

Ci at all times. Combining (14), (16), (17)

and (18), it is,

µΦj
(
cj
)
= ΦRC

(
µcj + (1− µ) c̃

)
,

but since (µcj + (1− µ) c̃) ∈ ∩
i∈I

Ci, (29) implies thatΦRC (µcj + (1− µ) c̃) = α (µcj + (1− µ) c̃)−

αc̃, or

Φj
(
cj
)
= αcj − αc̃ .

since the choice of j ∈ I and cj ∈ Cj were arbitrary, (30) is proved.

So, combining (17) with (30) it is,

f i (c) = αc− αc̃+ f i (c̃) for all c ∈ C
i and all i ∈ I . (31)

Now that all f i’s are completely characterized over their domains, Ci, we can consider the

case of c = 0, irrespective from whether 0 ∈ Ci or not, in order to set the intercepts of all

17



f i’s. Apparently, (31) implies that,

f i (c̃) = αc̃+ f i (0) , (32)

and setting f i (0) = βi for some βi ∈ R, for all i ∈ I, a final combination of (31) with (32),

while, consistently with (14), setting βRC =
∫
I
βidµ (i), complete the proof of (15).

(Necessity) Step 3: characterization of (ui : R+ → R++) i∈I and uRC : R+ → R++.

In light of (15), the derivation of the consumer primitives comes through simple Riemann

integration. There are two general cases, these of α �= 0 and α = 0.2

For the case that α �= 0, (15) implies that,

ui
1 (c)

ui
11 (c)

= −
1

αc+ βi

,

and the indefinite Riemann integral of this expression with respect to c yields,

ln
[
ui
1 (c)

]
= −

1

α
ln (αc+ βi) + κi ,

where κi is some constant in R, that can be consumer-specific, and integrating once more,

it is,

ui (c) = eκi
(αc+ βi)

1− 1
α

α
(
1− 1

α

) + κ ,

where κ is, again some constant. Setting eκi = 1, without loss of generality, and κ accord-

ingly, the result of (8) is obtained. The special case where α = 1, is known to yield the

result that ui (c) = ln (αc+ βi)+κ, through computing the limit of the above expression for

α → 1 using L’Hôpital’s rule. The preferences of the representative consumer are derived in

the same way.

2 The case where α = 1 is also of special interest, but the particular functional form of
(
ui
)
i∈I

and uRC

that result in this case, can be derived from the more general functional forms that apply to α �= 0.
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For the case that α = 0,

ui
1 (c)

ui
11 (c)

= −
1

βi

,

and in order for ui
1 > 0 and ui

11 < 0 to hold, it must be that βi > 0. So,

ln
[
ui
1 (c)

]
= −

1

βi

c+ κi ,

and,

ui (c) = −
eκi

βi

e
− 1

βi
c
+ κ ,

so, setting eκi

βi
= 1 and κ = 0 yields the corresponding function in (8). With the same

reasoning for the representative consumer, the proof of the necessity part is complete.

Part 2: Sufficiency

The particular functional forms given by (8) enable a thorough analytical characterization

of the demand functions of all consumers at all times. Again, two cases must be examined

separately, this of α �= 0, and also the case where α = 0.

Under the assumption that α �= 0, (5), implies,

ċi (t) =
[
αci (t) + βi

]
[r (t)− ρ (t)] ,

so, multiplying this expression by the integrating factor e−α
∫ τ
t
[r(s)−ρ(s)]ds and integrating over

the interval [t, τ ] for any τ ∈ [t,∞), yields,

ci (τ) = ci (t) eα
∫ τ
t
[r(s)−ρ(s)]ds + βie

α
∫ τ
t
[r(s)−ρ(s)]ds

∫ τ

t

e−α
∫ τ
t
[r(s)−ρ(s)]ds [r (s)− ρ (s)] ds .

Multiplying this last expression by e−
∫ τ
t
r(s)ds, integrating over all τ ∈ [t,∞), and combining

the result with (11), gives,

ci (t) =
ai (t) +

∫∞

t
e−

∫ τ
t
r(s)dsθi (τ)w (τ) dτ∫∞

t
e
∫ τ
t
[(α−1)r(s)−αρ(s)]dsdτ

−
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−
βi

∫∞

t
e
∫ τ
t
[(α−1)r(s)−αρ(s)]ds

∫ τ

t
e−α

∫ τ
t
[r(s)−ρ(s)]ds [r (s)− ρ (s)] dsdτ∫∞

t
e
∫ τ
t
[(α−1)r(s)−αρ(s)]dsdτ

, (33)

which can be linearly aggregated across all ai’s, θi’s and βi’s, proving that a representative

consumer exists, as long as Assumption 1 holds, which keeps all individual demands taking

the form of (33).

For the case where α = 0, when all individual utilities fall in the class of ui (c) = −e
− 1

βi
c
,

(33) implies that,

ci (t) =
ai (t) +

∫∞

t
e−

∫ τ
t
r(s)dsθi (τ)w (τ) dτ − βi

∫∞

t
e−

∫ τ
t
r(s)ds

∫ τ

t
[r (s)− ρ (s)] dsdτ∫∞

t
e−

∫ τ
t
r(s)dsdτ

, (34)

which can also be linearly aggregated across all ai’s, θi’s and βi’s, completing the proof of

the theorem.�

Having read Pollak (1971), the result stated by Theorem 1 is not that surprising. Pollak

(1971) shows that if utility functions over a finite number of goods are additively-separable,

the only functional forms of utility per good that yield linear Engel curves are the same

as these stated by Theorem 1. Yet, the difference in the dynamic setup studied here is

the existence of an asset that stores values, and the feature that individuals have a time

preference. These two features can lead to complex trajectories of assets over time that could

influence the potential to derive linear Engel curves at all points in time. Most importantly,

unlike the main argument developed by Pollak (1971) in the finite-good static setting, it is

difficult to characterize indirect utility functions in dynamic setups out of the requirement

that Engel curves are linear.3

The work by Chatterjee (1994), Atkeson and Ogaki (1996), and Caselli and Ventura

(2000) has shown that Pollak’s (1971) utility functions do lead to a representative consumer

in such dynamic settings. But unlike the spirit of the work by Pollak (1971) who provides

3 Pollak’s (1971) main theorem relies upon a finding by Gorman (1961) for static models. Gorman (1961)
proves that Engel curves are linear if, and only if, indirect utility functions possess a certain general form.
Such an extension to an optimal-control setup is, at least, demanding.
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the full set of utility functions that guarantee the existence of a representative consumer in

a static setting, it has been an open question whether there is anything more to say about

the momentary utility functions in a dynamic setting with an asset that stores value over

time. In the spirit of the setup examined by Chatterjee (1994), for the case of time-invariant

momentary utility functions (unlike the setup studied by Caselli and Ventura (2000) who

examine a case of time-variant momentary utility functions), in a single-commodity deter-

ministic environment, (unlike the case studied by Atkeson and Ogaki (1996), Maliar and

Maliar (2001) and (2003), who look at multi-type commodity setups in stochastic environ-

ments), an answer is given by Theorem 1 of the present study: there is nothing more to

say than in Pollak (1971) when all individuals have the same rate of time preference and

nobody’s bliss point (if any) is never lower than or equal to anyone else’s subsistence level

(if any). But is there anything more (or less) to say about time-invariant utility functions

when individual rates of time preference differ? This question is examined in the section

that follows.

2.2 Heterogeneous choice-independent rates of time preference

Now the general economic environment with heterogeneous functions ρi : R+ → R++ is

considered. For developing the aggregation theorem of this section, Assumption 4 is not

necessary and it is dropped. Yet, another assumption should be added.

Assumption 5 Given a collection of functions (ρi)i∈I, that comply with As-

sumption 2, the collection of functions (ui)i∈I possesses structure such that for

all interest rates, (r (t))t≥0, satisfying,∫ ∞

0

e−
∫ t
0 r(τ)dτdt < ∞ , (35)
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the domain of initial distribution of assets (ai0)i∈I, of the collection of labor-

productivity functions
(
θi
)
i∈I

, and of wages (w (t))t≥0, so that the problems of

all consumers i ∈ I are well-defined and the solution to each individual problem

is interior for all t ≥ 0, is non-empty.

Assumption 5 puts some restriction on the class of preferences, (ρi, ui)i∈I, but not one

that makes the issue under study uninteresting. For having a representative consumer,

interiority of individual optimal paths is an essential feature of equilibrium. In the case

of heterogeneous rates of time preference, the necessary optimality condition given by (5)

can drive the consumption of consumers towards different directions even when consumers

have the same momentary utility function. For such a setting, assumptions such as Inada

conditions are quite usual in order to guarantee interiority. Assumption 5 does not restrict

attention to utility functions that satisfy usual Inada conditions. It simply says that for a

given (ρi)i∈I, for any path of interest rates that satisfies (35), (ui)i∈I, should allow some

of the remaining domain of prices and wealth/labor-productivity distributions to generate

interior solutions.

Theorem 2 Under Assumptions 1,2,3 and 5, a representative consumer exists

iff

ui (c) = −e
− 1

βi
c
, (36)

for βi > 0 for all i ∈ I. The representative consumer’s preferences are given

by,

URC
(
(c (t))t≥0 , t

)
= −

∫ ∞

0

e−
∫ t
0 ρRC(τ)dτe

− 1
βRC

c
dt , (37)
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with

ρRC (t) =

∫
I
ρi (t)βidµ (i)∫
I
βidµ (i)

, for all t ≥ 0,

and

βRC =

∫
I

βidµ (i) .

Proof of Theorem 2

Part 1: Necessity

Fix any collection (ρi, ui)i∈I , with properties complying with Assumptions 1, 2, and

5. Assume that a representative consumer exists with some momentary utility function

vRC : CRC×R+ → R, of the form vRC (c (t) , t), at each point in time. Under Assumption 3,

from Definition 1 and (5) it must be that,

vRC
1

(∫
I
ci (t) dµ (i) , t

)
vRC
11

(∫
I
ci (t) dµ (i) , t

)
[
r (t) +

vRC
12

(∫
I
ci (t) dµ (i) , t

)
vRC
1

(∫
I
ci (t) dµ (i) , t

)
]
=

= r (t)

∫
I

ui
1 (c

i (t))

ui
11 (c

i (t))
dµ (i)−

∫
I

ui
1 (c

i (t))

ui
11 (c

i (t))
ρi (t) dµ (i) . (38)

(Necessity) Step 1: preliminary characterization of the function
∫∞

0
vRC (c (t) , t) dt.

Pick any arbitrary j ∈ I and assume that r (t) = ρj (t) for all t ≥ 0. Assumption 5 implies

that there exists some initial-wealth and labor-productivity-function distributions together

with some wage vector (w (t))t≥0 guaranteeing an interior optimal path of consumption

choices for t ≥ 0. In that case, (5) implies that all consumer types j will choose a consumption

path with constant consumption over time, given by,

cj (t) = ĉj =
aj (t) +

∫∞

t
e−

∫ τ
t
ρj(s)dsθj (τ)w (τ) dτ∫∞

t
e−

∫ τ
t
ρj(s)dsdτ

, for all t ≥ 0. (39)
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With these settings, taking into account that r (t) = ρj (t) for all t ≥ 0, and also (39),

rearranging (38) it is,

vRC
11

(∫
I\{j}

ci (t) dµ (i) + µ (j) ĉj, t
)

vRC
1

(∫
I\{j}

ci (t) dµ (i) + µ (j) ĉj, t
)×

×

[
ρj (t)

∫
I\{j}

ui
1 (c

i (t))

ui
11 (c

i (t))
dµ (i)−

∫
I\{j}

ui
1 (c

i (t))

ui
11 (c

i (t))
ρi (t) dµ (i)

]
+

+
vRC
12

(∫
I\{j}

ci (t) dµ (i) + µ (j) ĉj, t
)

vRC
1

(∫
I\{j}

ci (t) dµ (i) + µ (j) ĉj, t
) = −ρj (t) . (40)

Now fix any t ∈ [0,∞) and, for notational ease, set,

∫
I\{j}

ci (t) dµ (i) = ω (t) ,

ρj (t)

∫
I\{j}

ui
1 (c

i (t))

ui
11 (c

i (t))
dµ (i)−

∫
I\{j}

ui
1 (c

i (t))

ui
11 (c

i (t))
ρi (t) dµ (i) = χ (t) .

So, (40) becomes,

vRC
11 (ω (t) + µ (j) ĉj, t)

vRC
1 (ω (t) + µ (j) ĉj, t)

χ (t) = −ρj (t)−
vRC
12 (ω (t) + µ (j) ĉj, t)

vRC
1 (ω (t) + µ (j) ĉj, t)

. (41)

For the same point in time, we are able to consider alternative distributions, keeping the

same wealth and productivity for all i ∈ I\ {j} and give to j all combinations of initial

wealth or productivity that can fully span Cj, given equation (39). So, we can integrate

equation (41) over ĉj, as Cj is a continuum. Doing so, leads to,

vRC
1

(
ω (t) + µ (j) ĉj, t

)
= e

−
µ(j)ρj(t)

χ(t)
ĉj−

µ(j)
χ(t)

∫ vRC
12 (ω+µ(j)ĉj ,t)
vRC
1 (ω+µ(j)ĉj ,t)

dĉj+
µ(j)
χ(t)

κ
, (42)

where κ is the constant of integration. Viewing the right-hand side of (42) as the product

of two functions,

g
(
ĉj, t

)
= e

−
µ(j)ρj

χ(t)
ĉj+

µ(j)
χ(t)

κ ,
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and

h
(
ĉj, t

)
= e

−
µ(j)
χ(t)

∫ vRC
12 (ω(t)+µ(j)ĉj ,t)
vRC
1 (ω(t)+µ(j)ĉj ,t)

dĉj

,

and integrating again (42) with respect to ĉj, using integration by parts, it is,

1

µ (j)
vRC

(
ω (t) + µ (j) ĉj, t

)
= −

χ (t)

µ (j) ρj (t)
e
−

µ(j)ρj (t)
χ(t)

ĉj−
µ(j)
χ(t)

∫ vRC
12 (ω(t)+µ(j)ĉj ,t)
vRC
1 (ω(t)+µ(j)ĉj ,t)

dĉj+
µ(j)
χ(t)

κ
−

−
1

ρj (t)

∫
vRC
12 (ω (t) + µ (j) ĉj, t)

vRC
1 (ω (t) + µ (j) ĉj, t)

e
−

µ(j)ρj(t)
χ(t)

ĉj−
µ(j)
χ(t)

∫ vRC
12 (ω(t)+µ(j)ĉj ,t)
vRC
1 (ω(t)+µ(j)ĉj ,t)

dĉj+
µ(j)
χ(t)

κ
dĉj ,

where the constant of integration is ignored, since this is a utility function. Using (42) again,

this last equation gives,

vRC
(
ω (t) + µ (j) ĉj, t

)
= −

χ (t)

ρj (t)
vRC
1

(
ω (t) + µ (j) ĉj, t

)
−
µ (j)

ρj (t)

∫
vRC
12

(
ω (t) + µ (j) ĉj, t

)
dĉj ,

or,

vRC
(
ω (t) + µ (j) ĉj, t

)
= −

χ (t)

ρj (t)
vRC
1

(
ω (t) + µ (j) ĉj, t

)
−

µ (j)

ρj (t)
vRC
2

(
ω (t) + µ (j) ĉj, t

)
,

(43)

having, again, ignored the constant of integration. Rearranging terms in (43), it is,

vRC
2 (ω (t) + µ (j) ĉj, t)

vRC (ω (t) + µ (j) ĉj, t)
= −

χ (t)

µ (j)

vRC
1 (ω (t) + µ (j) ĉj, t)

vRC (ω (t) + µ (j) ĉj, t)
−

ρj (t)

µ (j)
. (44)

If the terms
vRC
2 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

, on the left-hand side of (44) and
vRC
1 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

on the right-

hand side of (44) depend on ĉj, it must be that both are downward sloping functions of ĉj. In

order that the representative-consumer’s problem be well-defined, the momentary function

of the representative consumer must have vRC
1 (c, t) > 0, vRC

11 (c, t) < 0 on CRC , and also

vRC
12 (c, t) < 0: the rate of time preference of the representative consumer, −

vRC
12 (c,t)

vRC
1 (c,t)

cannot

be negative while all consumers in the economy always possess strictly positive rates of time

preference and, at least asymptotically, −
vRC
12 (c,t)

vRC
1 (c,t)

> 0, so that the objective function of the
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representative consumer is well-defined. Given these observations, let’s examine, case by

case, whether
vRC
2 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

, or
vRC
1 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

, or both, depend on ĉj, guided by (44).

Suppose that
vRC
2 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

depends on ĉj, but
vRC
1 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

does not. Then, at a

given point in time, (44) implies that ĉj is a function of the primitives of the representative

consumer, and of χ (t), driven by what the rest of the consumers in the economy choose. But

ĉj can be any, by assigning to consumer type j different initial wealth or labor productivity

processes, a contradiction. Similarly, we can contradict that
vRC
1 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

depends on ĉj,

but
vRC
2 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

does not. Now suppose that both
vRC
2 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

and
vRC
1 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

depend on ĉj. In that case, nothing could prevent the rest of the consumers to choose

consumption so that χ (t) > 0 for some t ≥ 0. In that case, given that both
vRC
2 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

and
vRC
1 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

could only be downward-sloping, ĉj is, again, a function of the primitives

of the representative consumer, and of χ (t). Therefore,

∂
vRC
1 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

∂ĉj
=

∂
vRC
2 (ω(t)+µ(j)ĉj ,t)
vRC(ω(t)+µ(j)ĉj ,t)

∂ĉj
= κ ∈ R , t ≥ 0. (45)

Since the choice of t ∈ [0,∞) and, especially, the choice of j ∈ I were arbitrary, a

condition similar to this given by (43) can be obtained for all i ∈ I and al t ≥ 0, namely,

vRC (c, t) = γ (t) vRC
1 (c, t)−δ (t) vRC

2 (c, t) , for some γ (t) ∈ R, δ (t) ∈ R++, c ∈ C
RC , t ≥ 0 ,

(46)

since we can span the whole range of CRC , by setting r (t) = ρi (t) for all i ∈ I, and repeating

the same analysis. Now, set,

υ (c, t) = ln
[∣∣vRC (c, t)

∣∣] , (47)

and divide both sides of (46) by vRC (c, t), to get,

γ (t) υ1 (c, t)− δ (t) υ2 (c, t) = 1 , for some γ (t) ∈ R, δ (t) ∈ R++, c ∈ C
RC , t ≥ 0 , (48)
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Accordingly, condition (45) on the whole range of CRC , reads,

υ11 (c, t) = υ12 (c, t) = 0 , c ∈ C
RC , t ≥ 0. (49)

Conditions (48) and (49) imply that υ (c, t) must be additively separable with respect to c

and t. Specifically, υ (c, t) can only be the sum of a linear function of c and of a function of t,

namely, υ (c, t) = −φc+ ζ (t). Since υ2 (c, t) is the negative of the representative consumer’s

rate of time prefrerence, setting, without loss of generality, ζ (t) = −
∫ t

0
ρRC (τ) dτ , using

(47) it is,

vRC (c, t) = −e−φc−
∫ t
0 ρRC(τ)dτ with γ (t)φ− δ (t) ρRC (t) = 1 (50)

for some γ (t) ∈ R, φ, ρRC (t) , δ (t) > 0, c ∈ C
RC , t ≥ 0 .

Treating γ (t) , φ, δ (t) and ρRC (t) as undetermined for the moment, returning to (38), after

using (50) it becomes,∫
I

ui
1 (c

i (t))

ui
11 (c

i (t))

[
r (t)− ρi (t)

]
dµ (i) =

r (t)− ρRC (t)

φ
, t ≥ 0 . (51)

(Necessity) Step 2: characterization of the functions (ui)i∈I.

In this step, it is shown that,

(51) ⇒
ui
1 (c

i (t))

ui
11 (c

i (t))
= −βi , βi > 0 for all ci (t) ∈ C

i and i ∈ I, t ≥ 0 . (52)

To prove (52), consider a constant path of interest rates, r (t) = r > 0, for all t ≥ 0. As-

sumption 5 tells us that there always exists a distribution of initial-wealth, labor-productivity

paths and a wage vector, (w (t))t≥0, such that all individuals can have an interior optimal

consumption path. Pick one of these, say (ai0)i∈I ,
(
θi
)
i∈I

, and (w (t))t≥0. Set θ̃
i
(t) = θi(t)w(t)

w̃
,

where w̃ > 0 is some constant. From the necessary conditions of the problem, it is trans-

parent that for r (t) = r, w (t) = w̃, for all t ≥ 0, and (ai0)i∈I ,
(
θ̃
i
)
i∈I

, the consumption
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paths will remain unchanged. In this setting with constant prices, the consumption decision

rule of each consumer type, i ∈ I, is memoryless and depends only on the continuation

of θ̃
i
from the current moment of the decision and on. This means that, in period 0, one

can start any consumer type from any point of its optimal path, at any moment in time,

and let the consumer continue on the same path, by modifying its initial wealth so that it

matches a choice of wealth at a future moment and by modifying θ̃
i
, giving the continuation

of θ̃
i
from that future moment at time 0. Let’s call such a modification a path-preserving

modification. Suppose that, contrary to (52),
ui
1(ci)

ui
11(c

i)
depends on ci, for some i ∈ I. If that

consumer type, i, has an optimal path such that ci (t1) �= ci (t2) for some t1 �= t2, t1, t2 ≥ 0,

an appropriate path-preserving modification (which is always possible and does not violate

interiority), while keeping the features of all other consumer types the same, would violate

(51). In the very extreme case that ci (t) is constant at all times, after solving the necessary

conditions for r (t) = r, w (t) = w̃, for all t ≥ 0, and ai0, θ̃
i
, it is,

ci (t) = ci =
ai (t) + w̃

∫∞

t
e−rtθ̃

i
(τ) dτ∫∞

t
e−rtdτ

, for all t ≥ 0 ,

where ci ∈ Ci is a constant, then we can simply change ai0 to âi0 = ξai0 and θ̃
i
(t) to θ̂

i
(t) =

ξθ̃
i
(t) so that, according to the equation above, ci (t) = ĉi �= ci, with ĉi ∈ Ci, contradicting

(51) again. Since the choice of i ∈ I was arbitrary,
ui
1(ci)

ui
11(c

i)
is a constant for all i ∈ I, and

given Assumption 1, it must be a negative constant, so (52) is proved.

Integrating
ui
1(ci)

ui
11(c

i)
= −βi with respect to ci, leads to,

ui (c) = −e
− 1

βi
c
, βi > 0, for all i ∈ I . (53)
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(Necessity) Step 3: characterization of uRC and ρRC.

Combining (51) with (52), it is,

[∫
I

βidµ (i)−
1

φ

]
r (t) =

ρRC (t)

−φ
+

∫
I

βiρ
i (t) dµ (i) . (54)

But since (54) should hold independently from r (t), it can only be that,

φ =
1∫

I
βidµ (i)

, t ≥ 0 ,

and, accordingly,

ρRC (t) =

∫
I
βiρ

i (t) dµ (i)∫
I
βidµ (i)

, t ≥ 0 .

A combination of these two last equations with (50) completes the necessity part of the

theorem.

Part 2: Sufficiency

Employing the same algebra as in Part 2 of Theorem 1, the resulting demand for indi-

vidual i ∈ I at any point in time, t ≥ 0, is,

ci (t) =
ai (t) +

∫∞

t
e−

∫ τ
t
r(s)dsθi (τ)w (τ) dτ − βi

∫∞

t
e−

∫ τ
t
r(s)ds

∫ τ

t
[r (s)− ρi (s)] dsdτ∫∞

t
e−

∫ τ
t
r(s)dsdτ

, (55)

which can be linearly aggregated across all ai’s, θi’s, βi’s, and ρi (t) at all times, completing

the proof of the theorem.�

Theorem 2 relates to a number of studies that deal with the issue of heterogeneity in rates

of time preference. Becker’s (1980) result in a deterministic world, that the most patient
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consumer accumulates asymptotically all the wealth of the economy as time approaches

infinity, relies heavily on imposing Inada conditions on the momentary utility functions of

the different agent types, that lim
c→0

ui
1 (c) = ∞ and lim

c→∞
ui
1 (c) = 0. If one needs facility in

computing the dynamics of aggregate wealth in a Becker (1980)-type economy by modeling

so that a representative consumer exists, according to Theorem 2, the only way is to use

ui (c) = −e
− 1

βi
c
, βi > 0, for all i ∈ I. However, in this case, a problem is that lim

c→0
ui
1 (c) =

1
βi

for all i ∈ I. Thus, the issue of interiority of optimal paths in a Becker (1980)-type economy

is at stake, unless one makes appropriate (although possibly ad-hoc) assumptions on the

productivity processes of less patient consumer types.

Becker’s (1980) observation on a general equilibrium model with heterogeneous rates of

time preference has triggered numerous directions of research, especially along the lines of

stochastic general-equilibrium environments with idiosyncratic shocks. Probably the most

well-known application is this of Krusell and Smith (1998), who exploit the tendency of

heterogeneous rates of time preference to generate wealth disparities. They use a random

process of individual rates of time-preference in order to match U.S. wealth data that exhibit

a high Gini coefficient. As this random process has a trivial probability that a person is

always the most patient, the asymptotic distribution of wealth is not degenarate, but it

simply leads to a high Gini coefficient.

Krusell and Smith (1998) employ homothetic preferences with a constant elasticity of

intertemporal substitution, and a common-across-consumers random process of varying rates

of time preference. The random process of the rates of time preference is persistent, so it

implies different conditional means for each individual in each period, whereas all individuals

have the same unconditional means of rates of time preference. The first feature triggers wide

differences in the savings propensity across individuals, leading to a high Gini coefficient for
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wealth. According to Theorem 2 of the present study, since preferences are not exponential,

one could first think that there should not be a representative consumer in the Krusell-Smith

(1998) setting, since the conditional means of the rates of time preference are different. Yet,

although the economic environment has, in addition to its other features, incomplete markets,

Krusell and Smith (1998) find that equilibrium prices can be computed very well using only

the law of motion of the mean wealth, i.e. there is trivial improvement if one computes

prices from the evolution of many moments of the wealth distribution that should match

wealth-distribution dynamics very well.

On the contrary, Carroll (2000) uses exactly the same framework as in Krusell and Smith

(1998), and the same stochastic processes (even numerically, in some of his applications) for

both idiosyncratic labor productivity and aggregate shocks, with the sole difference that he

employs two types of consumers, one always patient and another always impatient, both

having constant rates of time preference. The fact that, unlike in Becker (1980), the patient

consumers do not end up accumulating the economy’s wealth in the model of Carroll (2000),

rests upon the fact that all consumers receive a common process of idiosyncratic stochastic

labor earnings. Thus, the impatient ones do not save as (relatively) low as in Becker’s (1980)

model, for precautionary reasons. Carroll (2000) finds totally different results, namely,

the approximate aggregation result of Krusell and Smith (2000) disappears. According

to Theorem 2, Carroll’s (2000) findings should not be a surprise, because the employed

preferences (the preferences of Theorem 1 with βi = 0 and α > 0) are not exponential. Even

if no consumer has a corner solution, aggregation should fail. At the same time, equation (33)

shows that if ρ increases, the marginal propensity to consume increases as well, if α > 0,

as Carroll (2000) intuitively emphasizes.4 As the exponential function implies zero quasi

4 In order to match the utility function employed by Carroll (2000) and Krusell and Smith (1998), one
should set βi = 0 and α > 0 in equation (33), which reconfirms Carroll’s (2000) intuition, at least in the
deterministic continuous-time version of the model.
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elasticity of intertemporal substitution (α = 0), changes in impatience leave the individual

marginal propensities to consume unaffected, as equation (55) shows.

However, the results by Krusell and Smith (1998) are still somewhat puzzling. But

equation (33), although it refers to a deterministic continuous-time environment, can offer a

conjecture. Extensions to adding the continuous-time analogue of the Krusell-Smith (1998)

persistent Markov processes to the model of the present study, are likely to retain most of the

structure of demands conveyed by equation (33). If we set α > 0 and βi = 0, and also replace

ρ with ρi in (33), at a first glance, we can think that aggregation should fail, as marginal

propensities to consume (with respect to asset holdings) would change due to temporal

persistent shocks in ρi’s. But it is important to notice that the aggregation question in the

Krusell-Smith (1998) framework pertains decision rules where the accumulable state variable

is asset holdings. For forming the wealth-distribution law of motion, each agent is identified

by this sole attribute, asset holdings. So, identifying an agent by a (t) at any point in time,

the fact that there are infinite agents in the Krusell-Smith (1998) model (a continuum),

makes the law of large numbers to apply. The latter means that the average-across-θi’s-and-

ρi’s agent holding a (t), should be aggregated over the unconditional distribution of θi’s and

ρi’s, both today and in the future. But local aggregation of consumers (at a certain level of

wealth) over the domain and probabilities of all θi’s and ρi’s, should imply similar attributes

for the demands, as these stochastic processes are common across agents in the Krusell-

Smith (1998) setting. Thus, the average-across-θi’s-and-ρi’s demand of an agent holding

a (t) should have the same Engel-curve slope (as implied by the unconditional means of θi’s

and all ρi’s) as this of any average-across-θi’s-and-ρi’s agent holding ã (t) �= a (t), at any

point in time. These parallel Engel curves among average-across-θi’s-and-ρi’s agents holding

some level of wealth must be the basis for the Krusell-Smith (1998) aggregation result for
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the law of motion of the wealth distribution.

Fixing a (t) and a temporal θi (t), as it is the case in Figure 2 of Krusell and Smith (1998,

p. 879), still leaves the Engel curves across wealth and temporal-productivity types parallel,

since the demands of each of these types are unconditionally average across ρi’s, as it is

conveyed by equation (33) of the present study. To the extent that a very small fraction

of agents might hit corner solutions, as Krusell and Smith (1998, p. 880) point out, gives

their “approximate aggregation” result across agents of a (t) and temporal θi (t)’s who are

average across ρi’s.

At the same time, the fact that agents holding a (t) receive all kinds of temporal and

persistent shocks of θi’s and all ρi’s and, thus, agents distinguished both by θi’s and all

ρi’s, have non-parallel temporal Engel curves, adds to having a higher long-run dispersion in

wealth. Thus, the Krusell-Smith (1998, Table 1, p. 884) setting with stochastic rates of time

preference delivers a higher Gini coefficient on the one hand, but does not ruin the “approx-

imate aggregation” result on the other. On the contrary, in light of Theorem 2 and equation

(33), the Carroll (2000) setting with some consumers having permanently lower rates of time

preference than others, even if no consumers face a high risk to hit a corner solution, there

is no way that aggregation would hold. If consumers face tight borrowing constraints and

high probabilities of receiving very low incomes, and thus, consumers have precautionary

motives to lower their marginal propensity to consume as their wealth approaches zero, then

aggregation in the Carroll(2000) model becomes even more unlikely.

3. Choice-dependent rates of time preference (time-variant mo-
mentary utility functions)

Unlike the class of preferences examined by Gollier and Zeckhauser (2005), in the present

paper the extension to time-variant momentary utility functions pertains the case where
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individual rates of time preference have a consumption-choice-independent part wich is

common-across agents, and a consumption-choice-dependent part implied by their momen-

tary utility function. In particular, consumer preferences of each i ∈ I, are given by the

general additively-separable utility function,

U i
((

ci (t)
)
t≥0

, t
)
=

∫ ∞

0

e−
∫ t
0 ρ(τ)dτui

(
ci (t) , t

)
dt . (56)

with ρ : R+ → R++. A sequence of assumptions are important for the analysis that follows.

Assumption 6 For all i ∈ I, and all t ≥ 0, ui : R2
+ → R, is twice-continuously

differentiable with respect to c, and once continuously differentiable with respect

to t, and such that ui
1 (c, t) > 0 and ui

11 (c) < 0 on some interval, Ci (t) ⊆ R+,

with ui
1 (c) < ∞, −∞ < ui

11 (c), −∞ < ui
12 (c) < ∞ for all c ∈ Ci (t) ⊆ R+,with

ci (t) ≡ inf (Ci (t)) < sup (Ci (t)) ≡ c̄i (t).

Assumption 7 For all i ∈ I, ∩
t≥0

ui
1 (C

i (t) , t) is non-empty and not a single-

ton.

Assumption 8 For any i ∈ I, let,

C
i ≡

{
c ∈ ∩

t≥0
C

i (t)

∣∣∣∣ ∩
t≥0

ui
1

(
C

i (t) , t
)
is non-empty and not a singleton

}
.

Then, ∩
i∈I

C
i is non-empty and not a singleton.

Based on these assumptions, the following theorem is provided.
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Theorem 3 Under Assumptions 2, 3, and 6 through 8, a representative con-

sumer exists iff

ui (c, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(αc+βi(t))
1− 1

α−1

α(1− 1
α)

or

−e
− 1

βiG(t)
c

with α > 0 and βi (t) ∈ R or α < 0 and βi (t) ∈ R++

with βi > 0

,

(57)

for all i ∈ I, with functions βi (t) such that Assumptions 7 and 8 are met.

The representative consumer has

URC
((

ci (t)
)
t≥0

, t
)
=

∫ ∞

0

e−
∫ t
0 ρ(τ)dτuRC

(
ci (t) , t

)
dt , (58)

with,

uRC (c) =

⎧⎪⎨
⎪⎩

(αc+βRC(t))
1− 1

α−1

α(1− 1
α)

−e
− 1

βRCG(t)
c

for α �= 0 , βRC (t) =
∫
I
βi (t) dµ (i)

else, βRC =
∫
I
βidµ (i)

. (59)

Proof of Theorem 3

Part 1: Necessity

Fix any function ρ : R+ → R++, and any collection (ui)i∈I , with properties complying

with Assumptions 2,3 and 6 through 8. Assume that a representative consumer exists with

some momentary utility function vRC : CRC×R+ → R, of the form vRC (c (t) , t), at each

point in time.

Considering any i ∈ I, its optimality conditions imply that,

−
ui
11 (c

i (t) , t)

ui
1 (c

i (t) , t)
ċi (t)−

ui
12 (c

i (t) , t)

ui
1 (c

i (t) , t)
= r (t)− ρ (t) , t ≥ 0 . (60)
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Now pick r (t) = ρ (t) for all t ≥ 0, substitute it to (60) and take the indefinite inegral

with respect to time to get,

ui
1

(
ci (t) , t

)
= κ , t ≥ 0 . (61)

where κ is some constant. Due to the fact that ui
11 (c

i (t) , t) < 0, and due to Assumptions

7 and 9, there is always a κ > 0 such that ci (t) ∈ Ci (t) for all t ≥ 0, satisfying (61). For

r (t) = ρ (t), (60) implies that,

ċi (t) = −
ui
12 (c

i (t) , t)

ui
11 (c

i (t) , t)
. (62)

The level of κ in (61) will be uniquely identified by setting ui
1 (c

i (0) , 0) = κ and applying

(11) at time 0, combined with the dynamics of ci (t) implied by (62). Due to Assumption 7,

such an interior path exists on C
i, as Ci is defined in assumption 8. This means that with the

right choices of initial wealth and labor productivity, we can construct interior paths that

span C
i. Moreover, always for the case where r (t) = ρ (t) for all t ≥ 0, due to Assumption

8, for any i ∈ I, we can generate any choice of c ∈ ∩
i∈I

C
i at any point in time, picking the

appropriate initial wealth and labor productivity, since the dynamics of consumption are

solely driven by (62).

With this facility at hand, we can look at the problem of the representative consumer,

whose optimal Euler equation gives,

−
vRC
11

(∫
i∈I

ci (t) dµ (i) , t
)

vRC
1

(∫
i∈I

ci (t) dµ (i) , t
) ∫

i∈I

µ (i) ċi (t) di−
vRC
12

(∫
i∈I

ci (t) dµ (i) , t
)

vRC
1

(∫
i∈I

ci (t) dµ (i) , t
) = r (t) , t ≥ 0 ,

(63)

and combining it with (60), it is,

vRC
1

(∫
i∈I

ci (t) dµ (i) , t
)

vRC
11

(∫
i∈I

ci (t) dµ (i) , t
)r (t)+vRC

12

(∫
i∈I

ci (t) dµ (i) , t
)

vRC
1

(∫
i∈I

ci (t) dµ (i) , t
) =

= [r (t)− ρ (t)]

∫
i∈I

ui
1 (c

i (t) , t)

ui
11 (c

i (t) , t)
dµ (i) +

∫
i∈I

ui
12 (c

i (t) , t)

ui
11 (c

i (t) , t)
dµ (i) . (64)
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Setting r (t) = ρ (t) for all t ≥ 0, (64) becomes,

vRC
1

(∫
i∈I

ci (t) dµ (i) , t
)

vRC
11

(∫
i∈I

ci (t) dµ (i) , t
)ρ (t) + vRC

12

(∫
i∈I

ci (t) dµ (i) , t
)

vRC
1

(∫
i∈I

ci (t) dµ (i) , t
) =

∫
i∈I

ui
12 (c

i (t) , t)

ui
11 (c

i (t) , t)
dµ (i) . (65)

But since, as explained above, for the case where r (t) = ρ (t) for all t ≥ 0, one can gen-

erate any distribution of consumption choices, (65) holds for the whole domain implied by

Assumption 3. So, substituting (65) into (64), it is,

vRC
1

(∫
i∈I

ci (t) dµ (i) , t
)

vRC
11

(∫
i∈I

ci (t) dµ (i) , t
) =

∫
i∈I

ui
1 (c

i (t) , t)

ui
11 (c

i (t) , t)
dµ (i) , (66)

for the whole domain implied by Assumption 3, including the case where r (t) = ρ (t) for

all t ≥ 0. But then, for any t ≥ 0, the same argument that was developed in step 2 of the

necessity part of the proof of Theorem 1, to get,

ui
1(c,t)

ui
11(c,t)

= α (t) c+ βi (t) , and,

vRC
1 (c,t)

vRC
11 (c,t)

= α (t) c+
∫
I
βi (t) dµ (i) ,

for some α (t) ∈ R and some βi (t) ∈ R, for all i ∈ I, t ≥ 0

(67)

Using (67), with the same procedure as in step 3 of the necessity part of Theorem 1, candidate

utility functions arise. Deriving individual demands, one can verify that this is possible only

if

α (t) = α �= 0 , and βi (t) meeting Assumptions 7, 8, t ≥ 0 ,

and

α = 0, βi (t) = βiG (t) ,

that match the utility functions of the theorem. In particular, for the case where α �= 0,

demands are,

ci (t) =
ai (t) +

∫∞

t
e−

∫ τ
t
r(s)dsθi (τ)w (τ) dτ + 1

α

∫∞

t
e
∫ τ
t
[(α−1)r(s)−αρ(s)]dsβi (τ) dτ∫∞

t
e
∫ τ
t
[(α−1)r(s)−αρ(s)]dsdτ

−
βi (t)

α
,

(68)
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which are linear with respect to βi’s. On the contrary, the demands for the utility function,

ui (c, t) = −e
− 1

βi(t)
c
,

are,

ci (t) =
ai (t) +

∫∞

t
e−

∫ τ
t
r(s)dsθi (τ)w (τ) dτ −

∫∞

t
e−

∫ τ
t
r(s)dsβi (τ)

∫ τ

t
[r (s)− ρ (s)] dsdτ∫∞

t
e−

∫ τ
t
r(s)ds β

i(τ)

βi(t)
dτ

,

(69)

which can be linearly aggregated only if βi(t)

βi(0)
= βj(t)

βj(0)
for all i, j ∈ I, i.e. only when βi (t) =

βiG (t), βi > 0 for all i ∈ I, completing the necessity part.

Part 2: Sufficiency

Follows by (68) and (69), observing that, under the statement of the theorem, they are

linear with respect to ai’s, θi’s and βi’s.�

4. Summary and conclusions

A representative consumer is a fictitious consumer who always chooses the aggregate-demand

level optimally, as a result of maximizing her own utility function subject to the aggregate-

economy constraint, irrespective from the underlying distribution of wealth, income and

taste heterogeneity across consumers. Her existence depends on the structure of individual

utility functions in an economy. Gorman (1953) pointed out that, in a static framework, this

is possible if, and only if, the utility functions imply that the Engel curves of all consumers

are linear and parallel.

Compared to static worlds, it is more tempting to impose such a structure on individual

utilities in dynamic general-equilibrium environments of heterogeneous agents. It is often
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useful, especially for paper-and-pencil research, to be able to compute current and future

prices out of a sole optimal-control problem, the representative-consumer’s problem, and to

obtain insightful analyses of the dynamics of wealth distributions. The goal of this study

has been to point out necessary and sufficient conditions on the structure of utility functions

under which such an analytical strategy is possible. The focus has been on an environment

where all individuals solve standard optimal-control problems of consumption/savings choice

and a representative consumer with time-separable preferences exists.

Consumption choices depend on future-income processes and on the ability to accumulate

an asset that stores value over time. Like in the static models, aggregation rests, again, upon

having linear and parallel Engel curves, but this time with respect to both income and asset

holdings. Identifying problems and questions of heterogeneity where such an analytical

strategy pertaining linear Engel curves is appropriate (or empirically plausible), has been

outside the scope of the analysis.

In particular, the family of individual utility functions that lead to the existence of a rep-

resentative consumer has been characterized for three settings: (i) the typical case of time-

invariant momentary utility functions where all agents share the same choice-independent

rates of time preference, (ii) time-invariant momentary utility functions where agents have

different choice-independent rates of time preference, and, (iii) time-variant momentary util-

ity functions when individual rates of time preference have a choice-independent part wich

is common-across agents, and a choice-dependent part implied by their momentary utility

function.

The results pertaining case (i) are the same as these of Pollak (1971) for time-separable

utility functions in static environments, and come as no surprise after Chatterjee’s (1994)

results in a dynamic setting. Yet, the main message of the present paper about case (i), given
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by Theorem 1, is that, in the dynamic world, there are no other utility functions that could

deliver a representative consumer. Thus, the work by Chatterjee (1994) when momentary

utility functions are common across agents is comprehensive. Yet, Theorem 1 states the only

way that momentary utility functions can be heterogeneous in Chatterjee’s (1994) setting

for a continuous-time environment: only subsistence levels or bliss points can vary across

consumer types, but their (quasi) elasticity of intertemporal substitution must be common.

About case (ii), there is a stronger result: the only utility functions that can accommodate

a representative consumer are exponential (Theorem 2). Some implications of this result for

recent research findings (Krusell and Smith (1998) and Carroll (2000)) about stochastic

general-equilibrium models with rate-of-time preference heterogeneity were discussed.

In case (iii), it is proved that one can generalize the Caselli and Ventura (2000) setting

very little. The only parameter that can be time-variant is the subsistence levels (or bliss

points - if any) of consumers. In particular, for the exponential functions case, the corre-

sponding parameters that make individual utilities to differ, must follow the same dynamic

process over time (but the initial conditions of this process can be different for each individ-

ual). The only possible departure from the setting of Caselli and Ventura (2000) is that the

subsistence levels (or bliss points - if any) can be general, under certain restrictions stated

by Theorem 3. These conditions stated by Theorem 3, essentially allow for the existence of a

steady state if the environment is generalized to standard general-equilibrium setups with a

representative-firm production function, as all cases examined by Caselli and Ventura (2000).

The result of Theorem 3 might prove useful for researchers studying the impact of changes

in the demographic characteristics of population over time, under the assumption that each

family type has to face some minimum household setup costs (demographically-dependent

subsistence levels), such as housing and nutrition needs.
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