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Abstract

This paper explores the impact of memory in standard models of learn-
ing and evolution in games where a ¯nite number of agents display imita-
tion behavior, focusing on coordination games (as in Kandori et al (1993))
and N -player games where spiteful behavior allows to discard Nash equi-
libria. It is shown that the way inertia is modeled in such examples actu-
ally entails a strong \no-memory" assumption. Once inertia is removed
(or modeled otherwise), the addition of bounded memory changes the pre-
dictions dramatically. The analysis highlights the stability properties of
Nash outcomes in purely evolutionary contexts with a ¯nite population
of agents.

1 Introduction

Evolutionary models rely on the idea that, in a population framework, agents
obtaining higher payo®s would thrive at the expense of those who fare worse.

It is by now well understood that, in a ¯nite population, this idea can have
surprising implications. For instance, a Nash equilibrium can be quickly dis-
carded in favor of other outcomes because of the e®ect of spite. An agent
deviating from a Nash equilibrium will have worse payo®s than before, but it is
still possible that the payo®s of other agents after this deviation are even worse,
leaving the deviant with the highest payo®s.

While this approach is certainly sensible in a biological framework, where
agents live one period and are replaced by their o®spring, certain doubts arise
when the same arguments are applied to learning models in economics. If the
agents do not die but try to learn, the e®ects of spite rely on the assumption that
previous outcomes (in the above example, the payo®s of the Nash equilibrium)
are immediately forgotten and only the current comparison of payo®s matter.

If players adjust their actions through a myopic best reply process, it might
be reasonable to ignore the e®ects of memory, since the possibility to compute
a best reply implies a degree of knowledge about the game that outweighs any
information gained by a single observation. Many evolutionary models, however,
are interpreted as lead by imitation and trial-and-error considerations on the
side of agents who do not know the structure of the game they are playing.
In such a framework, neglecting to consider the information gained at even
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the most recent periods of play might impose too restrictive constraints on the
considered learning processes.

This paper explores the impact of adding ¯nite memory to what by now
are standard models of learning and evolution in games. The ¯rst result is
that an apparently innocent component of such models, the presence of inertia,
actually precludes memory from having any e®ect in most situations, hinting
that inertia, at least in the way it is usually modeled, carries a strong \no-
memory" assumption.

The second result is that, once inertia is excluded, the addition of memory
does in general change the results of the models considered, proving that the
exclusion of memory is not a harmless assumption.

The third result is that, for its e®ects to have full strength, memory must be
long enough. This required length, however, is actually quite short in standard
examples.

The e®ects of memory and inertia are analyzed in three frameworks. In the
¯rst, two boundedly rational agents play an in¯nitely repeated game where stan-
dard models without memory predict a non-Nash, strictly dominated outcome.
The addition of memory reverses this result, illustrating the evolutionary value
of the Nash property. However, inertia would cancel out this e®ect. The second
framework is a generalization of the model of Kandori, Mailath, and Rob [3] for
coordination games. It is shown that, if memory is long enough (and inertia is
excluded), the long run predictions are linked to Pareto E±ciency, and not to
Risk Dominance as in the original model without memory. The third framework
is a stylized N -player game with a unique, strict Nash equilibrium and a \spite-
ful outcome" which would be selected by imitation if no memory is allowed.
This is essentially the situation in a Cournot Oligopoly as in Vega-Redondo [7].
It is shown that, in the presence of memory, both the Nash equilibrium and the
spiteful outcome are stochastically stable (i.e. long-run predictions). This il-
lustrates the tension between \evolutionary stability" and Nash strategies in an
evolutionary framework and clari¯es their respective stability properties. This
last example is developed for the case of a Cournot Oligopoly in a companion
paper (see Section 7).

2 The Model(s)

Consider a ¯nite population of N agents who repeatedly interact according to
a pre-speci¯ed stage model. This stage model might be an N -player game, a
round-robin tournament to play a two-person symmetric game, or the agents
might be randomly matched to play such a bilateral game (formally, all these
settings could be formalized as games, but the expression \stage model" is
preferred for clarity).

Agents face a symmetric situation. Each of them has a ¯nite strategy set S
(e.g. the strategies of the games mentioned above). At the beginning of each
period each agent chooses a pure strategy. The strategies chosen and the stage
model will determine the payo®s agents receive at the end of the period.

Given N and S, a stage model can be summarized by a mapping

¦ : SN ¡! RN

such that ¦i(¾(s)) = ¦¾(i)(s) 8s 2 SN ; i = 1; :::; N; ¾ 2 §N , i.e. the situation
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is symmetric. §N is the symmetric group of permutations of N elements, and
¾(s) denotes the vector (s¾(1); :::; s¾(N)).

For example, the stage model can simply be an N-player game (playing
the ¯eld situation, as in [7]), or it might specify that agents play a bilateral
¯nite game sequentially against each other agent in the population (round robin
tournament, as in [3]). A stage model could have agents randomly matched
in pairs to play such a game, as in [6], although this introduces an additional
modeling complication that we will discuss below.

Agents have ¯nite memory, recalling exactly K ¸ 0 periods in addition to
the current one. The particular case K = 0 represents the \no-memory" case.

A vector p = (s1; :::; sN) 2 SN is called a population pro¯le.
The pro¯le of strategy choices in the population in the last K +1 periods is

represented by a state ! 2  = SN(K+1), whose interpretation is as follows:

! = (s¡K
1 ; :::; s¡K

N ; :::; s0
1; :::; s

0
N)

where s¡k
i is the strategy that agent i chose k periods ago.

The speci¯cation above does not include the payo®s realized in each state.
If the stage model ¦ is deterministic (e.g. a round-robin tournament or an
N -player game), this is justi¯ed, since the payo®s are uniquely determined by
the strategies. In other cases, e.g. random matching, the payo®s might depend
on some stochastic element and hence there will be a need to specify them.
Without memory, as e.g. in [6], this di±culty can be bypassed since only one
realization of the payo®s matter, hence it can be included in the dynamical
model afterwards instead of in the stage model itself. With memory, K ¸ 1,
the payo®s actually realized must be recorded.

We consider deterministic models where ¦(s) is a ¯xed vector of payo®s.
Stage models including random matching or games against nature could be
included in the formalization making ¦(s) a distribution, at the expense of
formal complexity. This task is left for future research.

With this convention, given a state !, where s¡k
i is the strategy that agent

i chose k periods ago, we denote by ¼¡k
i the payo® that he obtained.

After payo®s are realized, agents update their strategies according to be-
havioral rules which prescribe an action based on the information available in
the current state and some stochastic element. Formally, a behavioral rule for
agent i is a mapping Bi :  7! ¢(S), where ¢(S) represents the probability
distributions on S. For example, a behavioral rule may prescribe a best reply to
the current pro¯le, or to an average of the last periods' play, randomly selecting
a choice in case of ties. It may also prescribe to imitate the strategy which
yielded the highest payo®s, again randomly breaking ties.

In the sequel, we will consider behavioral rules such that

Bi((s
¡K ; :::; s0); (¼¡K ; :::; ¼0))(s¡k

j ) > 0 () ¼¡k
j ¸ ¼¡k0

j0 8k0; j0:

i.e. rules which prescribe to mimic strategies that have yielded the highest re-
membered payo®s. This rules particularize to the ones used in e.g. [3], [6], and
[7], when K = 0. One interpretation is that they capture (in an extreme way)
the standard evolutionary argument that strategies which fare better should
thrive at the expense of other strategies. Another, more learning-oriented in-
terpretation is that they are imitation rules, used by boundedly rational agents
to try and single out the best strategies.
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Additionally, the process might exhibit inertia. With a ¯xed probability
0 · ½ < 1, independent across time and across agents, each agent might \not
get the learning draw," i.e. he might be forced to stay with his current strategy.
If ½ = 0, we have the no-inertia case.

The system described is characterized by N;S;¦; fBigN
i=1;K, and ½. Abus-

ing notation, and since we will assume imitating behavioral rules as explained
above, we simply call such a system a (¦; ½;K)-dynamics.

Any such dynamics gives rise to a ¯nite Markov chain, to which standard
treatment applies. Given two states !; !0 it is possible to compute the proba-
bility of transition from ! to !0 in one period. Call it P (!; !0). The transition
matrix of the process is given by P = [P (!; !0)]!;!02.

The techniques used to analyze these processes are by now standard. A
summary is presented in Appendix A.

The \solution concept" used is an invariant distribution, i.e. a distribution
of strategies which, if adopted by the population, would be reproduced after
updating (more precisely, a vector of probabilities ¹ such that ¹ ¢ P = ¹).
If such an invariant distribution is unique { we call then the process ergodic
{, and under standard technical conditions, this distribution summarizes the
limit time averages with which each strategy is played along any sample path,
independently of initial conditions.

In general, however, the learning processes postulated above give rise to non-
ergodic Markov chains, with several (sometimes many) invariant distributions
(whose support corresponds to sets of states called absorbing sets, or, more
properly, \recurrent communication classes" - see Appendix A). The situation
is analogous to one of multiplicity of equilibria.

3 The Equilibrium Concept

In order to solve the multiplicity problem, and following the literature (see e.g.
[3], [8], or [2]), we perform a stability analysis. The basic process P is perturbed
by a mutation process in the following way. With ¯xed probability " > 0,
independent across agents and across time, each agent \mutates" and chooses a
strategy by a di®erent process than that prescribed by his behavioral rule. For
instance, it might simply \tremble" and pick up any strategy at random, which
would make the perturbed process irreducible.

The mutation process carries enough randomness to make the perturbed
Markov chain, denoted P ("), ergodic (see Appendix A), although not necessarily
irreducible. The corresponding (unique) invariant distribution is denoted ¹(").

We want to consider small perturbations. It is by now a well-established
result that ¹¤ = lim"!0 ¹(") exists and is an invariant distribution of the un-
perturbed process P . It singles out an stable prediction of this original process,
in the sense that, whenever an arbitrarily small perturbation is applied to it,
the play approximates that described by ¹¤.

We call ¹¤ limit invariant distribution. The states in its support, f!=¹¤(!) >
0g are called stochastically stable states (sometimes also long-run equilibria). It
is easy to see that the set of stochastically stable states is a union of recurrent
communication classes (\absorbing states") of the unperturbed process P .

There exists a quite convenient characterization of the stochastically stable
states which we summarize and particularize to our setting in Appendix B.
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4 Unperturbed Dynamics

The ¯rst step of the analysis of a (¦; ½;K)-dynamics is to determine the recur-
rent communication classes of the unperturbed process.

Definition 4.1. Let s 2 S. We denote by mon(s;K) 2 SN(K+1) the state
[(s; :::; s); :::; (s; :::; s)], where all players choose the strategy s for K +1 periods.
We call these states K-monomorphic or, when there is no possible confusion,
simply monomorphic

Lemma 4.2. Consider any (¦; ½;K)-dynamics. The recurrent communication
classes of the unperturbed process are the singletons fmon(s;K)g.
Proof. These singletons are recurrent aperiodic communication classes, since
there is probability one of remaining in them once they are reached (the only
remembered strategy is s, so that is the only possibility to imitate). In any
other state, consider one strategy that has yielded the maximum payo®s in the
last K + 1 periods. There is positive probability that all agents revise their
strategies and choose exactly that strategy.

If ½ > 0, there is positive probability that they will not revise for the next
K periods. This proves that all other states are in transient classes.

If ½ = 0, then all agents will get the opportunity to revise during K + 1
periods (there is no inertia), and there is positive probability that, each period,
all of them imitate the same action. Hence, at the end of those periods, the
state is one where all agents have been doing the same that other agents for
K + 1 periods (although not necessarily the same in di®erent periods). For the
next K + 1 all of them will imitate the (remembered) strategy that gives larger
payo®s when all agents choose it, which completes the proof. ¥

5 Non-Nash outcomes and memory

Let us consider a ¯rst, simpli¯ed example. Fix N = 2 and consider the stage
game given by:

E D
E (4,4) (1,2)
D (2,1) (0,0)

With only two agents, many dynamic models of evolutionary type, including
those in [3] and [6], reduce to an in¯nitely repeated game played by boundedly
rational players. This is precisely the situation analyzed here. Hence, this
example can be considered a particular case of those models.

The example is designed to highlight the di®erences introduced by memory
in as sharp and simple a manner as possible. The game above has a dominant
strategy, E, which leads to a Nash equilibrium which presents the larger payo®s
in the table. In contrast, the other symmetric outcome, (D,D), is dominated
and leads to the worst payo®s.

Lemma 4.2 implies that, for any dynamics with memory K ¸ 0 and inertia
½ ¸ 0, the recurrent communication classes of the unperturbed dynamics are
the monomorphic states corresponding to the Nash equilibrium (E,E) and to
the dominated outcome (D,D). We would expect then any reasonable dynamics
to select the Nash outcome.
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In any (¦; ½;K)-dynamics for the above game, it is easy to see (see Ap-
pendix B) that the only relevant quantities for the analysis are the number of
mutations required for the transition from mon(D;K) to mon(E;K) to occur.
The state requiring more mutations to destabilize in favor of the other will be
the stochastically stable one.

First consider the case without memory, K = 0. If the players are playing
(E;E) and one mutation occurs, the new state is (E;D) (or (D;E)). In this
state, the mutant earns payo® 2, while the non-mutant earns only 1. Hence, the
mutant will be imitated and we will reach state (D;D) with only one mutation.

It is true that the player deviating from (E;E) (which is a Nash equilibrium)
has his payo® reduced, but the other player has his payo® reduced even more.
In relative terms, the mutant is better o®. In absence of memory, the previous
payo®s are irrelevant.

How many mutations does it take to destabilize (D;D)? Two mutations
obviously su±ce. If only one mutation occurs, again the new state is (E;D), and
the mutant (playing E) ¯nds himself with worse payo®s than the non-mutant.
So state (D;D) can not be left with only one mutation.

It is true that the player deviating from (D;D) plays a best response and
has his payo® raised, but, in doing so, he manages to increase the payo® of the
non-mutant even more. Notice that both payo®s (for the mutant and the non-
mutant) are higher than the original ones (at (D;D)), so, in this case, whether
those payo®s are remembered or not is irrelevant.

The last e®ect, which gives stability to non-Nash outcomes, is usually called
spite. To di®erentiate it from the ¯rst e®ect, i.e. the one making unstable a
Nash equilibrium, we will tentatively label the former negative spite.

The occurrence of both e®ects in this game lead to the result that the tran-
sition from (E;E) requires only one mutation, whereas the reverse one needs
two. Hence, the only stochastically stable state for the (¦; ½; 0)-dynamics is the
non-Nash, strictly dominated, Pareto-ine±cient outcome (N;N).1

Now we introduce memory. Speci¯cally, consider any (¦; ½;K)-dynamics
for the game above, with K > 0. Furthermore, to see the interplay between
memory and inertia, consider ½ > 0.

The transition from mon(D;K) to mon(E;K) can still be done in two mu-
tations. If both players mutate to E, they both will get payo® 4, higher than
the previous one of 0, and they will stick to E. Because of spite, one mutation
is not enough.

At ¯rst glance, it would seem that now the reverse transition can not be
made with only one mutation. If players are playing (E;E) and one mutates
to D, they both will remember that the previous period they obtained a payo®
of 4 with strategy E, larger than both after-mutation payo®s, and hence they
should revert to it.

This is not the case, because inertia is strictly positive. The following tran-
sition path requires only one mutation. First, one player mutates from E to
D, and the pro¯le (E;D) is reached. For the next K periods, this player
acts by inertia, i.e. does not get any revision opportunity. The state then
is [(E;D); (E;D); :::; (E;D)], i.e. the pro¯le (E;E) and its associated payo®s
have been forgotten. If the second player gets his revision opportunity for the
next K + 1 periods, he will copy strategy D (which brings a higher payo® in

1Rhode and Stegeman [5] present a similar example for the N-agent case analyzed in [3]
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(E;D)) and the state mon(D;K) will be reached.
Hence, even after introducing memory, as long as inertia is positive, the

selection result does not change. The trick is transparent. Inertia allows us
to \freeze" agents until the relevant information has been forgotten. Rather
than seeing any literal signi¯cance in this result, we take it as the ¯rst hint
that there is a certain degree of contradiction between inertia and memory. The
standard way to introduce inertia in a model implicitly includes a \no-memory"
assumption.

With this interpretation, we proceed to study the prediction of dynam-
ics with memory but without inertia for the game above, i.e. the (¦; 0;K)-
dynamics, with K ¸ 1.

Reasoning exactly as above, the transition from mon(D;K) to mon(E;K)
requires two mutations, independently of K.

The reverse transition can not occur with only one mutation. If the players
are playing (E;E) and one of them deviates to N , then next period the higher
payo® remembered will be 4, associated to E in the pro¯le (E;E). Hence,
players will revert to E. Even two simultaneous mutations would not su±ce, by
the same argument. In the absence of further mutation, players will just copy
E. The only way around this is a chain of mutations, at least one per period,
until the pro¯le (E;E) is forgotten. If for K +1 periods an agent mutates to D,
¯nally the state will be [(E;D); (E;D); :::; (E;D)] and then D will be imitated.
This requires K + 1 mutations.

Suppose K = 1, i.e. players have a \short" memory of one period. Then
the transition from mon(E;K) to mon(D;K) requires two mutations, exactly
as the reverse one, implying that both states are stochastically stable. If K > 1,
then the ¯rst transition requires strictly more than two mutations, which means
that mon(E;K) is the only stochastically stable state.

This simple example gives us the following intuitions. First, the introduction
of memory in a model is of little relevance as long as inertia is maintained. If
the e®ect of memory is to be appreciated, then inertia should be removed from
the modeling, or modeled otherwise (see Section 8). Second, once memory is
introduced in this way, the predictions of the model can be dramatically altered,
clarifying for instance the evolutionary value of a Nash equilibrium as above.
Third, for its full e®ects to be observed, memory has to be long enough (in the
above example meaning at least two periods).

6 Coordination Games and the KMR model

We turn to the analysis of one simple and well-known model in order to try
and pin down the e®ects of the introduction of memory, pursuing the intuitions
acquired in the previous example in a more general framework.

Kandori et al [3] pose a model without memory, where agents in a ¯nite
population play a coordination game. The most interesting case is when this
game has two pure-strategy, strict Nash equilibria, such that one is Risk Dom-
inant and the other is Pareto E±cient. They predict that the limit invariant
distribution will be concentrated at the state where all agents play the Risk
Dominant equilibrium (and not the Pareto E±cient one).

Let the stage game G have payo® matrices given by
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P R
P (a,a) (b,c)
R (c,b) (d,d)

such that:

1. a > c and d > b. Hence, (P,P) and (R,R) are strict Nash equilibria, and
we have a problem of equilibrium selection.

2. a > d and a+ b < c+d. Hence, (P,P) is Pareto E±cient and (R,R) is risk
dominant, which is the most interesting case.

The KMR model is best interpreted as one where agents play with each
other, each period, in a round-robin tournament. The unperturbed dynamic
can be understood as follows. Each period, each agent independently gets the
opportunity to revise his strategy with probability 1 ¡ ½. Then he mimics the
strategy that has yielded larger payo®s2 (randomly choosing one in case of ties,
with positive probability for all of them).3 In their original model, inertia is
strictly positive, ½ > 0, and there is no memory, K = 0.

Let ¦RR(G) denote the stage model where agents play the game G se-
quentially against each other. The model described is then a (¦RR(G); ½; 0)-
dynamics with ½ > 0.

Since there are only two strategies in the underlying stage game, the state
space can be represented in a reduced form as  = f0; :::; Ng, where a typical
state n is identi¯ed with the number of agents playing strategy P . Kandori et
al [3] assume N even for simplicity.4

Let ¦(P; n) and ¦(R;n) be the payo®s of an agent playing P or R when
exactly n agents are playing P (¦(P; 0) and ¦(R;N) are not de¯ned).

¦(P; n) = (n ¡ 1)a + (N ¡ n)b

¦(R;n) = n ¢ c + (N ¡ n ¡ 1)d

The next lemma analyzes the di®erence of payo®s when both strategies are
present, which will turn out to be the key quantity for the analysis.

Lemma 6.1. Consider the game G. For 1 · n · N ¡ 1, ¦(P; n) ¡ ¦(R;n) is
increasing in n. Moreover, ¦(P;n) = ¦(R;n) if and only if n = n¤, where

n¤ =
N(d ¡ b) + (a ¡ d)

(a ¡ c) + (d ¡ b)
>

N

2

Proof.

¦(P; n) ¡ ¦(R;n) = (n ¡ 1)a + (N ¡ n)b ¡ n ¢ c ¡ (N ¡ n ¡ 1)d =

= n ¢ (a ¡ c) + (N ¡ n)(b ¡ d) + (d ¡ a)
2This approximates a best reply dynamics if th population size is very large, but is qual-

itatively di®erent for small N . The conditions on the dynamics given in [3] can be readily
interpreted as coming from imitative behavior, but, strictly speaking, not as coming from
best-reply behavior

3In their original paper, Kandori et al [3] did not rule out the possibility that even if every
agent was playing the same strategy, some agent would switch to the other, now unobserved
strategy, if this happened to yield larger payo®s when played by a nonexistent, \ghost mutant."
However, Rhode and Stegeman [5] observed that this possibility introduces serious anomalies.

4Rhode and Stegemann [5] drop this requirement, showing that in some extreme cases,
with N odd, the predictions of Kandori et al [3] may change. We keep N even for simplicity.
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which is increasing in n since (a ¡ c) > 0 and (b ¡ d) < 0. Moreover,

¦(P; n) = ¦(R;n) () n ¢ [(a ¡ c) + (d ¡ b)] = N(d ¡ b) + (a ¡ d)

() n =
N(d ¡ b) + (a ¡ d)

(a ¡ c) + (d ¡ b)

All that remains to show is that n¤ > N
2 . This follows from the Risk Dominance

of R. Since (a ¡ c) < (d ¡ b),

n¤ =
N(d ¡ b) + (a ¡ d)

(a ¡ c) + (d ¡ b)
>

N(d ¡ b) + (a ¡ d)

2(d ¡ b)
>

N

2
+

a ¡ d

2(d ¡ b)
>

N

2

¥

6.1 Dynamic analysis

Lemma 4.2 implies that, for all 0 · ½ < 1 and all K ¸ 0, the only recurrent
communication classes of the unperturbed (¦RR(G); ½;K)-dynamics are the sin-
gletons f(0; K+1: : : ; 0)g and f(N; K+1: : : ; N)g. Moreover, these classes are aperiodic.
Hence, every (¦RR(G); ½;K)-dynamics will eventually settle in one of the two
Nash equilibria (see Appendix A).

Kandori et al [3] show that their dynamics (strictly positive inertia and no
memory) selects the Risk Dominant one. Their result translates to our frame-
work as follows. For any ½ > 0, the only stochastically stable state of the
(¦RR(G); ½; 0)-dynamics is the singleton f0g, i.e. the Risk Dominant equilib-
rium.

The question arises immediately. How can the Pareto E±cient outcome,
which has strictly larger payo®s, be more unstable than the other equilibrium?
Without memory, the answer is clear. Once a mutation occurs, the payo®s
of the Pareto E±cient equilibrium are no longer observed. Neither are they
remembered. Hence, their magnitude is irrelevant. Even though after a single
mutation both the mutant and the non-mutants earn lower payo®s than before,
all that matters is the e®ect of spite. When a mutant meets a non-mutant, the
mutant earns higher payo®s than the other agent. And still it does not seem
plausible that agents forget strictly superior payo®s that easily.

Hence, it is reasonable to allow them to remember previous payo®s, i.e.,
allow then to have (bounded) memory. However, the next Proposition shows
that the results will not change as long as inertia is present in the model.

Proposition 6.2. Let G be as above and N even. For any ½ > 0 and K ¸ 0,
the only stochastically stable state of the (¦RR(G); ½;K)-dynamics is (0; K+1: : : ; 0),
i.e. the Risk Dominant equilibrium.

Proof. By Lemma 4.2, states (0; :::; 0) and (N; :::;N) are the only ones which the
process will not leave without a mutation. Thus, it is clear that the minimal-cost
tree is one of the following two. In the ¯rst, state (0; :::; 0) is connected to state
(N; :::;N) with the appropriate chain of mutations, and all other (transient)
states are connected at zero cost to the tree. In the second, state (N; :::;N) is
connected to state (0; :::; 0), other states connected at zero cost. The cost of the
¯rst tree is the number of mutations required for a transition from (0; :::; 0) to
(N; :::;N), and vice versa. If the ¯rst is higher, then (0; :::; 0) is the stochastically
stable state, and reciprocally. Let us compute those costs.
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How many mutations are required for a transition from (0; :::; 0) to (N; :::;N)
to occur? Imagine n mutations happen. The di®erence in payo®s between
mutants and non-mutants is ¦(P; n) ¡ ¦(R;n).

By Lemma 6.1, the mutant strategy P will yield lower payo®s than the non-
mutants (playing R) if and only if n · n¤. Since n¤ > N

2 , ¦(P;n) ¡ ¦(R;n) <

0 8 n · N
2 .

In terms of the dynamics, this means that in any state where in the last
K + 1 periods no more than N

2 agents have simultaneously played strategy P ,
the other agents will never imitate them. Quite on the contrary, when given
opportunity, the P -players will switch to R.

An immediate implication is that the cost of the transition from (0; :::; 0) to
(N; :::;N) is strictly greater than N

2 .
Another implication is that the cost of the reverse transition is smaller than

or equal to N
2 . Consider the state (N; :::;N). If exactly N

2 to R occur, then there
is positive probability that, for K consecutive periods, no agent receives the
opportunity to revise. After those K periods, we will be in the state (N

2 ; :::; N
2 ),

and there will be only two payo®s in the agents' memories. Since, by Lemma 6.1,
¦(P; N

2 ) < ¦(R; N
2 ), if now all the agents receive revision opportunities for K+1

periods, they will imitate R (the only other payo® appearing in intermediate
states from this point on, ¦(R; 0), would also lead to imitation of R if it were
higher), completing the transition to (0; :::; 0).

Hence, the only stochastically stable state is (0; :::; 0), i.e. the Risk Dominant
equilibrium is selected. ¥

In the previous proof, transitions are constructed bypassing memory. Agents
are just \frozen" through inertia until previous knowledge disappears.

There are two ways to interpret the previous result. The ¯rst, naive one,
would be to say that the result of Kandori et al [3] is generalized to models with
¯nite memory. The second is to take it as the hint that there is a fundamental
\no-memory" assumption built into the inertia assumption. We want to argue
that the only way to study the e®ect of memory is to either suppress inertia from
the model or to change the way it is modeled. We proceed now to illustrate that,
without inertia, the introduction of memory can actually reverse the results in
a model, showing that memory has indeed \a bite."

Theorem 6.3. For K large enough, the only stochastically stable state of the
(¦RR(G); 0;K)-dynamics is (N; K+1: : : ; N), i.e. the Pareto E±cient equilibrium.

Proof. Analogously to the previous Proposition, the only relevant ¯gures are
the costs of the transition between the two states, (N; :::;N) and (0; :::; 0).

Consider the state (N; :::;N). If N ¡ n mutations (to R)occur, three pay-
o®s will be observed and remembered: ¦(R;n); ¦(P; n), and ¦(P;N). Unless
¦(R;n) is the highest of all these three payo®s, P will be imitated. The ques-
tion is, hence, how many mutations are required for ¦(R;n) to be the highest
payo®.

In particular, ¦(P;N) · ¦(R;n) () (N ¡ 1)a · n ¢ c + (N ¡ n ¡
1)d, which is impossible since a > c and a > d. Hence, after any number of
mutations, all agents will return to strategy P . The transition from (N; :::;N)
to (0; :::; 0) cannot occur as long as the pro¯le where everybody was playing
P is remembered. Moreover, agents will immediately revert to this pro¯le in
absence of further mutation. Hence, for this pro¯le to be \forgotten," mutations
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must occur during K + 1 consecutive periods. This means that the cost of the
transition cannot be lower than K+1. (In fact, by Lemma 6.1 at least dN ¡n¤e
mutations must occur in at least one period).

Consider now the state (0; :::; 0). If n mutations (to P ) occur, three payo®s
will be observed and remembered: ¦(R;n); ¦(P; n), and ¦(R; 0).

By Lemma 6.1, ¦(P; n) ¡ ¦(R;n) ¸ 0 () n ¸ n¤ = N¢(d¡b)+(a¡d)
(a¡c)+(d¡b)

Analogously,

¦(P; n) ¡ ¦(R; 0) = (n ¡ 1)a + (N ¡ n)b ¡ (N ¡ 1)d ¸ 0 ()

n ¢ (a ¡ b) ¡ N ¢ (d ¡ b) + (d ¡ a) ¸ 0 () n ¸ N ¢ (d ¡ b) + (a ¡ d)

(a ¡ b)
=: n̂

Hence, the transition from (0; :::; 0) to (N; :::;N) will occur if max(n¤; n̂)
simultaneous mutations occur,5 meaning that the cost of the transition is lower
than or equal to dmax(n¤; n̂)e. The maximum is equal to n¤ if c > d and to n̂
if c < d.

In summary, the cost of the transition from (N; :::;N) to (0; :::; 0) is greater
than K+1, while the cost of the reverse one is lower than or equal to dmax(n¤; n̂)e.
Obviously, for K long enough, the ¯rst is larger, hence (N; :::;N) becomes
the only stochastically stable state, i.e. the Pareto E±cient equilibrium is se-
lected. ¥

6.2 The length of memory

How long must memory be? A justi¯ed concern would be the possibility that,
as N grows, so does the required memory. This is not the case.

In the previous proof, the condition K + 1 > max(n¤; n̂) is su±cient, but
not necessary. To re¯ne this bound, we can observe that the transition from
(N; :::;N) to (0; :::; 0) can only occur if mutations occur during K+1 consecutive
periods, but one mutation per period will in general not su±ce. Call ni the
number of mutations occurred in period t ¡ i, being t the last period, for i =
0; :::;K.

Hence, the state prior to successful imitation of the mutant strategy R is
(N ¡ nK ; :::; N ¡ n1; N ¡ n0): At least in one of the periods, the payo®s of the
mutants (playing R) must be larger than the payo®s of the non-mutants (playing
P), which, by Lemma 6.1, implies that at least dN ¡ n¤e mutations must occur
in at least one period). Without loss of generality, suppose this event happened
last period, i.e. n0 ¸ dN ¡ n¤e.

Moreover, for the mutation to be ultimately successful, the payo® attained
by these n0 mutants, ¦(R;N ¡ n0), must be the largest remembered payo®.

Suppose, for the sake of simplicity, that n¤ is an integer number and n0 =
N ¡ n¤. Then, if ni < n0, and since ¦(P; n) is increasing in n,

¦(P;N ¡ ni) > ¦(P;N ¡ n0) = ¦(P; n¤) = ¦(R;n¤) = ¦(R;N ¡ n0)

a contradiction. Hence, in this case at least N ¡n¤ mutations must occur every
period. Moreover, if these mutations do occur, the transition will happen with
positive probability, and hence we have identi¯ed the cost of the transition.

5In case this quantity is larger than N , N mutations would su±ce, yielding the same result
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On the other hand, the cost of the reverse transition is max(n¤; n̂), which
means that a (sharper) su±cient condition for the result in the previous theorem
is (K + 1) ¢ (N ¡ n¤) > max(n¤; n̂).

Consider the case c > d (which corresponds to games of the \Stag Hunt"
type). This condition reduces to (K + 1) > n¤

(N¡n¤) , which is actually necessary

and su±cient (because at least dn¤e mutations must occur in a period for the
payo® of the P -players to exceed that of the R-players). After some algebra,
this condition amounts to

(K + 1) >
N(d ¡ b) + (a ¡ d)

N(a ¡ c) ¡ (a ¡ d)

This is a much sharper bound. When N grows, it is easy to see that the lower

bound for K actually decreases, approaching the constant (d¡b)
(a¡c) ¡ 1, which, in-

terestingly enough, is derived exclusively from the relative \risk jump" between
both equilibria (the Risk Dominance criterion amounts to a ¡ c < d ¡ b). If
the Pareto E±cient equilibrium is \much riskier" than the Risk Dominant one
(d¡b much larger than a¡c), then more memory is needed to reverse the result.
The result of Kandori et al [3] ¯ts then nicely. \No memory" will never su±ce
to reverse the result.

This analysis shows that the lower bound for the memory decreases when the
population size increases along a sequence of values such that n¤ is an integer.
It can be shown that, if N grows to in¯nity without this provision, we obtain
the same qualitative behavior of the bound (with mere \jumps" due to integer
problems).

If c < d, the condition is (K + 1) > n̂
(N¡n¤) , which reduces to

(K + 1) >
N(d ¡ b) + (a ¡ d)

N(a ¡ c) ¡ (a ¡ d)
¢ (a ¡ b) + (d ¡ c)

a ¡ b

When N grows, the lower bound for K is also decreasing, and approaches the

constant (d¡b)
(a¡c) ¢ [1 + d¡c

a¡b ] ¡ 1, which is a larger bound than in the other case

but still is related to the \risk jump," ampli¯ed by a factor which comes from
the fact that, in this case, the number of mutations required for the payo®s of
P -players to overcome those of R-players is still not enough to overcome the
(remembered) payo®s of the pro¯le where everybody was coordinating on R. In
a sense, the Risk Dominant equilibrium is \stickier" in this kind of games. The
factor [1 + d¡c

a¡b ] could be tentatively interpreted as a positive externality: the
gain of staying with R when other players switch from P to R, relative to the
analogous quantity for P . In the previous case, this was not a gain but a loss.

Example 6.4. Take a = 8; b = 0; c = 6; d = 3. Notice that a ¡ c = 2, d ¡ b = 3,
i.e. the Risk Dominance is not strong. The Pareto E±cient equilibrium is a
50% riskier than the other one (3

2 ¡ 1 = 0:5). In this case, n¤ = 3N+5
5 , and

both the requirement that N is even and that n¤ is integer are ful¯lled for
N = 10; 20; :::. If n¤ mutations occur, then, by Lemma 6.1, the mutants obtain
larger payo®s than the non-mutants, and, since c > d, the mutation is successful.
The opposite transition requires at least N ¡ n¤ = 2N¡5

5 mutations per period.

The conclusion of the theorem holds if 2N¡5
5 (K +1) > 3N+5

5 , i.e. if K > N+10
2N¡5 .

If N = 10, this amounts to K > 1. For N = 20 or larger, the condition is merely
K > 0, i.e. any memory.
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Example 6.5. Take a = 5; b = 0; c = 4; d = 2. Notice that a ¡ c = 1, d ¡ b = 2,
i.e. the Risk Dominance is stronger in relative terms. The Pareto E±cient
equilibrium is a 100% riskier than the other one (2

1 ¡ 1 = 1). In this case,

n¤ = 2N+3
3 . If n¤ mutations occur, then, by Lemma 6.1, the mutants obtain

larger payo®s than the non-mutants, and, since c > d, the mutation is successful.
The opposite transition requires at least N ¡ n¤ = N¡3

3 mutations per period.

The conclusion of the theorem holds if N¡3
3 (K +1) > 2N+3

3 , i.e. if K > N+6
N¡3 . If

N = 6, this amounts to K > 4. If N = 12, the condition is K > 2. For N = 18
or larger, the condition is merely K > 1.

7 Memory and Spite

Consider any symmetric N -player game with ¯nite strategy space S and payo®
functions ¦i. We adopt the standard notation ¦i(si; s¡i) = ¦i(s1; :::; sn) for
convenience.

The game itself can be considered a stage model (playing the ¯eld). Suppose
this game has a unique symmetric Nash equilibrium which is strict, i.e. there
exists sN such that

¦i(s
N ; (sN ; :::; sN)) > ¦i(s; (s

N ; :::; sN))8s 2 S; s 6= sN ;8i = 1; :::; N

This Nash equilibrium describes a (monomorphic) situation such that, if a player
deviates, the payo®s he gets after the deviation are lower than his own payo®s
before the deviation. That is, a mutant will always lose in absolute terms.

Suppose there exists another strategy sP with the following properties:

1. Spite: ¦i(s
P ; (s; sP :::; sP )) > ¦i(s; (s

P ; sP :::; sP ))8s 2 S; s 6= sP ;8i

2. Negative Spite: ¦i(s
P ; (s; s; :::; s)) > ¦i(s; (s

P ; s:::; s))8s 2 S; s 6= sP ;8i

We call such a strategy spiteful. The interpretation of Spite is the following:
whenever a player deviates from the symmetric (monomorphic) pro¯le where
everybody plays sP , his payo®s after deviation are lower than the payo®s of the
other players (also after his deviation). That is, a mutant will always lose in
relative terms.

The interpretation of Negative Spite is related to the opposite idea. Given
any monomorphic situation, if a single player deviates to sP , then after the
deviation he earns more payo®s than the other players (also after the deviation).

Under mild technical assumptions, Cournot Oligopolies feature both a unique
Cournot-Nash equilibrium and an spiteful outcome. Vega-Redondo [7] shows
that the spiteful outcome corresponds to the Walrasian equilibrium, and proves
that, in a model with imitation and no memory, this is precisely the unique
long-run prediction.

This can be easily generalized to any game with a unique spiteful outcome.
Denote by (¦(G); ½; 0)-dynamics the dynamics given by the game G as stage
model, inertia ½, and no memory.

Proposition 7.1. Consider a symmetric game G with a unique spiteful out-
come sP . Then the only stochastically stable state of the (¦(G); ½; 0)-dynamics
is mon(sP ).
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Proof. By Lemma 4.2, the only recurrent communication classes of the unper-
turbed dynamics are the singletons mon(s), for all possible s 2 S. Let Z denote
the number of monomorphic states, i.e., the cardinality of the strategy set S.
Take any s 6= sP . By Spite, the arrow leaving mon(sP ) in any mon(s)-tree
has cost at least 2, and all other Z ¡ 2 arrows have at least cost 1 by def-
inition. Hence, the stochastic potential of mon(s) is larger than or equal to
(Z ¡ 2) + 2 = Z.

Consider now mon(sP ). By Negative Spite, the transition from mon(s) to
mon(sP ) can be done with a single, direct mutation. This allows us to construct
a mon(sP )-tree of cost exactly Z ¡1, which proves that the stochastic potential
of mon(sP ) is Z ¡ 1, implying the claim. ¥

Remark 7.2. By [2, Theorem 1], it follows that the expected wait until mon(sP )
is reached is of order "¡1, which means that the speed of convergence is the
maximum achievable one.

What drives the previous result is that, by Spite, the spiteful outcome can-
not be destabilized with a single mutation, whereas, by Negative Spite, all other
outcomes (including any Nash equilibrium) are destabilized with a single muta-
tion. This is precisely the stylized situation captured by the example in Section
5.

Suppose the game G does have a strict, symmetric Nash equilibrium. By
virtue of Negative Spite, this outcome is deprived of any signi¯cance. It is easy to
argue that, since Nash Equilibria are ¯xed points of best-reply correspondences,
and we are not assuming rationality-demanding best reply behavior but rather
simple-minded imitation behavior, there is no reason at all for Nash equilibria
to play any role. However, we shall see that still Nash might play a role, once we
allow for memory (which, as in previous section, implies suppressing inertia).

Definition 7.3. Consider any (¦; 0;K)-dynamics. A state ! is pre-stable if it
cannot be destabilized by a single mutation.

Whenever an spiteful outcome exists, it is automatically pre-stable by Spite.
If K = 0, there is no other pre-stable outcome by Negative Spite.

Proposition 7.4. Consider a symmetric game G with a strict, symmetric Nash
equilibrium where all players play strategy sN . Then, mon(sN) is pre-stable in
any (¦(G); 0;K)-dynamics with K ¸ 1.

Proof. Consider the state mon(sN), and consider a single mutation to another
strategy s 6= sN . Since mon(sN) describes a Nash equilibrium, it follows that
the mutant is earning less payo®s than the payo® that all individuals in the
population experienced the previous period. Hence, the maximum remembered
payo® is either the one earned the previous period or the one earned by the
non-mutants in the present one. Both possibilities lead to imitation of sN and
hence the mutation is unsuccessful. ¥

The interesting observation is the fact that the concept of Nash might play
any role at all in an imitation model. Nash equilibria are de¯ned in a way
that requires players to have a full knowledge of the game, in order to be able
to compute a best reply. In an imitation model, players do not need to know
the game, since they simply compare observed payo®s. The role of memory is
allowing for intertemporal comparisons, and the key is the equivalence of the
following two payo® comparisons.
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1. The actual comparison of the payo® that a boundedly rational deviant
experiences after deviating and his former payo®.

2. The potential comparison of the payo® that a rational but myopic player
experiences, and the one that he would earn if he deviated.

This observation allows us to pin down precisely in which sense is a Nash
equilibrium stable in a model of imitative behavior, and why this stability is
ignored in the absence of memory. One can not take this implication any further,
as a set of examples easily shows.

We saw in the example of Section 5 that the addition of su±ciently long
memory switches the prediction away from the spiteful outcome and allows
selection of the Nash equilibrium. The following example shows that this is not
a general result.

Example 7.5. Consider a 4-player symmetric game where each player has to
choose among two strategies, A, and B. As in Section 6, let ¦(A;n) and ¦(B;n)
be the payo®s of an agent playing A or B when exactly n agents are playing A.
We specify all the payo®s in the following matrix:

4 3 2 1 0
A 2 0 3 1 {
B { 1 3 2 0

It is straightforward to check that (A;A;A;A) is a strict Nash equilibrium
and (B;B;B;B) is a spiteful outcome. Hence the latter will be selected by any
dynamics with imitation and no memory.

If we allow for K periods of memory, then we know that both monomorphic
outcomes are pre-stable, i.e. one mutation is never enough. However, from any
of them two mutations su±ce to obtain a payo® of 3 for the mutants, which
is the largest possible payo®. Imitation follows with positive probability, hence
the cost of both transitions is always 2, irrespective of the length of memory.
Both outcomes are stochastically stable for any K ¸ 1.

This example features two interesting properties. On the one hand, the
length of memory is irrelevant, as long as it is non-trivial. The symmetric
Nash equilibrium is always stable. On the other hand, the spiteful outcome
is also always stable. While the Nash equilibrium bases its stability on the
maximization of absolute payo®s (reinterpreted as intertemporal comparisons),
the spiteful outcome bases its stability on the maximization of relative payo®s
(i.e. payo®s experienced simultaneously). In absence of more structure, there
is no reason for one stability criterion to prevail over the other.

Pre-stability, while being an intuitive signal of stability, does not imply
stochastic stability. Still, in the presence of memory, Nash equilibria are never
irrelevant in imitation models. In a companion paper [1], it is shown that the
analysis of a Cournot Oligopoly with imitating ¯rms and non-trivial memory
is quite complicated. The main result, however, is that in a wide range of
oligopolies, both the Cournot and the Walras outcomes are stochastically sta-
ble. In other oligopolies, the set of stochastically stable states is formed by the
monomorphic states corresponding to quantities in a proper subinterval of the
interval de¯ned by the Cournot and Walras quantities, including the Walras
one but not the Cournot one. Even in this case, though, it is still true that it
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is precisely the pre-stability of the Cournot outcome which creates other stable
outcomes di®erent from the Walrasian (i.e. spiteful) one.

8 Discussion

This paper shows that the introduction of memory radically changes the long-
run predictions in standard models of evolutionary type. The importance of this
result comes from the observation that a \no-memory" assumption is actually
too strict for even boundedly rational economic agents.

8.1 Memory and Inertia

An interesting observation is the observed struggle between assumptions of in-
ertia and memory. It is argued that, to be able to study the e®ects of memory,
it is necessary to remove inertia from the models. This can be discussed at an
intuitive level.

The assumption of inertia builds into the agents' behavior a hardwired pref-
erence to keep on doing what they did in the past. In the studied framework,
agents are assumed to imitate those actions which yield larger payo®s, among
those that they observe and remember. Once the available set of actions is
enlarged to include past ones, the assumption of memory simply introduces in
the agents' behavior a preference to keep on doing what worked in the past.
The presence of inertia as modeled in [3] and others would simply eliminate
this preference by undiscriminatedly favoring all past actions, irrespectively of
whether they worked or not.

This observation (\to keep on doing what worked in the past") shows that
memory incorporates a certain idea of inertia. The di®erence is that this kind
of inertia is then an endogenous result, rather than an exogenous behavioral
assumption.

It is worth going back to the original reasons for the introduction of inertia in
the considered examples. Kandori et al [3] present an alternative interpretation
of their dynamics as based on myopic best reply considerations. Then, they
argue that this myopia can be justi¯ed in a framework with inertia, where
agents sometimes do not adjust. Agents who do adjust might expect others not
to do so.6

Under the interpretation of the considered dynamics as models for imita-
tion behavior, agents are centered on learning from their experiences, and are
boundedly rational in the sense that strategic considerations escape to them.
Hence, it can be argued that inertia is not needed to justify their behavior.

The complete removal of exogenous inertia is, however, not strictly neces-
sary. The technical problem arising between inertia and memory reduces to the
following simple observation. When studying limit behavior as the mutation
(experimentation) probability " goes to zero, any behavior postulated with a
¯xed probability, such as inertia with probability ½, becomes arbitrarily more

6There is a conceptual problem with this argument. Given inertia, and once these rational
considerations are brought into the picture, it is not clear why individuals should compute
a best-reply, that is, maximize the current payo®, once they get to choose. If agents foresee
that they will be unable to change their strategy for a while, this adjustment is not just their
decision for a single period. They should then rationally forecast the trajectory of the system
and optimize against it.
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probable than experimentation. In a sense, the current modeling of inertia is
exaggerating its role. An alternative would be to study also the limit behavior
as inertia becomes small, or simply to link its probability to the probability
of experimentation, e.g. agents might uphold their strategies with probabil-
ity ½ = c ¢ ", with c an arbitrary constant. It is interesting to note that this
possibility is already incorporated in the current models. Since a mutation to
the previously used strategy is always possible, all what is left is to reinterpret
such a mutation as \inertia." Making the constant c arbitrarily high (but ¯xed)
allows to emphasize this behavior, without a®ecting the limiting results.

8.2 Memory and Learning

The presence of memory allows agents to behave as if they were able to \ex-
periment conditionally." When a mutant tries a new strategy, he will observe
its success relative to the payo®s obtained the previous period. If the mutation
brings payo®s down, the mutant will be able to \correct" his mistake and go
back to the previous action. This observation, which is of intertemporal na-
ture in an explicitly dynamic framework, naturally reintroduces better-response
considerations into models of bounded rationality without explicitly assuming
that the agents compute any best reply function. However, the di®erent situa-
tions analyzed in this paper show that this is not the only consideration. It is
the interplay between better response (to do better than yesterday) and relative
success (to do better than the others) which creates a rich dynamic in which two
properties arise as determining the long-run outcomes. The ¯rst property is the
one associated to Nash equilibria, reinterpreted as an intertemporal comparison
of own payo®s. The second, the already familiar e®ects of spite and negative
spite.

In the ¯rst, simpli¯ed example, we have shown that the introduction of mem-
ory reverses a quite counter-intuitive prediction, thanks to the better-response
considerations introduced by memory. In the Kandori et al model, we have seen
the interplay between the two properties and how they change the equilibrium
selection as the memory length increases. In the examples mentioned in the
last section, we see the two forces clash, giving us examples where two focal
points are selected: the ¯rst thanks to its Nash-equilibrium condition, the se-
cond thanks to its spiteful properties. As already mentioned, in absence of more
structure, there is no reason for one force to prevail over the other.

A Techniques: Unperturbed Dynamics

This section presents a brief summary of the techniques associated with the
analysis of unperturbed Markov Chains. See e.g. [4] for details.

Let  be the state space of a ¯nite Markov chain with transition matrix P ,
and denote PT (!;!0) = [PT ]!;!0 , i.e. the probability of transition from state
! to state !0 in exactly T periods. Two states communicate if there exists
T1 > 0; T2 > 0 ¯nite such that PT1(!; !0) > 0 and PT1(!; !0) > 0. This de¯nes
an equivalence relation and hence a partition of . The equivalence classes are
called communication classes. The process is called irreducible if there is only
one communication class, i.e., all states communicate.
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It is a standard result in stochastic processes theory that states in the same
communication class have essentially the same properties. For instance, heuris-
tically, a system may settle in a communication class in the long run, but it
cannot settle in a proper subset of that class.

A communication class C is transient if there exists ! 2 C;!0 =2 C such that
P (!; !0) > 0. A communication class is recurrent if it is not transient. In ¯nite
time, the system will always leave the transient classes. Once the system gets
into a recurrent class, it will never leave it. Hence, the recurrent communication
classes (sometimes called \limit sets" or \absorbing sets") contain the states
where the system will be in the long run.

An invariant distribution is a vector ¹ 2 ¢(S) such that ¹ = ¹ ¢ P . There
exists an invariant distribution for each recurrent communication class, which
describes the time-average behavior of the system once (and if) it gets into that
class. That is, ¹(!) is the limit of the average time that the system spends
in state !, along any sample path that eventually gets into the corresponding
recurrent class.

The set of all possible invariant distributions is then the convex hull of the
invariant distributions associated to the recurrent communication classes.

A state ! is aperiodic if the greatest common divisor of the numbers fT >
0=PT (!; !) > 0g is one. If one state in a communication class is aperiodic, then
all states in the class are aperiodic, and the class is then itself called aperiodic. If
a recurrent class is aperiodic, then the associated invariant distribution describes
also the long-run probabilities of the states in the class, limT!1 qPT = ¹ for
all probability distributions q whose support is contained in the recurrent class.
This is not true for non-aperiodic classes (intuitively, because they contain cycles
and hence the limit probabilities do not exist).

We call the process ergodic if it has a unique recurrent communication class
(every irreducible process is trivially ergodic). The (unique) invariant distribu-
tion constitutes the long-run prediction for any ergodic process, since it repre-
sents the limit behavior of the process independently of initial conditions.

If the process is not ergodic, then several invariant distributions exist, de-
scribing the long-run behavior along di®erent sample paths, i.e. the prediction
depends on the initial conditions.

B Techniques: Perturbed Dynamics

The following section presents a brief overview of by-now-standard techniques
used to perform stability analysis by perturbing a process with vanishing prob-
ability ". A more complete exposition can be found in [3] or [8]. See also [2] for
a recent analysis of this type of models.

Given two states !; !0, we call distance from ! to !0 the minimal number
of strategy changes needed for the transition to occur in one period. Since we
have memory, this distance is formally in¯nite if the memory does not \agree"
in both states, i.e. if s¡k

i 6= s0¡k¡1
i for some k 2 f¡K + 1; :::; 0g; i 2 f1; :::; Ng.

Otherwise, the distance is d(!; !0) = jfi 2 f1; :::; Ng=s0
i 6= s00

i gj.
The cost of the transition is then c(!;!0) = minfd(!00; !)=P (!;!00) > 0g,

i.e. the minimal number of mutations for the transition to occur in one period
under P ("). This is then extended by addition to directed paths.
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Given a state ! 2 , an !-tree is a collection of ordered pairs of elements of
, such that every state in  n f!g is the ¯rst element of exactly one ordered
pair, the state ! is not the ¯rst element of any pair, and from any state in
 n f!g there is a sequence of pairs leading to !.

Alternatively, in a more graph-theoretic language, an !-tree is a directed
graph in , such that every state in  n f!g is the initial point of exactly one
arrow, no arrow departs from ! is not the ¯rst element of any pair, and from
any state in  n f!g there is a directed path leading to !.

Given an !-tree h, we can de¯ne its cost as C(h) =
P

(!0;!00)2h c(!0; !00). Let

H! be the set of !-trees, and let À(!) = minh2H!c(h). Then, the stochastically
stable states (i.e. those in the support of the limit invariant distribution ¹¤)
are those in argmin!2À(!). The quantity À(!) is sometimes called stochastic
potential of !.
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