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1 Introduction

The formation of a market requires merely a group of agents, some of them
willing to buy and some of them willing to sell. If, taking a Walrasian point of
view, market clearing is taken as granted, nothing else is needed. As soon as,
say, preferences and cost functions are specified, equilibrium analysis can be
applied and a full-fledged theory can be developed. Actual markets, though,
are not merely characterized by demand and supply. Market exchange does
not take place in an institutional void. It requires an explicit framework
in which action and message sets are specified, and in which a process of
matching and price formation can take place.

An enormous variety of market institutions can be observed in the field.
For example, the bazaar differs from financial markets in terms of the match-
ing and bargaining process and the dissemination of information. The typ-
ical (Dutch) rules at flower auctions are different from the (English) rules
at art auctions. Trading institutions not only vary across different goods,
different market institutions exist even for the same good. Real estate is sold
both at auctions and by means of direct negotiations, and both call mar-
kets and continuous double auction markets are used to exchange financial
assets.

There is some theoretical and empirical and a lot of experimental evi-
dence indicating that the details of the market institution are consequential.’
Trading rules affect the efficiency of the market outcome, the convergence to-
wards equilibrium, the volatility of the prices, and the distribution of surplus
over the market participants. Given that “institutions matter”, important
questions arise. Do the existing market institutions support market clear-
ing equilibrium outcomes? Can we be confident that actual markets will
be characterized by efficient institutions? Are there circumstances under
which inefficient trading rules arise and persist, or are forces and mecha-
nisms present that drive a market towards efficient organization?

In order to answer these questions, it is useful to distinguish between two
different approaches. On the one hand, one can ask how new market institu-
tions come into existence, and what the properties of these new institutions

are.” On the other hand, we might ask which institutions survive in the

'Empirical and theoretical evidence is mostly found with respect to the impact of
the design of auction rules. An empirical example of the importance of auction design
in the context of internet auctions is provided by Ockenfels and Roth [19], who analyze
empirically the impact of the auction design on internet auctions. A theoretical example
in the context of multi-unit auctions is provided by Ausubel and Cramton [2]. For an
overview of the theoretical literature of the impact of auction design see Klemperer [15].
An overview of the experimental evidence of the importance of market institutions is
provided by Holt [9] and by the classical article of Plott [20].

2There exists some theoretical literature along these lines, where market institutions
are modelled as networks (see Bala and Goyal [3], Jackson [11], and Kranton and Minehart
[17]). Another example of this approach is Kirchsteiger, Niederle, and Potter [16], where



long run if several institutions compete. In the paper at hand we provide
an answer to the second question. Whether a specific market institution
survives the competition with other existing market institutions depends on
whether traders employ this institution or whether they trade under another
set of rules. Hence, the (evolutionary) success of a market institution is a
function of the number of traders it can attract.

The decision about the use of a particular market institution gives rise
to a coordination game - potential buyers and sellers have to coordinate on
a particular institution in order to make mutual beneficial trade possible.
Of course, such coordination games typically exhibit a multiplicity of Nash
equilibria. There exists the possibility that in a Nash-equilibrium traders
coordinate on an institution that does not lead to market clearing outcomes
and that does not maximize the gains of trade. They might even coordinate
on an institution that leads to a Pareto-ineflicient outcome. Hence, we ask
under what circumstances traders will indeed learn to coordinate on an
efficient, market-clearing institution.?

To provide an answer to this question, we use a partial equilibrium
framework where we concentrate on the market institutions for trading a
homogenous good. Potential traders have to choose simultaneously at which
institution they want trade. We specifically postulate one market clearing
institution and an arbitrary number of other, feasible institutions that do
not lead to market clearing, but realize a price below or above the mar-
ket clearing level. Consequently, buyers or sellers who have chosen such an
institution face rationing.

In order to model the learning process we use the stochastic stability
techniques brought into the economics literature by Kandori, Mailath, and
Rob [12] and Young [23] to analyze coordination games with players learning
on which equilibrium to coordinate. Specifically, we postulate that traders
(buyers and sellers) will decide to switch from one institution to a different
one next period if they observe that the current-period results (prices and
traded quantities as resulting from rationing) are better for them. Traders
evaluate these results according to evaluation functions that satisfy a number
of weak behavioral assumptions, compatible with standard microeconomic
models but allowing also for boundedly rational behavior. In particular,
traders are not assumed to anticipate future prices, market-clearing or oth-
erwise. The learning model can be interpreted as a version of Kandori,
Mailath, and Rob’s [12] because traders tend to switch to strategies (in-

the driving forces behind the development of new market institutions and the efficiency
properties of these institutions are experimentally investigated.

3There exist several papers which are similar in spirit to our paper insofar as also in
these models traders can choose between different trading institutions (see e.g. Ishibuchi,
Oh, and Nakashima [10], or Neeman and Vulkan [18]). Those papers, however, do not in-
vestigate whether traders learn to coordinate on efficient institutions guaranteeing market
clearing prices and quantities.



stitutions) which are better in the current period, without anticipating the
effects of their strategy change.?

We find two types of results. First, the market clearing institution is
always stochastically stable under a general class of learning models. Sec-
ond, also other, non-market clearing institutions are stochastically stable in
general.

The paper proceed as follows. Next we describe the model and its basic
assumptions. We proceed to present preliminary results concerning static
comparisons of different institutions. In Section 3 we describe the learning
process and in Section 4 we present the main results for given market size.
Section 5 analyses the impact of the market size on our results. Section 6
concludes. In the Appendix we provide a generalization of all our results to
the case of institutions with stochastic prices.

2 The model

There is a homogeneous good to be traded by a set I = {1, ...,n} of buyers
and a set J = {1,...,m} of sellers. We denote the price of the good by p.
The demand of a typical buyer ¢ € I is given by a function d(p) such that
d(0) > 0, d(p) > 0 for all p > 0, and lim,_,o d(p) = 0. The function d is
assumed to be continuous and strictly decreasing in p in the range where
d(p) > 0. The supply of a typical seller j € J is given by a function s(p) with
3(0) = 0. We assume s to be continuous and strictly increasing in p > 0.

For an individual trader the market outcome is given by the price at
which he trades, and by the quantity he can trade. In order to model the
learning process, we describe how buyers and sellers evaluate the market
outcome. Denote by gs the quantity sold by a typical seller, and by gp the
quantity bought by a typical buyer. The evaluation of the market outcomes,
vp(gp,p) and vg(gs,p), depend on the quantity the traders buy and sell,
respectively, and on the price p at which they trade. Hence, the evaluations
(payoffs) are given by functions vp : R2 — R and vg : R? — R.

The primitives in our model are the demand, supply and the payoff (eval-
uation) functions. We want to emphasize that this framework is much more
general than the usual microeconomic approach, where demand and supply
are derived from maximization of the payoffs (i.e. from utility- and profit

1A conceptually related model is analyzed by Gerber and Bettziige [8]. They postulate
a finite population of traders who might choose among two identical, market-clearing
asset markets. Traders have idyosincratic preferences for the markets themselves and also
perceive markets to be more attractive when the number of traders in them increases (size
effect). When trading on a market, traders maximize a mean-variance utility function.
Learning is modelled through Young’s [23] adaptive play, i.e. traders best-reply to a sample
of past play. In particular, traders are able to compute future market-clearing prices (also
anticipating the effects of their own change in strategy) but are otherwise myopic. Gerber
and Bettziige find that, for a large number of traders, the only stochastically stable state
is one where both markets are active and traders split equally among them.



maximization). We have deliberately chosen this more general framework
in order to allow for the possibility that demand and supply are not based
on rational choices of the agents. Furthermore, in our framework the eval-
uation of the market outcome, which—as explained later in detail—drives
the learning process, need not be identical with consumers’ utility and pro-
ducers’ profits. In other words, we allow for more general (even boundedly
rational) modes of behavior.

Demand and supply are given meaning by the following assumptions
which relate them to the evaluation of the market outcome.

Assumption Al: In the absence of rationing, a lower price is better
for buyers and worse for sellers. lL.e.,

vp(d(p),p) > vp(d(p),p') and vs(s(p),p) <wvs(s(p),p’) (A1)

for all p,p’ with p < p’ and d(p) > 0.

Assumption A2: Given the price, traders prefer not to be rationed.
Le.,
vp(d(p),p) > vs(gs,p) and vs(s(p),p) > vs(qs,p) (A2)

for all p and all 0 < gg < d(p),0 < gs < s(p).
Assumption A3: Given the price, traders prefer being rationed to not

being able to trade. lL.e.,

vg(¢p,p) > vp(0) and vs(gs,p) > vs(0) (A3)

for all p> 0 and all 0 < g < d(p),0 < gs < s(p)

where vg(0) = vg(0,p") and vg(0) = vg(0,p’) for all p’ > 0 are the payoffs
of not being able to trade, which we explicitly assume not to depend on
(hypothetical) prices.

2.1 Trading Institutions

The good can be traded at different market institutions. For any institution
z, denote by n,, m, the number of traders active at z. Let p*(n,, m,) be the
market clearing price at z, i.e. p*(n,,m,) is the solution to

nd(p) = m,s(p). (MC)

Under our assumptions, for every n,,m, > 0 there exists a unique
p*(nz, m;) solving equation (MC), and it is strictly larger than zero. More-
over, the market clearing price p*(n,,m,) depends only on the ratio
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through the implicit equation

which yields

p=p(r).
The function p(r) is strictly increasing in r (because d(p) is decreasing and
s(p) is increasing in p).

An institution z is characterized by a bias parameter (3, > 0 which
measures the difference between the actual price realized under that market
institution, p,, and the market clearing price. More specifically:

pz(nza mg, ﬁz) = ﬁzp*(nz, mz)

If the price is not at the market-clearing level, we assume that the quan-
tity traded is determined by the “shorter” market side and that the other
market side cannot trade as much as it wants according to its demand or
supply function. This rationing is assumed to be the same for every trader
of the same market side. More specifically, denote by Q.(n,,m,,[3.) the
overall quantity traded at z. We can now distinguish between three cases:

Case 1: (5, = 1. In this case the market clearing prices and quantities
are realized, and nobody is rationed. The institution is market clearing. The
quantities are given by Q. (n,,m,,1) = m,.s(p*(n,,m;)) = n,.d(p*(n,, m,));
G5 = d(p*(nsm.)); 45 = s(p* (nzym.))

Case 2: (3, < 1: In this case the price is below the market-clearing
price, and hence the quantity is determined by supply and buyers are ra-
tioned: Q.(n.,mz,B3.) = m..s(pz(nz,mz,05:)). q& = s(p2(n.,mz, 3:));
Q% = 7;:_;3( Z(nZ)mZ)ﬁZ)) < d( z(nzammﬁz))

Case 3: (3, > 1: In this case the price is above the market-clearing
price, and hence the quantity is determined by demand and sellers are
rationed: Q. (n.,m.,3.) = n..d(p.(n.,m.,B:)). 95 = d(p.(nz,mz, 3.));
Q,g' = T?L_Zd( z(nmmmﬁz)) < 3( z(nZ)mZ)ﬁz))

In summary, given an institution characterized by 3, > 0, and given
r= T—Zzz— > 0, we can define the seller and buyer quantities as

. s(B:-p(r)) if G <1
qS(ﬂZ’T):{ T-d(@f'p(r)) if .21

d
" [ Res(Bepl) i A1
q5(Bz,1) = d (3. - p(r)) if 3,>1

At this point we have to emphasize that we do not aim to analyze how a
deviation from market clearing prices comes about. Rather, we just assume



that market clearing institutions as well as institutions preventing markets
from clearing are in principle feasible. And the purpose of this paper is to
investigate whether a non-market clearing institution can survive vis a vis
a market clearing one.

Remark 1 If m, =0 orn, =0, there is no trade ot institution z. We say
then that the institution is inactive. Traders in an inactive institution will
always prefer any active institution by Assumption A3, because in such an
institution either demand (or supply) is satisfied or traders are rationed, i.e.
traders buy or sell strictly less than prescribed by demand or supply.

Remark 2 In our framework, each institution is completely characterized
by one bias parameter 3. This simplifying assumption is of course done for
tractability. As the analysis will show, these simple institutions are enough
for our purposes. One might think of two different, interesting ways to gen-
eralize this framework. On the one hand, one might give up the assumption
that trade at each institution occurs at only one particular price. Allowing
for institutions that violate the “law of one price” would not change our
results, as it will be explained in Remarks 8 and 4. On the other hand,
we could allow the price bias to depend on the number of sellers and buy-
ers present in the institution, i.e. the bias parameter would be a function
B (ny,my). Forinstance, such an institution could correspond to a situation
where sellers behave as a quantity-setting oligopoly and the Cournot price
obtains, p©(n,,m.) > p*(n,,m;). Equivalently, the price bias at such an
institution is given by 3 (ny,m;) = p%(n,,m;)/p*(n,,m;) > 1. We will
return to this example in Remarks 3 and 4 below.

In general the effects of a bias on the payoffs of the traders are ambiguous.
Take as an example an active institution z (0 < r < oo0) where prices are
higher than the equilibrium price (3, > 1). Compared to the market clearing
institution with the same r, prices as well as quantities are unfavorable for
buyers, and a further increase in 3, would lead to a further decrease in
buyers’ payoffs. For sellers the situation is different. For them, prices at z
are more favorable than at a market clearing institution. This comes at the
price of a decrease in the quantity sellers can sell. Therefore the impact of
further increase of 3, on sellers’ payoffs is unclear. To get an intuition we
look again at the standard case with demand and supply derived from utility
and profit maximization. Under the usual assumptions about demand and
production cost structure, the monopoly price (and hence the optimal price
for a cartel formed out of all sellers) is above the equilibrium price, and
at the equilibrium price the profits of the monopolist are increasing in the
price. Taking into account that all sellers are equal, this translates into the
statement that for (3, close to one the direct, profit-increasing impact of
higher prices is larger than the indirect, profit-decreasing impact of higher



prices via smaller quantities. On the other hand, if the price is above the
monopoly level, the negative indirect effect of a price increase dominates
the positive direct effect - a further increase in the price lowers the profits
because of the implied decrease in the quantity. Similar considerations can
be made for the optimal price of a buyers cartel (i.e. for the monopsony
price). For prices close to the equilibrium price, the positive direct effect
of a price decrease on the consumers is larger than the negative effect due
to the decrease in consumed quantity. For prices below the monopsony
level, however, the reverse is true: The negative indirect effect dominates.
These considerations lead to Assumption A4 below. In order to state this
assumption, we need some additional notation.

Given an institution characterized by 3, > 0, and given r = :1—22 > 0, the
payoffs for buyers and sellers at institution z are given by

VB (02,7) = vB (45(82,7), B2 - p(r))

and
VS(@zﬂ“) = vs (Q§(5zﬂ")7ﬁz -p(T)) -

Assumption A4: For any fixed ratio of buyers and sellers r with 0 <
r < 00, there exist 3(r) < 1 < §(r) such that, for all 3(r) <8 <1,

VB(B,T‘) > VB(l,T)
and for all 1 < 3 < 3(r),
VS(ﬁur) > VS(]-?T)'

This condition is immediately fulfilled if the buyer’s payoff Vi(3,r) is
strictly decreasing in 3 at 3 = 1,> and the seller’s payoff Vs(3,r) is strictly
increasing in 0 at 3 =1.

Under Assumptions Al and A2, we can already compare the payoffs
sellers and buyers get at different types of simultaneously active institu-
tions. Comparing the market clearing with a general non-market clearing
institution, we obtain the following general result:

Lemma 1 Assume A1 and A2. Consider any distribution of traders on any
number of institutions, where both the market clearing institution 0 and a
given non-market clearing institution N (i.e. [y # 1) are active. Then the
following holds:

If vs(q,po) < vs(qq,pn), then vp(qh,po) > vplql,pN). Hence, if
vp (g%, po) < vi(gN,pN), then vs(ql, po) > vs(a) ,pw)-

’Note that neither Vz(3,r) nor Vs(8,7) can be differentiable in general at 8 = 1,
because at this point there is a transition from rationing of the demand side to rationing
of the supply side. Hence, the traded quantity as a function of 3 has a “kink” at = 1.



Proof. Suppose By < 1. Then buyers, but not sellers, are rationed at
institution N. We have that ¢% = s(po) and ¢ = s(pn). Suppose now that
vs(q2,po) < vs(q),pn). By Al, we must have that py < py.

Then, again by Al, vg(¢%,po) > vs(d(pn),pn). Since d(pn) > ¢f
(buyers are rationed), A2 implies that vg(d(pn),pn) > vE(qY,PN).

The case By > 1 is analogous. B

Note that the comparison of payoffs spelled out in this Lemma is fun-
damentally different from that in Assumption A4. Here, the comparison is
among payoffs yielded by two simultaneously active institutions, while in A4,
the comparison is among payoffs yielded by two different institutions, pro-
vided the buyers-sellers ratio was the same in both of them. Hence Lemma
1 shows that, whenever traders of a given market side obtain larger payoffs
in a biased institution than their counterparts in the market clearing one,
traders of the other market side which are active in the market clearing
institution must be obtaining larger payoffs than those active in the biased
one. This result will be determinant for the analysis of the learning model.
Intuitively, it points out a reason for (some) traders to move towards the
market-clearing institution in the presence of another one. Before moving
to that, we ask whether some non-market clearing institutions can fulfill an
analogous property, i.e. there is always a reason for some traders to move
towards them in the presence of a market-clearing institution.

Definition 1 Fix the number of buyers and sellers operating on the whole
market. An institution F with Br # 0 is favored if, given any distribution
of these traders on (only) F' and the market clearing institution 0 such that
both of them are active, then the following holds:

If vs (¢%,p0) > vs (q5,pF), then v (¢%,po) < vB (¢f,pr). Hence, if
v (q%,p0) > vp (45, pr), then vs (q%,p0) <vs (45, pr).

Favored institutions are those such that an statement analogous to the
previous Lemma holds for them versus the market clearing one. But under
which circumstances do such favored institutions exist, and what are their
characteristics? To provide an answer, we use the following

Definition 2 For any given m,n, define

R(m,n) = {%|a:1,...,n, andbzl,...,m}
Blm,n) = Terggin)é(r)
Bm,n) = ngl(g;ﬂ)ﬁ(?“)

Note that for any given number of buyers and sellers, there exists only
a finite number of values 7 can take. Hence, by A4 3(m,n) and 3(m,n)

exist with f(m,n) < 1 < B(m,n). Intuitively, this leads us to believe



that institutions close enough to market-clearing will be favored. Those
non-market clearing institutions for which g(m,n) < 8, < B(m,n),3, # 1
are such that they improve one market side relative to the market clearing
institution for any fixed » € R(m,n). In other words for any given ratio of
buyers and sellers such a non-market clearing institution is favored by one
market side over the market clearing one.

These bounds are not enough to guarantee existence of favored institu-
tions, though. The problem is the following. Imagine a biased institution
z with 8, < 1 and a market-clearing one are simultaneously active. In
principle, since 8, < 1, prices at z are lower than at the market clearing
institution, for a given proportion of buyers and sellers. The actual propor-
tions at z and the market clearing institution, though, might be so different
as to offset the effect of the bias. For, since the market clearing price is an
increasing function of the buyers-sellers ratio r, = ;‘%—i, if the ratio at the
market-clearing institution, rg, is much smaller than the one at z, r, then
the price at the former, p(rg) might be so much smaller than the (theoreti-
cal) market-clearing price at z, p(r;), than the actual price there, 3, - p(r;)
might still be larger than p(rg) even though (3, < 1. This problem might be
overcome by taking tighter bounds, taking full advantage of the fact that m
and n are finite.

Definition 3 For any given m,n, define T(m,n) as the set of all pairs
(ro,72) such that rg = :@—% andr, = % with ng,n, € {1,...,n} and mg,m, €
{1,...,m} such that ng+n, =mn and mog+m, = m. In other words, T'(m,n)
is the set of all pairs of buyer-seller ratios which are feasible when two and

only two institutions are simultaneously active. then, define

S S

B (m,n) = min {B(mm), min {pEW% |(ro,72) € T(m,n) and ro > r, }}
Pz
Notice that 3*(m,n) (and analogously B (m,n)) is well-defined because
T'(m,n) is finite and ry < r, implies ;;E—:S% < 1. Clearly, f(m,n) < g*(m,n) <
1 <" (m,m) < B(m,m).
We are now in the position to identify sufficient conditions for the exis-
tence of favored institutions.

|(r0,72) € T(m,n) and ro <r, }}

Lemma 2 Assume Al and A4. Fiz the number of buyers and sellers operat-
ing on the whole market. Any institution F with 3*(m,n) < Bp < 3" (m,n)
is favored.

Proof. We want to show that, whenever vg (qg,po) > vg (qg,pp), then
vp (q%,po) < vB (qg,pF). In other words, for any distribution of the traders



among the two institutions, either vg (qg,po) < vg (qg,pF) or vg (q%,p()) <
VB (qg,pF) .

Suppose Br < 1. Then buyers, but not sellers, are rationed at institution
F. We have that ¢% = s(po) and ¢5 = s(pr). Suppose now that vs(g2,po) >
vs(qk,pr). By Al, we must have that py > pp.

Suppose 79 > rr. Then, pg = p(rg) > p(rr) and, by Al, vg(¢%,po) =
VB(l,To) < VB(l,’I“F). By A4, VB(l,TF) < VB(ﬁF,’I“F) = VB (qg,pF) and
the claim follows.

Suppose now rg < rp. Then, po = p(ro) < p(rg). If, as assumed,
Vg (qg,p(J) > vg (qg,pp>, then py > pr = Br - p(rr) by Al. Tt follows
that Bp < ]f((—:%, a contradiction with Sp > 3*(m,n). Hence, vg (¢3,p0) <
Us (Q,gva) .

The case Br > 1 is analogous. B

This Lemma shows that potential F-institutions do exist® for any m, n,
and that the vicinity of the market clearing institution consists of such fa-
vored institutions.

Our results depend crucially on an the validity of A1-A4. In the next
subsection we show that these assumptions are not only very plausible at first
sight, but that they are also fulfilled in the standard model where demand
and supply are derived from standard consumers’ and producers’ problems
and the evaluation functions are obtained from the corresponding utility
and profit functions.” Assumptions A1-A4, though, can also be fulfilled if
payoffs, demand, and supply are not derived from standard problems. Take
as an example a producer whose supply is derived from profit maximization,
but who evaluates the market outcome by the revenue raised (without taking
production costs into account). Such an inconsistency between the supply
behavior and the learning process (which might e.g. be due to the different
divisions within a firm deciding about quantity supplied and the market
chosen) can be modelled by our approach, since despite the inconsistency

such a model fulfills A1-A4.

2.2 Standard Framework

Take identical consumers, each endowed with the same fixed income. The
preferences of a consumer are represented by a strictly quasiconcave, con-
tinuous and strictly monotone utility function w(x), where = denotes the
consumption bundle. Furthermore, we assume that none of the goods is
a Giffen-good. Utility maximization and price-taking behavior give us the
demand functions. We are interested in the market for good 1. If we fix

SThat is, there exist values of the bias parameter such that, if an institution is char-
acterized precisely by that bias, it will be favored. This does not mean that we assume a
favored institution always to be actually available in the market.

"Consumers’and producers’surplus for arbitrary demand and supply functions are other
possible valuation functions. It is easy to show that this framework also satisfies A1-A4.

10



the prices of all goods but 1, we obtain the (reduced) demand function for
good 1, d(p), where p denotes the price of good 1. Consumers’ evaluation
of the market outcome coincides of course with the utility derived from this
outcome.

In our framework we allow for rationing, i.e. a consumer (buyer) may
receive less (but not more) than the quantity specified by the demand func-
tion. In this case we can think that the consumer maximizes utility taking
the rationing as an additional constraint. By the uniqueness of the solution
of the utility maximization problem without rationing (which is due to strict
quasiconcavity of the utility function), it is clear that for the problem with
rationing the rationing constraint is binding, and the solution of this prob-
lem leads to an outcome inferior to the non-rationing case. Hence, rationing
lowers the consumer’s utility (and hence the valuation of the market out-
come) as required by A2. Furthermore, again due to strict quasiconcavity
the problem with rationing has also a unique solution. Hence rationing at
a strictly positive level leads to a better outcome than no-trade, as required
by A3. Finally, standard revealed-preference arguments show that if the
demand for good 1 is strictly positive, any increase in p decreases utility,
and hence A1 is fulfilled.

Identical firms produce good 1 with a strictly convex technology. Cost
minimization allows us to derive - for given input prices - a strictly convex
cost function. Maximizing profits and price taking behavior lead to the
supply function s(p). We assume the absence of fixed costs and that marginal
costs are not bounded away from zero. This implies that s(p) is strictly
increasing in p as required.® Firms’s evaluation of the outcome coincides
with the profits.

Of course, if due to rationing firms sell less than the quantity specified
by s(p), their profits are lower than in the non-rationing case. This confirms
A2. Furthermore, rationing at a strictly positive level is better for the firms
than no trade at all, as demanded by A3. Finally, in absence of rationing
any increase in the output price leads to an increase in the profits of the
producer for any given level of output, and the optimal adjustment of output
according to the supply function can only lead to a further increase in the
profits. This consideration confirms Al.

Finally, as already explained before it is clear that for any given number
of buyers and sellers, the price that maximizes the sum of the profits of the
firms (monopoly price) is strictly above the market clearing price, and the
monopsony price is strictly below the market clearing price. Therefore, A4

is fulfilled.

8 This feature of the supply function guarantees that equilibrium prices and quantities
are strictly positive as long as at least one buyer and one seller coordinate on an institution.
Of course, there are weaker conditions also guaranteeing such an interior equilibrium
outcome. Working with these weaker conditions, however, would have complicated the
presentation without providing new insights.
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3 The Learning Process

If more than one institution is available, traders themselves can choose the
institution at which they want to be active. In this section, we explic-
itly model this decision process. Our aim is to be able to predict which
institution(s) will be observed to be active, and whether the outstanding
importance of market clearing institutions in economics can be justified by
this choice process.

A generic trader is denoted by k, while i always denotes a buyer and j
always denotes a seller. There are Z+1 institutions available, 2 = 0,1, ..., Z.
Institution 0 is a market clearing institution (y = 1), the remaining others
are non-market clearing (3, # 1).

We proceed now by formulating the choice process as a game. At first all
traders choose simultaneously and independently the institutions at which
they want to trade the good. Then for each trading institution z the number
of buyers and sellers who have opted for this institution, n, and m., and the
bias parameter 3, determine - as described in section 2.1 - the price and the
quantity exchanged at z. This in turn determines the payoffs of the traders
having opted for z.

It is easy to see that this choice process constitutes a coordination game.
If all traders coordinate on a particular institution, every individual trader
would be worse off if he deviated to another institution, since by deviating
he would lose all trading partners (see A3). Hence, nothing guarantees
coordination on the market clearing institution; further, full coordination
on any institution constitutes a strict Nash equilibrium.

As already explained, we want to analyze under which circumstances
traders learn to coordinate on a market clearing institution. Hence, we
model the choice of the trading institution as a learning process.

We implicitly assume that traders understand the strategic nature of
the coordination problem. Therefore, they do not regard the situation as
an individual decision problem (as they would in a reinforcement learning
model). Furthermore, we assume that traders only know the prices and the
quantities of currently active institutions, and hence do not have enough
information to accurately predict the outcomes in all trading institutions
which are in principle feasible. Thus, they lack the information necessary to
compute a best reply to the current choices of all other traders.

What can a trader do in such a situation? From his individual (myopic)
standpoint, if he considers himself to be small relative to market size, the
best thing he can do is to observe the outcomes (i.e. prices and quantities) of
the currently active institutions and to evaluate these outcomes through his
own evaluation function. That is, he will switch to that institution whose
current prices and quantities he perceives as best according to his payoff
function. A trader can perceive this behavior as approximately rational,
since when he chooses a new institution, the implied changes in prices and
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traded quantities will most of the time be small, and hence this behavior
is close to best reply. Of course, in the current (symmetric) model, this
behavior could also be interpreted as imitation of successful traders of the
own market type. We want to stress, though, that the described behavior
does not require the observation of payoffs achieved by other traders, but
merely prices and traded quantities.

We proceed now by modelling the learning process. First we define the
state space. For any point in time ¢, the state of the process is given by

w(t) = (wp(t),ws®) €{0,1,.... Z}" x {0,1,..., Z}™

ie. w(t)(k) € {0,1,...,Z} denotes the institution chosen by trader k at time
t.

Since interactions are anonymous and traders are symmetric, the follow-
ing notation will turn out to be convenient:

ns(w) = [iellw()= 2z}
me () = |[{jeJ|w() ==z}

ie. ny(w) € {0,1,...,n} is the number of buyers and m, (w) € {0,1,...,m}
the number of sellers choosing institution z, and ng (w) + ... + nz (w) = n,
mo (w) + ... + mz (w) = m hold. Let Q denote the state space.

There are three elements in a learning model which require careful con-
sideration: how do agents revise their choices, when are they able to do such
a revision, and whether mistakes are possible. We discuss now the first two
elements, and postpone the discussion of the third element to section 3.2.

If an agent is able to revise his choice for a given period t 4 1, he takes
his decision given the state w(t) and the associated payoffs. This decision
determines next the institution chosen for period t+ 1. As explained above,
we postulate that traders who get the opportunity to revise observe prices
and traded quantities at all institutions. Then they choose the institution
which yields the best outcome as evaluated by their own payoff functions,
and go there next period (ties broken randomly). That is, provided that
trader k receives revision opportunity at period ¢, in period ¢t 4+ 1 he will
choose an institution among those that in period ¢ were yielding the highest
observed payoffs for traders of his own type.

When can agents revise their choices? It is common in learning models
to explicitly introduce some inertia allowing for the possibility that not all
agents are able to revise strategies simultaneously. Different specifications of
how revision opportunities arrive give rise to different dynamics and often
affect the results. Rather than adopting a specific formulation, here, we
postulate a general class of dynamics encompassing the standard examples
(and many others), which are then reviewed below. See Algs-Ferrer [1] for
a discussion.
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Let E(k,w) denote the event that agent k receives revision opportunity
when the current state is w, and let E*(k,w) C E(k,w) denote the event
that agent k is the only agent of his type (i.e. the only buyer or the only
seller) receiving revision opportunity in w.

Assumption D1: Pr(E*(k,w)) > 0 for every agent k and state w.

Notice that assumption D1 implies that Pr (E(k,w)) > 0, i.e. every agent
has strictly positive probability of being able to revise at any given state.
Further, since we have two clearly differentiated populations, we introduce
a weak form of independence between the revision opportunities in those
populations (it can actually be though of as an anonymity requirement).

Assumption D2: For every agent k£ and state w, either
Pr(E*(k,w)NE*(K,w)) > 0 for any agent k' of the other type, or
Pr (E*(k,w) N E(K ,w)) =0 for any such k.

Assumptions D1 and D2 are rather general. They are fulfilled by the
standard models considered in the literature of learning in games. In these
models, revision opportunities are either modelled through independent
probabilities (a case we call independent inertia; see e.g. [21] or [13]) or
assumed to arrive in an asynchronous way (a case we term non-simultaneous
learning; see e.g. [6] or [4]).

Independent Inertia. There is an exogenous, independent (across
traders and periods) probability 0 < 1 — p < 1 such that the agent does not
get revision opportunity in a given state (inertia). Obviously, Pr (E*(i,w)) =
p(1— p)n_l > 0 for any buyer ¢, and analogously for sellers, hence verifying
D1. D2 follows from independence: Pr (E*(i,w) N E*(j,w)) = Pr (E*(i,w))-
Pr (E*(j,w)) > 0 for any buyer ¢ and any seller j.

Note that this dynamics satisfies even stronger properties. For instance,

P((NierE(i,w)) \ (UjesE(j,w))) > 0

i.e. there is positive probability that, in any single period, all buyers revise
but no seller revises (and vice versa). We will return to this property later
on.

Non-simultaneous Learning. FEach period, only one agent (i.e. ei-
ther a buyer or a seller) is (randomly) selected and allowed to revise his
strategy. Hence, Pr (E*(k,w)) = M;m for any trader k (verifying D1), and
Pr (E*(i,w) N E(j,w)) = 0 for any buyer 7 and any seller j, and vice versa
(verifying D2).

Non-simultaneous Learning within Types. In our case, it is natural
to conceive a dynamics where in every period, only one buyer and one seller
are selected (randomly and independently) and given the opportunity to
revise. Assumption D1 holds because Pr (E*(i,w)) = % > 0 for any buyer
i and Pr(E*(j,w)) = 1 > 0 for any seller j. Assumption D2 holds by
independence.

Note that the second part of Assumption D2 is the one that specifically
allows for dynamics where only one agent at all is allowed to revise each
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period (non-simultaneous learning). If this part were dropped (which still
allows for non-simultaneous learning within types and independent inertia),
the modified Assumption D2 would imply D1.

The specification above allows for more general learning processes than
those described by independent inertia or non-simultaneous learning. Since
the revision probability Pr (F(i,w)) is a function of the state w, it might
depend e.g. on the difference of payoffs between different institutions (so
that unsatisfied traders are more likely to revise), or on idiosyncratic char-
acteristics of the currently chosen institution.

3.1 Unperturbed Learning Process

We refer to the dynamics as described till now as the unperturbed learning
process, for reasons that will become apparent later. We first look at this
process in order to identify properties of the model that will greatly simplify
the analysis in the sequel.

The unperturbed learning process is a Markov chain on the (finite) state
space 2, to which standard treatment applies (see e.g. [14].) In order to
describe the results of this model, it is useful to summarize the basic results
of such dynamics for reference.

Given two states w,w’, denote by P (w,w’) the probability of transition
from w to &' in one period. The transition matrix of the process is given
by P = [P (w,w')], yeq- An absorbing set? of the unperturbed dynamics
is a minimal subset of states which, once entered, is never abandoned. An
absorbing state is an element which forms a singleton absorbing set, i.e. w
is absorbing if and only P (w,w) = 1. States that are not in any absorbing
set are called {ransient.

FEvery absorbing set of a Markov chain induces an invariant distribution,
i.e. a distribution over states p € A () which, if taken as initial condition,
would be reproduced in probabilistic terms after updating (more precisely,
f - P = ). The invariant distribution induced by an absorbing set A C Q)
has support A. The set of all possible invariant distributions of the process
is the convex hull of the invariant distributions associated to the absorbing
sets. By the Ergodic Theorem, the invariant distribution associated to a
given absorbing set describes the time-average behavior of the system once
(and if) it gets into that class. That is, u (w) is the limit of the average time
that the system spends in state w, along any sample path that eventually
gets into the corresponding absorbing set. If, additionally, the absorbing set
is aperiodic,'” then the associated invariant distribution describes also the
long-run probabilities of the states in the class, limzy_o q - PT = p for all

9 Also called recurrent communication class or limit set.

10T 00sely speaking, an absorbing set is aperiodic if it contains no deterministic non-
trivial cycles. A sufficient condition for aperiodicity is that for some state w in the set,
P (w,w) > 0. Note also that any absorbing state is aperiodic.
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probability distributions g whose support is contained in the absorbing set.
This result is referred to as the Fundamental Theorem of Markov Chains.

A Markov chain is ergodic if it has a unique absorbing set. The (unique)
invariant distribution constitutes the long-run prediction for such a process,
since it represents the limit behavior of the process independently of initial
conditions. If the process is not ergodic, then several invariant distributions
exist, describing the long-run behavior along different sample paths, i.e. the
prediction depends on the initial conditions.

In our case the unperturbed dynamics is not ergodic, presenting a mul-
tiplicity of absorbing sets. Clearly, every “monomorphic” state where all
traders coordinate in one and the same institution constitutes an absorbing
state. In order to show that these are the only relevant absorbing states,
we need the following preliminary result. Given w,w’ € Q, w # W/, a
positive probability path from w to «’ is a finite sequence of states wy =
WyW1, ey Wy 1, Wy, = W' such that Plwg_1,wg) >0 for all k=1,....n.

Lemma 3 Assume Al, A2, and A3. Under D1 and D2, given any state w
with ng (w) > 1 and my (w) > 1, there exists a positive probability path of
the unperturbed dynamics leading from w to the state wy with ng (wp) = n
and mg (wo) = m.

Proof. Consider any non-market clearing institution, z # 0, which is chosen
by some traders in state w. If n, (w) = 0 or m, (w) = 0, by Remark 1 we
can build a positive probability path to a new state where no trader is at
institution z. Hence, without loss of generality, suppose n, (w) > 0 and
m; (w) > 0.

By Lemma 1, it follows that in state w at least one of the two types
of traders strictly prefers the market clearing institution in state w. Let k
be a trader of that type who is at the non-market clearing institution z.
It might happen that k prefers a third institution to the market clearing
one, but certainly will not stay in z if given revision opportunity. Further,
by Assumption D1, there is strictly positive probability that k is the only
trader of his type obtaining revision opportunity. Consider the paths where
this event happens, and let k' denote a trader of the other type (i.e. not
of the same type as k) who, in state w, is in the same non-market clear-
ing institution z. Consider now the event that only k and k&' get revision
opportunity.

If this event has positive probability, then (if it occurs) &' may or may not
change institution, but k will, switching to the market clearing or another
institution. If the probability of k and k' being the only revising traders
is zero, by Assumption D2 no agent of the same type as k' will revise this
period, and hence k will change institution but no other agent will. In any
case, the process reaches a state with strictly less traders at institution z
than there were in w, but at least the same traders in the other institutions
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(and, in particular, the market clearing one). Repeating this argument, we
will reach a state w’ with either n, (w') = 0 or m, (w’) = 0. From this state,
all remaining traders will leave institution z as above (by Remark 1). Hence,
we reach a state where strictly less institutions are chosen than in w.

Repeating this procedure, we will reach a state where only two institu-
tions are chosen by traders, and one of them will necessarily be the market
clearing one. Applying again the same argument (using Lemma 1) shows
that we can construct a positive probability path to wp, where 0 is the only
active institution. B

Obviously, if there exists a positive probability path from w to «’ and
w' is an absorbing state, then w is necessarily transient. Using this fact, we
establish the following

Lemma 4 Assume Al, A2, and AS. Under DI and D2,

(i) the absorbing states of the unperturbed dynamics are the cross-states
w such that n, (w) = n and my (w) = m for some z,z € {0,....,Z}.
In particular, this includes all monomorphic states w, characterized
by ny (w;) = n and m, (w,) = m, corresponding to coordination on a
particular institution;

(ii) no state w with 1 < ng(w) <n—1and1 < mg(w) <m—1 (i.e., where
the market clearing institution is active) is part of any absorbing set
of the unperturbed dynamics.

Proof. Cross states as defined in (i) are obviously absorbing because, in
the absence of experimentation, traders will never switch to unobserved
institutions. To see that there are no other absorbing states, suppose there
are traders of the same type in at least two different institutions. Since
necessarily one of those institutions is yielding (weakly) higher payoffs than
the other, and under Assumption D1 there is positive probability that one
of the traders not in that institution is given revision opportunity, there is a
positive probability transition to a different state, a contradiction. Part (ii)
follows immediately from Lemma 3. l

In principle (and particularly for slow dynamics as e.g. those with non-
simultaneous learning), there might be non-singleton absorbing sets. By (ii)
in the last Lemma, though, those would be made up of states where the
market clearing institution is never active.

3.2 Perturbed Learning Process

In order to select among the absorbing states of the unperturbed learning
model, and following the literature, we proceed to study stochastic stability.
The dynamics is enriched with a perturbation in the form of mistakes or
experiments as follows. With an independent probability € > 0, each agent,
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in each period, might make a mistake (experiment or mutate), and simply
pick an institution at random,'! independently of other considerations.

The dynamics with mistakes (experimentation) is called perturbed learn-
ing process. Since experiments make transitions between any two states
possible, the perturbed process has a single absorbing set formed by the
whole state space such processes are called irreducible. Hence, the perturbed
process is ergodic. The corresponding (unique) invariant distribution is de-
noted pi (g). The limit invariant distribution (as the rate of experimentation
tends to zero) p* = lim. .o (e) exists and is an invariant distribution of
the unperturbed process P (see e.g. [12], [23], or [5]).

The limit invariant distribution singles out a stable prediction of the
unperturbed dynamics, in the sense that, for any € > 0 small enough, the
play approximates that described by p* in the long run. The states in the
support of p*, i.e. {w € Q|p* (w) > 0} are called stochastically stable states
or long-run equilibria. Clearly, the set of stochastically stable states is a
union of some absorbing sets of the original, unperturbed chain (e = 0).

In the sequel, whenever we say absorbing sets or states, we refer to the
unperturbed dynamics. Since the perturbed dynamics is irreducible, no
confusion should arise.

We will rely on the characterization of the set of stochastically stable
states developed by [12] and [23] and further developed by [5]. Detailed
overviews can be found e.g. in [7] or [22]. In particular, given two absorbing
sets A and B, let ¢(A, B) > 0 (referred to as the transition cost from A to
B) denote the minimal number of mistakes in a positive probability path
starting in an element of A and leading to an element in B. The following
Lemma contains all the results on stochastic stability that we will require
for the analysis. Tts proof is a straightforward application of [5, Theorems 1
and 3] (see the Appendix).

Lemma 5 Let A be an absorbing set and define the Radius of A by
R(A) = min{c(A, B) |B is an absorbing set, B # A}
and the Coradius of A by
CR(A) =max {c(B, A) |B is an absorbing set, B # A}
Then:

(i) If R(A) > CR(A), the states in A are stochastically stable.
(i1) If R(A) > CR(A), the only stochastically stable states are those in A.

"1We mean that an institution is picked up according to a pre-specified probability
distribution having full support, for instance uniformly. The exact distribution does not
affect the results, as long as it has full support.
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(111) If the states in an absorbing set B are stochastically stable and R(A) =
c(B, A), the states in A are also stochastically stable.

Intuitively, the radius of an absorbing set (e.g. the monomorphic state
corresponding to coordination on one particular institution) is a measure of
how hard it is to destabilize it, while the coradius is a measure of how difficult
it might be to reach it from any different state. Part (i) says that, whenever
the radius exceeds the coradius, the absorbing set (say, an institution) is
easier to reach than to destabilize, and hence it is stochastically stable. If
the inequality is strict, part (ii) further establishes that the institution it is
necessarily the only stochastically stable one. Finally, part (iii) says that, if
an institution is stable but there is another one which can be reached from
the former just as easily as it is left, then the later must also be stochastically
stable.

4 Stochastically Stable Institutions

We proceed now to analyze the complete model. First, notice that it is
straightforward to show that the non-monomorphic cross-states (in which
all institutions are inactive, i.e. no trader is actually trading) are rather
unstable. Specifically, they are destabilized with a single mutation, in which
one trader joins the traders of the other type. To see this, recall simply that
trade is preferred to no trade (recall Remark 1), and hence the outcome of
the now-active institution is better for all traders than that of the inactive
institution. Hence, traders at the inactive institution will switch whenever
revision opportunities arise.

Since monomorphic states correspond to full coordination on a particular
market institution, we aim to identify which of those states are stochastically
stable.

Definition 4 We say that an institution z € {0, ...Z} is stochastically stable
if the corresponding monomorphic state w, characterized by

ng (wy) =n and my (w;) =m
1s stochastically stable.

Intuitively, a stochastically stable institution is one such that, in the long
run, traders frequently coordinate in it. In principle, several institutions
could be stochastically stable, but if a particular institution is not, we can
assert that, in the long run, this institution will be simply not be used by
traders.

Theorem 1 Under A1, A2, A8, DI, and D2, the market clearing institu-
tion is always stochastically stable.
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Proof. We have to show the stochastic stability of the state
wp. First, notice that, by Remark 1, no monomorphic state can be left
with less than two mutations. In particular, R({wo}) > 2.

Consider any state in any absorbing set other than {wp}. Notice that two
mutations (to the market clearing institution) suffice to reach a state w with
no (w) > 1 and mg (w) > 1. By Lemma 3, there is a positive probability path
of the unperturbed dynamics (i.e. requiring no further mutations) leading
to wp. This shows that CR({wp}) = 2 (the equality follows because two
mutations are required to leave any other monomorphic state). The result
follows from Lemma 5(i). B

Remark 3 This result remains unchanged if oligopolistic institutions (recall
Remark 2) are allowed. Since the price bias in such an institution is always
larger than 1 (even if il is not constant), the proof of Lemma 3 also applies
and the theorem holds.

Similarly, this result also holds when we allow for institutions where the
law of one price is not necessarily fulfilled. Consider o biased institution
where the number of realized transaction prices is itself stochastic. As long
as there is a positive probability (no matter how small) that only one price
is realized, Lemma 1 applies ex post for this realization. It is easy to see
that the argument in the proof of Lemma 3 can then be reproduced and the
theorem holds again.

The last theorem shows that, independently of which other institutions
are available, coordination on the market clearing one will always be ob-
served at least (a non-negligible) part of the time in the long run. The
immediate question is whether other institutions can also be observed. As
a first insight, we offer a condition that guarantees a negative answer.

Definition 5 The market clearing institution is locally robust if at any
state w such that ng (w) = n — 1,mg (w) = m — 1, and there exists z # 0
with n, (w) = 1,m, (w) = 1, both types of traders strictly prefer the market
clearing institution.

Proposition 1 Under A1, A2, A3, DI, and D2, if the market clearing
institution is locally robust, the state wy is the only stochastically stable state.

Proof. If the market clearing institution is locally robust, it is not pos-
sible to destabilize wp with two mutations, and hence R({wo}) > 2, while
CR({wo}) = 2 as in the proof of Theorem 1. The result follows from Lemma
5(ii). H

Local robustness, though, might be too much to ask for. The following
result shows that any favored institution will necessarily be stochastically
stable. As a corollary, in the presence of such an institution local robustness
must fail.
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Theorem 2 Assume A1, A2, A3, and A4, and consider any dynamics sat-
isfying D1 and D2. Let z € {1,..., Z} be any favored institution. Then z is
stochastically stable.

Proof. Let w, denote the monomorphic state corresponding to coordination
on institution z. We know from Theorem 1 that wp is stochastically stable.
By definition of a favored institution, we see that if exactly two mutations
to institution z occur at state wg, we reach a state where at least one type of
traders strictly prefer that institution. Analogously to the proof of Lemma
3 (through repeated application of Definition 1), from this state there exists
a positive probability path involving no further mutations which leads to
state w,. From the proof of Theorem 1, we already know that it is possible
to make the opposite transition with exactly two mutations (but no less).
Thus, we obtain that c({wo},{w.}) = 2 = R({w:}), and the result follows
from Lemma 5(iii). W

Theorem 2 gives us sufficient conditions for the existence of stochastically
stable institutions other than the market clearing one. Recall that under A1
and A4 favored institutions always exist for given market size (see Lemma
2), even in the current framework where institutions are simply character-
ized by a constant bias parameter. Lemma 2, though, does not exclude the
possibility that the set of favored institutions might degenerate when the
market size increases. The following lemma shows that, independently of
the actual size of the market, it is always possible to find a non-market clear-
ing institution (which needs not be favored) such that the market clearing
one fails local robustness in the presence of the former. Therefore, the set of
stochastically stable institutions may not shrink to the market clearing insti-
tution when the market size increases, even if the set of favored institutions
degenerates with increasing market size.

Lemma 6 Assume Al and A4. Let 0 < B(1) < B < 1 < Bs < B(1).
Then,

(i) if m < n, in a state where all traders except for one seller and
one buyer are at a market clearing institution and the two remain-
ing traders are at an institution with 3, = Bp, buyers strictly prefer
the latter;

(ii) if m > n, in a state where all traders except for one seller and
one buyer are at a market clearing institution and the two remain-
ing traders are at an institution with 3, = (g, sellers strictly prefer
the latter.

Proof. (i) Since m < n, we have that m —1 <n — 1 and hence

n—1

r= >1

m—1
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i.e. there are (weakly) more buyers than sellers at the market clearing
institution. By A4, since 3(1) < fp <1,

VB(ﬂB, 1) > VB(I, 1)
and, by Al

Ve(1,1) = vp (q5(1,1),p(1)) > vp (d(p(r)),p(r))

because ¢5(1,1) = d(p(1)) and p(1) < p(r) since r > 1 and p is decreasing
in r. Hence,

VB(BB,1) > vp (d(p(r)),p(r))

which proves the claim, because vg (d(p(r)),p(r)) is the buyers’ payoff at
the market clearing institution, and Vg(f5p,1) is the payoff of the (only)
buyer at the non-market clearing institution with 3, = Sp (where there is
just one buyer and one seller).
(ii) Since m > n, we have that m —1 >mn — 1 and hence 1 < 85 < 3(1)
n—1

= <1
" m—1"

i.e. there are (weakly) less buyers than sellers at the market clearing insti-
tution. By A4, since 1 < 8g < (1),

Vg(ﬁs, 1) > Vs(l, 1)
and, by Al

Vs(1,1) = vs (¢5(1,1),p(1)) = vs (s(p(r)), p(r))
because ¢Z(1,1) = s(p(1)) and p(1) > p(r) since r < 1 and p is decreasing
in r. Hence,
Vs(Bs,1) > vs (s(p(r)), p(r))

which proves the claim, because vg (s(p(r)), p(r)) is the sellers’ payoff at the
market clearing institution, and Vs(f8s,1) is the payoff of the (only) buyer
at the non-market clearing institution with 3, = g (where there is just one
buyer and one seller). Bl

This lemma has a simple interpretation. Suppose one market side (buy-
ers or sellers) is overrepresented in the population. Then, this market side
has less market power than the other side. If, for some reason, an institution
biased in the favor of this market side attracts an equal number of sellers
and buyers, the referred side will necessarily prefer the latter institution.

Note that, since B(1) < 3*(m,n) and 5(1) > B"(m,n), the set of insti-
tutions fulfilling the hypothesis of the last Lemma is in general significantly
larger than the set of favored institutions.

The following theorem proves existence of stochastically stable non-
market clearing institutions even for those cases where the set of favored
institutions degenerates. This result, though, can be established only for
dynamics with independent inertia.
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Theorem 3 Assume Al, A2, A3, and A4. Suppose we have a dynamics
with independent inertia. Let 0 < B(1) < fp < 1 < Bs < B(1) and consider
three or more institutions, one of_them with bias parameters 1 (the mar-
ket clearing institution), Bp (the buyers’ institution) and Bg (the sellers’
institution). Then,

(i) if m < n, both the market clearing and the buyers’ institution are
stochastically stable.

(ii) if m > n, both the market clearing and the sellers’ institution are
stochastically stable.

Proof. We will show part (i). Part (ii) is analogous. Let w; denote the
monomorphic state corresponding to coordination on the buyers’ institu-
tion. We know from Theorem 1 wy is stochastically stable. By part (i) of
the previous Lemma, we see that if exactly two mutations to the buyers’
institution at state wg occur, we will reach a state where buyers strictly pre-
fer that institution. With independent inertia, there is positive probability
that all buyers revise (hence switching to the buyer institution) and at least
the mutant seller does not. Regardless of what other sellers do, next period
the buyers’ institution will be the only active one and all remaining traders
will eventually switch to it. Hence, we have constructed a positive prob-
ability path from wg to wp involving only two mutations. From the proof
of Theorem 1, we already know that it is possible to make the opposite
transition with exactly two mutations (but no less). Thus, we obtain that
c({wo},{wi}) =2 = R({w1}), and the result follows from Lemma 5(iii). H

Theorem 3 presents a trade-off with respect to the result shown in The-
orem 2. On the one hand, the former applies to a wider range of institutions
than the latter. On the other hand, though, the price to pay is that the
result is only established for a subset of the considered dynamics, namely
those with independent inertia. Careful inspection of the proof of Theorem
3 shows that it is in general not possible to make a similar statement for
more general dynamics. The intuition is that the hypothesis of the The-
orem guarantees that as long as two traders (of different types) switch to
the considered non-market clearing institution, one market side will benefit
from the switch. If the dynamics is quick enough (as in the independent
inertia case), all traders of that market side will switch to the non-market
clearing institution and the other side will have to follow suit as the market
clearing one becomes inactive. If the dynamics is slow, however (as e.g. a
dynamics with non-simultaneous learning), the hypothesis of Theorem 3 is
not sufficient to derive the last result.

Remark 4 Theorems 2 and 3 show that institutions other than the market-
clearing one are also stochastically stable. If we increase the set of feasible
institutions by allowing for violations of the law of one price, this would of
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course only increase the possibility to find non-market clearing, stochastically
stable institutions. In this sense, it is enough to restrict ourselves to the
simple framework we have considered. Of course, the same argument holds
when the price bias is allowed to depend on the number of active traders ot
each institution.

5 Stable Institutions and the Market Size

Now we turn to the impact of the market size on the stochastic stability
of biased institutions. In particular, we ask whether any biased institution
remains stable when the market grows (with constant ratio =*). For a learn-
ing dynamics with independent inertia, Theorem 3 has already provided us
with an answer: For such a learning behavior, the increase in the market
size has no impact on the stochastic stability of biased institutions. For a
slow learning dynamics, however, the market size might influence the set of
favored institutions. In the following we show with the help of two examples
that the impact of the market size depends crucially on the structure of de-
mand and supply, and on the evaluation functions. In the first example the
set of favored institutions degenerates as the market size increases, whereas
in the second example it remains constant.

Example 1 Quadratic costs and Cobb-Douglas utility function.

Consider an economy with two goods. We analyze trading institutions for
good 1. Firms produce good 1 with the quadratic cost function c(gg) = %q%,
where qg denotes the quantity of good 1 produced. Denoting the price for
good 1 by p, the profit function is given by 7 (qg,p) = pqg—%q%. Maximizing
this profit function w.r.t. gqg yields the linear supply function s(p) = p.
Firms’ valuation of the outcome coincides with the profits.

Buyers are endowed with a Cobb-Douglas utility function u(gg,x) =
qpx, where gp is the quantity of good 1 consumed and z is the consumption
of the other good. Let the price for good 2 be fixed at 1, and let the income
be 2 units. Then the standard consumers’ problem is given by:

maXg, » (BT
s.t. pqp +x =2

whose solution yields the demand for good 1:

d(p) = ]—1)

Consumers’ valuation of an outcome coincides of course with the utility
derived from this outcome.
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Suppose there are m, > 0 sellers and n, > 0 buyers active at an insti-
tution z where the good 1 is traded. The equilibrium price p* is given by
p* = p(r) = V77, with r* = 2=

my °
If the institution is market clearing, the ratio of traders is denoted by
r0. The quantity of good 1 sold by an individual seller is denoted by qg.

The quantity of good 1 consumed by an individual buyer is denoted ¢%, and

the quantity of good 2 denoted 2. These quantities are given by qg =9,

q% =4/ %0, and 20 = 1. Hence for the market clearing institution the payoffs

are:
1 1
0 0 0 0 0
Ve(1,r°) = ) and Vs(1,r )257“
What happens for a non-market clearing institution /N with a bias 3 and
a traders’ ratio rV? The price at the non-market clearing institution, py is
given by py = BVrN. Which market side is rationed depends on whether 3
is larger or smaller than one.
We first look at the case with 3 > 1. Sellers are rationed in this case,
and their quantities are given by:!?

N VPN,
qg(ﬁyTN)ZTNd(P):p—N: 3

1
pVrN
and x%V = 1.Hence, for the non-market clearing institution with 3 > 1 the
payoffs are:

Since buyers are not rationed, their quantities are given by, qg =

N N 1 N N N 1Y
Vg (1,rY) = and Ve (B, ) =1 — =—

BN 2 52

This implies that N is a favored institution whenever for all feasible

r0 NV at least one of the following inequalities holds:

0
r 2
— >
rN P

0
r 1
-_ < 2 _
rN 32

Note that for all 3 > 1, % > 2 — 5—12 Whenever the grid of feasible :—1?,
is fine enough, there exists a :—1?, such that both inequalities fail at the same

time, and N is not favored. Since the grid of feasible :—]?, becomes finer as

12Note that in case of rationing all feasible quantities of trade are produced at marginal

costs below the price sellers get in a market where they are rationed. Hence, it cannot be
profit maximizing to sell less than the maximum quantity possible under rationing.
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the market size increases, no institution with 3 > 1 remains favored as the
market size increases.

For 3 < 1, a similar conclusion can be derived. Buyers are rationed in
this case, and their quantities are given by:

(@) =) _pn g 1

nN o T N TN

N =2—pngg(B.rN)=2- 3

Since sellers are not rationed, their quantities are given by, quv = Bvri.
Hence, for the non-market clearing institution with 3 < 1 the payoffs are:

1

N~

VL) = =2 ) and V(5N) = 5

This implies that N is a favored institution whenever for all feasible

r0 N at least one of the following inequalities holds:

0
r 2
<P
L S
N 32— 32)2
Note that for all 8 < 1, 3% < ﬂg(z—iﬂg)Q Whenever the grid of feasible

:—1?, is fine enough, there exists a :—1(\), such that both inequalities fail at the

same time, and N is not favored. Since the grid of feasible ;—S, becomes finer
as the market size increases, no institution with 3 < 1 remains favored as
the market size increases.

This implies that for the example of quadratic costs and Cobb-Douglas
utility function the set of favorable institutions degenerates as the market
size increases. The result is completely different for goods which are pro-
duced with a constant returns to scale technology, as the following example
shows:

Example 2 Constant returns to scale.

Till now we have assumed that sellers are characterized by a strictly in-
creasing supply function s(p). If supply is derived from profit maximization,
this implies a technology with decreasing returns to scale. Now we turn to
the case of constant returns to scale. In this case, rather than with a supply
function, sellers are endowed with a supply correspondence

400 if p>c
S(p) =14 [0,+00] if p=c
0 if p<e
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where ¢ > 0 is the constant unit cost of production. This supply function
and the underlying profit function fulfill A1-A3, if A1-A3 are appropriately
reformulated for supply correspondences.

Buyers are assumed to have decreasing demand functions and fulfill as-
sumptions A1-A3. Whenever there is trade, the market clearing price is
always p* = c¢. Formally, this can be modelled endowing sellers with an
“inverse supply function” p¥(¢®), and interpreting market clearing as

n
p*=p°(—=d(p))
4
For the particular case of constant unit costs of production, this function is
actually constant, p® (qS ) = ¢, and hence the market clearing price is always
equal to c.
In an active market clearing institution, it follows that

¢ = d(c) and ¢} = "2d(c).
mo

In an active, biased institution with bias parameter 3 > 1, the actual price
is py = B - ¢ and sellers are rationed. Hence,

gy = d(B-c) and ¢} = %d(ﬁ-C)-

Tt follows from A1 for the buyers that vg (q%, c) > vp (qg , pN>. The profits
of the sellers are given by

nn
(B-1) cm—Nd(ﬁ-c) >0

and hence vg (qg,c) < vg (quv,pN), i.e. the institution is favored for any
B > 1, independently of market size.

In an active, biased institution with bias parameter 3 < 1, the actual
price is py = (- ¢ < ¢ and buyers, not sellers, are rationed. This means
that sellers will not produce and thus quv = ¢5 = 0. By A3, both types of
traders will prefer the market-clearing institution.

These arguments lead to the following result.

Proposition 2 Considern buyers satisfying A1-A8 and m profit-maximizing
producers with constant marginal costs equal to ¢ > 0 and no fived costs. In-
dependently of (n,m), any institution with By > 1 is favored. Consider a
market-clearing institution 0 and any number of biased institutions. For any
dynamics satisfying D1-D2, and independently of (n,m), the set of stochas-
tically stable institutions is given by the market-clearing institution and all
the institutions N with By > 1.
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Proof. Stochastic stability of the market clearing institution follows from
the fact that in any profile where both institutions are active, buyers prefer
the neutral institution as shown above (in other words, Lemma 1 holds in
this framework). Stochastic stability of the biased institutions with By > 1
follows from the analogous fact for sellers. B

A symmetric result where all the institutions with By < 1 could be
constructed postulating strictly increasing supply functions fulfilling A1-A3
and a horizontal inverse demand function (with payoffs given by consumer
surplus). This case, though, cannot be derived from utility maximization.

Both examples show that even if we restrict ourselves to the standard
framework where demand and supply are derived from utility and profit
maximization, the impact of the market size on the stability of biased in-
stitutions depends on the structure of the preferences and the production
technology. Hence, not even for slow learning dynamics and large markets
traders necessarily learn to coordinate in market clearing trading institu-
tions.

6 Conclusions

We have presented a model where traders can choose among different trading
institutions and asked whether they will learn to coordinate on an institution
that guarantees market clearing.

Under a general class of learning dynamics, we find that the market clear-
ing institution is always stochastically stable. We also identify a sufficient
condition for this institution to be the only stochastically stable one. This
condition, though, is rather strong. Hence, we also find non-market clearing
institutions that are stochastically stable under general conditions. These
conditions are of two types. The first one (favored institutions) depends on
actual market size. If the market becomes very large, for certain examples
the set of institutions fulfilling this condition may become degenerate, al-
though for other examples (e.g. constant returns to scale) the set of favored
institutions does not depend on market size. The second one is independent
of market size, but guarantees stochastic stability of non-market clearing
institutions only for a restricted class of learning dynamics.

In general, we conclude that coordination on market clearing institutions
will be often observed as the result of learning, but other institutions might
also survive in the long run.
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Appendix A: Proof of Lemma 5

Lemma 5 Let A be an absorbing set and define the Radius of A by
R(A) = min {c(A, B) |B is an absorbing set, B # A}
and the Coradius of A by
CR(A) = max {c(B, A) |B is an absorbing set, B # A}
Then:
(i) If R(A) > CR(A), the states in A are stochastically stable.

(i) If R(A) > CR(A), the only stochastically stable states are those in A.

(iii) If the states in an absorbing set B are stochastically stable and R(A) =
¢(B, A), the states in A are also stochastically stable.

Proof. Part (ii) follows immediately from [5, Theorem 1]. Part (i) fol-
lows from part (iii) taking B to be any absorbing set containing stochasti-
cally stable states (which always exist). Part (iii) follows from [5, Theorem
3], but the result there is stronger and the relationship might not be ap-
parent at first glance. That Theorem uses the concept of modified costs
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c*(B,A), which are smaller than the transition costs ([5, p. 28-9]). How-
ever, if R(A) = ¢(B,A) > ¢*(B, A) and states in B are stochastically stable,
it cannot happen that R(A) > ¢*(B,A) because in such case [5, Theo-
rem 3] also implies that no state in B can be stochastically stable. Hence,
R(A) = ¢(B,A) implies R(A) = ¢*(B, A), which is the hypothesis in [5,
Theorem 3|. W

Appendix B: Stochastic Institutions

For an institution z the price bias is now a random variable. Its value is
drawn from an arbitrary distribution over the strictly positive real numbers,
with expected value 3, and variance v,. Denote a realization of this random
variable by 3,. The actual price at which trade takes place at z is given by:

Pz = /sz* (n27 mz)

Hence, Bz specifies the extent to which the price at z differs on average from
the market clearing price, and v, measures the volatility of the bias. Note
that 3, = 1,v, = 0 imposes market clearing.

Given a realization 3., if the price is not at the equilibrium level, ra-
tioning takes place as in the deterministic case above.

We now proceed to sketch the analysis of this more general model, point-
ing only at the differences with the deterministic case. First, consider a
market clearing institution 0 with 8y = 1,99 = 0, and a stochastically non-
market clearing institution N with either 35 # 1,or vy > 0, or both. We
obtain the following generalization of Lemma 1.

Lemma 7 Under Assumptions Al, A2,

(i) For all realizations of By it holds that: vg(q%,po) < vi(qy,pn) =
vs(4%,po) > vs(qf, pn)-

(ii) The probability of a realization of B such that vg(q%,po) < ve(ql,pN)
does not imply vs(q2,po) > vs(q¥ ,pn), is zero.

Proof. In order to prove the lemma, we have to distinguish between three
possible realizations of By. If either By < 1 or By > 1, the proof is identical
with that of Lemma 1. If Sy = 1, neither sellers nor buyers are rationed at
N. Hence, ¢§ = d(Byp*(mn,nn))- By Al, vp(q%,po) < vp(¢y,pn) implies
that py < po. Again by A1, this leads to vs(¢%,po) > vs(qY,pn))-

In all three cases, vg(q%,po) < vs(qy,pn) = vs(q2,po) > vs(¢Y ,pN)
as demanded by part (i). Part (ii) is implied by the fact that Sy = 1 happens
with probability zero. B

Next we define the stochastic analogue of favored institutions. We say
that an institution F' is stochastically favored if it is stochastically non-
market clearing and for all possible realization of 8 and all possible dis-
tribution of traders on £’ and on the market clearing institution at least
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one market side is strictly better off at F. So for all stochastically favored
institutions the analogue of the previous lemma holds.
We obtain the following generalization of Lemma 2.

Lemma 8 Assume Al and A4. Fiz the number of buyers and seller oper-
ating on the whole market. Any stochastic institution for which the support

of its bias is contained in either| 3*(m,n),1[ or in } 1,5 (m,n)[ is favored.

The analogues of Lemmata 3 and 4 follow directly from Lemma 7. Then
we obtain, with the same proof of Theorem 1:

Theorem 4 Under Al, A2, A3, D1, and D2, the market clearing institu-
tion (By = 1,v9 = 0) is always stochastically stable.

We say that the market clearing institution is stochastically locally robust
if at any state w such that ng (w) =n —1,mp (w) = m — 1, and there exists
z # 0 with n, (w) = 1, m; (w) = 1, both types of traders strictly prefer the
market clearing institution for all possible realizations of the bias parameter
of the other active institution. Of course, this is an even stronger condition
than local robustness in the deterministic case. The proof of Proposition 1
then yields

Proposition 3 Under A1, A2, A3, DI, and D2, if the market clearing
institution is stochastically locally robust, the monomorphic state wq is the
only stochastically stable state.

The definition of stochastically favored institutions, however, allows us
to establish the analogue of Theorem 2.

Theorem 5 Assume A1, A2, A3, and A4, and consider any dynamics sat-
isfying D1 and D2. Let z € {1,...,Z} be any stochastically favored institu-
tion. Then z is stochastically stable.

Of course, in examples as the one with quadratic costs, as the number
of traders increases the support of the bias parameter of stochastically fa-
vored institutions must become narrower, degenerating in the limit to G = 1.
Again, though, we can obtain the analogue of Lemma 6, leading to a gener-
alization of Theorem 3:

Theorem 6 Assume A1, A2, A3, and A4. Suppose we have a dynamics
with independent inertia. Let B and S be two institutions such that the sup-
port of their bias parameters Bp, Bs are contained in | 5(1),1[ and ] 1,3(1) [,
respectively. Then,

(i) if m < n, both the market clearing and B are stochastically stable.

(i1) if m > n, both the market clearing and S are stochastically stable.
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