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Note on the Core-Walras Equivalence Problem when
the Commodity Space is a Banach Lattice�

Konrad Podczecky

March 28, 2003

Abstract

The core-Walras equivalence problem for an atomless economy is con-
sidered in the commodity space setting of Banach lattices. In particular,
necessary and su�cient conditions on the commodity space in order for
core-Walras equivalence to hold are established. In general, these condi-
tions can be regarded as implying that an economy with a continuumof
agents has indeed �many more agents than commodities.� However, it
turns out that there are special commodity spaces in which core-Walras
equivalence holds for every atomless economy satisfying certain standard
assumptions, but in which an atomless economy does not have the mean-
ing of there being �many more agents than commodities.�

Journal of Economic Literature Classi�cation Numbers: C62, C71, D41,
D50.

Keywords: Non-separable commodity space, Banach lattice, core-Walras
equivalence.

1 Introduction

In his now classical paper �Markets with a Continuum of Traders,� Aumann
(1964) argued that the appropriate model for perfect competition is one inwhich
the set of agents is speci�ed by an atomless measure space. Aumann showed
that, in such a model, a certain test of perfect competition is indeed satis�ed:
the core of an economy coincides with the set of Walrasian equilibrium alloca-
tions. Aumann's model is formulated in terms of �nitely many commodities.
However, if one follows, say, Chamberlin's view of commodity di�erentiation,
then a continuum of agents means that in�nitely many commodities should be
�Thanks to Roko Aliprantis, C. Alós-Ferrer, Egbert Dierker, Manfred Nermuth, Rabee Tourky,

and Nicholas Yannelis for helpful discussions and suggestions.
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taken into account. The question naturally arises then as to whether Aumann's
core-Walras equivalence theorem carries over to in�nite dimensional commodity
spaces. In fact, this question has been taken up several times in the literature.

In this note we address the core-Walras equivalence problem in theabstract
setting of commodity spaces that are Banach lattices. In particular, necessary
and su�cient conditions on the commodity space in order for core-Walras equiv-
alence to obtain are established.

Recently, Tourky and Yannelis (2001) showed that given a non-separable
Hilbert space E, and given any atomless measure space �T ;T ; ��, there is an
economy with E as commodity space and �T ;T ; �� as space of traders such
that�feasibility being formalized by the Bochner integral�there is a core allo-
cation not supportable as a Walrasian equilibrium although the following strong
conditions, listed in Tourky and Yannelis (2001) under the term �desirable as-
sumptions,� all hold: a) for some vector ordering onE, E is an ordered Hilbert
space so that E�, the positive cone of E, has a non-empty interior1; (b) endow-
ments belong to the interior of E�; (c) consumption sets are equal to E�; (d)
preferences are complete preorderings and are continuous, convex and strictly
monotone; (e) the preference mapping is measurable in the sense of Aumann
(1964)2. Subsequently, responding to a question raised by Tourky and Yannelis
(2001), it was shown in Podczeck (2001) that a core-Walras non-equivalence re-
sult like that of Tourky and Yannelis (2001) actually holds in any non-separable
Banach space. Combining this latter fact with the core-Walras equivalence result
for separable Banach spaces by Rustichini and Yannelis (1991), it thus turns out
that, under the �desirable assumptions,� the class fEg of Banach spaces with
the property that any atomless economy with commodity spaceE exhibits core-
Walras equivalence is exactly the class of Banach spaces that are separable.3

The interpretation of these results of Tourky and Yannelis (2001) and Pod-
czeck (2001) is that a large number of agents does not guaranteeperfect com-
petition unless there are in fact �many more agents than commodities;� if this
latter condition does not hold, then a large number of agents means that agents'
characteristics may be extremely dispersed, so that the standard theory of per-
fect competition fails.4

However, many interesting commodity spaces have the property that the
1�Ordered Hilbert space� means that the positive cone is closed.
2That is, given any two allocations the set of agents preferring what they get in the �rst

allocation to what they get in the second is measurable, allocations being de�ned as Bochner
integrable (hence strongly measurable) functions.

3Actually, the assumptions employed by Rustichini and Yannelis (1991, Theorem 4.1) are
weaker than the �desirable assumptions;� in particular, preferences are not assumed to be
convex or complete.

4We refer to Tourky and Yannelis (2001) and Podczeck (2001) for a more detailed discussion
of this point.
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positive cone has empty interior and are thus not covered in the framework of
the �desirable assumptions.� Moreover, note the phrase �for some ordering. . . �
in the listening of the �desirable assumptions.� In fact, the core-Walras non-
equivalence results in Tourky and Yannelis (2001) and Podczeck (2001) are not
established for a Banach space with a certain given ordering; rather, the ordering
is constructed in the proofs. On the other hand, in most economic models the
ordering of the commodity space is taken as a priori given. Indeed, the typical
examples of in�nite dimensional commodity spaces appearing in the literature
are vector lattices, and the ordering of the commodity space is taken to be the
given lattice ordering and is not an object of construction.

With these facts as motivation�and as economic justi�cation�we investi-
gate in this note the question as to whether the analysis of Tourky and Yannelis
(2001) and Podczeck (2001) carries over to the context of Banach lattices, in
particular addressing the general case in which the positive cone may have an
empty interior.

It should be noted that, in fact, the core-Walras non-equivalence results of
Tourky and Yannelis (2001) and Podczeck (2001) do not apply to any Banach
lattice (with the given lattice ordering). Indeed, in the proofs given by these
authors, the ordering of the commodity space is chosen in such a way that not
only the commodity space itself has positive cone with non-empty interior, but
also its dual space.5 However, no in�nite dimensional Banach lattice has the
property that its own positive cone and that of its dual both have non-empty
interior.6

Let us remark also that non-separable Banach lattices indeed appear as com-
modity spaces in economic models. An example are models of commodity di�er-
entiation where the commodity space isM�
�, the space of all regular bounded
Borel measures on a compact Hausdor� space
; under its usual norm and or-
dering,M�
� is a Banach lattice which is non-separable if
 is uncountable. The
theory of thick and thin markets developed by Ostroy and Zame (1994) uses this

5In fact, the positive cone of the commodity spaceX is chosen to be the cone generated by
fvg � BX where BX is the closed unit ball of the Banach spaceX and v some point of X with
v � BX .

6A further point concerns the use of the Bochner integral to formalize aggregation of com-
modity bundles. Since, by de�nition, a Bochner integrable function is strongly measurable,
hence essentially separably valued, it can be argued that formalizing aggregation in terms of
the Bochner integral makes the core �large� in some sense, thus implying a bias in favor of
core-Walras non-equivalence when the commodity space is non-separable. The analysis of the
core-Walras equivalence problem when aggregation is formalized in terms of a weaker notion
of integrability will be the topic of a future paper. In the present note the question is to what
extent the results of Tourky and Yannelis (2001) and Podczeck (2001) carry over to Banach
lattices. We remark, however, that all the results of this note would continue to be valid in a
framework in which allocations were de�ned to be functions that are Pettis integrable but still
strongly measurable.
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framework of commodity di�erentiation. As shown by these authors, in order
to have examples of thin markets, preferences must not be weak� continuous
(as frequently assumed in models of commodity di�erentiation), but just norm
continuous, so that (norm) non-separability ofM�
� actually matters.

Other examples of commodity spaces that are non-separable Banach lattices
can be found in models of uncertainty. Frequently, in these models the com-
modity space is speci�ed to be an Lp��� space for 1 � p < 1. Such a space is
separable if and only if the underlying measure space is separable. Since there
is no a priori economic reason why this measure space should be separable,
non-separability must be taken into account in the framework of commodity
spaces that are Lp��� spaces. In fact, some authors (e.g. Khan and Sun, 1997)
advertize Loeb measure spaces as appropriate for models of uncertainty, and
Lp��� spaces on such measure spaces are non-separable.

The results of our paper can be summarized as follows. In Section3.2.1 it is
shown, concerning the question of conditions on the commodity space in order
for core-Walras equivalence to hold, that it indeed matters whether the posi-
tive cone of the commodity space is taken to be apriori given or, as in Tourky
and Yannelis (2001) and Podczeck (2001), taken to be an object of construc-
tion. In this section, the commodity space is a C�
� space7�in other words,
a Banach lattice whose positive cone has non-empty interior. In the framework
of commodity spaces that are Banach lattices, this setting is the special case
that is most directly comparable with the discussion in Tourky and Yannelis
(2001) or Podczeck (2001). In particular, complications arising in the general Ba-
nach lattice framework through emptiness of the interior of the positive cone
are ruled out. It will turn out that the pivotal property for a givenC�
� space,
say E, in order that core-Walras equivalence holds for every atomless economy
with commodity space E satisfying the �desirable assumptions��modulo the
fact that the ordering of E is now a priori given�is not separability, but rather
that for each positive linear functional on E there be some countable subset ofE
separating this functional from the other positive linear functionals on E. (See
Section 3 for precise formulation.) This latter condition is of course satis�ed
by any separable C�
� space (in fact, by any separable Banach lattice), but is
also satis�ed by some C�
� spaces that are non-separable (and for which the
�desirable assumptions� can indeed be met). Thus, relative to the context of
commodity spaces that are C�
� spaces, the correlation between separability
of the commodity space and core-Walras equivalence is less strict than in the
setting used by Tourky and Yannelis (2001) and Podczeck (2001), where the
ordering of the commodity space is not taken to be a priori given; in partic-

7By �C�
� space� we mean a Banach lattice that is isomorphic as a Banach lattice to a space
of all continuous real valued functions de�ned on some compact Hausdor� space
.
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ular, there are C�
� spaces in which core-Walras equivalence holds for every
atomless economy satisfying the �desirable assumptions��modulo that the or-
dering of the space is the given lattice ordering�but in which the property of
an economy being atomless does not mean that there are �many more agents
than commodities.�

In Section 3.2.2 we turn to the general case where the commodity space
is a Banach lattice whose positive cone may have an empty interior. Concern-
ing this case, it is well known that if an economy with an in�nite dimensional
commodity space has consumption sets with empty interior, then�regardless
of whether or not the commodity space is separable�one way in which core-
Walras equivalence can fail is through preferences displaying marginal rates
of substitution that are not properly bounded; cf. the example of a failure of
core-Walras equivalence described in Rustichini and Yannelis (1991), an exam-
ple where the commodity space is actually separable. This sort of failure of
core-Walras equivalence re�ects the general fact that if consumption sets in an
in�nite dimensional commodity space have empty interior, then continuity of
preferences by itself does not provide the appropriate bounds on marginal rates
of substitution in order for preferred sets to admit supporting price systems.

Under assumptions imposing bounds on marginal rates of substitution, pos-
itive results on core-Walras equivalence were established in Rustichini and Yan-
nelis (1991) and Zame (1986) for the case where the commodity space is a sep-
arable Banach lattice. The assumption on marginal rates of substitution we use
in the present paper is taken from Zame (1986). It may be found in Section3
under the label (A9).

A su�cient and necessary condition on the commodity space in order for
core-Walras equivalence to hold when this latter hypothesis on preferences is
in force in addition to the �desirable assumptions��modulo the fact that the
positive cone of the commodity space is a priori given and now may have empty
interior�is described in Theorem2 in Section 3. We will here mention only that
this condition can actually be regarded as implying that in an atomless economy
there are �many more agents than commodities.� This is in accordance with the
analysis in Tourky and Yannelis (2001) and Podczeck (2001). However, to have
�many more agents than commodities,� it is no longer necessary that the com-
modity space be separable. The reasons for this are the following. First, the
assumption on marginal rates of substitution implies strong continuity prop-
erties for preferences, so that it is not the norm topology of the commodity
space that is relevant, but some weaker topology. Second, because all (feasible)
trading activities in an economy have to take place in the (closure of the) order
ideal generated by the aggregate endowment, topological properties of order
ideals, rather than topological properties of the entire commodity space, are
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important.8

In Section 3.2.3, �nally, the analysis of Section 3.2.2 will be specialized to
the commodity space setting of � -Dedekind complete Banach lattices whose
positive cones contain quasi-interior points and whose duals contain strictly
positive elements. This class of Banach lattices includes many of those spaces
which came to prominence in the modeling of situations with in�nitely many
commodities.9 It will turn out that for a commodity space belonging to this
class the property of being separable is the decisive condition for core-Walras
equivalence to hold. Moreover, separability of the commodity space and the
notion of �many more agents than commodities� amount to the same condition
in the context of an atomless economy.

2 Notation and Terminology

(1) Let F be a vector lattice.
(a) As usual, the order ofF is denoted by�, and F� denotes the positive cone

of F , i.e. F� � fx 2 F : x � 0g. For x;y 2 F the expressions x�, x�, jxj, x _ y ,
x ^y , and x ? y have the usual lattice theoretical meaning.

(b) Let x;y 2 F . Then:
� �x;y� denotes the order interval fz 2 F : x � z � yg.
� Ax denotes the order ideal in F generated by x. Thus, if x 2 F� then

Ax �
1[
n�1
��nx;nx� � fz 2 F : jzj � nx for some n 2 Ng:

(2)(a) C�
� stands for the space of all continuous real valued functions on some
compact Hausdor� space
, endowed with the supremum norm and the usual
pointwise ordering; thusC�
� is a Banach lattice.

(b) By a �C�
� space� we mean a Banach lattice that is isomorphic as a Banach
lattice to a concrete spaceC�
�.
(3) Let E be any Banach lattice.

(a) E� denotes the dual space of E, i.e. the space of all continuous linear
functions from E into R. If x 2 E and p 2 E�, the value p�x� of p at x will often
be denoted by hp;xi for notational convenience. E� will always be regarded as
endowed with the dual norm and the dual ordering. ThenE� is also a Banach
lattice; in particular:
� E�� � fq 2 E� : q�x� � 0 for all x 2 E�g.

8This is not in contradiction to our result forC�
� spaces. For in that context, the aggregate
endowment of an economy belongs, under the �desirable assumptions,� to the interior of the
positive cone and therefore generates an order ideal equal to the entire space (by de�nition of
a C�
� space).

9E.g., all the spaces Lp���, 1 � p � 1, the measure � � -�nite, belong to this class.
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(b) Let x 2 E�.
� The point x is said to be a quasi-interior point of E� if Ax is dense in E. Recall
that this can be equivalently expressed by saying thatx is a quasi-interior point
of E� if q�x� > 0 whenever q 2 E��Øf0g.

(c) Let q 2 E�.
� kerq denotes the kernel of q, i.e. kerq � fx 2 E : q�x� � 0g.
� q is said to be strictly positive if q�x� > 0 whenever x 2 E�Øf0g.

(d) Let A be a subset of E. Then:
� intA denotes the (norm) interior ofA;
� c`A or Ā denote the (norm) closure ofA;
� hp;Ai, p 2 E�, denotes the set fp�x� : x 2 Ag.

(e) ��E; E�� denotes the weak topology of E and ��E�; E� the weak� topol-
ogy of E�. Further, for a strictly positiveq 2 E�� :
� ��E;Aq� denotes the weak topology ofE with respect to the order idealAq;
� j� j�E;Aq� denotes the absolute weak topology ofE with respect to Aq.
(Note that when q is strictly positive,Aq separates the points of E.)

(f) Let V be a subset of E or E�, and let � be some topology on (the set
underlying) E or E�, respectively. Then
� �V; ��means V regarded as endowed with the (relativized) topology� (instead
of the norm topology). E.g., forq 2 E�� :
��E;��E;Aq�� means E regarded as endowed with the topology��E;Aq�.

(g) Let �T ;T ; �� be a measure space. Then:
� Given a mapping f : T ! E, by �f is integrable� we always mean f is Bochner

integrable.
� Given a correspondence' : T ! 2E ,

R
T '�t�d��t�means the set�

z 2 E : z �
Z
T
f�t�d��t� for some (Bochner) integrable function

f : T ! E with f�t� 2'�t� for almost all t 2 T
�
:

3 The Model and the Results

3.1 The Model

Let E be a Banach lattice. An economy E with commodity space E is a pair
��T ;T ; ��; �X�t�;åt; e�t��t2T � where

� �T ;T ; �� is a complete positive �nite measure space of agents;

� X�t� � E is the consumption set of agent t;
� åt � X�t��X�t� is the preference/indi�erence relation of agentt;
� e�t� 2 E is the initial endowment of agent t;

7



and where the endowment mapping e : T ! E, given by t , e�t�, is assumed to
be integrable10.

The economy E � ��T ;T ; ��; �X�t�;åt; e�t��t2T � is said to be atomless if the
measure space �T ;T ; �� is atomless.

An allocation for the economyE is an integrable functionf : T ! E such that
f�t� 2 X�t� for almost all t 2 T . An allocation f is said to be feasible ifZ

T
f�t�d��t��

Z
T
e�t�d��t� :

A Walrasian equilibrium for the economy E is a pair �p; f � where f is a
feasible allocation and p 2 E�Ø f0g is a price system such that for almost
all t 2 T :

(i) hp; f�t�i � hp; e�t�i and

(ii) if x 2 X�t� satis�es x �t f�t� then hp;xi > hp; e�t�i.11

A feasible allocation f is said to be a Walrasian allocation if there is a
p 2 E�Øf0g such that �p; f � is a Walrasian equilibrium. An allocation f is a
core allocation if it is feasible and if there does not exist a coalitionS 2 T with
��S� > 0 and an integrable functiong : T ! E such that

(i)
R
S g�t�d��t�� RS e�t�d��t�, i.e. g is feasible for S, and

(ii) g�t� �t f�t� for almost all t 2 S.

We denote by C�E� the set of all core allocations of the economy E, and by
W�E� the set of Walrasian allocations.

We shall take the following standard assumptions into consideration:

(A1) X�t� � E� for every t 2 T .

(A2) åt is re�exive, transitive, and complete for everyt 2 T .

(A3) For every t 2 T , åt is continuous, i.e. for eachx 2 E� the sets
fy 2 X�t� : y åt xg and fy 2 X�t� : x åt yg are (norm) closed in E�.

(A4) For every t 2 T , åt is strictly monotone, i.e. whenever x;x0 2 E� with
x � x0 and x 6� x0 then x �t x0.

(A5) For every t 2 T , åt is convex, i.e. for eachx 2 E� the set
fy 2 E� : y åt xg is convex.

10As said in the previous section, throughout this paper �integrable� means �Bochner inte-
grable.� We do not discuss the implications of other notions of integrability for the core-Walras
equivalence problem.

11As usual, x �t y means �x åt y and y 6åt x� i.e. that x is valued better thany by t.
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(A6) If f and g are any two allocations then ft 2 T : f�t� �t g�t�g is a mea-
surable set, i.e. it belongs toT . (�Aumann measurability� of the pro�le of
agents' preferences.)

Remark 1. Requiring assumptions (A1) to (A5) to be simultaneously satis�ed
may amount to making an assumption on the commodity spaceE. For example,
if E is actually a C�
� space then these assumptions taken together imply that
E� must contain strictly positive elements; or, to say it the other way round,
these assumptions can hold simultaneously only when strictly positive linear
functionals onE do exist. (Indeed, when these assumptions hold andintE� 6� ;,
then, given any t 2 T and x 2 E�, the set of all y 2 E� preferred to x by t is
supported by a positive p 2 E�Øf0g, and when x actually belongs to intE�
then p must in fact be strictly positive, by the usual argument.) On the other
hand, when strictly positive linear functionals exist on a given Banach latticeE,
then, of course, assumptions (A1) to (A5) can be satis�ed at the same time. (To
see this, suppose q is a strictly positive linear functional on E and look at the
preference relationå on E� de�ned by settingx å y if and only if q�x� � q�y�,
x;y 2 E�.) Examples of Banach lattices whose duals contain strictly positive
linear functionals will be presented below at the appropriate places. Here let
us recall just that there are strictly positive linear functionals on anyseparable
Banach lattice. (See e.g. the �rst paragraph of the proof of Proposition1.b.15 in
Lindenstrauss and Tzafriri, 1979, p. 25).

3.2 Results

3.2.1 C�
� spaces

In this section the core-Walras equivalence problem is treated in the setting
where the commodity space is aC�
� space, or, in other words, a Banach lattice
whose positive cone has a non-empty interior. As noted in the introduction,
in the general framework of commodity spaces that are Banach lattices, this
setting is the special case that is most closely related to the analysis in Tourky
and Yannelis (2001) and Podczeck (2001). The di�erence is that here we take
the ordering of the commodity space to be the given lattice ordering. Concerning
conditions on the commodity space in order for core-Walras equivalence to hold,
we shall show in particular that this di�erence indeed matters.

Let E � ��T ;T ; ��; �X�t�;åt; e�t��t2T � be an economy with commodity space
E where E is a C�
� space. In addition to the conditions listed in the previous
section, we take the following one into consideration in this case.

(A7) e�t� 2 intE� for every t 2 T .

Recall from the introduction that (A1) to (A7) together yield what is called in
Tourky and Yannelis (2001) the �desirable assumptions.�

9



We come now to the main point regarding the setting where thecommodity
space is a C�
� space. As advertized in the introduction, in this setting the con-
dition on the commodity space crucial to obtain core-Walras equivalencefor an
atomless economy satisfying the �desirable assumptions� is not separability,
but rather that all positive linear functionals be countably determined in some
sense.

Precisely, this latter condition is as follows. Given a Banach latticeE let us
call an element q of E�� countably determined if there is a countable subset
D of E such that whenever q0 2 E�� and q0�d� � q�d� for all d 2 D then q0 � q.
(Note that this de�nition applies only topositive elements q; q0 2 E�. Obviously,
if intE� 6� ; then the zero element of E� is countably determined.)

We say that a Banach lattice E has property CD if every q 2 E�� is countably
determined. (The setsD from the de�nition of �countably determined� may vary
with q 2 E�� , of course.)

Clearly, every separable Banach lattice has property CD. However, for a non-
separable Banach lattice, property CD may or may not be satis�ed:

Example 1. A non-separableC�
� space with property CD. Let
 be the compact
Hausdor� space known as the �split interval� (or �double arrow space�)12 and
recall that this space is separable but not second countable. LetE � C�
�. Then,
because 
 is not second countable, E is non-separable.

We identify E� � C�
�� with the spaceM�
� of all �nite regular Borel mea-
sures on 
. In particular, E�� is identi�ed withM�
��.

Let P � M�
�� be the set of all regular probability measures on
. Then,

 being the �split interval,� according to Pol (1982, 8.4)13, �P;weak�� is �rst
countable. Evidently this means that eachq 2 P is countably determined (by the
de�nition of the weak� topology), which in turn implies that the same is true
for each q 2M�
���� E���. Thus E satis�es property CD.

Note also for later reference that E� � M�
� has strictly positive elements.
(Indeed, as 
 is separable, M�
�� contains measures with support equal to
,
and such measures are strictly positive linear functionals onE � C�
�.)
Example 2. C�
� spaces without property CD. Examples are provided by any
in�nite dimensional space L1��� and, in particular, by `1. As is well known,
these spaces are C�
� spaces.

To see that they do not have property CD, note �rst that if a Banach lattice
E satis�es property CD, then there is an injection from E�� into the cartesian
product of the set of all sequences in E and the set of all sequences of real

12Recall that this is just the subsetX of R2 de�ned by X � �0;1��f0g[ �0;1��f1g, endowed
with the lexicographical order topology; cf., e.g., Engelking (1989, 3.10.C, p. 212).

13Note that what we have called �countably determined� corresponds to what is call in Pol
(1982) �strongly countably determined.�
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numbers.14 Thus, recalling that

card�`�1�� � card`�1 > card`1 � c � c@0 � c@0 ;

where �card� stands for �cardinality� and c is the cardinality of the continuum,
it is clear that `1 does not have property CD.

Next note that if E is any Banach lattice with property CD andF is a Banach
lattice such that there is a positive linear operator fromE onto F , then F must
have property CD, too. Thus, property CD fails for any Banach lattice that admits
a positive linear operator onto `1. In particular, any in�nite dimensional space
L1��� fails property CD.

We are ready to formulate our �rst result. The hypothesis in the following
theorem that E� contain strictly positive elements is commented in Remark3
below (see also there for corresponding examples).

Theorem 1. Let E be a C�
� space with E� containing strictly positive elements.
Assume the continuum hypothesis. Then the following are equivalent.

(i) E has property CD.

(ii) C�E� �W�E� holds for every atomless economyE with commodity space E
satisfying assumptions (A1) to (A7).

(See Section 4.2 for the proof. The continuum hypothesis is needed only for
implication (ii))(i). Let us remark here that the continuum hypothesis is also as-
sumed in the Tourky and Yannelis (2001) result on core-Walras non-equivalence
in non-separable Hilbert spaces.)

Theorem 1 yields two simple corollaries. Combining Theorem1(ii))(i) with
the fact that there are C�
� spaces E which fail property CD, but such thatE�
has strictly positive elements�see Example2 and Remark 3(d) below�we obtain
(recalling that a Banach lattice which fails property CD must be non-separable):

Corollary 1. Assume the continuum hypothesis. Then there exist non-separable
C�
� spaces E such that C�E� ÆW�E� holds for some atomless economyE with
commodity space E satisfying assumptions (A1) to (A7).

(For the formulation of this corollary note that �C�E� 6� W�E�� is equivalent to
�C�E� ÆW�E�� because a Walrasian allocation must be a core allocation.)

On the other hand, however, as shown in Example1, there are non-separable
C�
� spaces E for which E� contains strictly positive elements and propertyCD
is satis�ed. (That the dual of the space of Example 1 contains strictly positive

14Take any mapping that assigns to eachq 2 E�� a sequence �xi�1i�0 of elements of E and a
sequence �ri�1i�0 of real numbers such that the set fxi : i � 0;1; : : :g determines q according to
property CD and such thatq�xi� � ri for each i.
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elements was noted at the end of that example.) Combining this fact with Theo-
rem 1(i))(ii) yields:

Corollary 2. There are non-separableC�
� spaces E, with E� containing strictly
positive elements, such that C�E� � W�E� holds for every atomless economyE
with commodity space E satisfying assumptions (A1) to (A7).

(For this second corollary note that, as already remarked, implication (i))(ii) of
Theorem 1 holds without the continuum hypothesis. Recall also from Remark1
that if E� contains strictly positive elements, it is guaranteed that economies
satisfying assumptions (A1) to (A5) do exist.)

Corollary 1 con�rms the analysis of Tourky and Yannelis (2001) and Pod-
czeck (2001): Even if the commodity space is aC�
� space (and the ordering
considered is the given lattice ordering), core-Walras equivalence may fail when
this space is non-separable. Corollary 2, however, shows that the analysis of
Tourky and Yannelis (2001) and Podczeck (2001) does not totally carry over to
the class of C�
� spaces. In particular, Corollary 2 shows, concerning criteria
for core-Walras equivalence, that it matters whether the ordering of the com-
modity space is taken to be a priori given or, as in Tourky and Yannelis (2001)
and Podczeck (2001), taken to be an object of construction. Moreover, this corol-
lary implies that the pivotal condition on aC�
� space in order for core-Walras
equivalence to hold cannot in general be interpreted by saying that under this
condition an atomless economy has �many more agents than commodities.�

We �nish the treatment ofC�
� spaces with some remarks.

Remark 2. As was already noted, separable Banach lattices have property CD,
and their duals possess strictly positive elements. Thus implication (i))(ii) of
Theorem 1 entails a core-Walras equivalence result for separableC�
� spaces.
For this case, in accordance with other known core-Walras equivalence results,
(ii) in Theorem 1 remains valid when the convexity assumption (A5) is dropped
from its statement. We do not know whether this is so in case of aC�
� space
that has property CD but is non-separable. Since the focus in this paper is noton
establishing a core-Walras equivalence result in largest generality, but rather
on the properties of the commodity space that play a role for the core-Walras
equivalence problem, we leave this as an open question. Finally, let us mention
that in the statement of (ii) in Theorem 1, Assumption (A7) can be replaced by
the weaker assumption

(A7') e�t� 2 E� for every t 2 T and
R
T e�t�d��t�2 intE�

without making this theorem false. On the other hand, implication (ii))(i) yields
a stronger result with (A7) instead of (A7'), and with the convexity assumption
(A5) rather than without it.

12



Remark 3. (a) The hypothesis in Theorem 1 that E� contain strictly positive el-
ements (i.e. that there be price systems for which every non-zero positive com-
modity bundle has value> 0) is natural from an economic viewpoint. Moreover,
as pointed out in Remark 1 above, if the commodity space is aC�
� space, i.e. if
the positive cone has non-empty interior, then the standard assumptions (A1) to
(A5) can be simultaneously satis�ed only when strictly positive linear function-
als do exist. In particular, therefore, implication (ii))(i) of Theorem 1 does not
hold without this hypothesis. (Indeed, �x any uncountable set � and consider
the C�
� space `1���. According to point (e) below, its dual has no strictly pos-
itive elements. But therefore, (ii) in Theorem 1 is valid with `1��� substituted
for E�for the trivial reason that economies satisfying (A1) to (A5) do not exist.
On the other hand, `1��� does not have property CD�see the last paragraph
of Example 2.) Thus, the hypothesis thatE� contain strictly positive elements is
necessary for Theorem 1 to be true.15

(b) If E � C�
�, then in order forE� to have strictly positive elements (i.e. for

 to carry �nite positive regular Borel measures with support equal to
), it is
su�cient (however, not necessary) that
 be separable. Note on the other hand
that separability of 
 does not imply separability of C�
�; see e.g. Example 1
above.

(c) C�
� is separable if and only if
 is metrizable. Thus ifC�
� is separable,
then so is 
. Therefore, by what has been remarked under the previous point,
separable C�
� spaces have duals with strictly positive elements. (As was noted
in Remark 1, strictly positive linear functionals do in fact exist on any separable
Banach lattice.)

(d) Examples of non-separableC�
� spaces whose duals have strictly positive
elements are provided by L1��� if it is in�nite dimensional and � is � -�nite,
and, in particular, by `1.

(e) An example of aC�
� space whose dual does not contain strictly positive
elements is provided by `1��� for � an uncountable set. To see this, recall that
`1��� may be identi�ed with C���� via a positive linear operator�denoting by
�� the Stone-�Cech compacti�cation of the discrete set � . Evidently, when � is
uncountable, there is no �nite Borel measure on�� with support equal to the
whole space.

Remark 4. The notion of property CD makes sense in any orderedBanach space,
so one may ask whether or not in the core-Walras non-equivalence results of
Tourky and Yannelis (2001) and Podczeck (2001) the commodity spaces satisfy

15The hypothesis thatE� contain strictly positive elements could be dropped from Theorem 1
would we replace the assumption that preferences bestrictly monotone by the assumption that
they be monotone and locally non-satiated. However, this would lead out of the context of the
�desirable assumptions.�
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property CD. Now in these latter results, the ordering of the commodity space
is constructed in such a way that not only the commodity space itself, but also,
for the dual ordering, its dual space has a positive cone with non-emptyinterior
(so that, in particular, the ordering constructed cannot be a lattice ordering,
unless the space in question is �nite dimensional). It may easily be seen that
if Y is an ordered Banach space such that the positive cone of the dual space
has non-empty interior, then Y has property CD if and only if Y is separable.
Consequently, the commodity spaces in the core-Walras non-equivalence results
of Tourky and Yannelis (2001) and Podczeck (2001) do not have propertyCD.

On the other hand, in an ordered Banach space satisfying property CD, core-
Walras equivalence holds under the �desirable assumptions.� In fact, the proof
of (i))(ii) in Theorem 1 makes no use of any lattice properties.

3.2.2 General Banach lattices

In this section we turn to the general case where the commodity space is a
Banach lattice E whose positive cone may have an empty interior. Concerning
individual endowments in an economy with commodity spaceE, we will now
consider the simple assumption:

(A8) For every t 2 T , e�t� 2 E�Øf0g.
As was pointed out in the introduction, if consumption sets in an in�nite

dimensional commodity space may have empty interior, then (even when the
commodity space is separable) core-Walras equivalence may fail through lack
of proper boundedness of marginal rates of substitution. To eliminate the pos-
sibility of this kind of failure of core-Walras equivalence, we will make use of
a condition on marginal rates of substitution introduced by Zame (1986) (see
also Ostroy and Zame, 1994). Given an economy with commodity spaceE, this
condition is as follows:

(A9) There are strictly positive linear functionals�, � 2 E� with � � � such
that for every t 2 T , whenever x;u;v 2 E� satisfy u � x and ��v� > ��u�
then x �u� v �t x.

Note that this is a requirement on preferences that is uniform over agents as
well as over the consumption set E�. We refer to Zame (1986) for a discussion
of this condition as well as for corresponding examples. (It may be seen that
(A9), together with the convexity assumption (A5), is equivalent to the following
statement: �There are strictly positive elements�, � in E�, with � � �, such
that given any t 2 T and x 2 E� there is a p in the order interval ��;�� such
that p�x� � p�y� for all y 2 E� with y åt x.� Thus, since supporting price sys-
tems are measures of marginal rates of substitution, (A9) is indeed a condition
putting bounds on these rates.)
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Of course, given a Banach latticeE as commodity space, Assumption (A9) can
be satis�ed only when strictly positive linear functionals onE do actually exist.
As already noted, strictly positive linear functionals exist on any Banach lattice
that is separable. Some non-separable Banach lattices whose duals have strictly
positive elements were presented above in the discussion ofC�
� spaces. The
following example lists some non-separable Banach lattices whose duals have
strictly positive elements but whose positive cones have empty interior.

Example 3. Non-separable Banach lattices E such that E� has strictly positive
elements and such that intE� � ;. Straightforward examples are provided by
the Lebesgue spaces Lp���, 1 � p < 1, if the underlying measure space is non-
separable but � -�nite, by the space `1��� for � an uncountable set, and, for a
compact uncountable Hausdor� space 
, by M�
�, the space of all bounded
regular Borel measures on 
; all these spaces understood as being endowed
with their usual norms and orderings. (To see that`1���� and M�
�� possess
strictly positive elements, recall simply that `1���� � `1���, and that M�
��
includes C�
�.)

Now to give an intuition for the condition on the commodity spaceE crucial
for core-Walras equivalence when A(8) and A(9) are in force in addition to the
general assumptions (A1) to (A6),16 we remark �rst that (A9) implies, together
with the transitivity part of (A2), that preferences are uniformly proper, with a
properness cone including E� and open actually for the absolute weak topol-
ogy j� j�E;A��, where � is the strictly positive element of E� from Assump-
tion A(9). (For details, see paragraphs 2�4 of the proof of Theorem2.) Together
with assumptions (A1) to (A4), this property in turn implies that preferences
are j� j�E;A��-lower semicontinuous, as may readily be seen. Thus, recalling
standard core-Walras equivalence proofs, it should be su�cient for core-Walras
equivalence to hold for an atomless economy satisfying all these assumptions
that the commodity space E be j� j�E;A��-separable, or, equivalently (by the
Hahn-Banach theorem),��E;A��-separable.

In fact, it should be su�cient that the order ideal generated by the aggregate
endowment be ��E;A��-separable, because, under (A1) and (A8), all feasible
trading activities in an economy have to take place in the norm closure of this
order ideal. (Cf. Lemma 5 in Section 4.1. Uniform properness should provide the
appropriate reservation values for commodity bundles not lying in this ideal.)

Thus, given a Banach lattice E, in order to have core-Walras equivalence for
any atomless economy with commodity spaceE satisfying assumptions (A1) to

16For the following recall from Section 2 that givene 2 E� and q 2 E�� , Ae denotes the order
ideal in E generated by e, and Aq the order ideal in E� generated by q; recall also that ��E;Aq�
denotes the weak topology ofE with respect to Aq, and j� j�E;Aq� the absolute weak topology
of E with respect toAq.
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(A6) as well as (A8) and (A9), it should be su�cient that for any e 2 E� and
any strictly positive q 2 E� the restriction of the topology ��E;Aq� to Ae be
separable. The following theorem states that this intuition is indeed correct.
Moreover, this theorem states that this latter condition on a Banach latticeE is
also necessary for core-Walras equivalence to hold for every atomless economy
with commodity space E satisfying the just listed assumptions. In particular,
a characterization of Banach lattices in regard to the core-Walras equivalence
problem in the context of economies for which these assumptions hold is given
by this theorem.

Theorem 2. Let E be a Banach lattice such thatE� has strictly positive elements.
Assume the continuum hypothesis. Then the following are equivalent.

(i) For every e 2 E� and every strictly positive q 2 E�, the relativization of the
topology ��E;Aq� to Ae is separable.

(ii) C�E� �W�E� holds for every atomless economyE with commodity space E
satisfying assumptions (A1) to (A6), (A8) and (A9).

(See Section 4.3 for the proof.)
Some comments regarding this theorem are in order, and in particular some

comments and examples regarding condition (i) and its relationship to the prop-
erty of a commodity space being (norm) separable, to the notion of �many more
agents than commodities,� and to property CD de�ned above.

First, as already noted in the introduction, the fact that properties of order
ideals, rather than properties of the entire commodity space, play a role in The-
orem 2 is not in contradiction with our results forC�
� spaces. For in this latter
context, the aggregate endowment of an economy was supposed to belong to
the interior of the positive cone of the commodity space, and henceto generate
an order ideal that coincides with the entire space.

Second, concerning the hypothesis thatE� contain strictly positive elements,
this hypothesis can of course be removed from the statement of Theorem2. For
if E� does not possess strictly positive elements, then (i) in Theorem2 holds
vacuously, and the same is true of (ii) since in this case economies satisfying
Assumption (A9) cannot exist. Since this triviality is of no meaning, the hypoth-
esis of the existence of strictly positive linear functionals has been incorporated
in the statement of Theorem 2. On the other hand, when strictly positive linear
functionals exist on a Banach lattice E, then, for E taken as commodity space,
the existence of economies satisfying (A9) (as well as the other assumptions
listed in (ii) of Theorem 2) is of course guaranteed.

Now as for condition (i) in the statement of Theorem2, if this condition holds
for a given Banach lattice E, then in particular the norm closure of the order
ideal generated by the aggregate endowment of an economy with commodity
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space E is ��E;Aq�-separable for any strictly positive q 2 E�, therefore also
j� j�E;Aq�-separable.17 Hence, under this condition, any atomless economy with
commodity space E satisfying the assumptions listed in (ii) of Theorem2 can be
regarded as having �many more agents than commodities;� for as noted above,
under (A1) and (A8) all feasible trading activities have to take place in the norm
closure of the order ideal generated by the aggregate endowment, and under
(A1) to (A4) and (A9), preferences are j� j�E;Aq�-lower semicontinuous for some
strictly positive q 2 E�. Consequently, Theorem 2 can be thought of as saying
that, under assumptions (A1) to (A6) and (A8) and (A9), having �many more
agents than commodities� is pivotal in order for core-Walras equivalence to be
guaranteed to hold.

Thus, if one accepts this interpretation, Theorem 2 con�rms the analysis
of Tourky and Yannelis (2001) and Podczeck (2001) for the commodity space
setting of Banach lattices, provided that economies are supposed to satisfy the
above listed assumptions, and in particular (A9).

Of course, (i) of the statement of Theorem2 holds for any separable Banach
lattice E, because, given e 2 E� and q 2 E�� , the topology induced on Ae by
��E;Aq� is weaker than the (relative) norm topology of Ae. Thus Theorem 2
implies that in the framework of economies satisfying assumptions (A1) to (A6),
(A8) and (A9), core-Walras equivalence holds whenever the commodity space is
a Banach lattice that is separable.

However, (i) of Theorem 2 also holds for some non-separable Banachlattices;
in particular, in order that an economy satisfying the assumptions listed in (ii)
of Theorem 2 can be viewed to have �many more agents than commodities,� it
is not required that the commodity space be separable. Indeed, for the same
reason for which (i) of Theorem 2 holds for a separable Banach lattice, this
latter condition is in fact satis�ed by any Banach lattice E with the property
that, for each element e of E�, the order ideal Ae is (norm) separable18�and
there are Banach lattices with this property which are themselves non-separable
(and for which the dual has strictly positive elements, so that, for them taken as
commodity spaces, it is guaranteed that economies satisfying the assumptions
listed in (ii) of Theorem 2 do actually exist):

Example 4. Non-separable Banach lattices E for which E� has strictly positive
elements and (i) of Theorem 2 holds. (a) Let E � `1��� where � is an uncountable
set. As noted in Example 3, this space is non-separable, and its dual contains

17To see this, observe that if Z is a linear subspace of E and q is a strictly positive element
of E�, then the norm closure ofZ is contained in the ��E;Aq�-closure of Z (because the topol-
ogy ��E;Aq� is weaker than the norm topology ofE), and the ��E;Aq�-closure of Z coincides
with the j� j�E;Aq�-closure of Z (by the Hahn-Banach theorem).

18The converse statement is false: there are Banach latticesE for which (i) of Theorem 2 is
true but such that for some e 2 E�, Ae is not (norm) separable; see e.g. Example 5 below.
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strictly positive elements. But since for any e 2 `1��� the set of all  2 � for
which e�� 6� 0 is countable, it is clear that for any e 2 `1���� the order ideal
Ae is (norm) separable and hence, given any strictly positiveq 2 E�, separable
in the topology inherited from��E;Aq�. Thus `1��� satis�es (i) of Theorem 2.

(b) Let E � M�
�, where 
 is a compact metric uncountable space. By what
was noted in Example 3, this Banach lattice also is non-separable and the dual
has strictly positive elements. Now
, being a compact metric space, is second
countable and hence its Borel � -algebra is countably generated. Therefore, for
any � 2 M�
��, the subspace L1��� of M�
� is (norm) separable whence the
order ideal A� is (norm) separable as well; thus (i) of Theorem 2 holds. Let us
remark that there are also compact Hausdor� spaces
 that are non-metrizable
but such that for every � 2 M�
��, L1��� is separable and consequently (i) of
Theorem 2 is satis�ed byM�
�; see for instance the space
 of Example 5 below.

The spaces of Example 4 have, in particular, the property that the posi-
tive cone has empty interior.19 Thus, non-separable Banach lattices for which,
taken as commodity spaces, core-Walras equivalence holds for any given atom-
less economy satisfying certain standard assumptions (and such that the exis-
tence of such economies is guaranteed) can also be found outside the context
of C�
� spaces.

For examples of Banach lattices that do not satisfy condition (i) of Theorem2,
see Example 6(b) in Section 3.2.3, together with Lemma1 in that section.

Now to pay attention to the relationship between (i) of the statement of The-
orem 2 and property CD, it is stated in the corollary following the proof of
Lemma 4 in Section 4.1 that whenever a Banach lattice E has property CD, it
also satis�es (i) of Theorem 2. In particular, therefore, theC�
� space exhibited
in Example 1 provides another non-separable Banach lattice for which the dual
has strictly positive elements and (i) of Theorem2 holds.

On the other hand, there are Banach lattices having these properties but not
property CD. For instance, consider the space`1���. As noted in Example 4, this
space satis�es (i) of Theorem 2, and its dual has strictly positive elements, but
when � is actually uncountable, it obviously fails property CD. In fact, (i) of The-
orem 2 and the hypothesis of there being strictly positive linear functionals do
not even imply property CD for C�
� spaces. This is shown in the next example
which, in particular, exhibits a further non-separable Banach lattice for which
(i) of Theorem 2 holds.

That the condition on the commodity space is weaker in Theorem2 than in
Theorem 1 is not surprising; for in Theorem 2, Assumption (A9) is required to
hold for economies, while in Theorem1 this is not the case.

19In fact, if E is any non-separable Banach lattice such that for eache 2 E� the order idealAe
is separable then, of course,E cannot have a strong unit, i.e. the interior ofE� must be empty.
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Example 5. A C�
� space E for which E� contains strictly positive elements and
(i) of Theorem 2 holds, but for which property CD fails to hold. Let E � C�
�
where 
 is a compact Hausdor� space which is scattered, separable, but not
second countable; according to Semadeni (1971, 8.5.10(G), p. 150) such an

does exist.20 Then, as 
 is separable, E� has strictly positive elements (see Re-
mark 3(b) above).

Because 
 is scattered, all regular Borel measures on
 are purely atomic
(see Semadeni, 1971, Theorem 19.7.6, p. 338). Therefore the dual of E � C�
�
may be identi�ed with `1�
�. It is a well known fact (and is easy to see) that
order intervals in `1�
� are compact in the norm topology of `1�
�. Since the
norm topology of `1�
� is stronger than the weak� topology ��`1�
�; C�
��,
it follows that order intervals in `1�
� are weak� metrizable (i.e. metrizable in
the weak� topology��`1�
�; C�
��). By using Lemma 4 of Section 4.1, it follows
from this that E � C�
� satis�es (i) of Theorem 2.

As for property CD, consider the set V � f�! : ! 2 
g � E�� , where �! is
the Dirac measure at!, and note �rst that
 and �V;weak�� are homeomorphic
via the mapping ! , �!; in particular, �V;weak�� is compact. Now since the
compact Hausdor� space 
 is scattered but not second countable, it follows
from a theorem of Mazurkiewicz and Sierpínski (see Semadeni, 1971, Theo-
rem 8.6.10, p. 155) that there must be some point in
, say!, at which
 is not
�rst countable. Accordingly, �V;weak�� is not �rst countable at�!. By the com-
pactness of �V;weak�� this means that no countable subset of E can separate
the point �! from the other points of V (by de�nition of the weak� topology).
Consequently, E does not satisfy property CD.

3.2.3 �-Dedekind complete Banach lattices with positive cones having quasi-
interior points

In this section the analysis of 3.2.2 is specialized to Banach lattices that are
� -Dedekind complete and whose positive cones contain quasi-interior points.
This class of Banach lattices includes many of the spaces that have been used in
economic models with in�nitely many commodities. (See Example6 below for
some spaces belonging to this class.) It turns out that for a commodity spaceE in
this class with E� possessing strictly positive elements (so that, in particular,
the existence of economies satisfying the assumptions listed in Theorem2 is
guaranteed), the condition thatE be separable is actually crucial for core-Walras

20Recall that a topological space Z is called scattered if every non-empty subset of Z has
an isolated point (in the subspace topology). Actually, Semadeni (1971, 8.5.10(G), p. 150) does
not speak of a separable space but of a space with countably many isolated points. But in a
scattered space this latter property is equivalent to separability, because in such a space the
set of isolated points is dense.
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equivalence to hold. In fact, for such a spaceE, condition (i) in the statement of
Theorem 2 is equivalent to separability:

Lemma 1. Let E be a � -Dedekind complete Banach lattice such thatE� contains
quasi-interior points and such that E� contains strictly positive elements. Then
the following are equivalent.

(a) E is separable.

(b) (i) in the statement of Theorem 2 holds for E.

(That (a) implies (b) was mentioned already. The proof of (b))(a) can be found in
Section 4.4. It is only for this latter implication to be valid that the hypotheses
about E stated in the preamble of the lemma have to be assumed; see Remark9.)

Thus, combining Lemma 1 and Theorem 2, we have the following result.

Theorem 3. Let E be a � -Dedekind complete Banach lattice such thatE� contains
quasi-interior points and such thatE� contains strictly positive elements. Assume
the continuum hypothesis. Then the following are equivalent.

(i) E is separable.

(ii) C�E� �W�E� holds for every atomless economyE with commodity space E
satisfying assumptions (A1) to (A6), (A8) and (A9).

In view of Lemma 1 and the discussion of (i) of Theorem2 given in the previous
section, Theorem 3 can in particular be interpreted as saying that, in the class
of spaces covered by this latter theorem, the property of a commodity space be-
ing separable and the notion of �many more agents than commodities� amount
to the same criterion for core-Walras equivalence in the context of atomless
economies for which assumptions (A1) to (A6) as well as (A8) and (A9) hold.

Some Banach lattices that satisfy the general hypotheses of Theorem3, and
some which do not, are listed in the �nal example.

Example 6. Quasi-interior points, strictly positive linear functionals, and � -Dede-
kind completeness. All the concrete spaces that will be mentioned are under-
stood as being endowed with their usual norms and orderings. With the excep-
tion of the space mentioned under (c) below, they are all� -Dedekind complete,
in fact Dedekind complete.

(a) If E is any separable Banach lattice then E� contains quasi-interior points
and E� contains strictly positive elements. (Indeed, iffxn : n � 1;2; : : :g is dense
in E�Øf0g then

P1
n�1 2�nkxnk�nxn is a quasi-interior point ofE� as may readily

be veri�ed. That the second property is satis�ed by any separable Banach lattice
was already noted in Remark 1 above.) Examples of separable Banach lattices
are provided by the sequence spacesc0 and `p, 1 � p <1. Other examples are
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the Lebesgue spaces Lp���, 1 � p < 1, if the underlying measure space is � -
�nite and separable. (That these spaces have the property that the positive cone
contains quasi-interior points and the dual contains strictly positive elements
can of course be seen directly.)

(b) Examples of non-separable Banach lattices E with E� containing quasi-
interior points and E� containing strictly positive elements are provided (i) by
the Lebesgue spaces Lp���, 1 � p < 1, if the underlying measure space is non-
separable and � -�nite; and (ii) by L1��� if it is in�nite dimensional and � is
� -�nite, and, as a special case, by `1. (For the space L1���, the positive cone
does in fact have interior points, so the set of its quasi-interior points coincides
with the set of its interior points.)

(c) An example of a Banach lattice that is not� -Dedekind complete is pro-
vided by C��0;1��, the space of continuous functions on the unit interval. Note
that this space is actually separable.

(d) Let E � `1���. Then E� � `1���, so E� contains strictly positive elements.
However, E� does not possess quasi-interior points if � is uncountable.

(e) Let E � `1���. Then the interior of E� is non-empty and is the same as
the set of all quasi-interior points of E�. However, see Example 2, E� does not
possess strictly positive elements if � is uncountable.

(e) Let E � c0���. Then, if � is uncountable,E� does not contain quasi-interior
points and E� � `1��� does not contain strictly positive elements.

We close this section with a few remarks.

Remark 5. As with Theorem 1, the core-Walras equivalence part of Theorems2
and 3 (i.e. implication (i))(ii) of these theorems) holds without the continuum
hypothesis, of course. This can be seen from the proof of Theorem2.

Remark 6. Regarding Theorem 3, the convexity assumption (A5) may be re-
moved from the statement of (ii) in that theorem. Indeed, as may be seen in the
proof of (i))(ii) in Theorem 2, this assumption is needed only when the pos-
itive cone of the commodity space does not possess quasi-interior points. On
the other hand, implication (ii))(i) of Theorems 2 and 3 yields a stronger result
with Assumption (A5).

Remark 7. The core-Walras non-equivalence part of Theorems 2 and 3 has noth-
ing to do with an occurrence of minimum wealth problems. In fact, under the
assumptions listed in (ii) of those theorems, a non-trivial quasi-equilibrium of
an economy must be a Walrasian equilibrium. (A quasi-equilibrium isnon-trivial
if there is a non-negligible set of consumers which can dispose some income.)
Thus, under these assumptions, if a core allocation is not Walrasian then it is
not the allocation of a non-trivial quasi-equilibrium either.
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Remark 8. It may be seen that for a Banach lattice E whose positive cone has
quasi-interior points, condition (i) in Theorem2 is equivalent to the more easily
readable condition ��E;��E;Aq�� is separable for every strictly positiveq 2 E��
(regardless of whether or notE is � -Dedekind complete).

Remark 9. For Lemma 1(b))(a) to be valid, none of the assumptions about E
made in the preamble of this lemma can be removed. Indeed, let (y) stand for
�E� contains quasi-interior points,� (z) for �E is � -Dedekind complete,� and (?)
for �E� contains strictly positive elements.� (I) LetE � `1��� where � is uncount-
able. Then (?) and (z) hold. (In fact, `1��� is Dedekind complete.) Moreover,
(b) holds (see Example 4). However, (a) is false. (II) Let E � `1��� where � is
uncountable. Then (y) and (z) hold. (In fact, `1��� is Dedekind complete and
int`1���� 6� ;.) Moreover, (b) holds (vacuously, since `1���� has no strictly
positive elements; see Remark 3(e)). But of course, (a) is false. (III) Let E be the
C�
� space of Example 5. Then (y), (?), and (b) hold but (a) is false.

4 Proofs21

4.1 Preliminaries

The principal mathematical tool to prove the core-Walras non-equivalence part
of Theorems 1 and 2 is provided by the following lemma.

Lemma 2. Let X be a Banach space, let V � X�, and let q 2 V . Suppose that
�V;weak�� is compact but not �rst countable atq. Then, assuming the continuum
hypothesis, and denoting by!1 the �rst uncountable ordinal number, there is a
trans�nite sequence �q���<!1 of elements of V such that

(a) q� 6� q for each ordinal � 2 �0;!1�; but

(b) given any separable subset S of X, there is an ordinal �S < !1 such that for
each � 2 ��S ;!1�, q��x� � q�x� for all x 2 S.22

Proof. Since �V;weak�� is compact but not �rst-countable atq 2 V , and because
the continuum hypothesis has been assumed to hold, it follows from Juhász and
Szentmiklóssy (1992, Corollary 2.1 and the lines before the statement of that
result) that there exists a trans�nite sequence�q���<!1 in V that converges toq
with respect to the weak� topology, but such thatq� 6� q for each� 2 �0;!1�. In
particular, (a) of the proposition holds for such a sequence. To see that (b) holds
as well, simply note that �q� ! q in �V;weak�� as � " !1� means that given

21For the general facts about Banach lattices used in the following proofs see Aliprantis and
Burkinshaw (1985) and Meyer-Nieberg (1991).

22If �;� are ordinal numbers then ��;�� denotes the ordinal interval f : � �  < �g.
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any x 2 X and n 2 N there is a � < !1 such that jq��x�� q�x�j < 1=n for all
� < !1 with � > �, and recall that if A is any countable set of ordinals < !1
then there is an ordinal  < !1 such that for all  2 A,  < .

For the next lemma recall that a Riesz dual systemhE; Fi is a linear pairing
where E is a Riesz space,F is an ideal of the order dual ofE separating the points
of E, and such that the duality functionh�; �i is the natural one, i.e. hx;qi � q�x�
for all x 2 E and q 2 F .

Lemma 3. Let hE; Fi be a Riesz dual system such that F has a strong unit, i.e.
F � A� for some � 2 F�, and such that F is Dedekind complete. Then given
any e 2 E�, there is a q 2 F� such that

�Ae; ��E; F��� � Aq (i.e. such that
the topological dual of Ae, when Ae is endowed with the (relativized) topology
��E; F�, may be identi�ed withAq, the order ideal in F generated by q).

Proof. Pick any e 2 E and set

Z � fp 2 F : p�x� � 0 for all x 2 Aeg:
Then Z is a band in F , and since F is Dedekind complete by hypothesis,Z is in
fact a projection band.23 Thus we may write

F � Z � Zd

where Zd is the disjoint complement ofZ in F , i.e.

Zd � fp0 2 F : p0 ? p for all p 2 Zg:
Let �1 denote the band projection of F onto Z and �2 the band projection of F
onto Zd. Then for any x 2 Ae and any p 2 F ,

p�x� � �1�p��x���2�p��x� � �2�p��x�;

showing that the relativization of the weak topology��E; F� toAe coincides with
the weak topology��Ae; Zd�. But Ae separates the points ofZd by construction,
and therefore we do in fact have

�Ae; ��E; F��� � �Ae; ��Ae; Zd��� � Zd.
Thus it remains to show thatZd � Aq for some q 2 F�. By hypothesis, we can

select a � 2 F� so that F � A�. Then �2��� � 0 and �2�F� � �2�A�� � A�2���,
because �2 is linear and positive. ConsequentlyZd � A�2���. On the other hand,
because �2��� 2 Zd and Zd is an ideal in F , we must also haveA�2��� � Zd. We
conclude that Zd � A�2���. This completes the proof of the lemma.

The following lemma was invoked in Example5 of Section 3.2.2 and will also
be used in the proof of Theorem 2.

23See Aliprantis and Burkinshaw (1985, pp. 170�171, and Theorem 3.8, p. 33).
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Lemma 4. Let E be a Banach lattice which does not satisfy (i) of the statement
of Theorem 2. Then there are an e 2 E� and a q 2 E�� such that both (a)���q; q�;weak�� is not �rst countable at 0 and (b) Ae separates the points ofAq.

Proof. By hypothesis there are ane in E� and a strictly positive� in E� such that
the space �Ae; ��E;A��� is non-separable. Observe that� being strictly positive
means that A� separates the points of E and recall that for a Banach lattice
the (topological) dual and the order dual coincide. ThushE;A�i is a Riesz dual
system. We may therefore apply the previous lemma to �nd a positiveq 2 A�
so that �Ae; ��E;A���� may be identi�ed withAq. (Note that sinceA� is an ideal
in E�, Aq regarded as an ideal in A� is the same object as Aq regarded as an
ideal in E�; in particular, ��q; q� regarded as an order interval inA� is the same
object as ��q; q� regarded as an order interval inE�.)

Now since �Ae; ��E;A���� � Aq, Ae separates the points of Aq. However,
because �Ae; ��E;A��� is non-separable, there is no countable subset of Ae that
separates the points ofAq, and in particular, there is no countable subset ofAe
that separates the point 0 from the other points of the order interval ��q; q�.
Thus ��q; q� is not �rst countable at 0 for the topology��Aq; Ae�.

Note that the topology��Aq; Ae� is Hausdor� sinceAe separates the points
of Aq. Moreover, on Aq, this topology is weaker than the topology ��E�; E�.
Recall also that order intervals in the dual of a Banach lattice are weak� compact.
Thus ��q; q� is ��E�; E� compact and it follows that the topologies��Aq; Ae�
and ��E�; E� agree on ��q; q�. Consequently ��q; q� is not �rst countable at 0
for the weak� topology ��E�; E�, as required. The proof of the lemma is thus
complete.

Corollary. Let E be a Banach lattice with property CD. Then (i) of Theorem 2
holds for E.

Proof. We will prove the contrapositive. Thus suppose (i) of Theorem2 does not
hold. Then by Lemma 4 we can select a q 2 E�� such that

���q; q�;weak�� is not
�rst countable at 0. But because order intervals in the dual of a Banach lattice
are weak� compact, the fact that

���q; q�;weak�� is not �rst countable at 0
implies that no countable subset ofE can separate 0 from the other points of the
order interval ��q; q� (by the de�nition of the weak� topology). Consequently,
no countable subset of E can separate q from the other points of the order
interval �0;2q�, whence E does not satisfy property CD.

The �nal two lemmata will be used in the proof of the core-Walras equiv-
alence part of Theorem 2. They are needed because in that theorem it is not
assumed that the positive cone of the commodity space possesses quasi-interior
points.
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Lemma 5. Let E be a Banach lattice, let �T ;T ; �� be a �nite positive measure
space, and let g : T ! E be a (Bochner) integrable function such that g�t� 2 E�
for almost all t 2 T . Then, setting x � R

T g�t�d��t�, we have g�t� 2 c`Ax for
almost all t 2 T (i.e., for almost all t 2 T , g�t� belongs to the (norm) closure of
the order ideal in E generated by x ).

Proof. By hypothesis, for any q 2 E�� we have hq;g�t�i � 0 for almost all t 2 T .
Hence, for any q 2 E�� and each S 2 T ,

0 �
Z
S
hq;g�t�id��t� �

Z
T
hq;g�t�id��t�

i.e.
0 �

�
q;
Z
S
g�t�d��t�

�
�
�
q;
Z
T
g�t�d��t�

�
:

Consequently, 0 � R
S g�t�d��t� � R

T g�t�d��t�. Thus
R
S g�t�d��t� belongs to

Ax for each S 2 T . Set F � c`Ax.
Consider the quotient E=F , endowed with the quotient norm; as F is closed

in E, E=F is a Banach space. Let � : E ! E=F denote the projection. � is a
bounded linear operator, so the composition� � g is Bochner integrable since
g is. In particular,

R
S ��g�t��d��t� � � �RS g�t�d��t�� for each S 2 T . SinceR

S g�t�d��t� 2 F for each S 2 T , it follows that
R
S ��g�t��d��t� � 0 for each

S 2 T . According to a standard fact, this means that��g�t�� � 0 for almost all
t 2 T , whence g�t� 2 F for almost all t 2 T .

Lemma 6. Let E be a (real) Banach space and letU and V be convex subsets of E
with V open and such that U \ V 6� ;. Let z 2 U \ c`V , let q 2 E� and suppose
qz � qz0 for each z0 2 U \ V . Then there exist elements q1 and q2 of E� such
that q1z � q1u for all u 2 U , q2z � q2v for all v 2 V , and q1 � q2 � q.

For a proof see Podczeck (1996, Lemma 2).

4.2 Proof of Theorem 1

(i))(ii): Let E � ��T ;T ; ��; �X�t�;åt; e�t��t2T � be an atomless economy with
commodity space E such that assumptions (A1) to (A7) are satis�ed.24 Recall
that according to (A1), consumption sets are equal toE�. In what follows, this
fact will be used without explicit invocation.

Clearly, W�E� � C�E�. To verify the reverse inclusion, suppose f 2 C�E�.
Since intE� 6� ; by the general hypotheses about E, and since E is atomless,
a standard argument using (A1), (A2), (A4) and (A6) provides ap 2 E��Øf0g such
that:

(1) For any x 2 E�, ft 2 T : x �t f�t� and p�x� < p�e�t��g is a null set in T:
24Throughout this proof, whenever necessary for the sake of an argument, it is assumed that
E is non-zero dimensional, i.e. thatE 6� f0g.
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(Cf. the proof of Theorem 1 in Rustichini and Yannelis (1991). The argument is
presented below for sake of completeness and for later reference.)

Now f , being integrable, is almost separably valued, and according to (i) of
the theorem, p is countably determined. Thus we can select a closed separable
subspace F of E such that for almost all t 2 T , f�t� 2 F and such that whenever
q 2 E�� and q�x� � p�x� for all x 2 F , then q � p. Observe that

(2) F \ intE� 6� ;:
Indeed, as f�t� 2 F for almost all t 2 T and f is a feasible allocation�i.e.R
T f�t�d��t� � R

T e�t�d��t��we have
R
T e�t�d��t� 2 F . On the other hand,

according to (A7), e�t� 2 intE� for all t 2 T , and so
R
T e�t�d��t� 2 intE�, too.

(To see that �e�t� 2 intE� for all t 2 T� implies �
R
T e�t�d��t� 2 intE�,� note

that a point z 2 E belongs to intE� if and only if q�z� > 0 for all q 2 E��Ø f0g,
by the separation theorem, and that


q; RT e�t�d��t�� � RT hq; e�t�id��t� for all
q 2 E�. To see that �f�t� 2 F for almost all t 2 T� implies �

R
T f�t�d��t� 2 F ,�

note that if a point z 2 E does not belong to the closed linear subspaceF of E,
then for some q 2 E�, q�z� > 0 � q�y� for all y 2 F whence z 6� RT f�t�d��t�
because


q; RT f�t�d��t�� � RT hq; f �t�id��t�.)
Since F is separable, so is F� � E� \ F ; let D be a countable dense subset

of F�. From (1) it can be seen that, for almost all t 2 T , if d 2 D satis�es
d �t f�t� then p�d� � p�e�t��. By the continuity of preferences this implies:

(3) For almost all t 2 T , if x 2 F� satis�es x �t f�t� then p�x� � p�e�t��.
By choice of F (and Assumption (A1)), for almost all t 2 T we have f�t� 2 F�
and thus, given anyv 2 F�, f�t��v 2 F� as well. Hence, by strict monotonicity
of preferences and (3), hp; f�t�i � hp; e�t�i for almost all t 2 T (note: F� 6� f0g
because of (2)), whence, by feasibility off ,

(4) hp; f�t�i � hp; e�t�i for almost all t 2 T .

Summing up, for some T1 2 T with ��TØT1� � 0, the following holds:

(5)
For every t 2 T1, (a) f�t� 2 F , (b) hp; f�t�i � hp; e�t�i,

(c) if x 2 F� satis�es x �t f�t� then p�x� � p�e�t��.
Pick any t 2 T1, set B � fx 2 E� : x �t f�t�g, and let � be the cone generated

by B � �f�t�	. By assumptions (A5) and (A2), B is convex and hence so is � .
Furthermore, by strict monotonicity of preferences,

�f�t�	 � �E�Ø f0g� � B
whence E� � � . In particular, int � 6� ;, and in fact, from (2), �int �� \ F 6� ;.
Finally, from (5), if  2 � \ F then p�� � 0. Using the Krein-Rutman theorem,
it follows that there is a ep 2 E� such that (i) ep�� � 0 for all  2 � but (ii)ep�x� � p�x� for all x 2 F . From (i), ep actually belongs to E�� since E� � � ,
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whence, from (ii) and the choice of F , ep � p. Hence from (i) again, p�� � 0 for
all  2 � , and by the choice of � and (b) of (5) we conclude that for any x 2 E�,
if x �t f�t� then p�x� � p�e�t��. As t 2 T1 was arbitrary (the cone � depending
on t of course), and since ��TØT1� � 0, we have shown:

For almost every t 2 T ,
if x 2 E� satis�es x �t f�t� then hp;xi � hp; e�t�i:(6)

But sincep 2 E��Øf0g, and since for all t 2 T , e�t� 2 intE� (Assumption (A7)) and
åt is continuous (Assumption (A3)), (6) implies (by a standard argument):

For almost every t 2 T ,
if x 2 E� satis�es x �t f�t� then hp;xi > hp; e�t�i:(7)

In view of (4) and (7) we may conclude that the pair �p; f � is a Walrasian equi-
librium, as was to be shown.

Finally, we will give the argument leading to ap 2 E��Øf0g such that (1) holds.
In this regard, let' : T ! 2E be the correspondence given by

'�t� � fx 2 E� : x �t f�t�g [ fe�t�g; t 2 T:
Then

R
T '�t�d��t� is non-empty�e.g.

R
T e�t�d��t� belongs to this set�and

c` RT '�t�d��t� is convex because the measure space �T ;T ; �� is atomless (see
e.g. Yannelis, 1991, Theorem 6.2, p. 22). Moreover, because f 2 C�E�,
(8)

�
c`
Z
T
'�t�d��t��

�Z
T
e�t�d��t�

��
\ int��E�� � ;:

Indeed, suppose the contrary. Then, since int��E�� is an open set, there are a
v 2 int��E���in particular v 6� 0�and an integrable functiong : T ! E� such
that g�t� 2'�t� for almost all t 2 T andZ

T
g�t�d��t��

Z
T
e�t�d��t�� v:

Set S � ft 2 T : g�t� �t f�t�g. By Assumption (A6), S 2 T . By de�nition of' we
have g�t� � e�t� for almost all t 2 TØS and henceZ

S
g�t�d��t��

Z
S
e�t�d��t�� v:

In particular, therefore, we must have��S� > 0 since v 6� 0. Note that �v � 0.
Let eg : T ! E� be given by

eg�t� � g�t�� 1
��S�v:

Then
R
S eg�t�d��t� � R

S e�t�d��t�; that is, the allocation eg is feasible for the
coalition S. Moreover, for almost all t 2 S, eg�t� �t g�t� because preferences are
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strictly monotone, whence eg�t� �t f�t� by transitivity. Thus f is not in C�E�,
a contradiction establishing (8).

Since int��E�� 6� ; by hypothesis (and since�E� is convex), it follows now
from the separation theorem that there is ap 2 E��Øf0g such that

inf
�
p; c`

Z
T
'�t�d��t��

�Z
T
e�t�d��t�

��
� 0

i.e. such that

(9) inf
�
p;
Z
T
'�t�d��t�

�
�
Z
T
hp; e�t�id��t� :

But (9) implies that (1) holds for p. Indeed, pick any x 2 E� and let g : T ! E�
be given by

g�t� �
8<:x if x �t f�t� and p�x� < p�e�t��
e�t� otherwise.

From (A6), the set ft 2 T : x �t f�t�g is in T , and because the mapping t , e�t�,
being integrable, is weakly measurable, so is the setft 2 T : p�x� < p�e�t��g. It
follows that g is integrable and that

R
T g�t�d��t� 2 R

T '�t�d��t�. Thus (9)
implies (1). This completes the proof of (i))(ii).

(ii))(i):25 We will prove the contrapositive. Thus suppose (i) is not true and
select a bq 2 E�� that is not countably determined. (Observe that bq 6� 0 since
intE� 6� ; by hypothesis.) Fix any interior pointe of E� and let

V � fq 2 E�� : q�e� � bq�e�g:
Evidently, bq being not countably determined implies that �V;weak�� is not
�rst countable at bq, and since e 2 intE�, �V;weak�� is compact. Therefore,
by Lemma 2 in Section 4.1, and since the continuum hypothesis is supposed
to be in force, we can select a trans�nite sequence �q���<!1 of elements of V
(denoting by !1 the �rst uncountable ordinal number) such that q� 6� bq for
each ordinal � 2 �0;!1� but such that

if S is any separable subset of E then there is an ordinal�S < !1

such that for each� 2 ��S ;!1�, q��x� � bq�x� for all x 2 S.
(10)

Let �T ;T ; �� be any complete �nite positive atomless measure space. Us-
ing the family �q���<!1 just obtained, we will now construct an economy E
with �T ;T ; �� as measure space of agents andE as commodity space such that
C�E� 6� W�E� but such that all the assumptions listed in (ii) of the statement
of Theorem 1 hold. Concerning consumption sets and endowments, for each

25This part of the proof has some overlap with the proof of Theorem 1 of Podczeck (2001).
However, for sake of completeness we give the whole argument.
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agent t in T we let the endowment e�t� be equal to e (e being the point of intE�
chosen above) and the consumption setX�t� be equal to E�. Then assumptions
(A1) and (A7) are met. Further, since the measure � is �nite, the endowment
mapping t , e is integrable, as required in our de�nition of an economy.

Since the measure space �T ;T ; �� is atomless, and since the continuum hy-
pothesis holds, we may use Proposition 5.2 of Tourky and Yannelis (2001) to
write T � S

�<!1 N� where �N���<!1 is a family of pairwise disjoint null sets
in T . Denote by � : T ! �0;!1� the mapping that takes a t 2 T to that ordinal
number � for which t 2 N�.

For each t 2 T set qt � q��t�. Then

(11) qt 6� bq for each t 2 T
since q� 6� bq for each � < !1, and from (10):

For any given separable subsetS of E the set
ft 2 T : qt�s� 6� bq�s� for some s 2 Sg is a null set in T ,

(12)

because for each ordinal number � < !1 we have ��1��0; ��� � S
�0<�N�0 ,

each N�0 is a null set, and for each� < !1 the set �0; �� is countable.
Finally, recall that E� contains strictly positive elements by hypothesis. We

may therefore assume that

(13) qt is strictly positive for each t 2 T
by adding, if necessary, a common strictly positive element ofE� to each qt and
to bq (recalling that each qt is positive by construction and noting that the sum
of two elements ofE�, one of them being strictly positive and the other positive,
is strictly positive).

Now, for each t 2 T , let a utility functionut : E� ! R be de�ned by

ut�x� � qt�x�; x 2 E�:
The family of preferences so de�ned satis�es all the assumptions from (A2)
to (A6). Indeed, this is clear for (A2), (A3), and (A5), and because of (13), this
is equally clear for (A4). As for (A6), since allocations are Bochner integrable by
de�nition, they are in particular essentially separably valued. Thus from(12):

If h : T ! E� is an allocation then
for almost all t 2 T , ut�h�t�� � hbq;h�t�i.(14)

Consequently, since a Bochner integrable function is weakly measurable, and
since the measure space �T ;T ; �� is complete, given any allocation h : T ! E�
the mapping t , ut�h�t�� is measurable. It is plain that this implies (A6).
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We have thus constructed an atomless economyE with commodity space E
such that the assumptions listed in (ii) of the statement of Theorem1 all hold.

We claim that the initial allocation t , e belongs to C�E�. To see this, �x
any coalition C 2 T with ��C� > 0 and let f : T ! E� be an allocation which
is feasible for C. Thus,

R
C f�t�d��t� � ��C�e. In particular,


bq; RC f�t�d��t�� �
hbq; ��C�ei whence

R
Chbq; f �t�id��t� � ��C�hbq; ei. But therefore, in view of (14),

ut�f �t�� > ut�e� cannot hold for almost all t 2 C, and it follows that the initial
allocation t , e indeed belongs to C�E� as claimed.

However, the initial allocation t , e is not Walrasian. To see this, assume
to the contrary that there is a p 2 E� such that the pair �p; t , e� is a Wal-
rasian equilibrium. Now e is in the interior of the consumption set E�, so the
equilibrium conditions for the pair �p; t , e� imply that for almost all t 2 T ,
kerp � kerqt ; that is, by a standard fact from linear algebra,

(15) for almost every t 2 T , qt � �tp for some real number �t .

According to (12), however,

(16) for any z 2 E, qt�z� � bq�z� for almost all t 2 T ,

so (15) means in fact that qt � �p for some real number � and almost all t 2 T .
Using (16) once more, it follows that qt � bq for almost all t 2 T . But this is
impossible because of (11), and we conclude that the initial allocation t , e is
not Walrasian. Thus �not (ii)� has been established and the proof of Theorem1
is complete.

4.3 Proof of Theorem 2

(i))(ii): Let E � ��T ;T ; ��; �X�t�;åt; e�t��t2T � be an atomless economy with
commodity space E such that assumptions (A1) to (A6) as well as (A8) and (A9)
are satis�ed. Clearly,W�E� � C�E�. To prove the reverse inclusion, note �rst
that according to Assumption (A1), the consumption sets are all equal toE�; in
particular, if h : T ! E is an allocation then h�t� 2 E� for each t 2 T . Further,
according to Assumption(A8), the endowmente�t� belongs to E� for each t 2 T .
In the sequel these facts will be used frequently without explicit reference.

Now let � and � be strictly positive elements of E�, chosen according to
Assumption (A9); in particular,� � �. Denote by � the cone

� � fx 2 E : ��x�� > ��x��g:
Note the following facts about � . First, by choice of� and �:

(17) For every t 2 T , if z 2 E� and  2 � satisfy z �  � 0 then z �  �t z
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(because for z 2 E�, z �  � 0 implies � � z). Second, � contains E�Øf0g,
obviously. Furthermore, � is (norm) open by virtue of the continuity of the lattice
operations. Finally, � is convex. To see this, note that ifx;y 2 E then for some
b 2 E�, �x � y�� � x� � y� � b as well as �x �y�� � x� �y� � b. Thus
whenever x;y 2 � then ���x � y��� > ���x � y���, because � � � and hence
��b� � ��b� for b � 0.

Consider A�, the order ideal in E� generated by �. Since for a Banach lattice
the topological dual coincides with the order dual, besides the norm topology
on E we can also consider the absolute weak topology j� j�E;A��.26 Observe
that � being strictly positive means that A� separates the points of E. Hence,
according to a standard fact, the topological dual of

�E; j� j�E;A��� is A�.27

According to another standard fact, the lattice operations onE are contin-
uous for the topology j� j�E;A��. In particular, therefore, the cone � is also
j� j�E;A��-open, because � � � and thus � (as well as �) belongs to A�, the
topological dual of

�E; j� j�E;A���.
Now suppose f is a core allocation forE. We claim:

(�)
There is no pair �S; s� where S 2 T with ��S� > 0 and s : T ! E� is
a (T -measurable) simple function such that s�t� �t f�t� for almost all
t 2 S but

R
S s�t�d��t�� RS e�t�d��t�2 �� .

To see this,28 suppose to the contrary that there are pointsx1; : : : ; xn in E� and
elements S1; : : : ; Sn of T , with Si\Sj � ; for i 6� j, such that for all i � 1; : : : ; n,
��Si� > 0 and xi �t f�t� for almost all t 2 Si, and such that

nX
i�1
��Si�xi �

Z
S
e�t�d��t�� �

where  2 � and S � Sni�1 Si. Note that  6� 0 by the de�nition of � .
Suppose �rst that  � 0. For each t 2 Si set y�t� � xi � 1

��S�, i � 1; : : : ; n.
Then y�t� �t xi for each t 2 Si since preferences are strictly monotone (As-
sumption (A4)), whence y�t� �t f�t� for almost all t 2 Si, i � 1; : : : ; n, by
transitivity of preferences. On the other hand,Z

S
y�t�d��t��

nX
i�1
��Si�xi �  �

Z
S
e�t�d��t� ;

and we have thus got a contradiction to the property off being a core allocation;
thus  � 0 cannot hold.

26See Aliprantis and Burkinshaw (1985, p. 166) for the notion of the absolute weak topology
as well as for the facts about this topology which are invoked in the following.

27Recall from Section 2 that �E; ��means E with the topology� instead of the norm topology.
28The argument given in the sequel to establish this claim is taken from Zame (1986, p. 10-15).
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Thus suppose� 6� 0. Set �i � ��Si�, i � 1; : : : ; n. (Thus �i > 0 for all i.) SincePn
i�1 �ixi and

R
S e�t�d��t� are positive elements of E (and since � � � � �

and � ^ � � 0) we must have � � Pn
i�1 �ixi, so the Riesz decomposition

theorem asserts the existence of elementsu1; : : : ; un in E� with
Pn
i�1 �iui � �

and ui � xi, i � 1; : : : ; n. Set

vi � ��ui�����
�; i � 1; : : : ; n:

This is well de�ned because � is supposed to be 6� 0 and � is strictly positive;
in particular, vi � 0 for each i. Moreover, since ���� > ���� by de�nition
of � ,

��vi� � ��ui�������
�� � ��ui�; i � 1; : : : ; n;

with strict inequality ifui 6� 0. Hence, by choice of� and �, and becauseui � xi
and vi � 0, we have xi �ui � vi åt xi for all t and i (in fact, xi �ui � vi �t xi
in case ui 6� 0), and therefore, by transitivity of preferences,xi�ui�vi �t f�t�
for almost all t 2 Si, i � 1; : : : ; n. Also

nX
i�1
�i�xi �ui � vi� �

nX
i�1
�ixi � � � ��

Pn
i�1 �iui�
���� �

�
nX
i�1
�ixi � � � �

�
Z
S
e�t�d��t� :

Consequently, if we set yt � xi � ui � vi for t 2 Si, i � 1; : : : ; n, we have
y�t� �t f�t� for almost all t 2 S (� Sn

i�1 Si) but
R
S y�t�d��t� � R

S e�t�d��t�,
thus again getting a contradiction to the property off being a core allocation.
Thus (�) holds.

We shall now deduce that the term �simple function� in the statement of(�)
can be replaced by �allocation� (i.e. by �integrable function�). Arguing by contra-
diction, suppose for some S 2 T with ��S� > 0 and some allocation g : T ! E�
we have g�t� �t f�t� for almost all t 2 S but

R
S g�t�d��t�� RS e�t�d��t� 2 �� .

By de�nition of Bochner integrability, we can select a sequence�sn� of simple
functions from T into E such that sn�t� ! g�t� in the norm k�k of E for al-
most all t 2 T and

R
Tkg�t� � sn�t�kd��t� ! 0. For each n let gn : T ! E� be

given by gn�t� � sn�t�_ 0, t 2 T . Then each gn is also a simple function, and
by virtue of the continuity of the lattice operations we havegn�t� ! g�t� for
almost all t 2 T . Moreover, kgn�t�k � ksn�t�k for all n and t (since k�k is a
lattice norm). For eachn set

Sn � ft 2 S : gm�t� �t f�t� for allm � ng
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and note that Sn 2 T by Assumption (A6). Evidently Sn � Sn�1 for all n, and
by continuity of preferences, for some null setN in S we have SØN � S1n�1 Sn.
Consequently �1Sn � gn��t�! �1S � g��t� for almost all t 2 T , and since

k�1Sn � gn��t�k � k�1S � gn��t�k � ksn�t�k
for all t 2 T (and

R
Tkg�t�� sn�t�kd��t�! 0), an appeal to Vitali's convergence

theorem shows that
R
Sn gn�t�d��t�!

R
S g�t�d��t�.

Noting that
R
Sn e�t�d��t�!

R
S e�t�d��t�, and recalling from above that the

cone � is open, we may conclude that for somen, ��Sn� > 0 and gn�t� �t f�t�
for almost all t 2 Sn but

R
Sn gn�t�d��t��

R
Sn e�t�d��t�2 �� . But gn is a simple

function and we thus get a contradiction to (�). Thus we have shown:

(��)
There is no pair �S; g� where S 2 T with ��S� > 0 and g : T ! E� is an
allocation (i.e. integrable function) such thatg�t� �t f�t� for almost all
t 2 S but

R
S g�t�d��t�� RS e�t�d��t�2 �� .

Consider now the correspondence' : T ! 2E given by

'�t� � fx 2 E� : x �t f�t�g [ fe�t�g; t 2 T:
As in the last part of (i))(ii) in the proof of Theorem1, we have that

R
T'�t�d��t�

is non-empty and that c` RT '�t�d��t� is a convex set inE. Recall that according
to Assumption (A6), given any allocationg the set ft 2 T : g�t� �t f�t�g belongs
to T . Hence from (��),�Z

T
'�t�d��t��

�Z
T
e�t�d��t�

��
\�� � ;

(because 0 � � ), and thus in fact�
c`
Z
T
'�t�d��t��

�Z
T
e�t�d��t�

��
\�� � ;

because � is open. Since the cone � is convex, too, we can now appeal to the
separation theorem to �nd an elementp in E�Øf0g29 such that hp; �i � 0 and
such that�again see the last part of (i))(ii) in the proof of Theorem 1:

(18) For any x 2 E�, ft 2 T : x �t f�t� and p�x� < p�e�t��g is a null set in T:

Observe that since p 6� 0 and � is open, hp; �i � 0 means in fact hp; �i > 0
whence p is strictly positive, since � contains E�Øf0g as noted above. Recall
also that � is actually open for the topology j� j�E;A��. Hence hp; �i � 0 means,
in particular, that p is bounded on some j� j�E;A��-neighborhood of 0; that is,
p is actually continuous for the topology j� j�E;A��.

29Note that by Assumption (A8),E 6� f0g; in particular, � 6� ;.
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Set e � R
T e�t�d��t� and let F � c`Ae, i.e. F is the (norm) closure of the

order ideal in E generated by the aggregate endowment
R
T e�t�d��t�. Note that

F , being the closure of an ideal in E, is an ideal in E as well. Set F� � F \ E�.
Then, by Lemma 5, both e�t�, f�t� 2 F� for almost all t 2 T (since for all
t 2 T , e�t� and f�t� are � 0 and since f , being a core allocation, is feasible,
i.e.

R
T f�t�d��t� � e � RT e�t�d��t�). In particular, F�Øf0g is non-empty (since

according to Assumption A(8), e�t� 6� 0 for any t 2 T .)
We claim that the space

�F�; j� j�E;A��� (i.e. F� endowed with the relativized
topology j� j�E;A��) is separable. Indeed, according to (i) of the theorem, the
space

�Ae; ��E;A��� is separable. But by de�nition ofF , Ae is (norm) dense in F ,
therefore also dense in F with respect to the topology ��E;A�� (since this latter
topology is obviously weaker than the norm topology of E). Thus, the space�F;��E;A��� is separable. Now the spaces

�E;��E;A��� and
�E; j� j�E;A��� have

the same dual,30 and therefore, by the Hahn-Banach theorem,
�F;��E;A��� and�F; j� j�E;A��� have the same dual, too. Hence since

�F;��E;A��� is separable,�F; j� j�E;A��� is separable as well, by the geometric form of the Hahn-Banach
theorem (since

�F; j� j�E;A��� is a locally convex space). But F is an ideal in E;
in particular, whenever x 2 F then x� 2 E� \ F � F�. Hence the fact that�F; j� j�E;A��� is separable implies that

�F�; j� j�E;A��� is separable as claimed,
because�as also noted above�the lattice operations onE are continuous for
the topology j� j�E;A��.

Let D be a countable subset of F� that is dense in F� for the topology
j�j�E;A��. Since D is countable, it follows from (18) that for someT 0 � T , with
T ØT 0 a null set in T , if t 2 T 0 then p�d� � p�e�t�� whenever d 2 D and
d �t f�t�. We assert that in fact:

(19)
For every t 2 T 0, if x is any element of F� with x �t f�t�
then p�x� � p�e�t��.

To see this, pick any t 2 T 0 and any x 2 F� with x �t f�t�. Set

B � �fxg � ��\ F�:
As noted earlier, � is j� j�E;A��-open and contains E�Øf0g. Consequently B is
open in F� for the (relativized) topology j� j�E;A�� and fxg � F�Øf0g � B
so x belongs to the j� j�E;A��-closure of B (recall: F� 6� f0g). Thus, since D
is dense in F� with respect to the topology j� j�E;A��, the point x belongs to
the j� j�E;A��-closure of B \ D. Now from (17), if y 2 B then y �t x and
therefore, by transitivity of preferences, y �t f�t�. Thus if y 2 B \ D, then
p�y� � p�e�t�� since t 2 T 0. But therefore, since x belongs to the j� j�E;A��-
closure of B\D and�as noted above�p is j� j�E;A��-continuous, we must have
p�x� � p�e�t��. Thus (19) holds.

30As noted in the beginning of this proof, the dual of
�E; j� j�E;A��� can be identi�ed withA�,

and the same is true for the dual of
�E;��E;A��� (since E separates the points ofA�).
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From (19) it follows in particular that p�f�t�� � p�e�t�� must be true for
almost all t 2 T . Indeed, for almost all t 2 T , f�t� 2 F� by choice of F , and thus,
given any v 2 F�, f�t� � v 2 F� as well. Hence, since F� 6� f0g, (19) implies
that p�f�t�� � p�e�t�� for almost all t 2 T because preferences are strictly
monotone, whence p�f�t�� � p�e�t�� for almost all t 2 T because f is feasible
i.e.

R
T f�t�d��t� � R

T e�t�d��t�. Note also that p�e�t�� > 0 for all t 2 T since
p is strictly positive and since according to (A8),e �t� is positive and non-zero
for all t 2 T .

Summarizing the discussion so far:

(20)

There is a subset eT � T , with TØeT a null set inT , such that for every t 2 eT ,
(i) both f�t�, e�t� 2 F�,
(ii) whenever x 2 F� satis�es x �t f�t� then p�x� � p�e�t��, and
(iii) p�f�t�� � p�e�t�� > 0.

Observe that (20) implies (becausep�e�t�� > 0 for t 2 eT ) that the allocation f is
Walrasian relative to the subspaceF . To show now thatf is Walrasian indeed for
the entire commodity spaceE, we will establish the following:

Claim: There are a real number k > 0 and elements pt 2 E��Øf0g, t 2 eT ,
such that for every t 2 eT : (a) pt � k�, (b) pt�y� � p�y� for all y 2 F�, (c)
pt�f �t�� � p�e�t��, and (d) if x 2 E� satis�es x �t f�t� then pt�x� � p�e�t��.
Let us assume for the time being that the claim has been veri�ed and see how
to �nish this proof. Thus let k and pt 2 E�� , t 2 eT , be chosen according to the
claim. Being the dual of a Banach lattice,E� is Dedekind complete and thus by
virtue of (a), the set fpt : t 2 eTg has a supremum inE�, say ep. Note that from (b),ep�y� � p�y� for all y 2 F�, because F is an ideal in E by construction. Hence,
from (i) of (20), ep�e�t�� � p�e�t�� for all t 2 eT . Consequently, using (c) of the
claim, ep�e�t�� � ep�f�t�� for all t 2 eT (since f�t� � 0), whence, by feasibility
of f and since TØ eT a null set,

(21) ep�f�t�� � ep�e�t�� for almost all t 2 T .

In particular, ep�e�t�� > 0 for almost all t 2 T , by a combination of (21) with
(c) of the claim and (iii) of (20). Finally, using (d) of the claim together with the
fact that ep�e�t�� � p�e�t�� for every t 2 eT , we see that for each t 2 eT , whenever
x 2 E� satis�es x �t f�t� then ep�x� � ep�e�t��. But since ep�e�t�� > 0 for
almost all t 2 T , and since TØ eT is a null set, this latter sentence implies, by the
usual standard argument, that for almost all t 2 T , whenever x 2 E� satis�es
x �t f�t� then, in fact, ep�x� > ep�e�t��. In view of this and (21), the allocation f
is Walrasian as was to be shown.
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To complete the proof of implication (i))(ii) of the theorem, it remains only
to show that the above claim is correct. To this end, pick any t 2 eT and note
that according to (i) of (20), f�t� 2 F�. Set

A � fx 2 E� : x �t f�t�g and B � A� �
(where � is still the cone introduced at the start of this proof). Observe thatA is
convex by assumptions (A2) and (A5), and thatf�t� 2 c`A by strict monotonic-
ity of preferences. Recall also from above that � is convex and (norm) open.
Consequently, B convex and open, and, as � is a cone, f�t� 2 c`B. Recall further
that � contains E�Øf0g; by strict monotonicity of preferences again, this implies
that B \ F� 6� ; (because F�Øf0g 6� ;). Finally, since preferences are transitive,
by (17) we have x �t f�t� whenever x 2 B \ E�; thus from (ii) and (iii) of (20),
p�f�t�� � p�x� for all x 2 B \ F�.

In view of these facts, and sinceF� is convex, we can now appeal to Lemma6
to �nd elements pt , rt in E� such that (I) pt�f �t�� � pt�x� for all x 2 B,
(II) rt�f �t�� � rt�y� for all y 2 F�, and (III) pt � rt � p.

Combining (II) with the facts that f�t� 2 F� and F� is a cone, we see that
0 � rt�f �t�� � rt�y� for all y 2 F�, and from this combined with (III) that
pt�y� � p�y� for all y 2 F�, and in particular that pt�f �t�� � p�f�t��. From
(iii) of (20), then, pt�f �t�� � p�e�t�� > 0; in particular, pt 6� 0. Now from (I),
pt�f �t�� � pt�x� for all x 2 A since � is a cone, whence p�e�t�� � pt�x� for all
x 2 A; in particular, pt � 0 by strict monotonicity of preferences.

Summarizing, pt 2 E��Øf0g and (b), (c) and (d) of the claim hold. As for (a),
note �rst that since f�t� 2 c`A, (I) also implies that 0 � pt�� for all  2 � ,
which, since � is open and pt 6� 0, actually means 0 < pt�� for all  2 � .
Observe also that the de�nition of � as stated in the beginning of this proof can
be equivalently written in the form

(22) � � fz 2 E : z � a� b for some a, b 2 E� with ��a� > ��b�g:
(Indeed, let a, b 2 E�. Then �a�b�� � a�a^b and �a�b�� � b�a^b. Thus
���a�b�������a�b��� � ��a����b�� ������a^b�. Consequently, when
��a����b� > 0 then ���a�b�������a�b��� > 0 as well, because � � � and
a^ b � 0.)

Fix any y 2 F�Øf0g and note that ��y� > 0 since � is strictly positive. We
claim that pt � pt�y����y���1�. To see this, suppose to the contrary that there
is an x 2 E�Øf0g for which pt�x� > pt�y����y���1��x�. Note that pt�x� > 0
since both pt and � are � 0 and ��y� > 0. Set a � y and b � pt�y��pt�x���1x.
Then a, b 2 E� and ��a� > ��b�, so a � b 2 � according to (22). On the other
hand, pt�a � b� � 0 and thus we have a contradiction to �0 < pt�� for all
 2 � .� Consequentlypt � pt�y����y���1� as predicted. Now from above, since
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y 2 F�, pt�y� � p�y� and it follows that pt � p�y����y���1�. But the term
p�y����y���1� is independent of the particulart just under consideration, and
thus (a) of the claim holds, too. This completes the proof of implication (i))(ii).

(ii))(i): We will prove the contrapositive. Thus suppose (i) is false. We may
then apply Lemma 4 to �nd a q in E�� together with an e in E� such that���q;q�;weak�� is not �rst countable at 0 and such thatAe separates the points
of Aq. (In particular, then, e 6� 0.) Let �T ;T;�� be any complete �nite positive
atomless measure space. Using the elemente and the order interval ��q;q�, we
shall construct an economyE with �T ;T ; �� as measure space of agents and E
as commodity space such that all the assumptions listed in (ii) of the statement
of Theorem 3 hold but C�E� 6� W�E�. To begin with, for each individualt in the
set T of agents, we let the endowment e�t� be equal to e and the consumption
set X�t� be equal to E�. Then assumptions (A1) and (A8) hold. Further, since the
measure � is �nite, the endowment mapping t , e is integrable, as required in
our de�nition of an economy.

By hypothesis, E� has strictly positive elements. Fix any such element, say eq,
set bq � eq�q, and consider the order interval�eq; eq�2q�. Evidently bq 2 �eq; eq�2q�
and

��eq; eq � 2q�;weak�� is not �rst countable at bq (because
���q;q�;weak�� is

not �rst countable at 0 and the mappingq , q� bq is a homeomorphism between���q;q�;weak�� and
��eq; eq�2q�;weak��). Note also that

��eq; eq�2q�;weak�� is
compact. We can therefore apply the constructions and arguments from (ii))(i)
in the proof of Theorem 1 (�rst, third and fourth paragraph, with�eq; eq � 2q� in
place of V and bq now speci�ed as bq � eq�q) to �nd a family �qt�t2T of elements
of �eq; eq� 2q� such that qt 6� bq for each t 2 T but such that:

For any given separable subsetS of E the set
ft 2 T : qt�s� 6� bq�s� for some s 2 Sg is a null set in T .

(23)

Recall from above that the order idealAe separates the points ofAq. Hence since
qt � bq 2 ��q;q�, the statement �qt 6� bq for each t 2 T� actually means:

(24) For each t 2 T there is a z 2 Ae such that qt�z� 6� bq�z�
(the element z possibly depending on t, of course). Finally, note that every ele-
ment of the order interval �eq; eq�2q� is strictly positive (since eq is); in particular,bq and each qt are strictly positive.

Now for each t 2 T de�ne a utility functionut : E� ! R by

ut�x� � qt�x�; x 2 E�:
Clearly assumptions (A2) to (A5) hold for this speci�cation of preferences.(For
�A4�, recall that each qt is strictly positive). Also�see the proof of Theorem 1,
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implication (ii))(i)�(A6) is satis�ed, and in particular we have:

If h : T ! E� is any allocation then
for almost all t 2 T , ut�h�t�� � hbq;h�t�i.(25)

Finally, regarding (A9), set� � eq and � � eq�2q. Then, as required in (A9), both
� and � are strictly positive elements ofE� and � � �. Pick any q 2 �eq; eq � 2q�
and any points u;v in E� with ��u� > ��v�. Then

q�u�� q�v� � eq�u�� �eq� 2q��v� � ��u�� ��v� > 0;

hence, for any t 2 T and x 2 E�, if x � v �u � 0 then

ut�x � v �u� � qt�x � v �u� > qt�x� � ut�x�
since qt 2 �eq; eq� 2q�. Thus (A9) holds.

Summing up, an atomless economy E with commodity space E has been
constructed so that the assumptions listed in (ii) of the statement of Theorem3
all hold. Using (25) it may be seen that the initial allocationt , e is in C�E��cf.
the corresponding part of (ii))(i) in the proof of Theorem 1�so that it remains
only to show that this allocation is not Walrasian. Arguing by contradiction,
assume there is ap 2 E� such that the pair �p; t , e� is a Walrasian equilibrium.
Consider Ae, the order ideal generated by e. Given any x 2 Ae, for some real
number � > 0 we have e � �x � 0, and therefore the equilibrium conditions
with respect to �p; t , e� imply:

(26) For almost all t 2 T; Ae \ kerp � kerqt:

But this leads to the desired contradiction, similar as in the last paragraph of the
proof of Theorem 1. Indeed, let qtjAe denote the restriction of qt to Ae, t 2 T ,
and let bqjAe and pjAe denote the restrictions toAe of bq and p, respectively. In
terms of qtjAe and pjAe, (26) may be rephrased to say that

(27) for almost every t 2 T , qtjAe � �tpjAe for some real number �t .

From (23), however,

(28) for any z 2 Ae, qtjAe�z� � bqjAe�z� for almost all t 2 T ,

and hence (27) means in fact that, for some real number�, and almost all t 2 T ,
qtjAe � �pjAe, whence, by (28) again, qtjAe � bqjAe for almost all t 2 T . But
this contradicts (24) and we conclude that the allocation t , e is not Walrasian.
Thus �not (ii)� has been established and the proof of Theorem3 is complete.
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4.4 Proof of Lemma 1

Only implication (b))(a) needs proof. Thus assume (b) to be true. We �rst claim:

(29)
Given any strictly positive � 2 E� there is a countable subset of E
that separates the points ofA�.

Indeed, let � be a strictly positive element ofE�. Pick any quasi-interior point of
E�, say e; this is possible by hypothesis. According to (b), the space�Ae;��E;A���
is separable, and according to the de�nition of a quasi-interior point,Ae is dense
in E for the norm topology, therefore also for the topology��E;A��. Thus, the
space �E;��E;A��� is separable. But since E separates the points of A�, the
topological dual of �E;��E;A��� can be identi�ed with A�, and it follows that
some countable subset of E separates the points ofA�. Thus (29) holds.

We proceed by showing that the hypotheses imply that E must be order
continuous, and it will follow from this thatE is separable.

Suppose E is not order continuous. Then, sinceE is � -Dedekind complete by
hypothesis, E contains a closed sublattice that is isomorphic as a Banach lattice
to `1 (this latter space endowed with its usual norm).31 But `1 is an injective
Banach lattice, so this means there is a positive (in particular, continuous) linear
operator from E onto `1, say T .32 Noting that `1 can be identi�ed with C��N�
via a positive operator, we may viewT as a positive linear operator fromE onto
C��N�. (As usual, �N denotes the Stone-�Cech compacti�cation ofN.)

According to arguments of Rosenthal (1969, Proposition 1.4 and the proof
of Proposition 3.4) there is a regular �nite positive Borel measure� on �N such
that�denoting byB�N the Borel � -algebra of �N�the subspace L1��N;B�N; ��
of C��N�� is non-separable in the usual L1-norm. Note that this norm agrees
with the one induced from C��N��. Consider the order interval ���;��. Since
L1��N;B�N; �� is non-separable in the norm topology ofC��N��, so is ���;��
because the linear span of ���;�� is norm dense in L1��N;B�N; ��. An appeal to
the Hahn-Banach theorem shows that ���;�� is also non-separable in the weak
topology of C��N�� (i.e. the topology ��C��N��; C��N����). Finally, note that
the order interval ���;�� is compact in the weak topology ofC��N��, because
C��N�� is an L-space.

Set V � T�����;��� where T� : C��N�� ! E� is the adjoint operator of the
continuous linear operator T . Note that since T is positive, so is T� and thus
T���� 2 E�� and V � ��T����; T�����. Now by de�nition of an adjoint operator,
T� is continuous for the weak� topologies of E� and C��N��, hence continuous
for the weak� topology of E� and the weak topology ofC��N��, too. Moreover,
since T is onto, T� is one to one. Thus, since

����;��;weak
�

is compact, T� is
31See Aliprantis and Burkinshaw (1985, Theorem 4.14, p. 220).
32See Meyer-Nieberg (1991, De�nition 3.2.3 and Theorem 3.2.4, p. 170).

39



a homeomorphism between
����;��;weak

�
and �V;weak��, and consequently

�V;weak�� is non-separable since
����;��;weak

�
is.

Pick any strictly positive element�0 in E�; this is possible by the hypotheses
about E. Set � � �0 � T����. Then � is strictly positive (since �0 is and T���� is
positive.) Moreover, we haveV � ���;��.

Note that the order interval���;�� in E� is weak� compact. However, ���;��
cannot be weak� metrizable since V � ���;�� and V is not weak� separable.
But

����;��;weak�� being compact but not metrizable means that no countable
subset of E separates the points of ���;��, which in turn implies that no count-
able subset of E separates the points ofA�. However, this contradicts (29), thus
proving that E is order continuous as predicted.

Now to see that E is in fact separable, again pick any strictly positive element
in E�, say �. Note that � being strictly positive means that A� separates the
points of E. In other words, A� is weak� dense in E�. Observe next that, for
any integer n > 0, the order interval ��n�;n�� in E�, being weak� compact, is
also weak� metrizable, because of (29). Thus, for eachn, ��n�;n�� is weak�
separable. Consequently, A� � S1

n�1��n�;n�� is weak� separable, and hence
so is E� because A� is weak� dense in E�. Now pick a quasi-interior point of
E�, say e, and consider the order interval ��e; e�. Since E is order continuous,
��e; e� is weakly compact, i.e. compact for the topology��E; E��. But therefore,
since E� is weak� separable, ��e; e� is weakly metrizable as well. In particular,
then, ��e; e� is weakly separable, hence norm separable (by the Hahn-Banach
theorem). But e is a quasi-interior point ofE�, i.e. the order ideal generated bye
is dense in E. It follows that E is separable, as was to be shown. The proof of the
lemma is thus complete.
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