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Abstract
I study the robustness of Rubinstein’s (1989) E-Mail Game re-

sults towards rough inductive reasoning. Rough induction is a form of
boundedly rational reasoning where a player does not carry out every
inductive step.
The information structure in the E-Mail game is generalized and

the conditions are characterized under which Rubinstein’s results hold.
Rough induction generates a payoff dominant equilibrium where the
expected payoffs change continuously in the probability of ”faulty”
communication.
The article follows one of Morris’ (2001a) reactions to the E-Mail
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there is common knowledge or a large number of levels of knowledge”.
JEL-classification: C72
Keywords: bounded rationality, inductive reasoning

∗Previous versions came without section three and carried different titles. They were
titled either ”The E-Mail Game Revisited - ...” or ”A Note on the E-Mail Game - ...”.

†Department of Economics, Hohenstaufengasse 9, A - 1010 Vienna, Austria, E-
Mail:uwe.dulleck@univie.ac.at, Ph.: +43-1-4277 37427, Fax: +43-1-4277 9374

‡I am grateful for helpful comments and encouragement by Carlos Alos-Ferrer, Ana
Ania Martinez, Ken Binmore, Dirk Engelmann, Ulrich Kamecke, Rudolf Kerschbamer,
Georg Kirschsteiger, Jörg Oechssler, Gerhard Orosel, Burkhard C. Schipper, Elmar Wolf-
stetter, an anonymous referee and seminar participants at University College London
(ELSE). Financial support by the Deutsche Forschungsgesellschaft (DFG) through SFB
373 located at Humboldt University in Berlin is gratefully acknowledged.

1



1 Introduction
Inductive reasoning by economic agents is of great importance in many eco-
nomic and game theoretic arguments. Maybe the most obvious example is
subgame perfection. In this article I am presenting a model of rough in-
ductive reasoning, a form of boundedly rational behavior. Rough inductive
reasoning describes the reasoning process where a player does not or cannot
carry out every inductive step.
Inductive reasoning seems of special importance to communication processes

and the knowledge that is generated by communication. Rubinstein’s (1989)
Electronic Mail game illustrates this importance and shows with the ”fa-
mous” E-Mail game paradox the problems created by perfect inductive rea-
soning. The Electronic Mail game describes differences between common
knowledge and “almost common knowledge”. In Rubinstein’s example a
small pertubation of the common knowledge assumption, his “almost com-
mon knowledge” changes the equilibrium set and expected payoffs dramati-
cally, players’ strategies do not condition on the outcome of the E-Mail com-
munication. There is a major difference between common knowledge and
high numbers of levels of knowledge. I generalize the underlying information
structure of the E-Mail Game, specify the conditions needed to reach Rubin-
stein’s result and argue that based on the generalized information structure
one can describe models of rough inductive reasoning to solve the paradox.
Morris (2001a) argues that Rubinstein’s results leads to two competing

intuitions how to solve the paradox. Morris (2001a+b) and others1 follow the
notion of approximate common knowledge (ACK). They look for definitions
of ACK which imply that rational behavior under ACK is close to rational
behavior when there is common knowledge. In this article I advocate the
other intuition that situations of common knowledge and high numbers of
levels of knowledge are very close in the mind of players. Thus I try to
analyze which features of bounded rational behavior are needed such that
predictions are insensitive to whether there is common knowledge or a large
number of levels of knowledge.
Note, I neither believe that the Electronic Mail game is a particularly

realistic model of real world communication nor that the proposed forms of
bounded rationality are especially intuitive. I do believe that real life induc-
tive reasoning is rough in the sense specified below. I study the information

1Monderer and Samet (1989), Kajii and Morris (1998) and Morris and Shin (1997).
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structure of the E-Mail Game to understand the effects of rough inductive
reasoning in communication processes. The variants of the Electronic Mail
game describe models of rough inductive reasoning for this communication
process.
I believe that the hypothesis implied by experimental data that agents do

not use induction correctly2 may be due to the fact that they face limitations
on utilizable information which are due to bounded rationality. Agents may
actually use some form of induction and reach conclusions that are close to
our intuition. The present versions of the E-mail game may be closer to the
reasoning processes that agents use in such situations.
The proposed from of bounded rationality was inspired by the analy-

sis of several problems which are also based on inductive reasoning. The
absentminded driver (Piccione and Rubinstein (1997))3, the absentminded
centipede (Dulleck and Oechssler (1997)) and the E-Mail game, rest on the
structure of the information sets of a decision maker. In many sequential
games information sets similar to the one specified below for the E-Mail
game arise from limitations of players’ mental capacities to perform induc-
tive reasoning.
Besides a characterization of the information structure needed to get Ru-

binstein’s result I apply these idea in variants of Rubinstein’s game. The
variants of the game present two different assumptions of less than perfectly
rational players that capture the idea of rough inductive reasoning. These
alter the information structure and the belief structure such that an addi-
tional payoff-dominant equilibrium exists. In the equilibria of these games
players condition on the E-Mail communication and the expected payoffs to
players changes continuously in the probability that a message gets lost.
Dulleck and Oechssler’s (1997) model is an example of rough inductive

reasoning in the centipede game. They show that predictions under absent-
mindedness differ from predictions under perfect rationality and common
knowledge. The E-mail game is an example where induction under bounded

2McKelvey and Palfrey (1992) and Rosenthal (1981) among others present experiments
on the centipede game that support this hypothesis. In the literature one finds also
competing hypotheses - for example altruistic behavior by subjects - which are supported
too.
Colin Camerer (forthcoming) ran experiments on this game. Cabrales, Nagel and Ar-

menter (2001) study a related ”global” game.
3see also Aumann et al. (1997) and the other articles in the special issue of Games and

Economic Behavior on the problem of imperfect recall.
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rationality yields new (payoff dominant) equilibria. The new equilibrium is
close to predictions under perfect rationality and common knowledge whereas
in the centipede game a related change in the information structure solved
the centipede paradox and the equilibrium was close to intuition and exper-
imental observations.
A different solution to the E-Mail Game paradox is provided by Binmore

and Samuelson (2001). In an evolutionary model they explicitly specify costs
for observing messages (the cost function is increasing in the maximum num-
ber a player can recognize) and for sending messages. By introducing this
cost they show that a payoff dominant equilibrium is evolutionarily stable
where players choose action B if game Gb prevails and a sufficient number of
messages is sent. In one of my setups the restriction of capacities to utilize in-
formation can be seen as being due to costs. Compared to their approach, in
the present article it is possible that a player may not be able to keep track of
messages for some period of time, whereas later on (l messages later) players
might pay attention again. Binmore and Samuelson (2001) also do not allow
for stochastic restrictions of capacities. Schipper (2001) uses a ”simplified
model” (related to corollary 1 below) where players for large numbers do not
care exactly how many messages have been sent and then studies evolution-
ary stability between two models players may use to reason in this situation.
He shows that both models - Rubinstein’s and his simplified model - form
evolutionarily stable strategy equilibria.
After introducing Rubinstein’s (1989) E-Mail game and presenting his

main result, the feasible information structures of the E-Mail Game are stud-
ied in section three. The main result of this section characterizes information
structures that result in Rubinstein’s paradox and those that lead to equi-
librium strategies that condition on the E-Mail communication. Section four
studies two alternative versions of the E-Mail game applying the result of sec-
tion three. In these versions equilibrium predictions are close to predictions
under perfect information and rationality. Section five concludes.

2 The E-Mail Game
In the Electronic Mail game two players either play a game Ga (with prob-
ability (1 − p) > 1

2
) or Gb (with probability p < 1

2
). In each game players

choose between action A and B. In both games it is mutually beneficial for
players to choose the same action. Figure 1 describes the game. In game Ga
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(Gb) the Pareto dominant equilibrium is the one where players coordinate
on A (B). If players choose different actions the player who played B is
punished by −L regardless of the game played. The other player gets 1. It is
assumed that the potential loss L is larger than or equal to the gain M and
both are positive.
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Game Ga Game Gb
L ≥M > 1

Figure 1: The structure of the E-mail Game (not a game tree!)

Only player one (she) is informed about the game that is actually played.
After the game is determined two machines (one for each player) communi-
cate which game is played. Only if game b prevails, player one´s machine
sends an E-mail message (a beep) to player two´s (he) machine which is
automatically confirmed. This confirmation is confirmed and so on. Let us
first assume that messages arrive with certainty.4 In this case, players have
common knowledge about which game is played and a payoff dominant equi-
librium exists, where players choose A in game Ga and B in Gb. Two other
equilibria exist which have equilibrium strategies that are constant in the
communication signals: always to play A and always to play B.

4Assume the time needed for the T th message is equal to 1/2T . Under this assumption
an infinite number of messages can arrive in a finite amount of time which is equal to 2.
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Rubinstein analyzes the situation when the E-Mail communication is al-
most perfect: With probability ε a message gets lost. Communication stops,
when one of the messages (the original message or one of the confirmations)
is lost. Players only know how many messages their machine sent to the other
player. The number of messages sent is denoted by Ti, i ∈ {1, 2}. Once a
message is lost they have to make their decision. I assume that messages are
likely (ε small) to arrive:

ε <
M − 1
M + L

. (1)

The feasible states of the world will be represented by pairs (T1, T2) con-
sisting of the numbers of messages sent. I rule out that the machine of player
one fails to send a message although we are in game Gb. Therefore a pair is
sufficient, because game Gb must prevail if and only if at least one message
has been sent by player one´s machine (T1 ≥ 1).5 Player one always observes
when her machine sends a message and therefore always knows which game
is played. Note however that we do not rule out that this first message gets
lost.
The Electronic Mail game represents a slight deviation from common

knowledge (”almost common knowledge” in Rubinstein´s terms). Combined
with perfect rationality this leads to a discontinuous drop in expected payoffs.
Paradoxically in this case the game has an equilibrium, where players never
play the payoff dominant equilibrium in one game (b) even if many messages
were sent, given they play optimally whenever no message is sent (game Ga).
Therefore communication is useless. Rubinstein (1989) proves that there is
no Nash equilibrium where players condition on the number of messages sent.
I follow the presentation of Osborne and Rubinstein (1994):

Proposition 1 The electronic mail game has a unique Nash equilibrium, in
which both players always choose A.

The formal proof is provided in Osborne and Rubinstein (1994). The ar-
gument of the proof is helpful for the analysis below, therefore I give a short
description. Figure 2 helps to understand the proof which is by mathematical

5I simplify the notation of Rubinstein (1989) who denotes the feasible states s of the
world by triples consisting of the game actually played and the number of messages
sent by the machines of player 1 and by player 2, i.e. s ∈ {(a, 0, 0); (b, 1, 0); (b, 1, 1);
(b, 2, 1); (b, 2, 2), ...(b, T1, T2)...}, T2 ∈ {T1 − 1;T1}.
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induction. The induction starts with the fact that in states (0, 0) and (1, 0)
the dominant strategy for player 1 is to play A thus (A,A) is the only equilib-
rium given p < 1

2
. The inductive hypothesis is that up to the informational

outcome where a player’s machine sent T − 1 messages it is optimal for him
to play A. From this hypothesis follows the inductive step that playing A if
a player observes that T messages have been sent by his machine is optimal
for the player. This is because the consistent belief z = ε

ε+ε(1−ε) =
1
2−ε to

be at the first of two indistinguishable outcomes (T, T − 1) and (T, T ) for
player one [or (T − 1, T − 1) and (T, T − 1) for player two] is greater than
1
2
. Given the other player chooses A at the first of the two nodes in an infor-
mation set, it is the best reply to choose A because z > 1

2
and L ≥M which

makes the decision independent of the strategy of the other player at the
second indistinguishable outcome in the information set. By the principle of
mathematical induction it follows that this is true for every observed T .
I will now generalize the structure of the information sets and the resulting

beliefs of the E-Mail game and show under which conditions information
structures yield Rubinstein´s result.

3 Generalized Information Structures of the
E-Mail Game

Figure 2 gives a graphical representation of the communication process, where
the automatic moves (by nature) of the machines are represented. The states
are the informational “outcomes” of the moves by nature which are observed
by the players before they make their decisions.

In Rubinstein´s game, player one cannot distinguish states (T1, T1−1) and
(T1, T1) (and player two cannot distinguish states (T2, T2) and (T2 + 1, T2)).
In this case the player observes only that T1 (T2) messages have been sent
by her (his) machine. Player’s strategies can condition on the number of
messages sent by her (his) machine. The same action is chosen in two states
of the world - for at least the two states where player i observes that Ti
messages were sent by his machine. In Figure 2 two information sets for each
player are marked. These are the sets where players observe that either one
or two messages have been sent. A player has to form beliefs about which
state in the information set is the actual one. These beliefs are necessary
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Figure 2: States and information sets in the E-mail Game (numbers are
the number of messages sent / information sets marked where either 1 or 2
messages sent by player’s machines)

to reach Rubinstein´s results. In Rubinstein´s game, each information set
intersects with two information sets of the other player.
To study a generalized version of possible information structures, denote

by Ii an information structure of player i. To distinguish the information
sets in Ii denote by I li element l in Ii. I define the following two relations to
be able to make ordinal statements over information sets. Definition 1 intro-
duces a lexicographic order over states and definition 2 applies this definition
to order information sets by comparing the smallest elements/states in two
information sets. In the following all statements are based on these relations.

Definition 1 Let <Lxbe a lexicographic order over pairs of natural numbers
such that (τ1, τ2) <Lx (ϑ1,ϑ2) :⇔ (τ1 < ϑ1) or (τ1 = ϑ1 and τ2 < ϑ2).

Definition 2 Let -Lxbe a lexicographic order over sets of pairs of natural
numbers such that I li -Lx Iki :⇔ min<Lx I

l
i <Lx min<Lx I

k
i or min<Lx I

l
i =

min<Lx I
k
i . Denote by ≺Lxthe strict relation.

Assume that each player´s feasible information is represented by a parti-
tion over all states of the world with the refinement, that the information sets
consist only of consecutive states of the world.6 Without loss of generality I
number the information sets in Ii such that if l < k then I li -Lx Iki .

6To be formally precise, the information sets in the partition must be order intervalls
in <Lx.
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Rubinstein´s E-Mail Game is an example for information sets that fulfill
this condition. The information sets in his information structure contain two
consecutive states of the world. I allow for any information structure where
a player counts the messages in arbitrary units. A different story for this
is that players base the decision on the time elapsed in the communication
process. If the time needed to send a certain message follows a fixed function,
then the time used up before players are asked to make a decision is a signal,
at least as informative as the number of messages sent. The information
sets above allow players to count the time in different and not necessarily
constant units.
To state the result, define the head of an information set as the elements

in this information set which contain the smallest element and are in the
intersection with one (and only one) information set of the other player. The
other elements in each information set are called the tail. More formally,
given an information set Iki of player i, let I

l
j be the minimum (with respect

to -Lx) information set of the other player such that Iki ∩ I lj 6= ∅. The head
of Iki is defined as I

k
i ∩ I lj and the tail as Iki \I lj.7

To refer to Figure 2, (1,1) is the head of the first information set marked
for player two and (2,1) is the tail of this information set. Whereas the head
is never an empty set, the tail can be empty (if the information set of the
other player contains fully the information set of this player) or can contain
several information sets of the other player.8

For presentational purpose I describe the following from the perspective
of player one (she). It holds vice versa for player two (he). A strategy maps
the informations sets into the set of feasible actions {A,B}. Equilibrium
strategies of player one are best replies given the strategy of player two. In
equilibrium she chooses for each information set the action that is optimal
given the actions he chooses in the intersecting information sets (one or more
than one). In particular, it is of importance whether actions chosen by the
other player differ in the head and the tail of an information set.

7For finite sets this is well defined.
8To given an example, assume player one recognizes only odd numbers, whereas

player two only counts every fourth number, e.g. 1, 5, 9 etc.. Both recognize
if at least one message has been sent. Thus player one’s partition of the state
space is {{(0, 0)}, {(1, 0), (1, 1), (2, 1), (2, 2)}, {(3, 2), (3, 3), (4, 3), (4, 4)}, ...}. Whereas
the same set of player two is {{(0, 0), (1, 0)}, {(1, 1), (2, 1), (2, 2), (3, 2), (3, 3), (4, 3),
(4, 4), (5, 4)}, {(5, 5), (6, 5), ...}. The head of the second information set of player two con-
tains the elements (1, 1), (2, 1) and (2, 2).
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A strategy that makes use of the communication should be monotone in
the number of messages sent. I name a strategy monotone if there exists a
k such that for all I li with I

l
i -Lx Iki action A is chosen whereas otherwise B

is chosen.9 That is, monotone strategies change only once from choosing A
to B over the number of messages sent, thus if more than a fixed number of
messages is sent then action B will be played, whereas whenever less than
this number of messages is sent then A is chosen. If at least one information
set contains not too many elements in the head compared to the number of
elements in the tail, then there exists a payoff dominant Nash-equilibrium in
which players’ equilibrium strategies condition on the number of messages
sent. The number is determined by the payoffs. For M = L it suffices that
the head contains strictly less elements than the tail. Let n be the number
of elements in I∗i - the first information set where player i plays B instead of
A - and nh the number of elements in the head of the information set.

Proposition 2 If at least for one information set of one player n
h

n
< M−1

L+M−1
then for all ε < bε, a payoff dominant equilibrium exists.

Proof. Let player i be the player who has the smallest (-Lx) information set
(of both players) which fulfills the condition of the proposition and denote
this information set by I∗i . Denote by I

∗
j the information set of player j that

is associated with the head of I∗i . I prove by construction that an equilibrium
exists where players strategies are monotone and player i plays B from I∗i
onwards and player j plays B from the information set following I∗j .
Denote by ez the belief that player i assigns to being in in the head of I∗i

whenever the state of the world is in I∗i . This belief is given as

ez =
nhP
i=1

ε(1− ε)i−1

nP
i=1

ε(1− ε)i−1
=
1− (1− ε)n

h

1− (1− ε)n
. (2)

For a best reply of player i to play B given player j follows the proposed
strategy, the following must hold: ez(−L) + (1 − ez)(M) > (1 − ez)1. This
converges for ε→ 0 to nh

n
< M−1

M−1+L .
Given the definition of I∗i , it is the smallest information set of both play-

ers where the condition holds, thus for I∗j it must be optimal for player j to

9I do not consider the case where a player switches once from B to A because this is
dominated by playing always B.
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play A independent of the action player i in I∗i . Regarding player j’s equi-
librium strategy the following holds. For all I lj -Lx I∗j the strategy either
the condition is not fulfilled or player i plays A in every state of the world
contained in I lj. For all I

l
j ÂLx I∗j player i plays B in all states of the world

contained in I lj.
To phrase the result in a different way, the proposition says if at least one

information set of one of the players has a head that contains less elements
than its tail then payoffs M ≤ L exist which support a payoff dominant
equilibrium with strategies that condition on the E-Mail communication.

4 Rough Induction in the E-Mail Game
The intuition behind Rubinstein´s results is based on the conditional prob-
abilities that whenever a message got lost, it is for both players more likely
that the last message her (his) machine sent was lost than that the reply to
this message was lost. In the following variations of the E-Mail Game are
studied. First the effect of non-distinguishability is analyzed. This represents
the case where a player loses track at period T for some periods or a player is
due to some cognitive inability or a technical problem of his machine unable
to differentiate between some states of the world. This case is also analyzed
for forms of stochastic non-distinguishability. In Proposition 3 I state that
a critical number of messages sent exists such that whenever more messages
than this number are sent players actually use the communication to coor-
dinate on B if Gb prevails. The assumption made is that the probability
that (at least) one player loses track for some period of the communication
increases over time. Second the effect of counting in different units is stud-
ied. This case has a similar intuition as Morris (2001b) studying a ”timing”
version of the E-Mail game. Both variants lead to the existence of additional
payoff dominant equilibria.

4.1 Non-distinguishability

Rubinstein (1989) states that a payoff dominant equilibrium exists if a max-
imum number of messages can be sent or is recognized (fixed capacity of
players). In contrast to this extreme, I do assume that players have an
unlimited capacity (there is no maximum number T of messages sent they
recognize). They may lose track for some numbers of messages sent but are
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able to pay attention later again (e.g. due to analyzing available extra in-
formation). A different way to describe this situation is that the machine of
a player may malfunction for some periods but show the correct number of
messages sent later again. This weaker form of bounded rationality suffices
to generate a payoff dominant Nash equilibrium as a corollary of proposi-
tion 2. By reducing the ability to process information the existence of an
additional equilibrium is guaranteed. In this payoff dominant equilibrium
players condition their strategy on the communication. Let l be the number
of elements that cannot be distinguished from a given number T.

Corollary 1 If exactly one player cannot distinguish the numbers of mes-
sages sent if t ∈ {T, T + 1, ..., T + l} then a payoff dominant equilibrium
exists where players condition their strategies on the communication process
if T > 0 and l > l∗. l∗ always exists. In equilibrium both players play B if
their machine sent t ≥ T and A in all other cases.
The result of proposition 2 applies because in this case the head only

contains one element whereas the tail contains at least three.
One special case of this set-up is that a player loses track at a fixed stage

T (l = ∞) or his machine stops counting/sending after T messages. If the
maximum number of messages the machine sends is restricted then players
play B if, and only if, their machine sent this maximum number. This case
(l = ∞) may be simple to motivate. The machine or the player loses track
at a fixed stage T . Justifications for this assumption could be the ”overflow”
of the machine´s capacities (it can only count up to a certain number) or
that real players actually stop counting after they sent a certain number of
messages or players have to decide after a certain number of messages has
been sent. This is Rubinstein’s (1989) solution to the paradox.
I show that the weaker condition that players cannot distinguish between

some states is enough to yield a subgame perfect equilibrium with coordi-
nation. The machine may not be able to show 18 and therefore it stays on
17 for two turns and then jumps to 19. A player who did not pay attention
for a while, may be able to remember later again how many messages where
sent (e.g.. he is additionally informed whenever 100 messages have been
sent). If the player cannot distinguish/remember whether his machine sent
T, T +1, ... or T + l messages, he has to choose one action for all observations
in the interval. Assuming l → ∞ and T fixed is an extreme restriction of
players’ abilities to distinguish numbers. The l →∞ assumption seems un-
realistic because people are known to mess up especially large numbers but

12



in the case numbers differ substantially people do recognize the relation, and
whenever prominent numbers are reached, people pay attention again. To
give an example 1389 and 1394 may be put in the wrong order whenever the
decision maker is under stress. This effect is not present when the numbers
in question are 1389 and 10394.10 It seems to be the case that people do not
distinguish sets of numbers, but they realize a substantial difference.
The following remark states an interesting observation about the impor-

tance of knowing the underlying fact of the communication process. This
results from the case of T = 0.

Remark 1 If players become only aware of the E-Mail communication if a
sufficient number of messages has been sent then it matters whether a player
knows the underlying fact (that game b is played).

Given l > l∗, corollary 1 also allows for the case where player one (the
one that is informed about whether game a or game b is played) cannot
distinguish among the set {1, 2, ..., l}. This models the situation where player
one knows which game is played but he only pays attention to (becomes
aware of) the communication if a sufficient number of messages has been
sent. The result states that if one player knows the underlying fact but only
pays attention to the communication if a large enough number of messages
has been sent then in almost all cases the payoff dominant equilibrium exists.
If player two suffers from non-distinguishability the set of non-distinguishable
numbers {0, 1, 2, .., l − 1} models the situation where player two only pays
attention if a high enough number of messages is sent. This case is not covered
by proposition 1. If there is no other set of non-distinguishable numbers, the
only equilibrium where players play A whenever no message is sent is one
where players always choose A, independent of the number of messages sent.
A more plausible assumption is that players are more likely to lose track

with higher numbers of messages sent. I analyze this case now. The prob-
ability that player one suffers from non-distinguishability increases with the
number of messages sent. It gets more and more likely that player one can-
not distinguish l + 1 consecutive numbers of messages sent. For simplicity
of presentation I assume that l is exogenously determined. Results can be
generalized in a way similar to corollary 1. For this section the belief ez to be
10Tversky(1969, 1977) emphasizes the role of similarities on human reasoning. Theoret-

ical contributions are Rubinstein (1988) and Albers and Albers (1988).
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in the head of an information set is given as

ez = ε
2l+1P
i=0

ε(1− ε)i
=

ε

1− (1− ε)2l+2
. (3)

η(t) is the probability that {t; t + 1; ...; t + l} is a non-distinguishable
set of numbers for player one. It is defined to strictly increase in t. If non-
distinguishability affects the utilizable information when t messages have
been sent by player one´s machine, it will not do so for the following (non-
distinguishable) l numbers of messages sent. This implies that if the player
cannot distinguish {16, 17, .., 20} then {17, 18, .., 21}...{20, 21, .., 24} cannot
be sets of non-distinguishable numbers for this player. The next set of num-
bers among which player one with probability η(21) cannot distinguish is
{21, 22, .., 25} . In the appendix I will define random variables and their dis-
tribution to define the process more formally.11

η(t) is common knowledge among players. The result holds, too, if η(t) is a
common belief — therefore, it is enough that the player who may suffer from
non-distinguishability knows the other player’s belief and this is common
knowledge. We find the following result:

Proposition 3 If 1−ezez (M − 1) > L and η(t) is monotone increasing then
there exists a critical number of messages sent, such that in a payoff dominant
equilibrium players coordinate on action B if more than this critical number
of messages have been sent by their machines.

The proof is provided in the appendix.
For an increasing probability that player one cannot distinguish among l+

1 consecutive numbers, an endogenously determined number T ∗ of messages
sent exists such that players choose always the mutually beneficial actions if
more than T ∗ messages have been sent by both machines. If ε is small this
number will be reached almost for sure.
The following strategies form the equilibrium in question: Let T ∗ be

the number where both and especially player two chooses B if he observes
t ≥ T ∗ and A otherwise. Player one plays B whenever she observes a t > T ∗.
11I assume a certain form of independence. The result holds too without indepency, in

this case one needs to apply Sylvester’s Lemma (see for example Theorem 19, p. 24 in
Mood, Graybill and Boes (1974)) to prove Proposition 3.
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If she suffers from non-distinguishability in a way that T ∗ is in the non-
distinguishable set of numbers player one plays B given that the smallest
number of messages sent contained in her affected information set is not
smaller than T ∗− k∗. In all other cases she plays A. In the appendix I prove
that this is an equilibrium given the stated restrictions on l,M and L. T ∗

and k∗ are also characterized in the appendix. Player one´s strategy relative
to player 2’s strategy is determined by k∗ and depends only on ε given player
two plays B if a fixed number of messages is sent. It is independent of player
two´s strategy which is characterized by T ∗. T ∗ is determined by k∗ and
η(t).
Actions chosen by players differ in Rubinstein’s original setting and the

variation presented above - even if players precisely observe the same number
of messages has been sent by their machine. Suppose a player in Rubinstein´s
original game and a player in the extended game (one player suffers (with
positive probability) from non-distinguishability) observe each that exactly τ
messages have been sent by their machine. If τ is greater than a critical num-
ber of messages sent then best-reply-strategies differ. An informational defi-
ciency which potentially affects the utilizable information at another (smaller
/ ”earlier”) informational ”outcome” breaks the induction. A local deficiency
in information processing abilities changes the optimal strategy even though
at the decision making point in time the utilizable information is the same
as in the case where no local deficiency exists.

4.2 Counting in different units

To highlight a special feature of Rubinstein’s result, I characterize in this
section the information structures needed to get Rubinstein’s result regarding
the potential information structures. Consider a situation where players
(i = 1, 2) only count or are only informed of every uith message sent (they
count in units of size 2ui states of the world), e.g. they only count even
numbers12. Rubinstein´s standard setup is the case u1 = u2 = 1. In this
subsection the situation where players count in different units is analyzed.
This may for example be the case, if a player receives the information how
long his/her machine sent messages before the break-down of communication.
If the time needed follows a fixed function then this information can be as
12The reasoning behind the results of this section is similar to the reasoning presented

above. Nonetheless, formal proofs are available from the author upon request.
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rich as in the original game but it seems more likely that machines count the
time in different units.
Consider that both players have ni > 1. Another corollary of proposition

2 shows that Rubinstein’s results are only valid for a special case of counting
in different units.

Corollary 2 If both players have the same odd u1 = u2 = u and player two
(one) starts counting (u−1)/2 ((u+1)/2) received messages later than player
one (two) then Rubinstein’s result applies and no equilibrium exists where
players condition on the E-Mail communication. In all other cases (u1 6= u2,
u even or the information sets do not intersect in the prescribed way) then if
L−M not too large a payoff dominant equilibrium exists where both players
condition on the E-Mail communication. In this equilibrium players choose
B if the prevailing state of the world is for both players contained at least in
the second information set.

In Rubinstein’s game the information sets of both players intersect with
information sets of the other player. In the case that n1 = n2 each informa-
tion set intersects with two information sets of the other player, for the case
n1 = n2 = 1 these intersections contain one element only (see Figure 2), thus
head and tail of each information set contain an equal number of states of
the world. The condition of proposition 2 is fulfilled for sure if the state of
the world is contained at least in the second information set.
Let me finally state an interesting aspect about the effect of the size of

the information sets on the expected payoffs in the resulting equilibria:

Remark 2 Rubinstein´s ”almost common knowledge” leads to a discontin-
uous drop with regard to ε in the expected payoff. With non-distinguishability
or counting in different units the change in the expected payoff is continuous.

Consider the expected payoffs of the Electronic Mail Game under the var-
ious assumptions on player information. If it is common knowledge (ε = 0)
which game is played, the expected payoff of the payoff dominant equilibrium
is Πe = M . Introducing the probability ε that a message gets lost (Rubin-
stein´s (1989) article) the expected payoff of the payoff dominant equilibrium
drops to Πe = pM , because only in game a players choose the mutually bene-
ficial actions. If the messages may get lost but one of the players (potentially)
suffers from non-distinguishability, the expected payoff drop changes contin-
uously in ε. For small ε it is almost the same as under common knowledge,
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i.e. lim
ε−→0

Πe =M . Restricting the information to the case where only player

one knows about the state of the world, i.e. player two suffers from non-
distinguishability with T = 0 and l =∞, the expected payoff is the same as
in Rubinstein´s game.

5 Conclusions
I introduced a model of rough inductive reasoning and applied it to Rubin-
stein’s (1989) Electronic Mail game. Rubinstein (1989) employs the Elec-
tronic Mail game to illustrate that the payoffs vary discontinuously in the
assumed information structure, i.e. ”almost common knowledge” leads to
different optimal behavior compared to the optimal behavior under common
knowledge. This paradoxical result has led to a discussion about good defin-
itions of common knowledge in such situation, Morris (2001 a+b) and others
advocate approximate common knowledge as an appropriate path to follow.
My approach differs. I generalize and study the underlying information struc-
tures that yield the results and provide an understanding of rough inductive
reasoning, a form of boundedly rational behavior that solves the paradox.
In this article the assumed forms of bounded rationality or rough inductive

reasoning - non-distinguishability and counting in different units - lead to
the existence of an additional equilibrium in the respective game which is
payoff dominant. In the respective equilibrium the expected payoffs change
continuously in ε. Given a change in the optimal strategy at one stage,
induction leads to an additional payoff dominant equilibrium if a sufficient
number of messages has been sent. It is therefore not necessary - as it was in
Rubinstein’s solution - that bounded rationality affects the decision maker
when he has to make his decision.
Instead of introducing an alternative concept for knowledge under faulty

communication processes I presented models of bounded rationality that cap-
ture the idea of rough inductive reasoning to solve Rubinstein’s (1989) para-
dox.
After generalizing the information structures of the E-Mail Game I showed

which structures yield Rubinstein’s paradox. Models of ”non-distinguishability”
and ”counting in different units” provided examples for rough inductive rea-
soning. Both resolved the paradox and resulted in equilibria that predict
communication to be used.
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6 Appendix - Proof of Proposition 3

We assume that l is large enough, i.e. the following holds:

1− ezez (M − 1) = (M − 1)
2l+1X
i=1

(1− ε)i > L . (4)

To prove the proposition, I start by proving a lemma that captures the case
of a sufficiently large probability η to suffer from non-distinguishability at
the states of the world where a player observes t ∈ {T, T + 1, ..., T + l}. For
the ease of presentation, I state the argument for the case where player one
may suffer from non-distinguishability.

Lemma 1 Suppose player one suffers with probability η from non-distinguishability
such that he cannot distinguish among the t ∈ {T, T+1, ..., T+l}. If 1−ezez (M−
1) > L and (1 − η) ≤ (2−ε)(M−1)

M+L−1 then there exists a payoff dominant Nash
equilibrium where both players play B whenever t ≥ T+1 messages have been
sent by their machines. For M = L large, η < ε suffices for the existence of
such an equilibrium.

The following strategies are the equilibrium in question: If player one
suffers from non-distinguishability she chooses B if she observes a t ≥ T
and A otherwise. If player one does not suffer from non-distinguishability,
she chooses B whenever she observes a t > T and A otherwise. Player two
chooses B if he observes a t ≥ T and A otherwise. I will prove that this is
an equilibrium given the stated restrictions on M , L and η.
Proof of Lemma 1. I show that the strategies are best reply strategies.

Up to ”outcome” (T − 1, T − 1) the equilibrium strategies are proved by the
inductive argument of Rubinstein (proposition 1).
Given that player two’s strategy is the same as the strategy of player two

in corollary 1, the corollary ensures that the described behavior of player one
is a best reply whenever she suffers from non-distinguishability (and l is large
enough). If player one does not suffer from non-distinguishability her best
reply is to play A whenever she observes t ≤ T messages have been sent by
her machine (see proposition 1). If she observes a t > T then given the stated
strategy of player two her best reply is to play B because player two plays
B at both of the states in her information set. Therefore given the strategy
of player two player one´s strategies are best replies.
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Given the strategy of player one, player two plays B whenever he observes
that exactly T messages have been sent if his expected payoff is greater than
the payoff from playing A, i.e.

ηM + (1− η)(z(−L) + (1− z)M) ≥ η + (1− η)(1− z) (5)

where z = ε
ε+ε(1−ε) =

1
2−ε is the consistent belief of the player not suffering

from non-distinguishability that the state is (T, T ) instead of (T + 1, T ).
Player two´s payoff is 0 if he chooses A. Therefore B is a best reply if (5)
holds. This is equivalent to (1− η) ≤ (2−ε)(M−1)

M+L−1 as stated in the proposition.
Given the observation of any t > T by player two his best reply is to

choose B because player one chooses B at both states of the world in the
information set in question.
For M = L the condition (1− η) ≤ (2−ε)(M−1)

M+L−1 simplifies to η ≥ ε(M−1)+1
2M−1 ,

where ε(M−1)+1
2M−1 < ε⇔M > 1

2ε
. (Lemma)

If this holds and the probability to suffer from non-distinguishability is
large compared to the probability that a message gets lost a Nash equilibrium
exists where players condition on the number of messages sent.
Inequality (4) is the condition such that the player suffering from non-

distinguishability behaves as predicted by the equilibrium beliefs of the other
player. It determines a critical bl such that for given M,L, ε and l > bl the
equilibrium strategy of the player suffering from non-distinguishability is a
best reply strategy. Whereas the other players strategy is best reply if condi-
tion (5) holds. The latter condition determines a critical level of η for given
M,L, εM. Hence, analyzing optimal behavior of the players one needs to look
for one player only at the critical level for l and for the other player only at
the critical level for η. This form of independence is important for the proof
of the proposition.
As an instrument of presentation I define a series of independently dis-

tributed random variables Xt ∈ {0; 1}, where P (Xt = 1) := η(t) is the
probability that Xt = 1. A player cannot distinguish among a set of numbers
{t, t + 1, ..., t + l} if and only if Xt = 1 and t itself is not an element of a
non-distinguishable set (more formally ∀τ ∈ {t− l, ..., t− 1} Xτ = 0). Given
these definitions we prove the result.
First I analyze the behavior of the from non-distinguishability suffering

player one. Assume that player two plays B if and only if he observes a
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t2 ≥ T. Let

k∗ = max
k


k

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

2kP
i=0

ε(1− ε)i

2l+1P
i=0

ε(1− ε)i
(−L)

| {z }
expected loss (t<t2)

+

2l+1P
i=2k+1

ε(1− ε)i

2l+1P
i=0

ε(1− ε)i
(M − 1)

| {z }
expected gain (t2≥T )

≥ 0


.

k∗ is described as follows. The left hand side of the inequality is the
expected payoff increase if the player chooses B instead of A given he knows
that the number of messages sent is in the set of non-distinguishable numbers
and the smallest element in this set is equal to T − k (XT−k = 1). T −
k∗ is the smallest number of messages sent so that player one gets a non-
negative expected payoff given player two plays B whenever he observes
that more than T messages have been sent by his machine. If the smallest
number in a non-distinguishable set is smaller than T −k∗ then the expected
payoff is negative. Note that k∗ depends only on l for a given M,L, ε and is
independent of η(t) and therefore independent of T .
Next consider the behavior of player two. We know from above that if

player one does not suffer from non-distinguishability he will play A if he
observes a t1 ≤ T . Denote by eη(T ) the probability that player one plays B
because he suffers from non-distinguishability whenever exactly T messages
have been sent by player two´s machine,

eη(T ) = 1− TY
i=T−k∗

(1− η(i)).

Define T ∗ =min
τ
{τ
¯̄̄
(1− eη(τ)) ≤ (2−ε)(M−1)

M+L−1
o
as the critical number of

messages sent. T ∗ is the number of messages send such that player two´s
expected payoff from playing B is positive.
To prove best reply characteristics of the strategies I show first that given

player two´s strategy, player one´s strategy is a best reply. Given the uti-
lizable information is not affected optimality follows from the fact that for
t > T ∗ player two plays B for all states of the world which are element of
the information set. If the utilizable information is affected and T ∗ is among
the non-distinguishable numbers, by definition of k∗ B is optimal to choose

20



for this information set if the smallest element in the non-distinguishable set
is larger than T ∗ − k∗.
Next I prove that player two´s strategy is a best reply. If (1− eη(T ∗)) ≤

(2−ε)(M−1)
M+L−1 player two´s expected payoff from playing B is positive if he ob-

serves that exactly T ∗ messages have been sent by his machine. The idea is
the same as in the proof of lemma 1 equation (5).
This completes the proof of best reply of player one given player two plays

as described. Note T ∗ is defined as the smallest number of messages such
that the expected payoff is positive. Therefore player two will never play B
when he observes a t < T ∗.
The existence of T ∗ is guaranteed by the condition on η(t) and the obvious

fact that eη(t) increases in t.
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