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incentive compatibility constraints to be considered.  We show that the effect of bundling on 

these incentive compatibility constraints is such that bundling always yields a welfare 
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consumers who potentially have fewer contracts to choose from, but benefit from the better 

sorting possibilities due to bundling. 
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1. Introduction 

Bundling of different insurances is typically observed across insurance markets.  Bundling 

can take two different forms.  In the first form, a single insurance contract covers many 

different types of risk and each risk cannot be insured against in a separate contract.  For 

example, many health or travel insurances cover a wide variety of accidents that may happen 

and it is not possible to insure oneself against only one of these accidents occurring.  

Typically, one cannot take a travel insurance against the loss of a photo camera only.  

Similarly, most basic health insurance contracts offer coverage against many possible diseases 

and it is impossible to break up such a contract and insure only against, say, heart diseases. 

In the second form, insurance companies offer discounts to consumers who take out 

multiple separately sold insurance.  For example, if a consumer takes a health insurance, a car 

insurance, and a travel insurance from the same insurance company, a certain discount is 

provided.  In this paper, we focus on the welfare consequences of the first more extreme form 

of bundling contracts.  One possible explanation for this type of bundling of contracts to exist 

is related to the multiplication of the transaction costs handling all these different contracts 

separately.  We will provide, however, an alternative explanation by abstracting completely 

away from these costs. 

A bundled insurance contract offers insurance against multiple risks at a certain 

premium, possibly with a deductible, which depends on a risk or combination of risks that has 

actually materialized.  Apart from the obvious fact that the deductibles on individual risks and 

the premium for the bundle may be different from the deductibles and the sum of the 

premiums on individual contracts, two potentially important effects arise from bundling 

different insurance contracts.  First, under a bundled contract, the deductible that applies if 

multiple risks materialize does not need to be equal to the sum of the deductibles that apply 

when the individual risks materialize.  For example, a bundled health insurance contract may 

stipulate that the first visit to a general practitioner (family doctor) and a first visit to a 

physiotherapist are not covered, unless the general practitioner prescribes going to the 

physiotherapist.  Second, with single-risk contracts, consumers have generally more choice as 

they can combine different single-risk insurance contracts and the set of insurance contracts 

offered for each individual risk can potentially be as large as the set of bundled multi-risk 

contracts.  This is because insurance companies may be tempted to offer different single-risk 
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contracts to individuals who differ only with respect to another risk dimension.  As we will 

see, this is especially important when companies assess the profitability of offering non-

equilibrium insurance contracts.  Thus, in insurance markets bundling has important 

implications for the incentive compatibility constraints that are binding in equilibrium. 

There is a large literature on the welfare effects of bundling in ordinary commodity 

markets.  This literature (see, e.g., the seminal paper of Adams and Yellen, 1976) considers 

markets where firms have some form of market power and in fact most literature considers 

whether a monopolist can leverage its market power in one market to gain market power in 

another, related market.  The general consensus seems to be that bundling in situations where 

at least one market is perfectly competitive does not yield any benefits to the seller (at least if 

there are no cost advantages of joint production) as one product is always sold at marginal 

cost (cf., Whinston, 1990). 

In this paper, we study bundling in insurance markets.  To underline the difference with 

ordinary markets we consider perfectly competitive markets and build on the seminal research 

by Rothschild and Stiglitz (1977).  Unlike bundling in product markets, bundling in perfectly 

competitive insurance markets is feasible because of the effects bundling may have on the 

incentive compatibility constraints mentioned above.  In fact, we will show that in general, 

bundling always leads to a Pareto-superior allocation compared to the no bundling case.  

Because of the assumption of perfect competition, it is immediate that consumers benefit from 

the bundling of insurance products. 

The model we use is based on the Rothschild and Stiglitz framework.  We consider two 

possible risky events and for each event, consumers can be of two possible types, high-risk 

and low-risk.  This means that in principle there are four different types of individuals in our 

model, a type which has high-risks of both events occurring, a type which has low-risks of 

both events occurring, and two types which are low-risk for one event and are high-risk for 

the other event.  An insurance contract is a tuple consisting of a premium and three 

deductibles (possibly equal to zero): a deductible if only the first event occurs, a deductible if 

only the second event occurs, and a deductible if both events occur.  In this setting, we 

analyze the equilibrium contracts when insurance companies offer bundled contracts and 

when they offer only single-risk contracts. 

We arrive at the following results.  A first result says that individuals that have high risk 

of both events occurring get full insurance in any equilibrium.  This follows from standard 

considerations based on Rothschild and Stiglitz, where the high-risk individual also receives 

full insurance.  Second, if there are just three types of individuals in the population and no 
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individual has a low probability of both events occurring, then equilibria where only single-

risk contracts offered can perform equally well as equilibria where bundled contracts are 

offered.  This result may be of independent interest, but should especially be seen as a 

stepping stone to the last result that says that when all four types are present, equilibria with 

single-risk contracts always perform strictly worse than equilibria with multi-risk contracts. 

As far as we know, only one other paper has investigated the issue of bundling in 

insurance markets under adverse selection,1 namely Fluet and Pannequin (1997).  They 

consider a world like ours with two possible risky events and two risk types per event, but 

restrict the analysis to the special situation where there are only two types of individuals in the 

population.  Under positive correlation, an individual that is a high-risk type for one event is 

also a high-risk type for the second event, while under negative correlation, an individual that 

is a high-risk type for one event is a low-risk type for the second event.  Their main result 

says that under bundling in the equilibrium under negative correlation, the low-risk type with 

respect to a particular source of risk does not necessarily obtain only partial coverage against 

that particular risk.  Because of the restriction to two types, Fluet and Pannequin (1997) have 

only one relevant incentive compatibility constraint to satisfy.  The main point of the present 

paper is that bundling affects the nature of the incentive compatibility constraints in such a 

way that insurance companies can screen more efficiently and that this results in the existence 

of more efficient equilibria.  This is impossible in the simpler framework of Fluet and 

Pannequin (1997) where only two types exist. 

The rest of the paper is organized as follows.  Section 2 presents the model and provides 

the equilibrium definitions under both single-risk contracts and bundled multi-risk contracts.  

The equilibrium analysis and welfare comparisons are given in section 3.  Section 4 concludes 

and the Appendix contains two lemmas that are used in the proofs of propositions. 

2. The Model 

We consider a population of risk averse individuals who possess the same state independent 

strictly concave and increasing utility function ( )mu .  Individuals are endowed with some 

income level, which we normalize to 1, and are subject to two uncorrelated risks, or binary 

                                                                          

1 A recent paper by Laux (2004) considers bundling in insurance markets from a moral hazard 
perspective.  This perspective may be more relevant to the multiline insurance contracts one recently 
may find in business-to-business relationships (see, also Shimpi 2001). 
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lotteries, { }2,1≡∈Rr .  With respect to each risk r we follow Rothschild and Stiglitz (1976) 

and assume that individuals come into two types.  An individual of type { }HLIi rr ,≡∈  is 

characterized by a probability of an accident ri
rq , 10 <<< H

r
L
r qq , in which case he incurs a 

loss of ( )1,0∈re , 121 <+ ee . Therefore, with respect to both risks, individuals come into four 

types, which we denote by i: 

{ }HHLHHLLLIiii ,,,21 ≡∈≡ , 

so that the first symbol 1i  refers to an individual’s type with respect to risk one, and the 

second symbol 2i  refers to his type with respect to risk two. 

Depending on which of the two risky events occur one of four states of the world 

materializes, which we denote by s: 

( ) ( ) ( ) ( ) ( ){ }1,1,1,0,0,1,0,0, 21 ≡∈≡ Ssss . 

Here, 1=rs  corresponds to a state in which risk r results in an accident, and 0=rs  

corresponds to a state in which risk r does not result in an accident.  Individuals’ loss in state s 

is denoted by se .  Thus, we use subscripts to denote risks and states, and superscripts to 

denote individuals’ types with respect to risks. 

Due to statistical independence, an individual of type Ii∈  ends up in state ( )0,0  with 

probability ( ) ( )( )21
210,0 11 iii qqq −−= , in state ( )1,0  with probability ( ) ( ) 21

211,0 1 iii qqq −= , in state 

( )0,1  with probability ( ) ( )21
210,1 1 iii qqq −= , and in state ( )1,1  with probability ( )

21
211,1
iii qqq = .  

Table 1 below presents accidental probabilities for all four types and expenditures in all four 

states of the world. 

State States’ probabilities for types Losses 
s HH

sq  HL
sq  LH

sq  LL
sq  se  

( )0,0  ( )( )HH qq 21 11 −−  ( )( )LH qq 21 11 −− ( )( )HL qq 21 11 −− ( )( )LL qq 21 11 −−  0 
( )1,0  ( ) HH qq 211−  ( ) LH qq 211−  ( ) HL qq 211−  ( ) LL qq 211−  2e  
( )0,1  ( )HH qq 21 1−  ( )LH qq 21 1−  ( )HL qq 21 1−  ( )LL qq 21 1−  1e  
( )1,1  HH qq 21  LH qq 21  HLqq 21  LLqq 21  21 ee +  

Table 1.  Accidental probabilities and losses of all types in different states. 

Accidental probabilities i
sq  of an individual are exogenously fixed and private information of 

the individual.  We denote the ex-ante shares of individuals’ types in the whole population by 
iα , where 0>iα  and 1=∑∈Ii

iα .  It is worth to note that although risks are statistically 
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independent, we do not assume the independence of individuals’ types with respect to two 

risks, i.e., we impose no further restrictions on the values of iα . 

The supply side of the market consists of a number of competing risk-neutral and profit-

maximizing insurance companies.  These companies are not able (or, not allowed) to 

discriminate between different types of individuals.  Each insurer offers an insurance contract2 

( ) ( ) ( )( )1,11,00,1 ,,, DDDP≡Θ  which consists of a premium ( )1,0∈P  that individuals pay upfront, 

and deductibles sD  such that in case of an accident, i.e., in a state ( )0,0\Ss∈ , an insured 

individual receives his loss net of the deductible sD  from the insurance company.  Table 2 

summarizes individual i’s wealth and utility levels in all states with and without insurance. 

State Probability Wealth with Utility with 
s i

sq  no insurance insurance no insurance insurance 

( )0,0  ( )
iq 0,0  1 P−1  ( )1u  ( )Pu −1  

( )1,0  ( )
iq 1,0  21 e−  ( )1,01 DP −−  ( )21 eu −  ( )( )1,01 DPu −−  

( )0,1  ( )
iq 0,1  11 e−  ( )0,11 DP −−  ( )11 eu −  ( )( )0,11 DPu −−  

( )1,1  ( )
iq 1,1  211 ee −−  ( )1,11 DP −−  ( )211 eeu −−  ( )( )1,11 DPu −−  

Table 2.  Accidental probabilities, wealth and utility of type i individual in different states. 

Depending on the contexts, we either restrict insurance companies to sell insurance contracts 

against each risk separately and independently, or allow them to offer multiple-risk insurance 

contracts.  In the latter case, the (multi-risk) contract takes its general form: 

( ) ( ) ( )( )1,11,00,1 ,,, DDDP≡Θ . 

By ( )2121
0 ,,,0 eeee +≡Θ  we denote an artificial contract, which provides no insurance against 

both risks.  In what follows, we implicitly assume that 0Θ  is always offered. 

In the former, single-risk case, a contract against risk r will be ( )rrr DP ,=Θ , where rP  is 

the price and rD  is the deductible in case risk r results in a loss.  For comparison reasons, we 

will also refer to a single-risk contract rΘ  as follows: 

( )212111 ,,, eDeDP +≡Θ  and ( )212122 ,,, DeDeP +≡Θ . 

By 21,ΘΘ=ΘS  we denote a collection of two single-risk contracts, which insures an 

individual against both risks: 

                                                                          

2  We do not need to restrict insurance companies to offer only one contract.  As in the classical 
Bertrand (1883) price competition model, two competing multi-contract insurance companies will 
ensure that the considered insurance market is perfectly competitive. 
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( )212121 ,,, DDDDPPS ++≡Θ . 

Hence, one important difference between single-risk and multi-risk contracts is that the latter 

do not need to satisfy the additivity constraint ( ) ( ) ( )1,11,00,1 DDD =+ . 

Formally defining ( ) 00,0 ≡D  allows us to write the ex-ante expected utility of an 

individual of type i who buys a (single-risk or multi-risk) contract in the following compact 

form: 

( ) ( )∑ −−=Θ
s

s
i
s

i DPuqU 1 . 

An insurance company that sells a contract Θ  to an individual of type i gets an expected 

profit (here after simply denoted by profit) of  

( ) ( )∑ −−=Θ
s

ss
i
s

i DeqPπ . 

Average per-consumer profit from contract Θ  depends on the shares i
Θα  of all four types 

amongst those who buy Θ : 

( ) ( ) ( )∑∑ −−=Θ≡Θ ΘΘ
si

ss
i
s

i

i

ii DeqP
,

απαπ . 

Let MΣ  be the set of all feasible multi-risk insurance contracts.  The formal definition of 

a multi-risk competitive Nash equilibrium, i.e., the competitive Nash equilibrium when firms 

are allowed to offer multi-risk insurance contracts, is as follows. 

Definition 1.  A multi-risk competitive Nash equilibrium is a subset of insurance contracts 
MM Σ⊂Ψ  present in the market satisfying the following conditions: 

a) Each individual chooses an insurance contract that maximizes his expected utility, i.e., 

each type i chooses a contract ( )Θ∈Θ
Ψ∈Θ

iMi U
M

maxarg, , for all Ii∈ . 

b) Each equilibrium contract offered by insurance companies is bought by at least one 

individual, i.e., { } { }U Ii
MiM

∈
Θ∪Θ=Ψ ,0 . 

c) Each equilibrium contract yields nonnegative profit to an insurer, i.e., ( ) 0, ≥Θ Miπ  for all 
MM Ψ∈Θ . 

d) No insurance company can benefit by unilaterally offering a different insurance contract, 

i.e., if there exists a contract MM ΨΣ∈Θ \*  such that ( ) ( )Miii UU ,* Θ>Θ  for some Ii∈  

then ( ) 0* ≤Θπ . 
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Parts (a), (c) and (d) are part of any standard definition of equilibrium.  In part (a), if an 

individual prefers to remain uninsured, he chooses the contract 0Θ  which is a part of any 

equilibrium as stated in part (b).  Part (b) is introduced in order to get rid of a multiplicity of 

uninteresting equilibria, in which some very unfavorable insurance contacts are offered but 

not sold.  We denote individuals’ equilibrium utilities by ( )MiiMi UW ,, Θ≡ . 

In a single-risk environment, Definition 1 has to be modified.  First, individuals must 

choose pairs of single-risk insurance contracts.  Second, an equilibrium must be immunized to 

deviations where a firm deviates in one insurance market only, and to deviations where a firm 

deviates in both insurance markets.  Let MS Σ⊂Σ  be the set of all feasible single-risk 

insurance contracts.  The formal definition of a single-risk competitive Nash equilibrium, i.e., 

the competitive Nash equilibrium when firms are only allowed to offer single-risk insurance 

contracts, is as follows. 

Definition 2.  A single-risk competitive Nash equilibrium is a subset of single-risk insurance 

contracts SS Σ⊂Ψ  present in the market satisfying the following conditions: 

a) Each individual chooses a pair of insurance contracts that maximizes his expected utility, 

i.e., each type i chooses a pair of contracts ( )iiiiiSi U
Sii 21

,
21

, ,maxarg,
21

ΘΘ∈ΘΘ≡Θ
Ψ∈ΘΘ

, for 

all Ii∈ . 

b) Each equilibrium contract offered by insurance companies is bought by at least one 

individual, i.e., { } { }U
Rr
Ii

i
r

S

∈
∈ Θ∪Θ=Ψ 0 . 

c) Each equilibrium contract yields nonnegative profit to an insurer, i.e., ( ) 0≥Θi
rπ  for all 

Si
r Ψ∈Θ . 

d) No insurance company can benefit by unilaterally offering a different insurance contract, 

i.e., if there exists a contract SS
r

ΨΣ∈Θ \*
*  against risk Rr ∈*  such that 

( ) ( )Sii
rRr

i UU ,
\

*
**

~, Θ>ΘΘ  for some Ii∈  and some contract S
rR

Ψ∈Θ *\

~  against the 

complementary risk *\ rR , then it must be that ( ) 0*
* ≤Θ

r
π . 

e) No insurance company can benefit by unilaterally offering a pair of insurance contracts, 

i.e., if there exist two contracts SS ΨΣ∈ΘΘ \, *
2

*
1  such that ( ) ( )Siii UU ,*

2
*
1 , Θ>ΘΘ  for 

some Ii∈ , then it must be that ( ) ( ) 0*
2

*
1 ≤Θ+Θ ππ . 
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In equilibrium, an individual of type i chooses a contract i
1Θ  against risk 1 and a contract i

2Θ  

against risk 2.  In part (a) of Definition 2 we allow that, for example, HHHL
11 Θ≠Θ , i.e., that 

different types choose different contracts against risk 1=r  even if they are of the same type 

1i  with respect to that risk.  This implies that the set of single-risk equilibrium insurance 

contracts can be larger (up to 8 contracts in total, 4 contracts for each risk) than the set of 

multi-risk equilibrium insurance contracts can be (up to 4 contracts in total).  Thus, 

individuals have potentially more choices in a single-risk equilibrium than in a multi-risk 

equilibrium.  This is the second important difference between multi-risk and single-risk 

insurance contracts. 

We require in part (c) that each single-risk contract makes no losses.  In part (d), we 

explicitly state that if one company deviates from the equilibrium by offering a contract *
*r

Θ  

against risk *r , individuals are allowed to combine this contract with any other existing 

(equilibrium) contract *
\ *rR

Θ  against the other risk.  Thus, a single contract *
*r

Θ  results in 

multiple pairs of contracts from which consumers may choose.  In part (e), we consider multi-

contract deviations, in which a deviating insurance company offers two contracts *
1Θ  and *

2Θ  

simultaneously. 

Standard arguments rule out any pooling contract to be a Nash equilibrium.  For pairs of 

single-risk contracts ( )21,ΘΘ=ΘS , the argument is given by Rothschild and Stiglitz (1976).3  

For multi-risk contracts, a similar argument generically holds true: for any (partially) pooling 

contract, there exists a contract that marginally differs from it in its price and only one 

deductible in such a way that only the type with the lowest expected loss prefers the latter new 

contract.  This makes the former pooling contract unprofitable and, at the same time, ensures 

that the deviation yields strictly positive profit. 

On the other hand, a separating Nash equilibrium { }HHLHHLLL
sep ΘΘΘΘ=Ψ ,,, , which 

involves four contracts, one for each type, may not exist if there exists a profitable pooling 

contract that provides a higher utility level to either of the types.  In what follows, we always 

assume that the shares of types in the population are such that pooling contracts are always 

inferior to separating contracts, in both single-risk and multi-risk settings.  Due to the same 

reasoning as in Rothschild and Stiglitz (1976), this will be the case when the share of the most 

risky type in any given pooling contract is sufficiently large (close to one).  If this is the case, 
                                                                          

3 The argument, however, does not forbid equilibria in which, e.g., types { }HHHLi ,∈  buy the same 
contract H

1Θ .  Thus, the term “pooling” in this context refers to a pair of single-risk contracts. 
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the same inequality as the incentive compatibility constraint will guarantee that the less risky 

types will not be attracted by such a pooling contract.4  Similar to the multi-risk case, we 

denote individuals’ equilibrium utilities by ( )SiiSi UW ,, Θ≡ . 

3. Analysis 

We begin the analysis of the model by showing that the type HH in a competitive equilibrium 

gets full insurance against both risks in both single-risk and multi-risk settings. 

Proposition 1.  In a competitive equilibrium, type HH gets full insurance in both single-risk 

and multi-risk settings, i.e., ( )0,0,0,,, HHSHHMHH P=Θ=Θ  with HHHH qeqeP 2211 += . 

Proof.  The proof follows from the fact that HH is the most risky and, therefore, MHH ,Θ  must 

provide the highest possible utility.  If it were not the case, offering more insurance at fair 

price to type HH than in contract MHH ,Θ  would have been a profitable deviation.  Hence, it 

must be that ( )Θ=Θ
Σ∈Θ

HHMHH U
M

maxarg, , subject to the profitability condition 

( ) ( ) ( )∑ −−=Θ=Θ≤
s

ss
HH
s

MHHHHMHH DeqP,,0 ππ . 

Solving the optimization problem yields that the zero-profit condition binds, i.e., 

( )∑ −=
s

ss
HH
s DeqP , and that ( )0,0,0,, HHMHH P=Θ  where HHHH qeqeP 2211 += . 

It is seen that MHH ,Θ  satisfies the additivity constraint, i.e., it can be written as 
SHSHMHH ,

2
,

1
, ,ΘΘ=Θ , where ( ) ( )0,, ,,, H

rr
SH

r
SH

r
SH

r qeDP ==Θ .  Therefore, MHH ,Θ  can be 

implemented as a pair of single-risk contracts, i.e., MHHSHH ,, Θ=Θ , where ( )0,H
rr

H
r qe=Θ . ■ 

In accordance with Proposition 1, the most risky type HH gets full insurance, as in Rothschild 

and Stiglitz (1976).  This implies that no other contract can provide full insurance at a lower 

price than the contract MHH ,Θ .  Therefore, any other type of individual will not receive full 

insurance under any circumstance, and will receive at most partial insurance.5 

                                                                          

4 Formally, we assume that ratios LHLL αα / , HLLL αα / , HHLH αα / , and HHHL αα /  are sufficiently small. 
5 Due to the restriction to two types, a type different from type HH might receive full insurance in 
Fluet and Pannequin (1997).  This, however, only happens under what they call negative correlation, 
when the type HH does not exist in the population, violating our assumption that 0>HHα . 
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In order to find the equilibrium contract Mi ,Θ  for a type { }LHHLLLi ,,∈ , one must solve 

the following optimization problem: 

( )Θ=Θ
Σ∈Θ

iMi U
M

maxarg, , 

subject to three incentive compatibility constraints 

( ) ( )MjiMii UU ,, Θ≥Θ , iIj \∈ , 

and one zero-profit constraint 

( )∑ −=
s

ss
i
s DeqP . 

The solutions to the three optimization problems for all { }LHHLLLi ,,∈ , together with 
MHH ,Θ  is the only candidate for the multi-risk competitive Nash equilibrium.  In order to 

simplify notation, we will refer to the incentive compatibility constraint (ICC) 

( ) ( )MjiMii UU ,, Θ≥Θ  as to either ji >  or ji Θ> .  In order to avoid confusion, we will also 

refer to ji >  as to ji
S
>  in single-risk settings, and as to ji

M
>  in multi-risk settings. 

In equilibrium, depending on the values of parameters different ICC’s will bind.  In order 

to further characterize a separating Nash equilibrium sepΨ , and to analyze which ICC’s bind, 

we temporary assume that 0=LLα  so that there are no individuals of type LL in the 

population and the contract LLΘ  does not need to be offered.  To distinguish the case 0=LLα  

from the general case 0>LLα , we use underlined notation for the 0=LLα  case. 

When 0=LLα , a multi-risk competitive Nash equilibrium M
sepΨ  is unique and can easily 

be derived.  The analysis of M
sepΨ  shows that for a large class of utility functions, single-risk 

contracts perform equally well from the social welfare point of view as multi-risk contracts 

do.  Relaxing this temporary assumption allows us to understand better which ICC’s bind, and 

why multi-risk contracts are strictly welfare-superior to single-risk contracts in the presence 

of LL type.  Thus, our assumption 0=LLα  also serves didactical purposes. 

Equilibrium without LL-type 

When only types HH, HL, and LH are present in the population, a multi-risk competitive Nash 

equilibrium consists of 3 contracts, { }MHHMLHMHLM
sep

,,, ,, ΘΘΘ≡Ψ , which satisfy in total six 

incentive compatibility constraints.  In the following proposition, we show that in M
sepΨ , only 

two of them are binding. 
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Proposition 2.  Let 0=LLα .  Then, in a multi-risk competitive equilibrium, type HH gets full 

insurance against both risks, i.e., MHHMHH ,, Θ=Θ .  Types HL and LH get full insurance 

against risks 1 and 2 respectively, i.e., 

( )HLHLHLMHL DDP ,,0,, =Θ  and ( )LHLHLHMLH DDP ,0,,, =Θ . 

ICC’s LHHL> , HLLH > , HHHL> , and HHLH >  do not bind, whereas ICC’s 

LHHH >  and HLHH >  do bind thereby determining LHD  and HLD . 

Proof.  First of all, Proposition 1 holds for 0=LLα  and, therefore, HHHH Θ=Θ . 

Second, we temporarily drop ICC’s LHHL> , HLLH > , and HHHL > .  Lemma 1 in 

Appendix proves that maximizing ( )HLHLU Θ  subject only to ICC HLHH >  and to the zero-

profit constraint ( )∑ −=
s ss

HL
s DeqP  yields that both constraints bind and determine a corner 

solution in which ( ) ( )
HLHL DD 1,11,0 = , ( ) 00,1 =HLD , and ( )( )HLLHHL DeqeqP 1,02211 −+= .  Similarly, 

LHHH >  binds, ( ) 01,0 =LHD , ( ) ( )
LHLH DD 1,10,1 = , and ( )( ) 220,111 eqDeqP HLHLLH +−= . 

Finally, Lemma 2 in Appendix proves that the contracts ( ) ( )( )HLHLHLHL DDP 1,11,0 ,,0,=Θ  and 

( ) ( )( )LHLHLHLH DDP 1,10,1 ,0,,=Θ  from Lemma 1 satisfy ICC’s LHHL > , HLLH > , HHHL > , and 

HHLH >  as strict inequalities.  Hence, ( )
HLHL DD 1,0= , ( )

LHLH DD 0,1= , HLHL PP = , and 

LHLH PP =  define contracts ( )HLHLHLMHL DDP ,,0,, =Θ  and ( )LHLHLHMLH DDP ,0,,, =Θ  which 

satisfy all necessary equilibrium conditions. ■ 

This Proposition can easily be interpreted if we note that equilibrium multi-risk contracts 
MHL,Θ  and MLH ,Θ  can be represented by a pair of single-risk contracts: 

HLMLH
21

, ,ΘΘ=Θ  and LHMHL
21

, ,ΘΘ=Θ , 

where { }H
r

L
r ΘΘ ,  is the set of competitive equilibrium contracts against risk r from Rothschild 

and Stiglitz (1976).  Thus, if type LL is absent in the multi-risk environment, Proposition 2 

basically says that the competitive equilibrium takes the additive form, in which individuals 

get insurance against each risk in accordance with their types with respect to that risk, 

provided this equilibrium exists. 

As all three multi-risk equilibrium contracts can be implemented as pairs of single-risk 

contracts, i.e., HHMHH
21

, ,ΘΘ=Θ , HLMLH
21

, ,ΘΘ=Θ , and LHMHL
21

, ,ΘΘ=Θ , they can be 



 13

replicated by the following set of single-risk contracts: { }LHLH
2211 ,,, ΘΘΘΘ .  However, this set 

of single-risk contracts is a single-risk competitive Nash equilibrium only if no type 

{ }LHHLLLi ,,∈  prefers the pair of contracts LL
21 ,ΘΘ , which we formally denote by LLΘ : 

LLLL
21 ,ΘΘ≡Θ .  In other words, even though type LL is absent in the population, nothing 

prevents individuals in the single-risk environment from buying a pair of contracts L
1Θ  and 

L
2Θ . 

Formally, for a given utility function, a set of single-risk contracts { }LHLH
2211 ,,, ΘΘΘΘ  is a 

single-risk competitive equilibrium, i.e., { }LHLHS
sep 2211 ,,, ΘΘΘΘ=Ψ , if and only if three ICC’s 

LLHH Θ> , LLHL Θ> , and LLLH Θ>  are satisfied.  Otherwise, at least one of the single-risk 

contracts in LL
21 ,ΘΘ , or even both, has to be adjusted by increasing the corresponding 

deductible HLD  and/or LHD .  In the latter case, at least one of the types HL and LH is strictly 

worse-off under single-risk contracts than under multi-risk contracts. 

In the light of the discussion above, we extend the notation and explicitly write the utility 

function as an argument in any notation, e.g., ( )uS
sepΨ , ( )uL

1Θ , ( )uDLH  etc.  A natural 

question that arises is whether ( ) ( ) ( ) ( ) ( ){ }uuuuu LHLHS
sep 2211 ,,, ΘΘΘΘ=Ψ  for a given utility 

function u so that single-risk and multi-risk insurance contracts yield the same utility levels, 

or ( ) ( ) ( ) ( ) ( ){ }uuuuu LHLHS
sep 2211 ,,, ΘΘΘΘ≠Ψ  so that single-risk insurance contracts perform 

strictly worse than multi-risk insurance contracts. 

In Proposition 3 we provide a partial answer to this question.  Let us denote by 

( ) ( )LLHLLH DPqeDPqeum 11222211 ,max1 ++++−=  

the lowest wealth that individuals may end up with in a multi-risk equilibrium in the worst 

state of the world, and by 

( ) ( )LLLLLL DPDPum 22111 +++−=  

the lowest wealth that individuals may end up with in single-risk setting when they buy a pair 

of contracts LLLL
21 ,ΘΘ≡Θ .  Then, Proposition 3 basically says that an arbitrary utility 

function u can be changed to u~  for the lowest income levels such that, first, multi-risk 

equilibria for u and u~  coincide, and, second, a single-risk equilibrium and a multi-risk 

equilibrium for u~  also coincide.  Thus, without the LL types being present in the population, 



 14

equilibria under single-risk contracts may perform equally well as equilibria under multi-risk 

contracts. 

Proposition 3.  Let 0=LLα .  Then, for an arbitrary strictly concave and increasing utility 

function u there exists also strictly concave and increasing utility function u~  so that: 

a) ( ) ( )mumu =~  for ( )[ ]1,umm∈  so that ( ) ( )uu M
sep

M
sep Ψ=Ψ ~ ; 

b) ( ) ( ) ( ) ( ) ( ){ }uuuuu LHLHS
sep 2211 ,,,~ ΘΘΘΘ=Ψ . 

Proof.  In accordance with Lemma 1, prices L
rP  and deductibles L

rD  are determined by the 

shape of the utility function ( )mu  over the range [ m , 1], and are independent of the shape of 

( )mu  for ( )mm ,0∈ .  Hence, any legitimate utility function u~ , which coincides with u over 

the range ( )[ ]1,umm∈ , results in the same multi-risk equilibrium set: ( ) ( )uu M
sep

M
sep Ψ=Ψ ~ .  

Consequently, we can drop utility function in the notion of multi-risk contracts ( )uri
rΘ . 

Suppose now that the set { }LHLH
2211 ,,, ΘΘΘΘ  of contracts is offered in single-risk setting.  

If an individual of type { }LHHLLLi ,,∈  buys a pair of contracts LLLL
21 ,ΘΘ≡Θ , with 

probability ( )
iq 1,1  he will suffer from both accidents, and his wealth will be equal to ( )umLL .  

The ICC LLi >  can be written as 0≥iG , where 

( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( ) ( )( )( ).111

1111

1,1221,0

110,10,0

2

1

umuDPuqDPuDPuq

DPuDPuqPuPuq

uUuUuG

LL
r

i
r

i
r

iL
r

L
r

i
r

i
r

i

L
r

L
r

i
r

i
r

i
r

L
rr

i
r

i

LLiiii

rrr

rr

−+−+−−−−−+

+−−−−−+−−−=

Θ−Θ≡

∑∑∑
∑∑∑∑  

Hence, outside the range ( )[ ]1,umm∈ , only the value ( )( )umu LL  determines whether the ICC 

LLi >  is satisfied or not.  Hence, a sufficiently low value of ( )( )umu LL~  guarantees that 

( ) 0>uGi , and that no types buy a pair of contracts LLLL
21 ,ΘΘ≡Θ . ■ 

Proposition 3 exploits the fact that the shape of the utility function at the lowest level of 

wealth, i.e., ( )umLL , does not affect multi-risk equilibrium contracts but does effect single-

risk incentive compatibility constraints.  It says that any utility function defined over the 

range ( )[ ]1,umm∈  can be extended over the range ( )( )umm ,0∈  in such a way that the multi-

risk equilibrium set of contracts is also a single-risk equilibrium set.  A contraposition of 

Proposition 3 also holds: there are utility functions, which are defined over the range 
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( )[ ]1,umm∈ , for which any (increasing and concave) extension u~  over the range 

( )( )umm ,0∈  yields the result of Proposition 3, namely that single-risk and multi-risk 

insurance contracts perform equally well. 

Equilibrium with LL-type 

The main reason why in the absence of LL-type single-risk contracts may perform equally 

well as multi-risk contracts is that for a given utility function, none  of the ICC’s 
LLHH 21 ,ΘΘ> , LLHL 21 ,ΘΘ> , and LLLH 21 ,ΘΘ>  bind.  If, to the contrary, one of these 

ICC’s is violated, multi-risk contracts are strictly welfare superior to single-risk contracts.  In 

Proposition 4 below we show that in the presence of LL-types, multi-risk contracts are always 

(generically) welfare superior to single-risk contracts. 

Proposition 4.  Let 0>LLα .  For any generic utility function u the multi-risk competitive 

Nash equilibrium contracts are strictly Pareto-superior to the single-risk competitive Nash 

equilibrium contracts, i.e., SiMi WW ,, ≥  for all { }LLHHLHHLi ,,,∈  and at least one of the 

inequalities is strict. 

Proof.  Suppose that contracts ( )HHMHH
21

, ,ΘΘ=Θ , ( )HLMLH
21

, ,ΘΘ=Θ  and ( )LHMHL
21

, ,ΘΘ=Θ  

are offered.  Let us consider the contract ( )LLLL
21 ,ΘΘ=Θ  and the associated with it ICC’s 

LLHH > , LLHL> , and LLLH > .  Generically, neither of these constraints hold as 

equality; some of them will not be binding, i.e., 0>iG , and all the others will be violated, 

i.e., 0<iG  (see proof of Proposition 3).  We consider these two mutually exclusive cases. 

a) Let 0>iG  for { }HHLHHLi ,,∈ .  This implies that there exist a contract *Θ  which (i) 

violates none of constraints LLi >  for { }HHLHHLi ,,∈ , and (ii) is such that 

( ) ( )LLLLLL UU Θ>Θ* .  In this case, insurance companies in multi-risk environment are 

able to offer the superior contract *Θ  to type LL so that all ICC’s are satisfied.  In single-

risk environment, to the contrary, any improvement of the contract ( )LLLL
21 ,ΘΘ=Θ  

requires an improvement of at least one of its single-risk components, which is not 

possible because LHHH >  and HLHH >  already bind.  Choosing 

( )Θ∈Θ LLUmaxarg*  subject to all relevant ICC’s yields an equilibrium contract MLL,Θ  
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which strictly Pareto-dominates ( )LLLL
21 ,ΘΘ=Θ .  As ( )LLLLSLL UW Θ≤, , it follows that 

SLLMLL WW ,, > . 

b) Let 0<jG  for some { }HHLHHLj ,,∈ .  If this is the case, insurance companies in 

single-risk environment cannot provide contracts L
1Θ  and L

2Θ  because they are not 

incentive compatible.  Consequently, just like in the case 0=LLα , one of the inequalities 
SLHMLH WW ,, ≥  and SHLMHL WW ,, ≥  must be strict.  The only Pareto-condition that needs 

to be shown is that SLLMLL WW ,, ≥ .  This condition follows from the former two 

inequalities because the constraint LLi
M
>  in the multi-risk setting, which is 

( )MLLiMi UW ,, Θ≥ , is less restrictive than the constraints LLi
S
>  in the single-risk setting, 

which is ( )SLLiSi UW ,, Θ≥ , for all { }HHLHHLi ,,∈ .  Consequently, it must be that 

( ) ( )SLLLLMLLLL UU ,, Θ≥Θ . ■ 

In accordance with Proposition 4, at least one of the types { }HHLHHLi ,,∈  is strictly better 

off under multi-risk contracts than under single-risk contracts.  Which type gets a superior 

contract depends on the specific utility function and other model parameters. 

4. Conclusion 

In this paper, we have analyzed the welfare consequences of bundling different risks in one 

insurance contract.  The model we have developed to analyze this question is an extension of 

the competitive insurance model of Rothschild and Stiglitz (1976) to two sources of risk.  

Accordingly, there are four possible types and many incentive compatibility constraints to be 

considered.  The main effect of bundling in insurance contracts is on these incentive 

compatibility constraints.  We have shown that these effects are such that if all four possible 

types are present in the population, bundling always yields welfare improvements.  Due to the 

competition between insurance companies, these benefits accrue to consumers who 

potentially have fewer contracts to choose from, but benefit from the better sorting 

possibilities due to bundling. 

Our results can be easily generalized to the case of more than two types for each risk.  

Because multi-risk contracts are always strictly welfare-superior to single-risk contracts in 

case of four types, it is clear that the incentive compatibility constraints in case of more than 
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four generic types are weaker for multi-risk contracts than for single-risk contracts.  

Consequently, bundling always yields welfare improvements.  Another possible 

generalization is to assume more than two sources of risk.  Under this assumption, our results 

continue to hold because of the following reasoning.  Suppose that there are three sources of 

risk, and two types with respect to each risk.  We have shown that bundling risks 2 and 3 is 

always strictly welfare improving.  With respect to the combined outcome of these two risks, 

individuals come into four types, and the model can now be reformulated as if there were two 

risks: risk 1 with two types, and another risk (combination of risks 2 and 3) with four types.  

In the light of the previous generalization for more than two types, bundling all three risks is 

strictly welfare improving as well.  Lastly, the results remain intact even when different risks 

are correlated.  The exact prices and deductibles in equilibrium will certainly be affected by 

the correlation.  Nevertheless, all our propositions will continue to hold. 
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Appendix 

Lemma 1.  A contract HLΘ , which maximizes ( )HLHLU Θ  subject to ICC HLHH >  and the 

zero-profit constraint ( )∑ −=
s ss

HL
s DeqP , is a corner solution such that both constraints 

bind, and that ( ) ( )
HLHL DD 1,11,0 = , ( ) 00,1 =HLD , and ( )( )HLLHHL DeqeqP 1,02211 −+= . 

Proof of Lemma 1.  The Lagrangian function for the maximization problem is 

( ) ( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛ −−−−⎟
⎠

⎞
⎜
⎝

⎛ −−−−−= ∑∑∑ HH

s

HL
s

HLHH
s

HL

s

HL
ss

HL
s

s

HL
s

HLHL
s WDPuqPDeqDPuqL 11 μλ , 

and the first-order conditions are 

( ) ( )

( ) ( ) ( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

∈−−−+=
∂
∂

=

−−−−=
∂
∂
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0,0\,1'0

1'0

SsDPuqqq
D

L

DPuqq
P
L

HL
s

HLHH
s

HL
s

HL
sHL

s

s

HL
s

HLHH
s

HL
sHL

μλ

μλ
 

Because it cannot be generically the case that HH
s

HL
s qq μ=  for all s, it follows that 0≠λ .  

Consequently, HH
s

HL
s qq μ≠  for any s.  Taking into account the definition of i

sq  allows us to 

rewrite the above equations as follows: 

( ) ( )( ) ( )
( ) ( ) ( )

( )( ) ( )( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

−
=−−=−−

−−−
−

=−−=−

HL

L
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qq
qDPuDPu

qqq
qDPuPu
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1,11,0
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μ
λ

 

Hence, ( ) 00,1 =HLD  and ( ) ( )
HLHL DD 1,11,0 =  due to 0'>u . 

In order to show that 0≠μ  we assume, to the contrary, that 0=μ .  This implies 

( ) ( ) ( ) 00,11,11,0 === HLHLHL DDD  and, consequently, HLHH >  violates.  Thus, 0≠μ , which implies 

that HLHH >  binds and, together with the zero-profit condition, it determines ( )
HLD 1,0  and 

HLP  as a corner solution in the following system of two equations: 

( ) ( ) ( )( ) ( )
( )( )⎪⎩

⎪
⎨
⎧

−+=

−−=−−+−−
HHLHHL

HHHLHLHHLH

qDeqeP

qeqeuDPuqPuq

21,0211

22111,022 1111
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Interchanging risks 1 and 2 yields similar expressions for the contract LHΘ . ■ 

Lemma 2.  Contracts HLΘ  and LHΘ  derived in Lemma 1 satisfy ICC’s LHHL > , HLLH > , 

HHHL> , and HHLH >  as strict inequalities. 

Proof of Lemma 2.  Let define functions ( )LLH qG 1  and ( )LLH qF 1  of the exogenous parameter 
Lq1  as follows: 

( ) ( ) ( )HLLHLHLHLLH UUqG Θ−Θ≡1 , and 

( ) ( ) ( )HHLHLHLHLLH UUqF Θ−Θ≡1 . 

By the definitions of ICC’s, we need to show that ( ) 01 >LLH qG  and ( ) 01 >LLH qF  for all 

( )HL qq 11 ,0∈ . 

It is easy to see that ( ) 01 =HLH qG : 

( ) ( ) ( ) 01 =Θ−Θ= HLHHHHHHHLH UUqG  

because, in accordance with Lemma 1, ICC HLHH >  binds.  Contracts 

( )HLHLHLHL DDP ,,0,=Θ  and ( )LHLHLHLH DDP ,0,,=Θ  are determined by 

( ) ( ) ( ) ( )
( )⎪⎩

⎪
⎨
⎧

−+=

−−=−−+−−
LHLHHL

HHHLHLHHLH

qDeqeP

qeqeuDPuqPuq

2211

221122 1111 , and 

( ) ( ) ( ) ( )
( )⎪⎩

⎪
⎨
⎧

−+=

−−=−−+−−
LLHHLH

HHLHLHHLHH

qDeqeP
qeqeuDPuqPuq

1122

221111 1111 . 

Considering these equations as implicit functions ( )LLH qP 1 , ( )LLH qD 1 , ( )LHL qP 1 , and ( )LHL qD 1 , 

one can get the following equalities: 

0
11

== L

HL

L

HL

dq
dD

dq
dP , ( ) 01 =HLH qD , ( ) HHHHHLH qeqePqP 11221 +== , and 
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This allows us to write LLH dqdG 1/  as follows: 
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As ( )1,0 eDLH ∈  for all ( )HL qq 11 ,0∈ , it follows that 0/ 1 <LLH dqdG , and, consequently, 

( ) 01 >LLH qG  for all ( )HL qq 11 ,0∈ . 

Finally, as ( ) ( )HHHHHHLH UU Θ=Θ  and is independent of Ldq1 , it follows that 

0// 11 <= LLHLLH dqdGdqdF , and, consequently, ( ) 01 >LLH qF  for all ( )HL qq 11 ,0∈ . ■ 


