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Abstract

In this paper we study the effects of nonlinearities on the forecast-
ing performance of a dynamic stochastic general equilibrium model.
We compute first and second-order approximations to a New Keyne-
sian monetary model, and use artificial data to estimate the model’s
structural parameters based on its linear and quadratic solution. We
find that, although our model in not far from being linear, the fore-
casting performance improves by capturing the second-order terms in
the solution. Our findings suggest that accounting for nonlinearities
will improve the predictive abilities of DSGE models in many appli-
cations.
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1 Introduction

Forecasting macroeconomic variables is essential for economic decision mak-
ing. Firms and households, for example, usually base their investment deci-
sions on forecasts of future interest rates. Central banks, on the other hand,
typically use forecasts of future growth and inflation rates to decide upon
changes in monetary aggregates. Similarly, fiscal policy choices in general re-
quire predictions of future economic conditions, such as unemployment rates,
growth rates, and tax revenues.
Unfortunately, forecasting macroeconomic variables is not an easy exercise.
Actual economies are dynamic, nonlinear, highly dimensional entities, macro-
economic time series are highly aggregated, samples are short, data are mea-
sured with error, and some important macroeconomic series are not measured
at all.1 Obviously it is hard to construct models that capture the essential
features of the data generating process, and consequently, forecasting macro-
economic time series is a challenging task.
Given its importance and complexity, it is not surprising that economic fore-
casting is a very active field of research. Various competing methods have
been proposed so far, among which are very different approaches such as
large-scale macroeconometric models, univariate time series models, and vec-
tor autoregressions, to name just a few.2

Only very recently, macroeconomic dynamic stochastic general equilib-
rium (DSGE) models have been suggested as forecasting tools. As was
demonstrated in recent work by Ireland (2004a), Christiano, Eichenbaum,
and Evans (2005) and Smets and Wouters (2003), among others, modern
DSGE models are sufficiently rich to capture the dynamics of actual data,
and therefore ready to be used for forecasting. Two good reasons suggest
their particular value in this field.3 First, since DSGE models typically have
less parameters than non-structural econometric models, they can in prin-
ciple be more precisely estimated. This is likely to result in a relatively
better forecasting performance, especially when samples are short. The sec-
ond reason is that DSGE models are less subject to the Lucas critique. Their
parameters usually describe preferences and technology, and are thus deep in
the sense that they do not vary with policy. Therefore, DSGE models allow
to evaluate and forecast the impacts of changes in policy, which makes them
particularly attractive for policymakers such as central banks.

1See Hendry (1995).
2See Clements and Hendry (1998, 1999) for textbook expositions.
3See Diebold (1998) and Del Negro and Schorfheide (2003) for a more detailed discus-

sion.
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Focusing on the class of New Keynesian models4, several recent con-
tributions have demonstrated that DSGE models perform well in forecast-
ing. Results from Smets and Wouters (2004), Adolfson, Linde, and Villani
(2005), and Dib, Gammoudi, and Moran (2006), show that forecasts gen-
erated directly from a New Keynesian model are no worse than forecasts
from unrestricted vector autoregressions. The good performance is demon-
strated to hold for models estimated in both classical and Bayesian envi-
ronments, and for macroeconomic data sets of different countries. A second
role for DSGE models in forecasting has been pointed out by Del Negro and
Schorfheide (2004) and Del Negro, Schorfheide, Smets, and Wouters (2004).
They demonstrate the particular good forecasting properties of DSGE-VARs,
i.e., Bayesian vector autoregressions where prior distributions are generated
from DSGE models.

A limitation of the existing literature on DSGE forecasting, however, is
that it restricts attention to linearized economies. The model’s structural pa-
rameters are estimated based on the approximate likelihood function implied
by the linearized model, and forecasts are generated based on the dynamics
implied by linearized decision rules. Recent work by Fernandez-Villaverde
and Rubio-Ramirez (2005, forthcoming) and Fernandez-Villaverde, Rubio-
Ramirez, and Santos (2006) points out that this practice could be mislead-
ing. They argue that even in scenarios where linearization is accurate enough
in terms of the policy functions, it is likely to be not accurate enough in
terms of the likelihood function, as second-order errors in the policy func-
tions have first-order effects on the likelihood function. Fernandez-Villaverde
and Rubio-Ramirez (2005) show that even in the almost-linear neoclassical
growth model, linearization leads to biased estimates of the model’s para-
meters, and seriously distorts the dynamic properties of the model. Con-
sequently, they suggest to move to at least second-order approximations
when taking DSGE models to the data. Indeed, recent papers by An (2005),
An and Schorfheide (forthcoming), Fernandez-Villaverde and Rubio-Ramirez
(forthcoming), and Amisano and Tristani (2006) demonstrate that the fit of
DSGE models can be improved by accounting for nonlinearities.

Unfortunately, however, capturing nonlinearities is not a straightforward
exercise. When we use a second-order accurate solution, the model translates
into a quadratic state space system. As a consequence, we can no longer use
the Kalman filter to construct the likelihood function, since it relies on the
linearity of the system. Instead we need to rely on Sequential Monte Carlo

4Broadly speaking, New Keynesian (NK) models are DSGE environments where im-
perfect competition and nominal rigidities allow monetary policy to have real effects. See
Woodford (2003) for more information.
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methods, for example particle filters, to approximate the likelihood function.
Since these filters use simulation methods, this slows down the estimation
substantially and introduces sampling error, which may negatively affect the
predictive abilities of the model.

Obviously the following question arises. Is it worth moving from linear
to nonlinear approximations when using DSGE models as forecasting tools?
In this paper we analyze this question within the framework of a simulation
exercise. We generate several artificial data sets, and compare the forecast-
ing performances of the log-linearized New Keynesian model to the quadratic
model, and to unrestricted VAR(1) and VAR(2) models. We first analyze
the case where the data generating process is the nonlinear DSGE model,
i.e., the data are generated from the New Keynesian model solved with a
third-order Galerkin projection method.5 Finally, we repeat this exercise us-
ing artificial time series that come from a VAR(2) model.
Our main findings are the following. First, the New Keynesian model per-
forms well in forecasting, even under misspecification. This result affirms the
conclusions of the papers that have demonstrated the good performance of
DSGE models in forecasting actual data. Secondly, we find that capturing
second-order terms in the policy functions improves the forecasting perfor-
mance of the New Keynesian model. This is not only true when the New
Keynesian model resembles the data generating process, but holds also when
the data are generated from a VAR(2) model.

The remainder of this paper is organized as follows. Section two presents
our version of the New Keynesian model and defines its equilibrium. Section
three briefly illustrates the first and second-order accurate perturbation solu-
tions. Section four recasts the linear and quadratic model in state-space form.
Section five describes how to use Kalman and particle filtering to conduct
Maximum likelihood inference. Section six outlines our forecasting exercise.
Section seven presents its results. Section eight summarizes and concludes.
Finally, we provide the derivation of the model’s equilibrium conditions, the
model’s non-stochastic steady state, and details on the construction of arti-
ficial data in three appendices.

5We are aware of the fact that the third-order projection method is computationally
very demanding and delivers data which are not much different from the data we could ob-
tain from a second-order perturbation solution. However, we follow this approach because
then, neither the first nor the second-order accurate solution coincides with the actual
data generating process. Instead, both methods are approximations to a more nonlinear
DGP. This feature, we believe, is interesting when studying the effects of approximation
methods.

4



2 The Model

This section develops the New Keynesian DSGE model that we will use later
to forecast macroeconomic aggregates. We choose to work with this model
for basically two reasons. First, because New Keynesian models are among
the most popular tools in modern dynamic macroeconomics,6 such that their
properties are very well understood. Secondly, because these models are
typically not far from being linear. If nonlinearities turn out to play a positive
role in forecasting with New Keynesian models, they will be of value for most
forecasting applications of DSGE models.

2.1 The economic environment

Our model builds on the framework developed by Ireland (1997), and is
closely related to models studied by Kim (2000), Ireland (2004a, 2004b),
and Dib, Gammoudi, and Moran (2006), among others. Time is discrete
and goes on forever, i.e. t ∈ {0, 1, 2, ...}. The economy is populated by a
representative household, a representative finished goods-producing firm, a
continuum of intermediate goods-producing firms indexed by j ∈ [0, 1], a
monetary authority and a government. The following sections discuss these
agents in turn.

2.1.1 The representative household

The household enters period t with Mt−1 units of money, Bt−1 units of bonds
and kt units of capital. Within the period, it receives factor payments from
supplying labor ht(j) and capital kt(j) to each intermediate goods-producing
firm j ∈ [0, 1], whereby it takes the nominal factor prices Wt and Qt as
given. The total amounts of labor and capital supplied by the household are
denoted by ht =

∫ 1

0
ht(j)dj and kt =

∫ 1

0
kt(j)dj. Labor income is taxed by

the government at the rate τt. Finally, the household receives dividend pay-
ments from the intermediate goods-producing firms, Dt =

∫ 1

0
Dt(j)dj, and a

nominal transfer Tt from the government. If negative, Tt can be interpreted
as a lump-sum tax.
The household’s expenditures are composed as follows. First, the household
purchases the final good which is used for both consumption ct and invest-
ment xt. In order to transform xt units of of the final good into xt units of
productive capital, the household has to pay a transformation cost, which is

6See Woodford (2003).
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given by

CACt =
φk

2

(
kt+1

kt

− 1

)2

kt.

This specification reflects the idea that it is easier to install new capital
gradually at a slow rate. The parameter φk measures the size of adjustment
costs relative to the capital stock. Furthermore, the household purchases new
bonds at a nominal price of 1/it, where it denotes the gross nominal interest
rate between periods t and t+ 1. The remainder of funds is carried over into
the next period in the form of money, Mt. Letting Pt denote the price level
at time t, the household’s budget constraint is given by

Mt−1 + Bt−1 + (1− τt)Wtht + Qtkt + Dt + Tt

Pt

> ct + xt +
φk

2

(
kt+1

kt

− 1

)2

kt +
Bt/it + Mt

Pt

. (1)

Capital depreciates at the constant rate δ. The capital stock thus evolves
according to

kt+1 = (1− δ)kt + xt. (2)

The household’s spending decisions are made to maximize expected utility
derived from lifetime consumption, money holdings and leisure. Utility in
future periods is discounted by a constant factor β. The household’s choice
is subject to its budget constraint, a no-borrowing constraint on capital, i.e.
kt > 0∀t ∈ {0, 1, 2, ...}, and the law of motion for the capital stock. Formally,
the household solves

max
ct,Mt/Pt,ht,Bt/Pt,kt+1

∞∑
t=0

βtu(ct,Mt/Pt, ht)

where

u(ct,
Mt

Pt

, ht) = at
γ

γ − 1
log

(
c

γ−1
γ

t + b
1
γ

t

(
Mt

Pt

) γ−1
γ

)
+ η log(1− ht),

subject to (1) and (2). The parameter γ corresponds to the interest elastic-
ity of money demand, η values leisure in the utility function, at and bt are
taste shocks. As shown by Ireland (1997), at resembles a shock to the IS
curve in traditional Keynesian analyses, whereas bt can be interpreted as a
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money demand shock. The logarithms of the shocks follow the stationary
autoregressive processes

log(at+1) = (1− ρa) log(a) + ρa log(at) + εa,t,

log(bt+1) = (1− ρb) log(b) + ρb log(bt) + εb,t,

with εa,t ∼ N(0, σ2
a) and εb,t ∼ N(0, σ2

b ).

2.1.2 The representative finished-goods-producing firm

The representative finished-goods-producing firm is assumed to produce yt

units of a single output good on a perfectly competitive market. Intermediate
goods, yt(j), j ∈ [0, 1], serve as the only inputs in the production. The firm’s
objective is to maximize profits, whereby it takes the price of its own output
good, as well as the prices of all intermediate goods as given. Formally, it
solves the problem

max
yt,yt(j)

Ptyt −
∫ 1

0

yt(j)Pt(j)dj (3)

subject to a constant returns to scale technology,

yt =

[∫ 1

0

yt(j)
(θ−1)/θdj

]θ/(θ−1)

, (4)

and for given prices Pt and Pt(j), j ∈ (0, 1). Due to perfect competition on
the final goods market, the firm earns zero profits in equilibrium. It is easy
to check that, as a consequence, the equilibrium price for the output good is
given by

Pt =

[∫ 1

0

Pt(j)
1−θdj

] 1
1−θ

,

and the demand for intermediate good j equals

yt(j) =

(
Pt(j)

Pt

)−θ

yt.

2.1.3 The representative intermediate-goods-producing firm

The intermediate goods-producing firm j hires ht(j) units of labor and kt(j)
units of productive capital from the household to produce yt(j) units of the

7



intermediate good j. The production technology is described by a Cobb-
Douglas production function with labor augmenting technological change,
i.e.,

yt(j) = kt(j)
α[ztht(j)]

1−α.

The parameter α gives capital’s share in output, and zt is a technology shock
which follows the autoregressive process

log(zt+1) = (1− ρz) log(z) + ρz log(zt) + εz,t,

where εz,t ∼ N(0, σ2
z). Intermediate goods are produced on a monopolistically

competitive market, such that each firm can set its nominal price. After hav-
ing set its price, the firm satisfies the demand from the final goods-producing
firm.

We assume that price adjustment is costly: in terms of the finished good,
real price adjustment costs are given by

PACj
t =

φp

2

[
Pt(j)/Pt−1(j)

π
− 1

]2

yt

where φp is the adjustment cost parameter, and π denotes the steady state
rate of inflation. This specification of price adjustment costs goes back to
Rotemberg (1982), and has been used in a DSGE framework by Ireland
(1997) and Kim (2000), among others. As emphasized by Rotemberg (1982)
and Ireland (1997), it captures the negative effects of price changes on the
relationship between customers and firms, which increase in magnitude with
the size of the price change and with the quantity purchased.
Due to price adjustment costs the firm faces a dynamic optimization problem.
We follow Ireland (1997) and assume that the firm seeks to maximize its total
market value,

E0

∞∑
t=0

βt λt

Pt

Dt(j).

In the above expression, λt denotes the Lagrangian multiplier associated with
the household’s budget constraint. Consequently, βt λt

Pt
can be interpreted as

the marginal utility value of one unit of profits in period t to the representa-
tive household. Formally, the firm’s dynamic problem is given by

max
ht(j),kt(j),Pt(j)

E0

∞∑
t=0

βt λt

Pt

Dt(j)
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subject to the constraints

Dt(j) = Pt(j)yt(j)−Wtht(j)−Qtkt(j)− φp

2

[
Pt(j)/Pt−1(j)

π
− 1

]2

ytPt,

yt(j) =
Pt(j)

Pt

−θ

yt, and

yt(j) = kt(j)
α[ztht(j)]

1−α.

2.1.4 The monetary authority

The central bank conducts monetary policy by adjusting the nominal interest
rate it. It follows a modified Taylor rule, in which it smoothes interest rates
and reacts to deviations in output and inflation from their target values.
Formally, the policy rule is given by

log
it
i

= ρi log
it−1

i
+ ρy log

yt

y
+ ρπ log

πt

π
+ εi,t, (5)

where i, y, and π denote the target (or steady-state) values of the respective
variables. The central bank can choose the level of one of these target vari-
ables, as well as the parameters ρi, ρy and ρπ. In the following we assume
that the central bank sets its inflation target, π, and then implements its
policy rule by adjusting the nominal money stock, such that (5) holds and
the money market clears. The expression εi,t ∼ N(0, σ2

i ) denotes a monetary
policy shock: we assume that the central bank can influence the nominal
interest rate only indirectly by setting the bank rate, such that the market
interest rate is given by the central bank’s target rate plus an error term
which reflects movements in financial markets that cannot be influenced by
the central bank. Finally, we assume that the revenue from money creation
is transferred entirely to the fiscal authority.

2.1.5 The fiscal authority

The fiscal authority receives newly created money from the central bank ,
issues new debt, and taxes labor income. It spends its revenue to finance
public goods, to provide lump-sum transfers to the representative household,
and to repay debt. Formally, the government’s budget constraint is given by

Ptgt + Tt + Bt−1 = τtWtht + (Mt −Mt−1) + Bt/it.

To keep the analysis as simple as possible, we assume that government spend-
ing is exogenous and constant over time, i.e. gt = g. Furthermore, we assume
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the tax rate is exogenously given and follows the AR(1) process

log τt+1 = (1− ρτ ) log τ + ρτ log τt + ετ,t,

where ετt ∼ N(0, σ2
τ ).

7 The government faces a No-Ponzi constraint, which
implies that the present value of government expenditures must equal the
present value of government revenues plus the initial amount of public debt.
As the representative household in our model lives forever and expectations
are rational, our model exhibits Ricardian equivalence in the following sense:
given the tax rate on labor income, it does not matter in equilibrium whether
the government finances its spending by lump-sum taxes or by debt. We
thus abstract from government borrowing, i.e. we set Bt = 0 for all t ∈
{0, 1, 2, . . .}. The government’s budget constraint is then - without loss of
generality - given by

Ptg + Tt = τtWtht + (Mt −Mt−1) (6)

Given the exogenous process for the tax rate and the money transfers from
the central bank, the government’s lump-sum transfers Tt are determined
residually so that the budget constraint is satisfied in every period.

2.2 The symmetric competitive equilibrium

We study the model’s implications by analyzing its symmetric competitive
equilibrium, in which all intermediate goods-producing firms can be rep-
resented by an aggregate firm. The symmetric competitive equilibrium in
sequence formulation is defined as follows:

Definition A symmetric competitive equilibrium is a set of initial values,
{k0,M−1, P−1}, a price system {Pt,Wt, Qt, it}∞t=0, a sequence of allocations,
{ct,Mt, ht, kt, yt, Dt, Tt}∞t=0, a tax system {τt}∞t=0, and a sequence of exogenous
shocks {at, bt, zt, εi,t}∞t=0 such that:

1. Given initial values {k0,M−1, P−1}, shocks {at, bt}∞t=0, prices
{Pt,Wt, Qt, it}∞t=0, profits {Dt}∞t=0, lump sum transfers {Tt}∞t=0, and
taxes {τt}∞t=0, the sequences {ct, ht,Mt, kt+1}∞t=0 solve the household’s
optimization problem.

2. Given prices {Pt}∞t=0 and {Pt(j)}∞t=0 for all j ∈ [0, 1], the quantities
{yt}∞t=0 and {yt(j)}∞t=0, j ∈ [0, 1], solve the finished-goods-producing
firm’s optimization problem.

7The simple design of the fiscal authority in our model is obviously controversial. How-
ever, since we use only simulated data in our analysis and do not want to judge the model
against real data, we believe it is justified in our application.
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3. Given the initial price P−1(j), sequences {Pt,Wt, Qt, yt, zt}∞t=0, and the
final demand for good j, {yt(j)}∞t=0, the sequences {ht(j), kt(j), Pt(j)}∞t=0

solve firm j’s optimization problem; this holds for every j ∈ [0, 1].

4. The sequences {it, yt, Pt, εit}∞t=0 satisfy the monetary authority’s policy
rule at every time t ∈ {0, 1, 2, . . .}.

5. Given initial money holdings M−1, the sequences {Pt, Tt, τt,Wt, ht,Mt}∞t=0

satisfy the government’s budget constraint at every t ∈ {0, 1, 2, . . .}.
6. The sequences {at, bt, zt, τt}∞t=0 obey their respective log-linear laws of

motion.

7. For every firm j ∈ [0, 1] and every t ∈ {−1, 0, 1, 2, . . .}, it holds that
yt(j) = yt, Pt(j) = Pt , ht(j) = ht, kt(j) = kt, and Dt(j) = Dt.

The equilibrium defined above is given by a collection of infinite sequences of
decision variables, and the model’s dynamics are therefore obviously difficult
to compute and to characterize from this definition. It is more convenient
to work with a recursive equilibrium in which agents choose time invariant
policy functions that map the state of the economy into decision outcomes
in every period t ∈ {0, 1, 2, ...}. Solving for the model’s equilibrium then
translates into finding a set of functions rather than finding infinite sequences
of decision variables.

Let us begin the formal description of the recursive competitive equilib-
rium by characterizing the model’s equilibrium conditions. Let mt = Mt/Pt

denote real money holdings, wt = Wt/Pt and qt = Qt/Pt real factor prices,
and πt = Pt/Pt−1 denote inflation. Furthermore, let λt denote the co-state
variable associated with the household’s optimization problem, and let ωt(j)
be the co-state variable associated with the problem of intermediate-goods-
producing firm j. With this notation at hand, the model’s equilibrium con-
ditions are given by:

0 = c
1
γ

t λt[c
γ−1

γ

t + b
1
γ

t m
γ−1

γ

t ]− at (7)

0 = λtwt(1− ht)(1− τt)− η (8)

0 = βitEt(λt+1/πt+1)− λt (9)

0 = mt

(
1− 1

it

)γ

− btct (10)

0 = βEt

{
λt+1 (qt+1 + 1− δ)− φk

2
λt+1

(
kt+2

kt+1

− 1

)2

(11)

+φkλt+1

(
kt+2

kt+1

− 1

)(
kt+2

kt+1

) }
− φkλt

(
kt+1

kt

− 1

)
− λt
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0 = kα
t [ztht]

1−α − yt (12)

0 = yt − wtht − qtkt − φp

2

(πt

π
− 1

)2

yt − dt (13)

0 = ωt(1− α)yt − λtwtht (14)

0 = ωtαyt − λtqtkt (15)

0 = (1− θ)λt + θωt − λtφp

(πt

π
− 1

)πt

π

+βφpEt

{
λt+1

(πt+1

π
− 1

)πt+1

π

yt+1

yt

}
(16)

0 = ρi log
it−1

i
+ ρy log

yt

y
+ ρπ log

πt

π
+ εi,t − log

it
i

(17)

0 = ct + xt + g +
φk

2

(
xt

kt

− δ

)2

kt +
φp

2

(πt

π
− 1

)2

yt − yt (18)

0 = kt+1 − (1− δ)kt − xt (19)

0 = (1− ρa) log(a) + ρa log(at) + εa,t+1 − log(at+1) (20)

0 = (1− ρb) log(b) + ρb log(bt) + εb,t+1 − log(bt+1) (21)

0 = (1− ρz) log(z) + ρz log(zt) + εz,t+1 − log(zt+1) (22)

0 = (1− ρτ ) log(τ) + ρτ log(τt) + ετ,t+1 − log(τt+1) (23)

A formal derivation is provided in Appendix A. The intuition behind these
conditions is the following. Equations (7) -(11) describe optimal household
behavior. More precisely, (7) and (8) equate the marginal rate of substitu-
tion between labor and consumption to the real after-tax wage, (9) describes
the household’s indifference between consumption and bond holdings, (10)
describes optimal money holdings, and equation (11) states that, in equilib-
rium, the marginal utility cost of one unit of additional investment at time t
equals the discounted expected marginal utility value of its return in period
t + 1. Equations (12) -(16) come from the production side of the model.
(12) gives the aggregate production function, (13) characterizes the interme-
diate firm’s budget constraint, (14) and (15) compute the marginal products
of labor and capital to their respective factor prices, and (16) descibes the
price-setting behavior of firms.8 Finally, (17) describes the monetary policy

8Note that a first-order approximation of (16) leads to the popular New Keynesian
Phillips curve equation,

π̂t =
θ − 1
φp

ϕ̂t + βEtπ̂t+1,

where hatted variables denote percentage deviations from the steady state. ϕ̂t = λ̂tω̂t

describes real marginal costs of production, as can be derived from equations (14) and
(15).
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rule, (18) denotes the aggregate resource constraint in the economy, (19) de-
fines investment and (20)-(23) characterize the evolution of the exogenous
state variables.

More generally, the equilibrium conditions can be summarized as

EtR(ft+1, ft, , st+1, st, εt; Θ) = 0. (24)

The non-linear function R represents the equilibrium conditions. Its ar-
guments are the state vector st = (kt, it−1, at, bt, zt, τt)

′, the vector of deci-
sion variables ft = (yt, ct, wt, ht, qt, dt, kt+1, πt, λt, ωt,mt)

′9, the vector εt =
(εa,t, εb,t, εz,t, ετ,t, εi,t)

′ which collects the exogenous disturbances, and Θ =
(β, α, δ, θ, η, φk, φp, γ, g, π, a, b, z, τ, ρa, ρb, ρz, ρτ , σa, σb, σz, στ , σr, ρr, ρy, ρπ)′,
which summarizes the model’s structural parameters. Let us denote the vari-
ance matrix of εt by Σε.
Together with transversality and No-Ponzi conditions, the conditions sum-
marized in (24) are sufficient for equilibrium.10 We can thus define the sym-
metric competitive equilibrium of our model recursively as follows:

Definition A recursive symmetric competitive equilibrium is a pair of policy
functions, {Φ, Ψ}, such that - for every initial state s0 and exogenous process
{εt}∞t=0 - the sequences {ft}∞t=0 and {st+1}∞t=0 generated recursively by ft =
Φ(st) and st+1 = Ψ(st, εt) satisfy the system of functional equations (24), as
well as transversality and No-Ponzi conditions.

3 The linear and quadratic perturbation so-

lutions

From the equilibrium definition stated above it is clear that, to compute
the model’s equilibrium, we need to solve a rational expectations system
of nonlinear functional difference equations. Analytical solutions of such
systems are hardly ever feasible, and like in most applications of DSGE
models, this is true also for our model. Consequently, we need to resort to
numerical methods and work with approximate solutions.
The by far most popular approach to solve DSGE models numerically is
by using perturbation methods, in particular, the (log-)linearization of the
model around its non-stochastic steady state. Only recently, second-order
perturbation solutions have become more popular, as they have been shown

9We include kt+1 in the vector of control variables to account for the occurrence of kt+2

in the equilibrium conditions.
10See Stokey and Lucas (1989) for further details.
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to deliver substantially better approximations in many applications. The
remainder of this section briefly presents the two approaches.

3.1 First-order perturbation

Linearizing a model around its steady state is popular in economics since
it is conceptually simple, straightforward to implement on a computer, and
fast. In the empirical analysis of DSGE models, an additional advantage is
that the linearized model represents a linear state space system. In that case,
one can easily conduct likelihood-based inference, since - given the numerical
solution of the model - the Kalman filter allows to construct the implied
likelihood function analytically.
However, linearization is known to often give only a very poor description of
the theoretical model. In particular, models solved by log-linearization are
not suited to study economies in which risk has important effects, since they
display the certainty equivalence property.11

Log-linearization implies laws of motion for our model’s variables given by

ŝt+1 = Ψ̃1(Θ)ŝt + Γεt, and (25)

f̂t = Φ̃1(Θ)ŝt. (26)

The vectors ŝt = log(st/s) and f̂t = log(ft/f) denote deviations of the respec-
tive variables from their steady state values s and f . The matrix Γ consists
of zeros and ones, indicating whether a variable is directly hit by a shock or
not. The ns×ns matrix Ψ̃1 and the nf ×ns matrix Φ̃1 capture the dynamics
of the model: the elements of Ψ̃1 approximate the elasticities of future states
with respect to current states, whereby the entries in Φ̃1 approximate the
elasticities of current decisions with respect to current states.
Both Ψ̃1 and Φ̃1 are functions of the structural parameters of the model.
Depending on the exact values of these parameters three cases are possible:
there exists a unique solution (determinacy), there exist multiple solutions
(indeterminacy), or there exists no solution of the linearized equilibrium sys-
tem (nonexistence). As is common in the literature, we focus only on the
first case and restrict the parameter space to rule out nonexistence or inde-
terminacy.
When computing the matrices Ψ̃1 and Φ̃1 numerically, we follow the approach
by Klein (2000), since it is particularly easy to implement.12 Alternatively,

11This feature makes them inadequate for welfare analysis under uncertainty and for
studying time-varying volatilities. See Kim and Kim (2003) and Fernandez-Villaverde and
Rubio-Ramirez (forthcoming).

12Details can be found in our MATLAB codes which are available upon request.
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we could use the approaches by Blanchard and Kahn (1980), Uhlig (1999),
or Sims (2002), among others.

3.2 Second-order perturbation

Second-order perturbation extends linearization techniques by capturing second-
order terms in the policy functions. The resulting law of motion for the jth
state variable is given by

ŝ
(j)
t+1 = Ψ̂

(j)
0 (Θ) + Ψ̂

(j)
1 (Θ)ŝt +

1

2
ŝ′tΨ̂

(j)
2 (Θ)ŝt + Γεt. (27)

Similarly, the kth decision variable evolves according to

f̂
(k)
t+1 = Φ̂

(k)
0 (Θ) + Φ̂

(k)
1 (Θ)ŝt +

1

2
ŝ′tΦ̂

(k)
2 (Θ)ŝt. (28)

The vector Ψ̂
(j)
1 corresponds exactly to the jth row in the matrix Ψ̃1 ob-

tained through linearization, and Φ̂
(k)
1 corresponds to the kth row in Φ̃1. The

ns × ns matrices Ψ̂
(j)
2 and Φ̂

(k)
2 capture the second-order terms of the policy

functions. The constants Ψ̂
(j)
0 (Θ) and Φ̂

(k)
0 (Θ) correct for precautionary be-

havior. Consequently, the unconditional means of the model’s variables do
no longer coincide with their steady state values in the case of the quadratic
solution.
As is the case for linearization, several methods are available to numerically
compute the matrices of the second-order approximation. Popular algorithms
include Collard and Juillard (2001), Swanson, Anderson, and Levin (2003),
and Schmitt-Grohe and Uribe (2004). We follow the latter approach.

4 The state-space representation

Assume that we observe time series of length T on NY macroeconomic vari-
ables, summarized by YT = {Yt}T

t=1.
13 Together with the data, our model

forms a nonlinear state-space system:

Xt+1 = H(Xt, εt; Θ) (transition equation) (29)

Yt = G(Xt, νt) (measurement equation) (30)

Xt = (s′t, f ′t)
′ collects the model’s (state and decision) variables, whereas H

is a nonlinear function that can be constructed from Ψ and Φ. G is a map-
ping which relates the model’s variables to the observables. For the sake of

13Let us for the sake of notational simplicity introduce Y0 = ∅.
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notational simplicity we make the common (and non-restrictive) assumption
that the data are linear transformations of the model’s variables, and hence
G is a linear function. Finally, νt denotes a vector of measurement errors. For
simplicity we will assume that νt ∼ N(0, Σν), where Σν is diagonal. Since
the functions Ψ and Φ cannot be derived analytically, we have no closed-form
solution for H. However, using the approximate model solutions described
in the previous section, we can again construct linear and quadratic approx-
imations.

The linear state-space model
Recall that the first-order accurate solution of the model is given by the lin-
ear policy functions (25) and (26). Introducing X̂t = (ŝ′t, f̂ ′t)

′ and G(Xt, νt) =
GXt + νt we can thus recast the linearized model in state-space form:

Xt = H(Θ)Xt−1 + J(Θ)εt (31)

Yt = GXt + νt (32)

The matrices H and J can be constructed in a straightforward way from Ψ̃1,
Φ̃1 and Γ.

The quadratic state-space model
The model’s second-order accurate policy functions (27) and (28) imply a
quadratic transition equation, such that the model in state-space form is
given by:

Xt = H̃(Xt−1, εt; Θ), (33)

Yt = GXt + νt (34)

H̃ is a quadratic function that follows directly from (27) and (28).

5 Maximum Likelihood estimation

The state-space representations presented above can be used, together with
filtering techniques, to conduct likelihood based inference. Being precise, we
can estimate the model’s structural parameters, Θ, as well as the measure-
ment error variances, Σν , by Maximum Likelihood or Bayesian methods. Our
paper follows the classical approach.
Let us first describe how to construct the likelihood of a data sample YT for
given Θ and Σν . In the case of the linearized model, this will be achieved
through the Kalman filter. In the quadratic case, we will use the particle fil-
ter as suggested by Fernandez-Villaverde and Rubio-Ramirez (forthcoming),
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whereby we closely follow the implementation by An and Schorfheide (forth-
coming). In particular, we heavily build on computer code developed by the
latter authors. Finally, we briefly discuss the numerical maximization of the
likelihood function with respect to Θ and Σν .

5.1 The Kalman filter

Equations (31) and (32) constitute a linear state-space system with Gaussian
errors. Hence, for given values of Θ and Σν we can use the Kalman filter to
construct the likelihood of the sample YT = {Yt}T

t=1,

L(YT |Ω) =
T∏

t=1

p(Yt|Y t−1; Ω), (35)

where Ω = {Θ, Σν}. An extensive description (including proofs) of the
Kalman filter is provided in many econometrics textbooks, for example, in
Chapter 13 of Hamilton (1994). We thus confine ourselves here to a brief il-
lustration, which serves mainly to easy the comparison between the Kalman
filter and the particle filter presented in the following section.
Our implementation of the Kalman filter consists of the following steps:

1. Initialization. We start by deriving a predictor of the first state,
X1|014, and an estimate of the corresponding prediction error covariance
matrix, ΣX

1|0 = E[(X1 − X1|0)(X1 − X1|0)′]. We follow the standard
approach for stationary processes which builds on the steady state of
the system. Being precise, we set X1|0 = X∗ and ΣX

1|0 = Σ∗ such that
X∗ = HX∗ and

Σ∗ = HΣ∗H′ + JΣεJ
′ = [I − H⊗ H]−1vec(JΣεJ

′).

Then we set t = 1 and proceed.

2. Forecasting. In the beginning of period t, we use the state predictor
Xt|t−1 together with the measurement equation (32) to compute the
best linear predictor for Yt,

Yt|t−1 = E(Yt|Y t−1) = GXt|t−1.

After having observed Yt, we construct the forecast error

ut = Yt − Yt|t−1 = Yt −GXt|t−1 = νt + G(Xt −Xt|t−1).

14In general, we use the notation Zt|s = E(Zt|Ys) to denote the best predictor for a
variable Z at time t, Zt, conditional upon information available at time s.
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Since the system (31),(32) is linear with Gaussian errors, ut is normally
distributed with mean zero and variance matrix Σu

t = Σν + GΣX
t|t−1G

′.
Furthermore, since Yt|t−1 is by construction the best linear predictor of
Yt given Y t−1, it follows that

p(Yt|Y t−1; Ω) =
1√

(2π)NY |Σu
t |

exp

(
−u′t(Σ

u
t )
−1ut

2

)
. (36)

Expression (36) points out that, in order to compute the likelihood (35),
we need to compute the sequences {ut}T

t=1 and {Σu
t }T

t=1. This requires
to keep track of the state predictors and their variances, in particular,
at every point in time t we need to compute Xt+1|t and ΣX

t+1|t from

Xt|t−1 and ΣX
t|t−1.

3. Updating. The crucial step in deriving Xt+1|t and ΣX
t+1|t is the up-

dating of the state predictor, i.e., to compute the best predictors Xt|t
and ΣX

t|t, from Xt|t−1, ΣX
t|t−1, and the observed data Yt. As shown by

Kalman (1960), this can be achieved according to

Xt|t = Xt|t−1 + Kt(Yt − Yt|t−1) = Xt|t−1 + Kt(Yt −GXt|t−1),

ΣX
t|t = ΣX

t|t−1 −KtGΣX
t|t−1,

where

Kt = ΣX
t|t−1G

′(GΣX
t|t−1G

′ + Σν)
−1.

Kt is denoted the Kalman gain matrix. Now that Xt|t and ΣX
t|t have

been derived, we can obtain Xt+1|t = HXt|t and ΣX
t+1|t = HΣX

t|tH
′+JΣεJ

′

in a straightforward way.
Unless t = T we set t = t + 1 and return to step 2.

4. Likelihood construction. We use the sequences {ut}T
t=1 and {Σu

t }T
t=1

to construct the likelihood as

L(YT |Θ, Σν) =
T∏

t=1

1√
(2π)NY |Σu

t |
exp

(
−u′t(Σ

u
t )
−1ut

2

)
. (37)

5.2 The particle filter

The Kalman filter can no longer be applied to build the likelihood in a non-
linear and/or non-Gaussian environment. Consequently, we need to resort to
different methods to construct the likelihood implied by the quadratic model
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(33) and (34). Fernandez-Villaverde and Rubio-Ramirez (forthcoming) sug-
gest to use Sequential Monte Carlo methods, and introduce a particle filter
that allows to obtain the likelihood function of a DSGE model solved with a
non-linear method. We follow their approach and proceed as follows.
We start by rewriting the likelihood function (35) as

L(YT |Ω) =
T∏

t=1

∫
p(Yt|Xt,Y t−1; Ω)p(Xt|Y t−1; Ω)dXt. (38)

For the quadratic model we cannot compute this expression analytically,
since a closed form solution for p(Xt|Y t−1; Ω) is infeasible. However, we can
use simulation methods to derive an approximation. More precisely, we can
construct draws {x̃i

t|t−1}N
i=1 (a so called swarm of particles, hence the name

particle filter) from each density in the sequence {p(Xt|Y t−1; Ω)}T
t=1, which -

by the law of large numbers - allows us to approximate the likelihood (38)
with

L(YT |Ω) ≈
T∏

t=1

1

N

N∑
i=1

p(Yt|x̃i
t|t−1,Y t−1; Ω). (39)

Similar to the Kalman filter, this involves the following steps.

1. Initialization. We draw initial particles {x̃i
1|0}N

i=1 from the density

p(X1; Ω). We accomplish this in the following way, which is well doc-
umented in An (2005). First we generate {x̃i

−1}N
i=1, where x̃i

−1 is set
to the non-stochastic steady state for all i = 1, ..., N . Then we draw
N realizations of the model’s innovations, εi

0, i = 1, ..., N , and use the
transition equation (33) to construct {x̃i

0|0}N
i=1. Since

p(Xt+1|Y t; Ω) =

∫
p(Xt+1|Xt; Ω)p(Xt|Y t; Ω)dXt ≈ 1

N

N∑
i=1

p(Xt+1|x̃i
t|t)(40)

we can then use {x̃i
0|0}N

i=1 together with the transition equation (33) to

sample N draws {x̃i
1|0}N

i=1 from the conditional density p(X1|Ω). This

amounts to generating one draw from p(Xt+1|x̃i
t|t) for each i.

We set t = 1 and proceed.

2. Forecasting. In the beginning of period t, we use the particles {x̃i
t|t−1}N

i=1

to construct forecasts {Y i
t|t−1}N

i=1, where

Y i
t|t−1 = Gx̃i

t|t−1.
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After having observed Yt, we construct the prediction errors {ξi
t}N

i=1,
where

ξi
t = Yt − Y i

t|t−1.

Note that, conditional on the state particle x̃i
t|t−1, the uncertainty in ξi

t

comes solely from measurement errors. Therefore, we can use {ξi
t}N

i=1

to compute the densities p(Yt|x̃i
t|t−1,Y t−1; Ω), i = 1, ..., N , according to

p(Yt|x̃i
t|t−1,Y t−1; Ω) =

1√
(2π)NY |Σν |

exp

(
−ξ′t,i(Σν)

−1ξt

2

)
. (41)

This expression shows that, to construct the approximate likelihood
function (42), we need particles {x̃i

t|t−1}N
i=1 from the densities p(Xt|Y t−1; Ω)

for all t = 1, ..., T .
In the following step we illustrate how to use the particles {x̃i

t|t−1}N
i=1

together with the observations Yt to draw particles {x̃i
t+1|t}N

i=1 from

p(Xt+1|Y t; Ω).

3. Updating. We continue by computing the normalized weights

qi
t =

p(Yt|x̃i
t|t−1,Y t−1; Ω)

∑N
i=1 p(Yt|x̃i

t|t−1,Y t−1; Ω)
.

Note that for every particle x̃i
t|t−1, qi

t gives the relative likelihood of the
observation Yt, conditional on the particle and on past observations.
Then we generate particles {x̃i

t|t}N
i=1 by sampling N times with replace-

ment from {x̃i
t|t−1} using the weights {qi

t}N
i=1. That is, we construct

{x̃i
t|t}N

i=1 such that15

Prob
(
x̃i

t|t = x̃i
t|t−1

)
= qi

t.

As emphasized in Corollary 5 of Fernandez-Villaverde and Rubio-Ramirez
(forthcoming), the particles {x̃i

t|t}N
i=1 are draws from p(Xt|Y t; Ω). Due

to (40), we can then use {x̃i
t|t}N

i=1 together with the transition equation

(33) to generate particles {x̃i
t+1|t}N

i=1 from p(Xt+1|Y t; Ω).
Unless t = T we set t = t + 1 and return to step 2.

4. Likelihood construction. We use the sequence {{ξi
t}N

i=1}T
t=1 to con-

struct the likelihood as

L(YT |Ω) ≈
T∏

t=1

1

N

N∑
i=1

1√
(2π)NY |Σν |

exp

(
−ξi

t
′
(Σν)

−1ξi
t

2

)
. (42)

15We follow the suggestion by Fernandez-Villaverde and Rubio-Ramirez (forthcoming)
and An (2005) and use the deterministic resampling approach by Kitagawa (1996).
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5.3 Maximizing the likelihood function

Once we have constructed the likelihood function, either from the linear or
the quadratic model, we need to numerically maximize it with respect to the
parameters Ω. Often this turns out to be a daunting task, since the likelihood
function of a DSGE model typically has many local maxima. Numerical
maximization routines, in particular Gradient-based methods, are known to
have serious difficulties not to get stuck in a local maximum. We therefore
use a combination of the simulated annealing approach proposed by Goffe,
Ferrier, and Rogers (1994) and the MATLAB built-in function fminsearch to
maximize the likelihood function.16

6 The forecasting exercise

We start our forecasting exercise by generating artificial data from the non-
linear New Keynesian model. To this end, we first calibrate the model. Our
parameter choices are summarized in Table 1, and briefly discussed in Ap-
pendix C. Then we solve the model numerically using a third-order Galerkin
projection method. With the solution at hand, we simulate the model and
construct 100 data sets, each of which consists of 96 observations on five
macroeconomic variables: output, real money holdings, inflation, nominal
interest rates, and the labor tax rate.17 Similarly, we construct 100 data sets
from a VAR(2) model. Further details on the construction of our artificial
data are provided in Appendix C.
The first 80 observations of each data set are used to estimate four compet-
ing models: the linear and quadratic versions of our New Keynesian DSGE
model, and the following VAR(1) and VAR(2) models:

Ŷt = A1Ŷt−1 + v1
t , v1

t ∼ N(0, ΣV
1 ) (43)

Ŷt = A2
1Ŷt−1 + A2

2Ŷt−2 + v2
t , v2

t ∼ N(0, ΣV
2 ) (44)

Ŷt denotes deviations of the data from their unconditional sample mean.
Furthermore, ΣV

1 and ΣV
2 are assumed to be diagonal. We estimate the VAR

16Metaphorically speaking, we use simulated annealing to find the highest mountain,
and use fminsearch to climb up to its top.

17Unfortunately, using 100 totally different data sets would go beyond our computing
capacities, since the particle filter estimation is very time consuming and we cannot re-
peat it so many times. We thus use the following shortcut: we generate five realizations
of the first 80 observations (which will be used for estimation), and for each of these, we
construct 20 different realizations of the subsequent 16 periods. Obviously this is some-
what suboptimal, however, we do not find a better approach given our endowment with
computing facilities.
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parameters by Least Squares.
For the New Keynesian models, the parameters to be estimated are the struc-
tural parameters, Θ, and the measurement error variances, Σν . As is common
in the literature18, we fix some parameters (which are typically weakly iden-
tified by the data) prior to estimation. These are the labor parameter η, the
elasticity of substitution between intermediate goods, θ, and the parameters
associated with capital, α, δ, and φk. The remaining 26 parameters are es-
timated by numerically maximizing the likelihood function implied by the
Kalman and the particle filter, respectively. For the particle filter, we follow
Fernandez-Villaverde and Rubio-Ramirez (forthcoming) and use N = 80.000
particles.
We then use each of the four models to compute 1 to 16 step ahead forecasts
of the last 16 observations in our samples. The forecasts of the New Key-
nesian models are based on the final state predictor, XT |T , implied by the
Kalman and the particle filter, respectively. Obviously, the accuracy of the
state prediction is crucial for the accuracy of the forecasts generated from
the model. Therefore, once the parameters have been estimated using 80.000
particles, we increase the number of particles to 400.000 to compute XT |T
from the quadratic model. This generates more precise estimates of the state,
and since it has to be done only once after each estimation algorithm, it does
not create a remarkable computational burden.
We evaluate the forecasts of all models using both univariate and multivari-
ate measures. Our univariate measures of forecast accuracy are the mean
forecast errors,

MFE(i, h) =
1

N f

Nf∑
s=1

ei
s(h), (45)

together with the root mean squared forecast errors,

RMSFE(i, h) =

√√√√ 1

N f

Nf∑
s=1

ei
s(h)2. (46)

In the above expressions, we use the following notation. N f gives the overall
number of available h step ahead forecasts (N f = 100 in our application),
es(h) gives the vector of h-step ahead forecast errors from the data set in-
dexed by s. The index i = 1, ..., NY indicates the forecasted variable, and
ei

s(h) denotes the ith element in the vector es(h).
Our multivariate measures are the log-determinant statistics suggested by

18See, for example, Ireland (2004a).
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Adolfson, Linde, and Villani (2005). The log-determinant statistic to evalu-
ate the h step-ahead forecasting performance is given by log |Ω(h)|, where

Ω(h) =
1

N f

Nf∑
s=1

ẽs(h)ẽs(h)′, (47)

ẽs(h) = M−1/2es(h), and M denotes a positive definite scaling matrix. In our
analysis, we use a diagonal scaling matrix with the average sample variances
in our artificial data as diagonal elements.19

7 Results

We now present the results of our forecasting exercise. We first outline the
case where the data are generated from the nonlinear New Keynesian DSGE
model, and later present the case where the DGP is a vector autoregression.

7.1 The DGP is the nonlinear New Keynesian model

We first consider the scenario where the artificial data are generated from
the nonlinear New Keynesian model, more precisely, the New Keynesian
model solved by a third-order Galerkin projection method. Details on the
construction of the data can be found in Appendix C.

We start the analysis by inspecting the parameter estimates associated
with the New Keynesian models. Table 2 presents the minimum, maxi-
mum and average parameter estimates obtained from the linearized model,
together with the true values which were used for simulation. The corre-
sponding estimates obtained from the quadratic model are documented in
Table 3. We observe that most of the parameters are reasonably well identi-
fied, and that the point estimates of the structural parameters, Θ, are very
similar for the linearized and the quadratic model. The observation error
variances, Σν , however, are more precisely estimated by the particle filter
used for the quadratic model.

The forecasting performances of our four competing models are illus-
trated in Figure 1 and Table 4. Figure 1 plots the absolute values of the
mean forecast errors (column one), as well as root mean squared forecast er-
rors (column two). Our first observation is that, compared to the linearized

19Alternatively, we could study the trace of Ω(h) instead of its determinant. However,
since we use a diagonal scaling matrix, the trace statistic would reduce to a simple weighted
average of the individual mean squared forecast errors, thus not incorporating information
on correlation of forecast errors associated with different series. We therefore prefer the
log-determinant statistic.
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New Keynesian model, the quadratic model gives better predictions for the
money series. This holds for both the average and the mean squared forecast
errors, and for all forecast horizons. Furthermore, it yields better predictions
for the labor tax rate, which is particularly interesting since the tax rate
is a series with linear dynamics.20 Finally, the quadratic model appears to
give slightly better forecasts for output, whereas it does not provide better
predictions for inflation and the interest rate, which are roughly equally well
predicted by the linear model.
Comparing the New Keynesian model to the two VAR benchmarks by uni-
variate measures illustrates the good predictive abilities of DSGE models.
According to the RMSFE, the quadratic model beats both VAR models at
short horizons, and does roughly equally well at longer horizons.

Let us now turn to the multivariate measures of forecast accuracy, sum-
marized in Table 4. The log-determinant statistics display a clear winner
among our four models: the quadratic New Keynesian model. It outper-
forms its three competitors at all forecast horizons. Interestingly, the rel-
ative advantage of the quadratic model over its linearized counterpart, as
measured by the log-determinant statistics, arguably increases with the fore-
cast horizon. This is particularly relevant for practitioners who use dynamic
stochastic general equilibrium models for long-run forecasting.

Finally, let us close this section by briefly discussing the size of quality
improvements that are achieved by moving to second-order approximations.
At first sight, the differences in our accuracy measures seem not very big
in magnitude. However, when comparing these numbers one has to keep in
mind that our version of the New Keynesian model is very close to being
linear. Our results show that even in this almost linear environment, im-
provements from second-order approximation are feasible. Most models used
by practitioners are much more nonlinear, e.g., due to more complex utility
functions or the presence of a broad variety of non-additive shocks. Within
these environments, it is to be expected that accounting for nonlinearities
will much more noticeably improve the predictive abilities of DSGE models.

7.2 The true DGP is a VAR(2) model

Let us now consider the case where the data generating process is given by
a VAR(2) model. The exact description of the model is given in Appendix

20This result may be puzzling at first sight, however, the intuition behind it is straight-
forward. The quadratic model delivers on average more precise estimates of the parameters
describing the evolution of tax rates, and delivers on average better predictions of the state
of the system, as compared to the linearized model. Taken together, this results in better
forecasting properties, even for the linear tax rate series.
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C, equation (70). Again, we start by inspecting the parameter estimates
of the linear and quadratic New Keynesian models, summarized in Tables
5 and 6. The misspecification of the New Keynesian model is obvious by
mere inspection: the estimation algorithms of both the linear and quadratic
model deliver unreasonable estimates for several parameters. The govern-
ment spending parameter g, for example, is estimated at a unreasonably low
value of almost zero. Similarly, the preference shock parameter a is in general
estimated at an unreasonably high value.

Despite misspecification, the New Keynesian models turn out to have
very good predictive abilities. This is pointed out by the MFE and RMSFE
measures visualized in Figure 2, as well as the log-determinant measures
summarized in Table 7. We observe that the vector autoregressive models
now perform relatively well in forecasting output and real balances in the
short-run, whereas they perform rather poor in the medium and the long
run. Interestingly, the New Keynesian model seems to have some difficulties
in predicting the money series in the short run, which holds particularly for
the second-order approximated model. This suggests that the short run dy-
namics of real balances, generated by the VAR model, are at odds with the
economic theory embedded in the New Keynesian model. Apart from that,
however, the NK model seems flexible enough to fit the dynamics in the
data, since it delivers forecasts that are often better than the corresponding
forecasts from vector autoregressions.
Comparing the linear to the quadratic version of the New Keynesian model
by univariate measures does not hint to whether nonlinearities play an im-
portant role in forecasting. Whereas the quadratic model is better in fore-
casting output, the linear model now provides better forecasts for the money
series. The remaining series, i.e., inflation, the interest rate, and the tax
rate, are almost equally well forecasted by both models. Studying the mul-
tivariate measures of forecast accuracy delivers sharper results. A pairwise
comparison between our four models reveals that, overall, the quadratic New
Keynesian model still features the best predictive abilities. According to the
multivariate measures, it outperforms the VAR(2) model at 14 out of the
16 forecast horizons considered in our analysis, and dominates the VAR(1)
model at all horizons. This result emphasizes that, even when the data are
from a VAR model, DSGE models may generate better forecasts since they
can often be more precisely estimated. Finally, the quadratic model also out-
performs the linearized New Keynesian model. It provides better forecasts
for 14 out of 16 horizons. In particular, it delivers again the best results for
long forecast horizons.
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7.3 Implications of our results

The previous subsections have outlined two scenarios where accounting for
nonlinearities helps to improve the forecasting performance of a DSGE model.
What are the implications of these results for practical applications such as
Smets and Wouters (2004) and Adolfson, Linde, and Villani (2005)? Should
these authors use quadratic instead of linear approximations to improve their
models’ forecasting properties?

Presuming that the models used by practitioners are very well specified,
and that most models used are much more nonlinear than the model analyzed
in this paper, our answer is yes. In order to fully exploit the model’s predic-
tive abilities, researchers should not restrict attention to linearized economies
but use quadratic models.21 It is important, however, not to believe that
quadratic models always deliver better results than linearized models. When
the model is at odds with the dynamics of the data, using quadratic approx-
imations may deteriorate the fit and forecasting performance of the model.
This is due to the low numerical efficiency of the particle filter under mis-
specification. To illustrate the problem, Table 8 summarizes the effective
sample size measures, proposed by Fernandez-Villaverde and Rubio-Ramirez
(forthcoming) to check for a depletion of the sample problem in the particle
filter. We observe that, when our data are taken from the VAR(2) model,
the effective sample size is substantially lower as compared to when the data
are generated from the New Keynesian model. In our application, this has
reduced the relative advantage of the quadratic over the linearized model. In
other applications, it could easily reverse the ranking of linear and quadratic
models. Either way, in practical applications one should (if necessary) ad-
dress this problem by using substantially more particles for estimating the
quadratic model, or by resorting to numerically more efficient methods than
the basic particle filter applied in this paper.

8 Summary and conclusions

This paper has analyzed the predictive abilities of a New Keynesian DSGE
model. Using artificial time series generated from the New Keynesian model
and a VAR(2) model, we have demonstrated that DSGE models exhibit very
good predictive abilities, even when they are (obviously) misspecified. Fur-
thermore, and more importantly, we have shown that capturing second-order

21The additional computational burden associated with this approach should not deter
practitioners, since particle filtering is fast enough to be implemented on good desktop
PCs and to be applied to the class of models needed for serious policy analysis. See
Fernandez-Villaverde and Rubio-Ramirez (forthcoming).
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terms in the policy functions improves the New Keynesian model’s forecast-
ing performance. Our results were derived in an almost linear environment,
such that we are confident that they carry over to a broad variety of dynamic
stochastic general equilibrium models. Our findings thus suggest that, in or-
der fully exploit the predictive abilities of DSGE models, practitioners should
not restrict attention to linearized economies.
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A Derivation of equilibrium conditions

This appendix derives the model’s equilibrium conditions from first-order
conditions associated with the agents’ optimization problems, as well as a
monetary policy rule and the stochastic laws of motion for the exogeneous
variables.

Let us first consider equations (7)-(11), and (18)-(19). Using the method
of Lagrange, we can derive them from the household’s problem. The La-
grangian is given

Lh = E0

∞∑
t=0

βt

[
at

γ

γ − 1
log

(
c

γ−1
γ

t + b
1
γ

t (Mt/Pt)
γ−1

γ

)
+ η log(1− ht)

]

+λt

[
Mt−1 + Bt−1 + (1− τt)Wtht + Qtkt + Dt + Tt

Pt

− (48)

(
ct + kt+1 − (1− δ)kt +

φk

2

(kt+1

kt

− 1
)2

kt +
Bt/it + Mt

Pt

)]

where λt denotes the Lagrange multiplier. Differentiating the Lagrangian
with respect to the household’s decision variables, i.e. ct, ht, Mt/Pt, Bt/Pt,
kt+1, and with respect to the Lagrange multiplier, λt, yields the following
system of first order conditions, which must hold for all time periods t ∈
{0, 1, 2, ...}:

0 = atc
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γ
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[
ct + kt+1 − (1− δ)kt +

φk

2

(
kt+1

kt

− 1

)2

kt +
Bt/it + Mt

Pt

]

Introducing mt = Mt/Pt, wt = Wt/Pt, qt = Qt/Pt, and πt = Pt/Pt−1, equa-
tions (49)-(53) can be rewritten as

0 = c
1
γ

t λt[c
γ−1

γ

t + b
1
γ

t m
γ−1

γ

t ]− at (55)

0 = λtwt(1− ht)(1− τt)− η (56)

0 = mt

(
1− 1

it

)γ

− btct (57)

0 = βitEt(λt+1/πt+1)− λt (58)

0 = βEt [λt+1 (qt+1 + 1− δ)]− βφk

2
Et
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)(
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− φkλt

(
kt+1

kt

− 1

)
− λt (59)

It is easy to see that equations (55)-(59) correspond exactly to (7)-(11). To
derive (18), we first introduce investment xt = kt+1 − (1 − δ)kt, and we
set Bt equal to zero for all t (without loss of generality due to the Ricardian
equivalence in our model). Then we use the (symmetric) intermediate-goods-
producing firm’s dividend equation,

Dt = Ptyt −Wtht −Qtkt − φp

2

[
Pt/Pt−1

π
− 1

]2

ytPt, (60)

as well as the government’s budget constraint (6), to rewrite (54) as

0 = ct + xt + g +
φk

2

(
xt

kt

− δ

)2

kt +
φp

2

(πt

π
− 1

)2

yt − yt. (61)

This expression corresponds to equation (18). Along the way, we have derived
equation (19) from the definition of investment.

The optimality conditions associated with the intermediate firms can be
used to derive equations (12)-(16). First, we observe that the production
technology together with symmetry imply (12). Similarly, the definition of
dividend payments together with symmetry imply (13). To derive equations
(14)-(16), we make again use of the Lagrangian method. To this end, let the
Lagrangian associated with intermediate firm j be given by

Lj
int = E0

∞∑
t=0

βt λt

Pt

[
Pt(j)yt(j)−Wtht(j)−Qtkt(j)−
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)−θ
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]

The first derivatives with respect to the firm’s choice variables ht(j), kt(j)
and Pt(j), yield a set of equilibrium conditions
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Pt
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Multiplying the last equation by Pt/yt yields
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Using mt = Mt/Pt, wt = Wt/Pt, qt = Qt/Pt, and πt = Pt/Pt−1, and assuming
symmetry, we can rewrite the above expressions as

0 = ωt(1− α)yt − λtwtht (66)

0 = ωtαyt − λtqtkt (67)
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which correspond to (14)-(16).
We complete the derivation of equilibrium conditions by stating that, in equi-
librium, the monetary policy rule (17) must be satisfied, and the exogenous
variables must follow their respective laws of motion, given by (20)-(23).
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B The non-stochastic steady state

In the absence of disturbances, our model economy converges to a non-
stochastic steady state in which all of the variables remain constant over
time. Dropping time indices and expectations, and setting all innovations to
zero, the steady state of our model is characterized by the system of equa-
tions:

y = c + δk + g

a = c
1
γ λ[c

γ−1
γ + b

1
γ m

γ−1
γ ]

η = λw(1− h)(1− τ)
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r

)γ

ψλ = β [λ (q + 1− δ)]

y = kα[zh]1−α

d = y − wh− qk

λwh = ω(1− α)y

λqk = ωαy

0 = (1− θ)λ + θω

By construction of the stochastic processes, the steady state values of at, bt,
zt and τt correspond to the parameters a, b, z and τ , respectively. The system
of equations above uniquely determines the remaining 12 steady state values
y, c, m, h, w, q, k, d, π, i, λ and ω. These are given by:
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C Artificial data

This appendix provides details on the construction of our artificial data. We
first describe how to obtain data from the nonlinear New Keynesian model,
more precisely, from the model solved by a third-order Galerkin projection
method. Then we illustrate how we construct data from the VAR(2) model.

The first step in generating artificial data from the nonlinear NK model
is to assert values to its structural parameters, Θ, and to solve the model
using a nonlinear method. The parameter values we select are described in
Table 1. Most of these parameters are taken (or very similar to parameters)
from related studies, in particular, Ireland (2004b) and Dib, Gammoudi,
and Moran (2006). Whenever parameter values are not available in the
related literature, we select values that generate plausible implications for the
model’s variables. This casual approach is unproblematic in our application,
we believe, since we use these parameters only to simulate artificial data and
not to judge the model against the real world.

Having ”calibrated” the model’s parameters, we solve the model numer-
ically. Since high-order perturbation methods are difficult to implement,
as they require the manipulation of huge matrices and there is hardly any
computer code available to build on, we choose to solve the model with a
third-order Galerkin projection method. We use a complete basis of Cheby-
shev polynomials up to an order of three to approximate the policy functions
for the future capital stock, kt+1 = Ψ̃k(st; κ), current output, yt = Φ̃y(st; κ),
and current inflation, πt = Φ̃π(st; κ). We use the second-order perturbation
solution to compute an initial estimate of κ. Given kt+1, yt, and πt we de-
rive the remaining decision variables by solving a linear system of equations.
We summarize all policy functions as Ψ̃(st; κ) and Φ̃(st; κ). The parameter
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vector κ of the policy functions is finally determined such that

∫

Ω

ER(Φ̃(Ψ̃(st, εt+1; κ); κ), Φ̃(st; κ), Ψ̃(st, εt+1; κ), st, εt+1)ωi(st)dst = 0, (69)

where ωi(st) denote weighting functions, which, since we apply a Galerkin
method, coincide with the regressors used in the approximate policy func-
tions. We evaluate the expectation in (69) by Monte Carlo methods instead
of the commonly used quadrature methods, since our model features many
exogenous state variables such that quadrature methods would be computa-
tionally too demanding. A detailed outline of projection methods is provided,
among others, by Judd (1992). Further details on our model’s solution can
be found in the MATLAB codes which are available upon request.

With the model solution at hand, we simulate time series of the five
variables to be included in the data set, {yt, mt, πt, it, τt}80

t=−9, starting at
the steady state. We then drop the first 10 observations, such that our sample
is given by {yt, mt, πt, it, τt}80

t=1. Then we simulate 20 different realizations
for the subsequent 16 periods, {yj

t , mj
t , πj

t , ijt , τ j
t }96

t=81, where j = 1, ..., 20.
We use the first 80 observations together with the last 20× 16 observations
to construct 20 data sets of length 96. Overall, we conduct this exercise five
times, such that we finally have a total of 100 data sets.
The construction of data from the VAR(2) model is very similar. The only
difference is that, instead of using the New Keynesian model solution we
simulate data from a vector autoregressive model given by

Ŷt = A1Ŷt−1 + A2Ŷt−2 + vt, v2
t ∼ N(0, ΣV

2 ) (70)

where

A1 =




0.88 0.15 0.01 −0.02 0.140
−0.01 0.89 0 0 −0.040
−1.76 −4.41 0.78 0.24 0.260
−0.33 1.28 0.38 0.69 0.140
0.07 0.08 −0.01 0 0.970




,

A2 =




−0.04 −0.38 −0.04 0.04 −0.160
0.01 0.07 0 0 0.040
0.41 0.2 −0.17 0.11 −0.310
0.58 0.72 −0.28 0.13 −0.230
−0.09 −0.17 0.01 0 −0.020




,
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and

ΣV
2 =




0.01652 0 0 0 0
0 0.04932 0 0 0
0 0 0.00302 0 0
0 0 0 0.00282 0
0 0 0 0 0.01012




.

Again, further details are provided in our MATLAB codes.
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D Tables and Figures

Table 1: Parameter values used for simulation

Parameter Value

β 0.99
γ 0.2
φp 70
π 1.01
a 1
b 0.5
τ 0.3
ρa 0.94
ρb 0.95
ρz 0.92
ρτ 0.95
σa 0.03
σb 0.02
σz 0.02
στ 0.01
σi 0.005
ρr 0.8
ρy 0.05
ρπ 0.8
σν

y 0.7
σν

m 2
σν

π 0.08
σν

i 0.08
σν

τ 0.5
g 1000
z 4000
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Table 2: Parameter estimates: linearized model, Kalman filter; DGP=NK

Min Max Mean True

β 0.986 0.992 0.989 0.990
γ 0.172 0.308 0.238 0.200
φp 52.747 83.301 70.456 70.000
π 1.008 1.010 1.009 1.010
a 0.673 0.952 0.801 1.000
b 0.417 0.821 0.523 0.500
τ 0.291 0.312 0.302 0.300
ρa 0.938 0.981 0.953 0.940
ρb 0.605 0.989 0.886 0.950
ρz 0.814 0.940 0.880 0.920
ρτ 0.845 0.973 0.930 0.950
σa 0.007 0.036 0.026 0.030
σb 0.010 0.046 0.022 0.020
σz 0.022 0.028 0.025 0.020
στ 0.010 0.013 0.011 0.010
σi 0.004 0.006 0.005 0.005
ρr 0.698 1.000 0.910 0.800
ρy 0.000 0.093 0.053 0.050
ρπ 0.552 1.183 0.916 0.800
σν

y 0.621 0.789 0.687 0.700
σν

m 1.018 2.067 1.660 2.000
σν

π 0.002 0.116 0.077 0.080
σν

i 0.047 0.101 0.078 0.080
σν

τ 0.000 0.581 0.330 0.500
g 1039.130 1698.833 1354.574 1000.000
z 3294.753 5683.011 4365.607 4000.000
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Table 3: Parameter estimates: quadratic model, particle filter; DGP=NK

Min Max Mean True

β 0.986 0.992 0.989 0.990
γ 0.174 0.311 0.241 0.200
φp 53.397 83.406 70.875 70.000
π 1.008 1.010 1.009 1.010
a 0.672 0.958 0.806 1.000
b 0.425 0.820 0.530 0.500
τ 0.291 0.307 0.301 0.300
ρa 0.938 0.981 0.954 0.940
ρb 0.606 0.989 0.887 0.950
ρz 0.818 0.940 0.882 0.920
ρτ 0.859 0.973 0.932 0.950
σa 0.007 0.037 0.026 0.030
σb 0.010 0.046 0.023 0.020
σz 0.022 0.029 0.025 0.020
στ 0.010 0.013 0.012 0.010
σi 0.004 0.006 0.005 0.005
ρr 0.698 0.994 0.904 0.800
ρy 0.000 0.094 0.053 0.050
ρπ 0.556 1.151 0.911 0.800
σν

y 0.697 0.711 0.702 0.700
σν

m 1.956 2.127 2.030 2.000
σν

π 0.080 0.081 0.080 0.080
σν

i 0.080 0.082 0.081 0.080
σν

τ 0.501 0.528 0.508 0.500
g 1017.437 1696.412 1347.875 1000.000
z 3289.574 5665.490 4385.257 4000.000
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Table 4: Log-determinant statistics; DGP=NK

h Linear Quadratic VAR(1) VAR(2) RW
1 -7.1028 -7.1677 -6.9330 -7.0535 -6.6249
2 -5.3223 -5.4210 -4.8704 -4.9693 -4.4398
3 -4.7827 -4.8765 -4.3407 -4.4417 -3.7203
4 -4.2073 -4.3121 -3.5416 -3.7734 -3.0608
5 -3.4717 -3.5676 -2.7656 -3.1688 -2.3236
6 -3.0246 -3.1387 -2.5237 -2.8991 -1.5790
7 -2.3946 -2.4983 -1.9100 -2.2515 -0.9690
8 -2.2438 -2.3564 -1.7311 -2.0300 -0.5623
9 -2.0850 -2.2035 -1.6432 -1.8783 -0.2710
10 -2.1521 -2.2937 -1.8407 -2.0596 -0.2208
11 -1.7178 -1.8298 -1.3457 -1.6437 0.1585
12 -1.6663 -1.8023 -1.4624 -1.6335 0.2952
13 -1.6914 -1.8160 -1.4565 -1.6994 0.2497
14 -1.0568 -1.2348 -0.9041 -1.0996 0.7856
15 -1.1374 -1.2671 -1.0369 -1.0806 1.0153
16 -1.2082 -1.3563 -1.0468 -1.1555 1.0576
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Table 5: Parameter estimates: linearized model, Kalman filter; DGP=VAR

Min Max Mean

β 0.988 0.993 0.990
γ 0.050 0.189 0.114
φp 61.086 263.288 131.580
π 1.009 1.012 1.011
a 1.268 9.147 3.146
b 0.356 0.622 0.513
τ 0.298 0.307 0.302
ρa 0.830 0.909 0.876
ρb 0.810 0.970 0.913
ρz 0.658 0.924 0.838
ρτ 0.802 0.957 0.906
σa 0.031 0.059 0.043
σb 0.054 0.064 0.060
σz 0.016 0.046 0.026
στ 0.009 0.016 0.012
σi 0.002 0.003 0.003
ρr 0.679 0.782 0.737
ρy 0.011 0.055 0.039
ρπ 0.290 0.559 0.479
σν

y 0.003 1.029 0.611
σν

m 0.252 2.215 1.457
σν

π 0.002 0.148 0.037
σν

i 0.104 0.182 0.152
σν

τ 0.000 0.657 0.293
g 0.000 3.210 0.734
z 1662.787 4656.575 3458.745
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Table 6: Parameter estimates: quadratic model, particle filter; DGP=VAR

Min Max Mean

β 0.988 0.993 0.990
γ 0.050 0.190 0.114
φp 61.400 265.624 132.347
π 1.009 1.013 1.011
a 1.265 9.251 3.163
b 0.358 0.624 0.516
τ 0.298 0.304 0.301
ρa 0.829 0.910 0.876
ρb 0.811 0.970 0.914
ρz 0.657 0.925 0.839
ρτ 0.793 0.958 0.904
σa 0.031 0.059 0.044
σb 0.054 0.064 0.060
σz 0.016 0.046 0.026
στ 0.009 0.017 0.012
σi 0.002 0.004 0.003
ρr 0.672 0.780 0.736
ρy 0.011 0.056 0.039
ρπ 0.297 0.561 0.483
σν

y 0.696 0.710 0.702
σν

m 1.989 2.024 2.010
σν

π 0.078 0.081 0.080
σν

i 0.079 0.083 0.081
σν

τ 0.486 0.528 0.504
g 0.000 3.189 0.730
z 1667.425 4654.331 3456.876
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Table 7: Log-determinant statistics; DGP=VAR

h Linear NK Quadratic NK VAR(1) VAR(2) RW
1 -6.6419 -6.7573 -6.4561 -7.1032 -6.2303
2 -4.7736 -4.8183 -4.4462 -4.8278 -3.9804
3 -3.5939 -3.6088 -3.142 -3.0704 -2.6318
4 -2.787 -2.7288 -2.2119 -1.9978 -1.9142
5 -1.8602 -1.8413 -1.2824 -1.0819 -0.9683
6 -1.3541 -1.4106 -0.9033 -0.6155 -0.1875
7 -0.7005 -0.817 -0.3624 -0.1463 -0.5159
8 -0.4572 -0.5657 0.0241 0.3445 0.7066
9 -0.2525 -0.3481 0.211 0.5398 0.9326
10 0.0198 -0.067 0.5615 0.8869 1.3344
11 0.3083 0.1816 0.6734 1.0464 1.6231
12 0.6111 0.4525 0.857 1.3146 1.9338
13 0.9056 0.6975 0.9865 1.4821 2.3876
14 0.9133 0.6641 0.9505 1.4031 2.4581
15 0.9265 0.7097 0.9765 1.4085 2.4630
16 1.0157 0.7597 0.9663 1.5044 2.8083

Table 8: Effective sample size

Min Max Mean
DGP=NK 2441 9850 4842
DGP=VAR 38 2020 880
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Figure 1: Univariate forecast accuracy measures; DGP=NK
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Figure 2: Univariate forecast accuracy measures, DGP=VAR
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