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December 2003

Abstract

This paper models asset markets as a game where assets pay according to an ar-
bitrary payoff matrix, investors decide on fractions of wealth to allocate to each asset,
and prices result from market clearing. The only pure-strategy Nash equilibrium is to
split wealth proportionally to the assets’ expected returns, which can be interpreted
as investing according to the fundamentals. Further, the equilibrium strategy is evolu-
tionarily stable in the sense of Schaffer (1988). We also study the stability properties of
the equilibrium in an evolutionary dynamics where wealth flows with higher probability
into those strategies that obtain higher realized payoffs.
Keywords: asset markets, portfolio choice, market efficiency, evolutionary stability.
JEL classification: C72, G11, D83 .

1 Introduction

The classical paradigm in financial markets based on the efficient market hypothesis (Fama
(1970)) has been increasingly challenged by the literature on behavioral finance initiated by
the work on noise trader risk (De Long et al. (1990)) and by the recent work on evolutionary
finance and adaptive belief systems (see e. g. Brock and Hommes (1998)). The efficient
market hypothesis is based on the assumption that market participants are fully rational
and have rational expectations, implying that equilibrium prices immediately incorporate
all available information; the remaining price movements must come from purely random
perturbations. This was defended on evolutionary grounds by Fama (1965), who argued that
nonrational market participants would be driven out of the market by rational arbitrageurs.
In the present paper we take the evolutionary game theory approach to analyze a financial

market. We view financial markets as population games where cash flows into more successful
investment strategies. In our opinion evolutionary models are especially well suited for the
analysis of complex market environments with frequent interactions, as it is the case in
financial markets. Market performance provides a clear fitness criterion on which selective
pressures are based.
We start out from the model of a financial market analyzed in Blume and Easley (1992)

and Hens and Schenk-Hoppé (2001). There are finitely many states of the world and finitely
∗We are indebted to Larry Blume, David Easley, Piero Gottardi, Thorsten Hens, Manfred Nermuth,

Gerhard Orosel, Alex Possajennikov, Fernando Vega-Redondo, and two anonymous referees for valuable
suggestions which greatly improved the paper. All remaining errors are ours. We gratefully acknowledge
financial support from the Austrian Science Fund (FWF) under Project P15281, and from the Austrian
Exchange Service (ÖAD) and the Spanish Ministry of Education and Culture under the Spain-Austria
Acciones Integradas respective projects 18/2003 and HU02-4.
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many assets, which pay according to an arbitrary payoff matrix. In particular, we allow for
incomplete markets and redundant assets. Investors decide what fraction of their wealth
to allocate to each asset. Consumption decisions have already taken place and wealth can
only be allocated to invest in financial markets. Asset prices result from a market clearing
condition.
In the first part of the paper we consider strategic institutional investors that are aware

of the effect of their investment decisions on prices. We show that this asset market game
has a unique pure-strategy Nash equilibrium which prescribes to split wealth proportionally
to the expected returns of the assets. This can be interpreted as investing according to the
fundamentals.1

Then we move from absolute to relative performance considerations which are distinctive
of evolutionary game theory. Investors are not necessarily well informed about the charac-
teristics that define the asset market and do not necessarily behave strategically. Instead
they tend to follow strategies that exhibit good performance. We find that, if all investors
follow the equilibrium strategy, any one who would experiment with a new investment strat-
egy would not only be worse off in absolute, but also in relative terms. In other words, the
equilibrium strategy is evolutionarily stable.2

In the second part of the paper we consider an evolutionary dynamics on investment
strategies and asset prices. We could think of different investment strategies as mutual
funds with different compositions over the same set of assets. We assume that mutual
fund flows depend on recent past performance.3 Specifically, we postulate that wealth flows
with higher probability into those strategies that obtained higher realized payoffs. Because
the number of shares that can be acquired with a monetary unit depends on prices, total
performance will depend both on asset returns and prices. An additional noise parameter
models new, exogenous information coming into the system. Although the resulting stochas-
tic process never gets absorbed in any population profile, we show that most of the time,
a majority of traders invest according to the equilibrium strategy, and thus prices are close
to fundamentals. Further, at any given period, prices are more likely to move towards their
fundamental values.
From the technical point of view our dynamics is related to the one proposed by Kirman

(1993), who models recruitment processes in ant communities, with the aim of explaining
herding behavior in financial markets. In his model, recruitment is based only on random
sampling. In contrast, here portfolio updating is based on comparisons of realized payoffs.
In particular, we postulate that the probability that some investor switches to a new strategy
is proportional to the observed payoff difference. This rule corresponds to the proportional
imitation rule studied by Schlag (1998).
Whereas Blume and Easley (1992) and Hens and Schenk-Hoppé (2001) assume that

investors hold a fixed portfolio and always reinvest their returns, focusing on long-run wealth
accumulation, we let investors change strategy and focus on wealth flows instead. We do this
for two reasons. One is that, traditionally, the evolutionary approach relates a strategy’s
reproductive success to its payoffs in the following sense. A strategy propagates faster—
tends to be adopted—if it has higher payoffs. Second, in the case of financial markets,

1Bell and Cover (1980) already model a stock market as a one-shot, two-player, constant-sum game
where the goal of each investor is to maximize the probability of outperforming the opponent. They find
that the Nash equilibrium involves exchanging the initial endowment for a random amount of wealth, and
then investing so as to maximize the expected logarithm of wealth. In their model neither asset prices nor
market clearing are taken into account.

2The concept of evolutionary stability used here, due to Schaffer (1988), refers to a finite population and
differs from the usual concept in evolutionary game theory for a continuum population (cf. Section 4).

3Experimental and empirical evidence supporting this assumption can be found in Kliger et al. (2003)
and the references therein.
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investors are not necessarily interested in long-run wealth accumulation, but in terminal
wealth maximization after finitely many periods. Consequently, wealth is constantly flowing
into and out of the market.
If the objective is to maximize the long-run accumulated wealth, the appropriate strat-

egy, as shown by Blume and Easley and Hens and Schenk-Hoppé, is one that allocates wealth
according to the expected relative returns, rather than to expected returns as in our equi-
librium strategy. Both strategies coincide only in the case of Arrow securities—when assets
pay one unit in a particular state and zero otherwise. In the case of diagonal securities—that
pay an arbitrary amount, but only in one state—investing according to expected relative
returns would mean dividing wealth among assets proportionally to the probability of the
corresponding states, independently of the assets returns in those states. Blume and Easley
refer to this investment rule as betting your beliefs. An implication of our results is that, if
all investors bet their beliefs, there are short-term incentives to deviate.
Conceptually our dynamic model is closely related to the work by De Long et al. (1990).

They consider an overlapping generations economy with a risky and a riskless asset and
two types of traders: noise traders, with wrong beliefs on future returns, and sophisticated
traders, who try to take advantage of noise traders by exploiting the arbitrage opportunities
that the existence of noise traders creates. They argue that, under certain conditions,
the expected returns of noise traders might be larger than those of sophisticated traders.
An imitation-based dynamics is postulated where the proportion of noise traders increases
whenever their realized returns are larger. Due to the difference in expected returns, in the
long run noise traders might come to dominate the market, driving the prices permanently
away from fundamentals.
The motivation underlying our dynamics is very similar. Different ways of splitting

wealth among assets in our model could also be interpreted as coming from different beliefs
about the returns of assets. Our population dynamics can then be viewed as the evolution of
the fractions of traders entertaining different beliefs. Fundamentalists split wealth according
to the Nash equilibrium strategy, while “noise traders” with wrong beliefs split wealth dif-
ferently. Fundamentalists in our evolutionary dynamic model, though, are not sophisticated
since they simply follow a given strategy independently of the current population profile and
any considerations of risk. Our conclusions could then be reinterpreted as follows: while
noise traders will survive and increase price volatility, as in De Long et al., fundamentalists
will always dominate and prices cannot persistently be away from their fundamental values.
The rest of the paper is organized as follows. Section 2 introduces the basic model.

Section 3 identifies the Nash equilibrium of the asset market game. Section 4 examines the
evolutionary stability of the equilibrium strategy. Section 5 analyzes the dynamics. Section
6 illustrates the dynamic results in terms of the evolution of asset prices. Finally, Section 7
concludes.

2 Strategic investors

2.1 The Asset Market

There are S ≥ 2 possible states of the world, s = 1, . . . , S. State s occurs with proba-
bility qs > 0, with

∑S
s=1 qs = 1. We consider a general asset market with K ≥ 2 assets,

k = 1, . . . ,K. In state s asset k yields nonnegative payoff Ak(s) ≥ 0. We assume that
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total payoff of all assets is strictly positive in each state; that is

K∑
k=1

Ak(s) > 0.

We also assume that each asset has a strictly positive payoff for some state; that is, for each
asset k, there exists at least some state s such that Ak(s) > 0. Note that we explicitly allow
for incomplete asset markets; for instance, if S > K.
There are N players (also called investors or traders), i = 1, . . . , N . Each of them owns

initial wealth ri
0 > 0. Total wealth is normalized, so that

∑N
i=1 r

i
0 = 1.

Let ∆K = {z = (z1, . . . , zk) ∈ R
K
+ | ∑K

k=1 zk = 1} denote the (K − 1)-dimensional
simplex. Player i must choose an investment strategy, i. e. a vector αi = (αi

1, . . . , α
i
K) ∈ ∆K ,

where αi
k denotes the fraction of i’s wealth allocated to asset k. Given a strategy profile

α = (α1, . . . , αN ), we denote αk = (α1
k, . . . , α

N
k ) for convenience. The latter gives the

proportions of wealth allocated to asset k by all investors.

2.2 Market Clearing and Prices

The Asset Market Game introduced in this section has a structure similar to that of a
Strategic Market Game in Shapley and Shubik (1977). There is one unit of each asset k
available. Given a strategy profile α, asset prices are determined according to the market-
clearing condition

pk(αk) =
N∑

i=1

αi
kr

i
0, (1)

provided at least some αi
k > 0. Let x

i
k(αk) denote the number of units of asset k purchased

by investor i. If investors allocate positive wealth to any asset, i. e. if αi
k > 0 for any i and

k, they receive a number of units of asset k which is computed as the ratio of the amount
of wealth allocated to that asset to the price of the asset. If αi

k = 0, it means that investor
i does not purchase asset k. That is,

xi
k(αk) =

{
αi

kri
0

pk(αk) if αi
k > 0

0 if αi
k = 0

(2)

Provided at least some αi
k > 0, Equations (1) and (2) imply

N∑
i=1

xi
k(αk) = 1. (3)

Formally, the market-clearing price of any asset k remains undetermined when there is no
trade of that asset, that is when αi

k = 0 for all i. In that case, though, the price is not
relevant for the assignment of assets to investors, since investors who do not allocate wealth
to asset k receive 0 units of that asset. For convenience, we can set pk(αk) = 0 if asset k is
not traded. This will turn out to be inconsequential for the analysis.
Note that (p1(α1), . . . , pK(αK)) ∈ ∆K , since pk(αk) ≥ 0 and

K∑
k=1

pk(αk) =
N∑

i=1

ri
0

K∑
k=1

αi
k = 1. (4)
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Note also that, if all investors allocate the same fraction of wealth z > 0 to a given asset,
its market price will be numerically equal to that fraction:

αk = (z, . . . , z), z > 0 =⇒ pk(αk) =
N∑

i=1

zri
0 = z. (5)

In that case, investors also acquire a number of units of the asset k numerically equal to
their initial wealth. To see this we use (5):

αk = (z, . . . , z), z > 0 =⇒ xi
k(αk) =

zri
0

pk(αk)
= ri

0. (6)

The functions xi
k(αk) are discontinuous at the points where αi

k = 0 for all i. (Note
that xi

k(z, . . . , z) = ri
0 for all z > 0, but xi

k(0, . . . , 0) = 0.) More important is the fact
that, if an asset k is currently not being traded, any single player will be able to acquire its
entire supply by deviating and allocating any ε > 0 arbitrarily small on k, since this small
investment will determine the price of the asset:

αi
k = ε > 0, αj

k = 0 ∀j 
= i =⇒ xi
k(αk) =

εri
0

pk(αk)
=

εri
0

εri
0

= 1. (7)

On the other hand, at all strategy profiles where some opponent j has αj
k > 0—in particular,

in the interior of the strategy space ∆K—the function xi
k(αk) is twice differentiable. We

compute the following for reference.

∂xi
k(αk)
∂αi

k

=
ri
0

pk(αk)
(
1− xi

k(αk)
)

(8)

∂2xi
k(αk)

∂(αi
k)2

= −2
(

ri
0

pk(αk)

)2 (
1− xi

k(αk)
)

(9)

Provided αj
k > 0 for some j 
= i, the right hand side of Equation (8) is strictly positive and

that of Equation (9) is strictly negative. That is, holding opponents’ investment constant,
the number of units of asset k purchased is a strictly increasing and strictly concave function
of the fraction of wealth allocated to k. Obviously, increasing the fraction of wealth allocated
to any asset would allow investors to increase their holdings if the price of the asset would
not change. But the price will increase as a result of the increase in demand. The fact that
xi

k is increasing in α
i
k shows that the negative price effect cannot be so large that investors

are left with less units of k after an increase in their fraction of wealth allocated to the asset.
Concavity of xi

k implies, however, that the negative price effect becomes stronger as the
fraction of wealth allocated to k keeps on increasing; that is, there are decreasing returns to
investment.

2.3 Payoffs

Assume that investors are risk neutral.4 Given a strategy profile α = (α1, . . . , αN ), we write
α = (αi, α−i) following the standard convention in game theory. The expected payoff of
player i is

πi(αi, α−i) =
S∑

s=1

qs

(
K∑

k=1

Ak(s)xi
k(αk)

)
. (10)

4We concentrate here on the case of risk neutrality to make the comparison with the evolutionary results
in Section 4 easier. There fitness is based on payoffs and not on utility.
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Defining the expected payoff of asset k as

Ek =
S∑

s=1

qsAk(s) > 0, (11)

Equation (10) can be rewritten as

πi(αi, α−i) =
K∑

k=1

Ekx
i
k(αk). (12)

The tuple (∆K , ri
0, π

i)Ni=1 defines the Asset Market Game.

3 Nash Equilibrium

We aim now at identifying all pure-strategy Nash Equilibria of the Asset Market Game.
Due to the discontinuity of the function xi

k(αk) when k is not traded, the analysis must
avoid differential calculus at this point. Therefore, we proceed as follows. First, we show
that at any Nash equilibrium all assets must be traded. This implies that all asset prices
are strictly positive in equilibrium. Then, we can proceed to find the value of equilibrium
prices. Finally, we will find the equilibrium allocation of wealth to assets.
The intuition why all assets must be traded in equilibrium was already mentioned. If

any asset is currently not traded, an investor reallocating any fraction of wealth to invest in
the non-traded asset will determine its price. Since all assets have positive expected return,
this deviation is profitable for a small enough reallocation of wealth (and hence asset price).

Lemma 1. If α is a Nash equilibrium, then all assets are traded. Hence, pk(αk) > 0 for all
k = 1, . . . ,K.

Proof. Suppose αi
k1
= 0 for all i = 1, . . . , N . Choose any player i and any other asset

k2 
= k1 such that αi
k2

> 0. Hence, pk2(αk2) > 0. Let 0 < ε < αi
k2
. If i deviates by investing

ε in asset k1, then xi
k1
(0, . . . , εri

0, . . . , 0) = 1 by (7). Define α
i(ε) ∈ ∆K such that

αi
k1
(ε) = ε, αi

k2
(ε) = αi

k2
− ε, αi

k(ε) = αi
k for any k 
= k1, k2.

The payoff of player i when deviating to strategy αi(ε) is

πi(αi(ε), α−i) =
∑

k �=k1,k2

Ekx
i
k(αk) + Ek1 + Ek2

(
αi

k2
− ε

)
ri
0

pk2(αk2)− εri
0

. (13)

The deviation is profitable if and only if

πi(αi(ε), α−i) > πi(αi, α−i) ⇐⇒ Ek1 + Ek2

(
αi

k2
− ε

)
ri
0

pk2(αk2)− εri
0

> Ek2

αi
k2
ri
0

pk2(αk2)
(14)

which holds by continuity for ε small enough, since Ek1 > 0. �

We perform a preliminary computation in order to study the set of Nash equilibria.
Consider any strategy profile α where all assets are traded, implying pk(αk) > 0 for all k.
Suppose that player i, currently investing a strictly positive fraction of wealth in asset k2,
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were to reallocate a fraction 0 ≤ ε < αi
k2
to asset k1. As we did in the previous proof, we

define αi(ε) ∈ ∆K such that

αi
k1
(ε) = αi

k1
+ ε

αi
k2
(ε) = αi

k2
− ε

αi
k(ε) = αi

k for any k 
= k1, k2 (15)

Given the strategies of all other players, we compute the payoffs to investor i of this deviation:

πi(αi(ε), α−i) =
∑

k �=k1,k2

Ekx
i
k(αk) + Ek1

(
αi

k1
+ ε

)
ri
0

pk1(αk1) + εri
0

+ Ek2

(
αi

k2
− ε

)
ri
0

pk2(αk2)− εri
0

. (16)

This expression is a (differentiable) function of ε such that πi(αi(0), α−i) = πi(αi, α−i).
Hence, whenever

d

dε
πi(αi(ε), α−i)

∣∣∣∣
ε=0

> 0 (17)

we can conclude that player i has an incentive to deviate by reallocating at least a small
fraction of wealth from asset k2 to k1. We have that

d

dε
πi(αi(ε), α−i)

∣∣∣∣
ε=0

= ri
0

[
Ek1

pk1(αk1)
(
1− xi

k1
(αk1)

) − Ek2

pk2(αk2)
(
1− xi

k2
(αk2)

)]
. (18)

Let us try to interpret Equation (18). Think of an investor considering to reallocate
wealth from k2 to k1. Given the asset prices at the profile α,

Ek1

pk1(αk1)
− Ek2

pk2(αk2)
(19)

is the expected profit of moving one monetary unit from k2 to k1. If this difference is
positive, this reallocation of wealth has a positive direct effect on expected returns. On the
other hand, this has the effect of raising the price of asset k1 and lowering the price of asset
k2. In turn, the number of affordable units of k1 (resp. k2) per unit of wealth invested
decreases (resp. increases). At the margin, the difference in expected returns due to this
change in the holdings of each asset is given by5

Ek2

xi
k2
(αk2)

pk2(αk2)
− Ek1

xi
k1
(αk1)

pk1(αk1)
. (20)

For each asset this indirect effect is larger the larger the number of units hold, xi
kj
(αkj

).
Equation (18) says that there is an incentive to reallocate wealth from k2 to k1 whenever
the gains from the direct effect are larger than the losses from the indirect effect through
prices.
Equation (18) is the key to show that in any equilibrium asset prices must not only be

positive, but they must be numerically equal to the normalized (or relative) expected returns
given by

Rk =
Ek

E
where E =

K∑
k′=1

Ek′ . (21)

5The marginal change in the number of affordable shares per monetary unit transferred is given by

lim
ε→0

1

εri
0

pkj
(αkj

)xi
kj
(αkj

)

(
1

pkj
(αkj

)− εri
0

− 1

pkj
(αkj

)

)
=

xi
kj
(αkj

)

pkj
(αkj

)
.
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Lemma 2. If α is a Nash equilibrium, then pk(αk) = Rk for all k = 1, . . . ,K.

Proof. Let α be a Nash equilibrium. We proceed by contradiction. Note that the vector
(R1, . . . , RK) is an element of the simplex ∆K . Recall also that (p1(α1), . . . , pK(αK)) ∈ ∆K

by (4). If these two vectors are not identical, there must exist assets k1, k2 such that
Rk1 > pk1(αk1) and Rk2 < pk2(αk2). Given that, by Lemma 1, all prices are strictly
positive, it follows that

Rk1

pk1(αk1)
> 1 and

Rk2

pk2(αk2)
< 1 (22)

Let i be a player with αi
k2

> 0 and define αi(ε) as in (15), with 0 ≤ ε < αi
k2
. Dividing

Equation (18) by the constant E and taking (22) into account, we obtain

(
1
E

)
d

dε
πi(αi(ε), α−i)

∣∣∣∣
ε=0

= ri
0

[
Rk1

pk1(αk1)
(
1− xi

k1
(αk1)

) − Rk2

pk2(αk2)
(
1− xi

k2
(αk2)

)]
>

ri
0

[(
1− xi

k1
(αk1)

) − (
1− xi

k2
(αk2)

)]
= ri

0

[
xi

k2
(αk2)− xi

k1
(αk1)

]
(23)

We claim that there exists a player i with αi
k2

> 0 such that xi
k2
(αk2)− xi

k1
(αk1) ≥ 0. If we

can establish this, then it follows from (23) that i has an incentive to deviate, a contradiction
which completes the proof.
Suppose that xi

k2
(αk2)− xi

k1
(αk1) < 0 for all i such that α

i
k2

> 0. Using (3) and the fact
that xj

k2
(αk2) = 0 for all j with α

j
k2
= 0 we reach the following contradiction:

1 =
N∑

i=1

{xi
k2
(αk2) | αi

k2
> 0} <

N∑
i=1

{xi
k1
(αk1) | αi

k2
> 0} ≤

N∑
i=1

xi
k1
(αk1) = 1. (24)

�

The intuition behind Lemma 2 is the following. By Equation (22), whenever an asset
is undervalued in the sense that the expected return per monetary unit invested in that
asset exceeds one, there must be another asset that is overvalued. In that case, reallocating
wealth from the latter to the former yields positive direct gains as measured by Equation
(19). Moreover, there must be some investor holding a too strong position on the overvalued
asset. For this investor the indirect effect through prices given by Equation (20) cannot offset
the direct gains of transferring wealth from the overvalued to the undervalued asset.
Lemma 2 shows that, in equilibrium, prices must be in accordance with the fundamental

values of the assets, meaning that they must be numerically equal to the (normalized)
expected returns. As a consequence all assets must yield the same expected returns per
monetary unit invested. A priori, this is not enough to identify the equilibria, because
fundamental prices will obtain whenever aggregate investment is in accordance with expected
returns in the market-clearing equations (1). That is, different strategy profiles can lead to
fundamental prices. We will show, though, that in fact there exists a unique equilibrium in
pure strategies where all investors use the following strategy.

α∗ = (α∗
1, . . . , α

∗
K) with α∗

k = Rk for all k = 1, . . . ,K. (25)

In the case of Arrow securities (S = K and Ak(s) = 1 if s = k, Ak(s) = 0 otherwise), α∗

reduces to the investment rule called betting your beliefs by Blume and Easley (1992), given
by αi

s = qs. In the case of diagonal securities (S = K and Ak(s) > 0 if s = k, Ak(s) = 0
otherwise), α∗ and betting your beliefs differ. For example, consider two equiprobable states
of the world s = 1, 2 and two assets k = 1, 2. Asset 1 pays 2 units if state 1 occurs, and 0
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otherwise. Asset 2 pays 3 units if state 2 occurs, and 0 otherwise. While betting your beliefs
would prescribe α1 = α2 = 1/2, α∗ prescribes α∗

1 = 2/5 and α
∗
2 = 3/5.

Hens et al. (2003) analyze an asset market with strategic, risk-averse investors with
strictly concave utility functions of wealth. Under the additional assumption of no aggregate
risk—when the sum of the asset returns is constant and independent of the state—they
find that in a symmetric Nash equilibrium all investors split their wealth proportionally to
expected relative returns, which coincides with relative expected returns for the case of no
aggregate risk. The same result is obtained with logarithmic utility allowing for aggregate
risk. For general constant relative risk aversion the equilibrium is neither expected relative
returns nor relative expected returns.

Theorem 1. The only pure-strategy Nash equilibrium of the Asset Market Game is the
profile α∗ = (α∗, N. . ., α∗). Moreover, it is a strict equilibrium.

Proof. We already know from Lemmata 1 and 2 that in any Nash equilibrium all assets are
traded and pk(αk) = Rk > 0 for all k. Take any trader i. We claim that, in equilibrium,
αi

k = Rk for all k. Suppose otherwise. Since both αi and (R1, . . . , RK) are in the simplex
∆K , there must exist two assets k1, k2 such that 0 ≤ αi

k1
< Rk1 and αi

k2
> Rk2 . In

particular, this implies that trader i holds more units of k2 than of k1; since the prices are
pk(αk) = Rk, we have

xi
k2
(αk2) =

αi
k2
ri
0

Rk2

> ri
0 >

αi
k1
ri
0

Rk1

= xi
k1
(αk1).

Define αi(ε) as in (15), with 0 ≤ ε < αi
k2
. From Equation (18) and by Lemma 2, we

have(
1
E

)
d

dε
πi(αi(ε), α−i)

∣∣∣∣
ε=0

= ri
0

[
Rk1

pk1(αk1)
(
1− xi

k1
(αk1)

) − Rk2

pk2(αk2)
(
1− xi

k2
(αk2)

)]
=

ri
0

[
xi

k2
(αk2)− xi

k1
(αk1)

]
> 0 (26)

Hence, player i can profitably deviate by reallocating a small fraction of wealth to asset k1.
We conclude that the only possible Nash equilibrium is given by αi

k = Rk for all k and i.
It remains to show that this profile is indeed a Nash equilibrium. (So far we have only

proven that no other profile can be a Nash equilibrium.) We will do this by analyzing trader
i’s maximization problem.6

Suppose, then, that αj
k = Rk for all k and all j 
= i. We have to show that αi

k = Rk for
all k is a best response for player i. Player i’s maximization problem is equivalent to

max
αi∈∆K

1
E

· πi(αi, α−i) (27)

whose solution must fulfill the first order conditions

Rk
∂xi

k(αk)
∂αi

k

− λi = 0 (28)

for k = 1, . . . ,K, where λi is the Lagrange multiplier associated to the constraint
∑

k α
i
k = 1.

For αi
k = Rk, we have that pk(αk) = Rk and xi

k(αk) = ri
0, and hence (recalling (8)) the first

order conditions are fulfilled with

λi = ri
0

(
1− ri

0

)
(29)

6It is not difficult to show uniqueness also from trader i’s optimization problem and Lemma 2. However,
we find the argument above more intuitive.
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Thus, α∗ fulfills the first order conditions for each trader’s optimization problem with
the Lagrange multiplier given by (29). Since xi

k is strictly concave for all k whenever asset k
is traded, the payoff function given by (12) is also strictly concave. Therefore, α∗ is a strict
Nash equilibrium. �

The uniqueness part of Theorem 1 is rather strong. To see why, consider the following.
It is straightforward to show that the Nash equilibrium is also a competitive equilibrium,
because if traders take the prices pk = Rk as given, their profits are constant in own strategy:

πi =
∑

k

Ek
αi

kr
i
0

Rk
= ri

0 · E.

For the same reason, any strategy profile inducing fundamental prices constitutes a competi-
tive equilibrium, i.e. there are multiple competitive equilibria. This is in sharp contrast with
our result: once strategic effects are taken into account, the Nash equilibrium is unique.
Intuitively, if prices equal relative expected returns, transferring wealth among assets will

have no direct effects as measured by expression (19). Since this expression is independent
of the traders’ strategies, any profile will be a competitive equilibrium if it induces prices in
accordance with fundamentals. Indirect, strategic effects through changes in prices, as mea-
sured by expression (20), are still present though. As was mentioned above, this expression
does depend on the traders’ strategies through the number of units of each asset hold. These
effects only disappear if the number of units hold is the same for all assets. This is precisely
the force at work in the previous proof. Inequality (26) above amounts to the claim that,
provided prices are equal to relative expected returns, if traders holds a stronger position
on some asset, they can profitably deviate by moving to a more balanced allocation.
This is the key property of the Nash equilibrium: for each trader the number of units hold

from each asset is constant and numerically equal to the initial wealth.7 Hence, when all
investors follow α∗ there are no incentives to deviate. Direct effects of transferring wealth
among assets do not exist, because prices are equal to relative expected returns (recall
equation (19)). Indirect effects do not exist either, because the number of units of each
asset hold by any trader is also the same (recall equation (20)).

A priori the number of units hold is economically irrelevant, but when prices equal
relative expected returns, holding the same number of units of each asset means that traders
also hold an equally strong position in terms of wealth invested relative to prices: a small
investment in cheap assets, a large investment in expensive assets. If this were not the case,
traders could manipulate asset prices away from fundamentals to their advantage. Selling
there where they have more, hence reducing those prices, and buying there where they have
less, hence increasing those prices, they would gain more than they would lose. This is
because there is a symmetric effect on the asset prices. See the following example for an
illustration.

Example 1. There are two equally likely states of nature s = 1, 2, and two assets k = 1, 2.
Asset 1 pays 2 units in state 1 and zero otherwise, while asset 2 pays 3 units in state 2 and
zero otherwise. Hence E1 = 1 and E2 = 3

2 . These are diagonal securities, but not Arrow
securities. Consider two investors, Adam and Eve, endowed with the same initial wealth
rA
0 = rE

0 = 1
2 . In a Nash equilibrium both should invest a fraction (1/(52 )) = 0.4 of their

wealth in asset 1 and the remaining 0.6 in asset 2, which yields prices p1 = 0.4 and p2 = 0.6.
7The fact that share holdings for a given trader are constant across assets comes from the symmetry

across traders’ investments (recall (6)). It is obvious that the reverse implication also holds, and thus the
Nash equilibrium can be characterized as the only symmetric profile inducing fundamental prices.
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Suppose instead that Adam invests 0.7 of his wealth in asset 1, while Eve only invests
0.1 of her wealth in the same asset. The price is still given by p1 = 1

2 · (0.7 + 0.1) = 0.4;
thus p2 = 0.6. So the described profile is a competitive equilibrium, since prices are equal
to relative expected returns. Eve receives 0.125 units of asset 1 and 0.75 units of asset 2.
Each monetary unit invested yields an expected return of 2.5 and total expected payoffs for
both, Adam and Eve, equal initial wealth times the expected return, 1.25.
Suppose now that Eve reallocates 0.1 of her wealth from asset 2 to asset 1, so that she

invests 0.2 of her wealth in asset 1 and 0.8 in asset 2. The price of asset 1 increases to
p1(ε) = 1

2 (0.7 + 0.2) = 0.45 and the price of asset 2 decreases to 0.55 (the change in prices
is of course symmetric, since price vectors always add up to one). Consequently, Eve now
receives

(
1
2 · 0.2) /0.45 ≈ 0.222 units of asset 1 and

(
1
2 · 0.8) /0.55 ≈ 0.727 units of asset 2.

Her new expected payoff is

πE ≈ 0.222 · 1 + 0.727 · 1.5 ≈ 1.313 > 1.25
larger than with her previous allocation of wealth. With her new investment plan, Eve has
acquired additional units of asset 1, although she has increased its price from 0.4 to 0.45.
The return per monetary unit invested in that asset, though, is now 1/0.45 ≈ 2.222 rather
than 2.5. By doing this, Eve is losing 2.5−2.222 ≈ 0.277 with every monetary unit invested
in asset 1, i. e. with 0.2 of her wealth. Still the price of asset 2 has dropped from 0.6 to
0.55, and although she is now receiving less units of asset 2, the return per monetary unit
invested in that asset is now ( 32 )/0.55 ≈ 2.727 rather than 2.5. She is now earning 0.227
more than before per unit invested in asset 2, i. e. with 0.8 of her initial wealth. Even though
her additional per-monetary-unit earnings in asset 2 are smaller than her per-monetary-unit
losses in asset 1, she has a much larger investment in asset 2. The total payoff change is
0.2 · (−0.272) + 0.8 · (+0.227) ≈ 0.127 > 0.
By transferring wealth between the two assets, Eve has successfully manipulated prices

to her advantage, strategically increasing her earnings in an asset where her share holdings
are large at the expense of an asset where her share holdings are small.

4 Evolutionary Stability

So far we have adopted the classical approach in game theory, assuming that all investors
know the assets distributions of payoffs and maximize their expected utility given their
opponents’ investment strategy. In that setting we have shown that the profile where all
investors follow α∗ is a symmetric Nash equilibrium. In the present section we adopt an
evolutionary approach with boundedly rational investors that have limited information. In
particular, they need not be informed about the assets distributions of payoffs and they
do not act strategically. An evolutionarily stable strategy (ESS) is then defined as an
investment strategy such that, once adopted by all investors, it cannot be outperformed by
any different investment strategy. The idea is that no investor who would experiment with
a new strategy could obtain a larger return per monetary unit invested than the investors
still using the status quo strategy. If this were possible, other investors would follow the
successful experimenter and the original strategy would not be stable.
The definition of evolutionary stability we use here is due to Schaffer (1988) and applies

to any finite number of players. Although based on the same principle of non-invadability, it
differs from the standard definition of Maynard Smith (1982). The latter, which is a refine-
ment of Nash equilibrium, applies to a continuum population of players who are randomly
drawn in pairs to play a two-person game. Schaffer’s (1988) definition is better suited to
model market settings, where the payoffs to any player depend on the actions of all market
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participants, and not only on the action chosen by a randomly picked opponent. It is im-
portant to note, however, that this concept of evolutionary stability is not related to Nash
equilibrium in general.8 The reason for this important difference is due to finite population
effects (see Vega-Redondo (1996) for a discussion). In particular, as we will see in more
detail below, a Schaffer ESS aims at maximizing the difference between own and opponents’
payoffs, a feature that is known as spiteful behavior. A deviation from a Nash equilibrium
strategy to an ESS may be worth undertaking if, even when it reduces own payoffs, it weak-
ens the opponent in relative terms. This responds to an idea of selection of strategies based
on relative performance.
Taking returns per monetary unit as the relevant payoffs, our asset market game is

symmetric. We now proceed to adapt Schaffer’s (1988) concept to this framework.

Definition 1. We say that α ∈ ∆K is an evolutionarily stable strategy in the asset market
game (abbreviated ESS) if, for any i and for any strategy profile α such that αi 
= α and
αj = α for all j 
= i,

1
ri
0

πi(αi, α−i) ≤ 1
rj
0

πj(αj , α−j) (30)

for all j 
= i. The ESS is strict if inequality (30) holds strictly.

Note that the returns per monetary unit for any two investors choosing α is the same. Hence
only one comparison between the experimenter and any status quo investor is necessary in
(30). That is, for any j, h 
= i, with αj = αh = α, we have that α−j = α−h up to a
permutation. Thus

1
rj
0

πj(αj , α−j) =
1
rh
0

πh(αh, α−h).

It follows directly from Equation (30) that an ESS α solves the following problem

max
αi∈∆K

(
1
ri
0

πi(αi, α−i)− 1
rj
0

πj(αj , α−j)

)
(31)

for any j 
= i. It is in this sense that an ESS maximizes relative performance.
We remark that our concept of ESS is exactly that in Schaffer (1988) if we redefine the

payoffs to be per-unit returns. Such normalization of payoffs would not affect the set of
Nash equilibria. Thus the strategy profile where all traders invest according to α∗ is still the
only equilibrium of the game. Proposition 1 below shows that, in our asset market game,
the Nash equilibrium strategy α∗ is also evolutionarily stable.
In general, the payoff of an experimental strategy could increase with the number of

players that adopt it. Thus, even if a strategy is an ESS and hence resistant to the appearance
of a single experimenter, it need not be resistant to the appearance of a larger fraction of
experimenters.

Definition 2. We say that an ESS α ∈ ∆K is globally stable if inequality (30) holds for any
strategy profile α = (α′, m. . ., α′, α,N−m. . . , α), or permutation thereof, where α′ 
= α, αi = α′,
and αj = α. The strategy α is strictly globally stable if the inequality holds strictly.

A globally stable ESS is resistant against any fraction of experimenters in the popula-
tion.9 Proposition 1 shows that α∗ also fulfills this stronger stability condition. The intuition
for this result is simply that all investors deviating to the same α′ 
= α∗ will change prices
to their disadvantage and the advantage of their opponents.

8This paper will provide an example of a Schaffer ESS that is also a Nash equilibrium.
9Definition 2 differs slightly from the one by Schaffer (1988), who calls an ESS globally stable if it fulfills

the inequality strictly for m ≥ 2 (see Crawford (1991) and Tanaka (2000) for closely related concepts).
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Proposition 1. The investment strategy α∗ is a strictly globally stable ESS in the asset
market game.

Proof. Assume α∗ has been adopted by all investors, and 1 ≤ m < N of them experiment
with α′ 
= α∗. Without loss of generality, suppose the experimenters are the investors
i = 1, . . . ,m. The resulting strategy profile is α = (α′, m. . ., α′, α,N−m. . . , α). The price of any
asset k after experimentation is given by

pk(αk) = α′
k

m∑
i=1

ri
0 + α∗

k

N∑
i=m+1

ri
0 = Rk + (α′

k − α∗
k)

m∑
i=1

ri
0

Again without loss of generality, we can reorder the assets in such a way that the price
ratio Rk/pk is increasing in k. Let k̃ be the largest k such that (Rk/pk) ≤ 1. Note that
α′

k−α∗
k ≥ 0 for all k = 1, . . . , k̃ and α′

k−α∗
k < 0 for all k = k̃+1, . . . ,K. For any i = 1, . . . ,m

and j = m+ 1, . . . , N , we have

(
1
E

) [
1
ri
0

πi(αi, α−i)− 1
rj
0

πj(αj , α−j)

]
=

k̃∑
k=1

Rk

pk
(α′

k − α∗
k) +

K∑
k=k̃+1

Rk

pk
(α′

k − α∗
k) <

Rk̃

pk̃

k̃∑
k=1

(α′
k − α∗

k) +
Rk̃+1

pk̃+1

K∑
k=k̃+1

(α′
k − α∗

k) < 0 (32)

The last inequality follows from the fact that
∑k̃

k=1 (α
′
k − α∗

k) = −∑K
k=k̃+1 (α

′
k − α∗

k) > 0
because α′, α∗ ∈ ∆K , and (Rk̃/pk̃) ≤ 1 < (Rk̃+1/pk̃+1).
With m = 1, this shows that α∗ is a strict ESS. With arbitrary m, this shows that α∗ is

strictly globally stable. �

Recall that xi
k is increasing in α

i
k. Therefore, intuitively, when m investors deviate from

α∗, they increase the prices of those assets where they hold a stronger position after deviation
and decrease the price of those where they hold a weaker position. Hence, relative to the
traders still investing according to α∗, experimenters are more affected by the negative
effects of overvalued assets, and less affected by the positive effects of undervalued ones,
which leaves them in a worse relative position.10

A word of caution is necessary here. The concept of ESS (both Maynard Smith’s and
Schaffer’s) is a static one, based on one-shot comparisons. The evolutionary literature usually
proceeds from such static definitions to later establish their dynamic properties. Alós-Ferrer
and Ania (2002) establish dynamic stability properties for globally stable Schaffer ESS. Hens
and Schenk-Hoppé (2001) define a different concept of evolutionary stability, directly based
on a stochastic wealth-accumulation dynamics and unrelated to the classic, static definitions.
No confusion should arise between these two approaches. In the next section, we illustrate
the dynamic properties of α∗ in the framework of an evolutionary dynamics different to
those in the papers just mentioned.

10It can be shown that strict equilibria of zero-sum games are evolutionarily stable in the sense used here.
This gives an alternative proof of the fact that α∗ is an ESS, because the Asset Market Game is constant
sum in the interior of the strategy space. We thank Fernando Vega-Redondo and Alex Possajennikov for
this observation.
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5 Dynamics

In this section, we postulate a dynamic evolutionary model where agents repeatedly play the
Asset Market Game. The purpose is to check the dynamic stability of α∗ against any other
given portfolio α. That is, we want to show that α∗ is “pairwise dynamically attracting” in
a well-defined sense to be clarified below.
Every period, there are exactly N traders active in the market, all of them with the same

wealth. Each trader stands simply for a fraction ri
0 =

1
N of the total wealth invested. Our

focus will therefore not be on wealth-accumulation dynamics as in Blume and Easley (1992)
and Hens and Schenk-Hoppé (2001), but rather on the proportion of total wealth which is
invested according to a given strategy. Instead of choosing a particular behavioral model
at the individual level, we postulate a population dynamics which specifies directly how
wealth flows between investment strategies, depending on realized payoffs, and the effects
of these flows on prices. A possible interpretation will be that the realized returns are not
necessarily reinvested each period. Also, some traders may take their wealth and leave the
market, while new investors enter.
Each trader can invest wealth according to either α∗ or α. In a given period t, the

number of traders following α∗ is denoted by nt, and the number of those following α is
N − nt. We drop the t-subscript when no confusion can arise. Given n, the price of asset k
is

pk(n) =
n

N
α∗

k +
N − n

N
αk.

Let ∆(s, n) be the difference between the realized payoffs (per monetary unit) of α∗-investors
and α-investors, conditional on the occurrence of state s. This is a random variable given
by

∆(s, n) =
1

(1/N)

(
K∑

k=1

α∗
k(1/N)Ak(s)

pk(n)
−

K∑
k=1

αk(1/N)Ak(s)
pk(n)

)
=

K∑
k=1

(α∗
k − αk)Ak(s)

pk(n)

with expected value

E∆(n) =
S∑

s=1

qs

K∑
k=1

(α∗
k − αk)Ak(s)

pk(n)
.

By Proposition 1, for any α 
= α∗ we have that E∆(n) > 0.
We postulate a “Darwinian” dynamic process as follows. Every period, the state of the

world is realized and assets pay according to Ak(s). The realized payoffs of the portfolios
α∗ and α are observed, and some trader updates his portfolio. The probability that this
revision results in a trader switching from α to α∗, rather than the opposite, is directly
proportional to the difference in realized payoffs between α∗ and α, i. e. ∆(s, n). A period
is therefore interpreted as the time interval necessary for 1/N of total market wealth to be
reallocated.
The probability that there will be n + 1 α∗-traders next period, given that there are

n ∈ {1, . . . , N} in the current period, is

Qs
n,n+1 =

1
2
+ σ∆(s, n)

where σ is a normalization parameter.11 Symmetrically,

Qs
n,n−1 =

1
2
− σ∆(s, n)

11The parameter σ is analogous to ζ in De Long et al. (1990) and to β in Brock and Hommes (1998).
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Hence, if in any given period α∗ has higher realized payoffs than α, ∆(s, n) is strictly positive
and thus Qs

n,n+1 >
1
2 , i. e. it is more probable that some α-investor switches to α

∗ and less
probable that the opposite occurs. The transition probabilities are more favorable to the
first event the higher the realized payoff advantage of α∗. Of course, the opposite is true if
α is the portfolio with higher realized payoffs. Observe that, if and only if for a certain state
s the two portfolios were to yield exactly the same realized payoff, the probabilities would
be 1/2 in each direction. Note that

Qs
n,n+1 −Qs

n,n−1 = 2σ∆(s, n)

i. e. the difference in transition probabilities is directly proportional to the difference in
realized payoffs.12 If we were to take these probabilities as the description of an individual
learning rule, this would correspond to the Proportional Imitation Rule of Schlag (1998). The
parameter σ is taken equal to 1/(2∆), where ∆ is the largest observable payoff difference.13

We complete the model by postulating a noise parameter ε < 1
2 . At any period, with

probability (1 − ε), a transition takes place according to the rule above. With probability
ε, a mistake occurs and exactly the opposite transition results. This might be due e. g. to
new, exogenous information coming into the system. That is, the transition probabilities
(conditional on s) are:

P s
n,n+1 = (1− ε)

(
1
2
+ σ∆(s, n)

)
+ ε

(
1
2
− σ∆(s, n)

)
(33)

P s
n,n−1 = (1− ε)

(
1
2
− σ∆(s, n)

)
+ ε

(
1
2
+ σ∆(s, n)

)
(34)

When n = 0 or n = N , no payoff comparison is possible since only one portfolio is observed
and, thus, there are no evolutionary pressures. Yet noisy transitions are possible, with
probabilities given by

P s
0,0 = 1− ε P s

0,1 = ε P s
N,N−1 = ε P s

N,N = 1− ε (35)

independently of the realized state. Hence, for low values of ε, the process tends to stay
for a significant amount of time at situations where all traders invest according to the same
strategy.
Equations (33)-(35) give all relevant transition probabilities; all other transitions have

zero probability. The unconditional transition probabilities are given by

Pn,n+1 =
S∑

s=1

qsP
s
n,n+1 =

1
2
+ (1− 2ε)σE∆(n) (36)

Pn,n−1 =
S∑

s=1

qsP
s
n,n−1 =

1
2
− (1− 2ε)σE∆(n) (37)

for n 
= 0, N , and P0,n = P s
0,n, PN,n = P s

N,n for all n.

12In a recent paper Kliger et al. (2003) find experimental evidence indicating that investors’ tendency to
delegate money to a fund manager increases with the managers past performance and it decreases with the
performance of the managers competitors.

13The Proportional Imitation Rule was introduced by Schlag (1998) in the context of a large population of
agents independently choosing among actions with uncertain payoffs. He shows that proportional imitation
has certain optimality properties, which do not apply to the present strategic context (see Ania (2000)). Our
motivation to use that rule here is rather its relation to evolutionary dynamics (on this see also Björnerstedt
and Weibull (1996)).
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The stochastic process just described constitutes a discrete-time birth-death process and
will be referred to as the portfolio dynamics. In this simple Markov chain the invariant
distribution, µ, is unique, strictly positive, and can be explicitly calculated using the so-
called detailed balance condition.14 The value µ(n) will give the probability that exactly n
traders are investing according to α∗ in the long run; µ(n) also gives the fraction of time
that this event occurs along any sample path of the process.
In the next theorem we show that, along any given sample path, most of the time we will

observe that a majority of traders follow α∗ rather than any other α. This results from the
following two properties of the invariant distribution of the portfolio dynamics. First, the
occasions where all investors follow α∗ are the most frequent; in particular, more frequent
than those where they all follow α. Second, whenever both investment strategies coexist,
any population profile with more α∗-traders is observed more frequently than any other with
less α∗-traders.

Theorem 2. For any α 
= α∗, the invariant distribution µ of the portfolio dynamics verifies

(i) for all n = 1, . . . , N − 1, µ(n) < µ(n+ 1), and

(ii) µ(0) < µ(N).

Hence, µ(N) > µ(n) for all n 
= N .

Proof. The invariant distribution µ fulfills the detailed balance condition

µ(n)Pn,n+1 = µ(n+ 1)Pn+1,n (38)

Substituting (36) and (37) yields that, for all 1 ≤ n ≤ N − 2,

µ(n+ 1) = µ(n) ·
1
2 + (1− 2ε)σE∆(n)

1
2 − (1− 2ε)σE∆(n+ 1)

Since E∆(n) > 0 by Proposition 1, we obtain that µ(n + 1) > µ(n) and (i) is proved for
1 ≤ n ≤ N − 2. For n = N − 1,

µ(N) = µ(N − 1)
1
2 + (1− 2ε)σE∆(N − 1)

ε
> µ(N − 1)

since ε < 1/2. Iterating (38) we obtain that

µ(N) = µ(0)
N−1∏
n=1

1
2 + (1− 2ε)σE∆(n)
1
2 − (1− 2ε)σE∆(n)

and (ii) follows. �

Figure 1 illustrates the last result. In both diagrams there we consider a market with
two equiprobable states and two diagonal assets that pay 2 and 1 in the respective states.
For this market α∗ = (2/3, 1/3). The number of investors is fixed to N = 100 and the noise
parameter is ε = 0.1. In diagram (a) we let α∗ compete against the strategy λ∗ = (1/2, 1/2),

14Discrete-time birth-death processes are sometimes also called general one-dimensional random walks.
They are defined as Markov chains such that (i) the state space is either the nonnegative integers or a finite
set {0, . . . , N}, and (ii) for every state n, the only positive-probability transitions are to states n, n− 1, and
n + 1, with the last two being strictly positive. The detailed balance condition follows directly from the
definition of invariant distribution applied to this particular case. See e. g. Feller (1968, p.396).
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(a) α∗ vs. betting your beliefs (b) α∗ vs. “best” asset

Figure 1: Invariant distribution of the portfolio dynamics. The number of traders using α∗

appears on the x-axis.

which corresponds to betting your beliefs in Blume and Easley (1992). The number n of
investors that follow α∗ is plotted in the x-axis. The fraction of periods where n is observed,
µ(n), is plotted in the y-axis. Observe that the fraction of periods where all investors follow
α∗ is significantly higher and that the invariant distribution is increasing. In this example,
µ(100) ≈ 0, 21, while e. g. µ(99) ≈ 0, 04. Although it cannot be perceived in the diagram,
µ(n) is strictly positive for all n, but it is extremely small for n ≤ 50, with µ(0) ≈ 3×10−10.
In diagram (b) we let α∗ compete against the strategy α = (0.999, 0.001). We could

think of this as the one-shot optimal strategy that concentrates wealth on the asset with
maximum expected payoff.15 Investing in the “best” asset gives α a certain advantage. Still
the figure shows that α∗ is used more frequently. Intuitively, when many investors follow α,
asset 1 (resp. asset 2) is overvalued (resp. undervalued). Any investor who would change
to α∗ could make a profit on asset 2. In contrast, when many investors follow α∗, prices
are close to fundamentals, and arbitrage opportunities are very limited. In summary, the
problem of α is that it ignores prices.
Diagram (b) displays an interesting feature that will be discussed later on (see Remark

1), and could not be perceived in diagram (a). Namely, in general, µ(0) > µ(n) for small
n, even though µ(n) is increasing for n ≥ 1. In this particular case, it is even true that
µ(0) > µ(99).

6 Asset prices

In what follows we present sample paths of the dynamics analyzed in Section 5 from the
perspective of asset prices. In this way, our results will be viewed from the usual financial
markets standpoint. Figure 2 shows the evolution of asset prices in the market considered
for the construction of Figure 1. In this example one period corresponds to the time interval
necessary for 1% of total market wealth to be reallocated. Here, it is useful to think of one
period as being approximately equal to one trading day, which leads to an estimate of 4

15We allow for a small investment on the inferior asset for two reasons. First, in order to avoid the
indeterminacy of prices if all investors follow a strategy with zero weight on some asset. Second, the
maximal observable payoff difference ∆, which is used to compute the normalization parameter σ, is bounded
independently of N if α is completely mixed, but increases with N otherwise.
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Figure 2: Evolution of the price of asset 1 with N = 100 and ε = 0.1. The x-axis approxi-
mately correspond to trading days. Price appears in the y-axis.

years every 1,000 periods if years have 250 trading days.16

Diagrams (a) and (c) plot the price of asset 1 in the portfolio dynamics where α∗ =
(2/3, 1/3) competes against betting your beliefs; i. e. α = (1/2, 1/2). Diagrams (b) and
(d) correspond to the dynamics where α∗ competes against the “best”-asset strategy α =
(0.999, 0.001). In the former case the price of asset 1 is always between 1/2 and 2/3, while
in the latter it must lie between 2/3 and 0.999 depending on the fraction of α∗-traders in
the population. If all traders follow α∗, the price of the asset must be 2/3, the fundamental
price.17

Diagram (a) is the analogue of Figure 1(a). Note that the price never goes below 0.58.
This is because there are always more traders using α∗. Observe how the numerical value
2/3 is actually attained a significant fraction periods–recall that µ(100) ≈ 0.21. Diagram
(b) is the corresponding plot for Figure 1(b). In this case both 2/3 and 0.999 are attained,
which reflects the higher value of µ(0) in this example. The sharp difference in the value

16In 2001 the NASDAQ average daily trading volume was $44 × 109, approximately 1.5% of the total
listings’ market value of $2.9 × 1012. This corresponds to an estimate of 0.66 days per period in our
examples. Similar data for the NYSE (1.441×109 average daily stock volume traded over 349.9×109 shares
listed in 2002) yield an estimate of 2.4 days per period.

17Since we only allow for two different strategies to compete, the price cannot overshoot the fundamental
price in both directions.
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Figure 3: Effect of the noise parameter ε.

that each strategy assigns to asset 1 result in much higher volatility.
Diagrams (c) and (d) show much shorter time scales, which are probably more relevant

for the analysis of financial markets. Diagram (c) corresponds to periods t = 1000, . . . , 2000
in diagram (a), showing a typical run where the price moves towards the fundamental price.
Essentially what Theorem 2 says is that such runs are more frequent than those where the
price moves away from the fundamental price. Diagram (d), on the other hand, shows that
it is still possible that prices move away from fundamentals for quite long time intervals.
There we take periods t = 5000, . . . , 8000 in (b) to illustrate a bubble that goes on for more
than a decade, preceding a crash that can be observed in diagram (b).

Remark 1. In the market example of Figures 1 and 2 we took ε = 0.1, significantly above
zero. In the proof of Theorem 2, one can see that the invariant distribution depends on the
noise parameter; i. e. µ = µε. It is easy to show that, as ε → 0, µε concentrates on the profiles
where all traders invest according to the same strategy. Formally, the support of the limit
invariant distribution limε→0 µ

ε contains only 0 and N . In the terminology of the literature
on learning in games these are the only stochastically stable states,18 which implies that, in
the long run and for negligible ε, these are the only two profiles which could be observed
with positive probability. It does not say anything about how much weight is placed on each
of them. In Figure 1 this would mean that all the weights µ(n), 1 ≤ n ≤ N − 1 converge
to zero when ε → 0. The approach in this paper allows to explicitly compute the invariant
distribution and show that, in some cases, the probability that we observe all investors using
α 
= α∗ is actually negligible. This can also be seen in Figure 1(a).
Figure 3 illustrates how the process changes when the noise parameter becomes smaller

for the sample path plotted in Figure 2(b) above. Observe how the frequency of the profiles
where all investors use the same strategy increases to the expense of all other mixed profiles.

7 Conclusions

In the present paper, asset markets are modelled as a game, where assets pay according to
an arbitrary payoff matrix, investors decide on fractions of wealth to allocate to each asset,
and prices result from market clearing.
In the first part of the paper, it is found that the only Nash equilibrium is to split wealth

proportionally to the expected returns of the assets, which can be interpreted as investing
18See e. g. Kandori et al. (1993) and Young (1993).

19



according to the fundamentals. In equilibrium, asset prices are numerically equal to relative
expected returns. Uniqueness implies that, whenever prices are away from these fundamental
values, there must be arbitrage opportunities. Furthermore, it is shown that the equilibrium
strategy is evolutionarily stable. At first sight, this could be read as a restatement of the
efficient market hypothesis.
The second part of the paper analyzes an evolutionary dynamics where wealth flows with

higher probability into those strategies that obtain higher realized payoffs. An additional
noise parameter models new, exogenous information coming into the system. It is shown
that, most of the time, a majority of traders invest according to the equilibrium strategy,
and thus prices are close to fundamentals. Further, at any given period, prices are more
likely to move towards their fundamental values.
Still, the stochastic nature of the system allows prices to be away from fundamental

values during long periods of time, and hence there might be persistent arbitrage oppor-
tunities. This is not only due to noise, but also because strategies which are wrong in
their perceptions about the values of assets may have lucky runs which can drive investors
away from the equilibrium strategy. Therefore, one could observe persistent violations of
the efficient market hypothesis as suggested by De Long et al. (1990). The main difference
between our view and theirs is the fact that, since α∗ is a strictly globally stable ESS, noise
traders cannot have larger expected payoffs than fundamentalists, that is α∗-traders. As a
consequence, in the long run the frequency of periods where all traders invest according to
the fundamentals are much higher and noise traders cannot dominate.
In a sense we try to reconcile the two apparently opposed views that markets are ef-

ficient, on the one hand, with prices containing all relevant information and no arbitrage
opportunities, and on the other hand that noise traders may be successful and survive in
the market.
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