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Abstract

This paper studies a symmetric Bertrand duopoly with imperfect mon-
itoring where firms receive noisy public signals about the state of demand.
These signals have two opposite effects on the incentive to collude: avoid-
ing punishment after a low-demand period increases collusive profits, mak-
ing collusion more attractive, but it also softens the threat of punishment,
which increases the temptation to undercut the rival. There are cases
where the latter effect dominates, and so the collusive equilibrium does
not always exist when it does absent demand information. These findings
are related to the Sugar Institute Case studied by Genesove and Mullin
(2001).
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1 Introduction

Competition authorities tend to be alarmed when they discover mechanisms or

institutions which provide firm-level information on prices or quantities to com-

petitors in oligopolistic industries. Two examples from EU case law are the UK

Tractor Case (1992), and the Cement Case (1994). In the UK Tractor Case, the

UK trade association of manufacturers and importers of agricultural machinery

(Agricultural Engineers Association Ltd) collected information on tractor regis-

tration (vehicle licensing) from the Department of Transport and distributed it

to its members. This information identified the retail sales and market shares of

each of the eight firms on the UK market with detailed breakdowns by product,

territory and time periods. The Cement Case differed from the UK Tractor

Case insofar as it was price information (not sales) that was communicated by

the European Cement Association (Cembureau) to its members (cement man-

ufacturers from 19 European countries).

The European Commission’s tough stance in these cases is well-grounded on

a body of academic work (discussed in more detail in the next section) studying

if and how firms can sustain collusion in an environment where rivals’ actions

are only imperfectly observable. The conventional wisdom arising from this

literature is that, compared to an environment of perfect monitoring, collusion

will in general be more difficult to sustain, because deviators are harder to detect

and to punish, making the industry more susceptible to cheating.

But can we conclude that market information will always and unambiguously

facilitate collusion? The purpose of this paper is to show that there are instances

where collusion may actually be easier (not harder) to sustain without such

information. I analyze a repeated symmetric Bertrand duopoly with uncertain

demand, where firms cannot observe the competitor’s price, but they receive a

noisy public signal about the demand realization. This signal could correspond

for instance to the publication of (aggregated or firm-level) sales data for a

particular industry. The signal is noisy in both directions: It may erroneously

indicate that demand was high when it was in fact low, and vice versa. The
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noise is crucial in producing the result.

I study the existence of collusive equilibria sustained by optimal collusive

strategies where firms coordinate their actions on the public information his-

tory. In the benchmark model without signals, whenever at least one firm

realized zero profits, optimal punishment requires that firms coordinate on a

randomization device, and either jointly stay in the collusive phase or revert to

the Bertrand-Nash equilibrium forever. This implies that, along the equilibrium

path, collusion is jeopardized every time a low-demand state is realized, even

though nobody defected. I first show that if the colluding firms receive public

demand information (in addition to their observations on own profits), they will

optimally avoid Nash reversion whenever profits are zero and the signal indi-

cates that demand was low. Thus, signals increase collusive profits and hence

make collusion more attractive.

However, the contribution of this paper is to show that conditioning on

such imperfect signals also has a downside for the firms: Suppose that one firm

defected, but the signal (accurately or wrongly) indicates that demand was low.

Then, the probability of Nash reversion is zero, i.e. the cheating firm will get

away with the defection. This can never happen in an environment without

signals, where the probability of Nash reversion is always strictly positive when

a defection has occurred. Thus, signals weaken the punishment mechanism,

thus undermining compliance with the collusive arrangement. I show that if

negative demand shocks are rather unlikely, this second effect dominates the

positive effect of transparency which has been stressed in the literature so far.

As a result, signals may raise the minimum discount factor required to sustain

collusion, so that collusion is less likely to arise.

The paper is organized as follows: Section 2 reviews the related literature.

Section 3 introduces the model. Section 4 studies how the introduction of signals

into the game affects the existence of collusive equilibria and their properties.

Section 5 relates the results to what may be the most prominent example of a

collusive trade association in the economic literature, the Sugar Institute Case

as studied by Genesove and Mullin (2001), and draws some policy conclusions.
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Finally, Section 6 summarizes the main findings and concludes.

2 Related Literature

In his seminal paper of 1964, Stigler was the first to analyze the case of a

Bertrand-type oligopoly where each firm’s prices are unobservable to its com-

petitors (i.e. each firm can grant secret price cuts to its customers). Stigler

(1964) concluded that without observability of prices, collusion will in general

be more difficult to sustain, but can still arise if the cartel provides the right

incentives.

Following Stigler’s (1964) approach, Green and Porter (1984) developed their

model to show that given stochastic demand shocks, price wars need not be the

result of a collapse of collusion, but should rather be interpreted as part of

the firms’ equilibrium strategies to ensure tacit collusion in a non-cooperative

framework.

Stigler’s (1964) and Green-Porter’s (1984) work inspired a growing literature

on firm behavior under non-observability of competitors’ actions. In particular,

Abreu, Pearce and Stacchetti (1986, 1990) analyzed optimal punishment strate-

gies in oligopolies with imperfect monitoring, showing that every symmetric

sequential equilibrium payoff in the Green-Porter model can be supported by

sequential equilibria having an extremely simple intertemporal structure. Fu-

denberg, Levine and Maskin (1994) identify conditions for the folk theorem to

apply in repeated games in which players observe a public outcome that im-

perfectly signals the actions played. My paper is most closely related to this

literature, both in terms of the structure of the game studied as well as the

questions addressed in the analysis.

Note that a public signal serves two distinct purposes in these games: first,

it provides information to the agents (which could be achieved by a private

signal as well), and second, it also allows firms to coordinate their behavior

on the signal’s realizations (which is not the case for a (noisy) private signal,

as then the state of the world will no longer be common knowledge among
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the agents). The properties of repeated games with imperfect monitoring and

privately observed signals are not yet well understood; one way to resolve the

coordination problem in such a model is to allow for communication between

players, as shown in Kandori and Matsushima (1998) and Compte (1998).

A different, but related strand of literature studies whether firms find it

profitable to share private information with each other. While each firm will

always want to learn its rivals’ information, it is not clear that the firm will also

find it in its interest to voluntarily disclose the information it holds itself. The

incentives to share information with rival firms was formally studied by Vives

(1984) in a duopoly model with differentiated products where firms have private

information about an uncertain linear demand. Vives finds that if the goods

are substitutes, it is a dominant strategy for each firm to share information in

Bertrand competition, while it is not under Cournot competition. Moreover, the

result is reversed if the goods are complements. These findings were generalized

by Raith (1996). Experimental evidence on information sharing is provided by

Cason and Mason (1999), who found that the information sharing itself did not

substantially increase tacit collusion.

The empirical work on collusion with imperfect monitoring generally finds

that improving transparency in an industry leads to significant and stable price

increases above the competitive level. Well-known examples include the US

railroad grain rates in the 1980’s (see Fuller et al. (1990)) and the Danish

ready-mixed concrete market in the early 1990’s (see Albæk et al. (1997)). The

striking feature of these two examples is that the relevant market information

was not provided by a cartel or trade association, but by government agencies,

who were certainly hoping to achieve the opposite effect.

A related problem regards oligopolistic markets where the buyers are the

ones who can only imperfectly observe seller’s prices (while the sellers can),

i.e. the market is not ”transparent”. One interesting result of this work is

that increasing market transparency may not be unambiguously beneficial for

consumers (see Nilsson (1999) for a search-cost approach, and Møllgaard and

Overgaard (2000) for a product-differentiation approach). If buyers cannot fully
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observe all prices on the market, it is difficult for firms to steal business from

their rivals. This reduces the incentives to cheat, but it also makes it harder to

punish a defector. If the latter effect dominates, collusion cannot arise, and so

consumers are actually better off than if they could fully observe all prices.

Finally, in an oligopoly with uncertain demand, each firm could choose as

its strategy a ”supply function” relating its quantity to its price, rather than a

fixed price or a fixed quantity. Klemperer and Meyer (1989) give conditions for

existence and for uniqueness of a Nash equilibrium in supply functions under

uncertainty and compare the equilibrium with the Cournot and Bertrand equi-

libria when the demand and cost curves, the number of firms, and the form of

uncertainty vary. This approach is also taken in Fabra (2003), who compares

the level and conduct of collusion under uniform and discriminatory auctions.

She finds that uniform auctions facilitate collusion more than discriminatory

auctions: the optimal penal code is equally severe under the two formats; but

bidders’ deviation incentives are weaker in uniform auctions given that the pay-

off irrelevant bids can be used to relax the enforcement problem.

3 The model

This section builds on Tirole’s (1988) illustration of the Green and Porter (1984)

model. Consider an infinitely repeated duopoly game where two symmetric firms

produce perfect substitutes at constant marginal cost. The firms choose prices

every period. Buyers can perfectly observe both prices and will all buy from

the low-price firm. Each firm only knows its own price but cannot observe

the rival’s price. This situation will typically arise in customer markets where

the buyers are large firms searching the market for potential input providers;

examples would include the Lysine cartel as described in Connor (1999), or the

Sugar Institute discussed in more detail in Section 5.1

Demand for the product is stochastic; with probability α, demand will be
1The assumption that buyers can fully observe prices (while firms cannot) may seem some-

what strong. We make this assumption to isolate the issue of imperfect monitoring among
competitors from that of observability by buyers. For a discussion of the literature on limited
price observability by buyers, see Section 2.
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zero in a given period (the ”low-demand state”), and with probability 1 − α,

demand will be positive (the ”high-demand state”). Realizations are assumed

to be iid over time. Firms cannot directly observe the state of demand.

For the high-demand state, denote the per-period monopoly profits by Πm.

We assume that the two firms share the market equally whenever they charge

the same price. Thus, in a period of high demand, each firm’s profit under

collusion will be Πm/2. Next-period’s profits are discounted at rate δ < 1.

If a firm realizes profits Πm/2, it can perfectly infer the other firm’s behavior

and vice versa. Then, it is common knowledge that demand was high and both

firms set the collusive price. If instead a firm does not sell anything at some

date, it does not know apriori whether this is due to a low realization of demand

or to its competitor charging a lower price. Each firm can however observe its

own profits; thus, it is always common knowledge that at least one firm realized

zero profits (because then either demand is low, hence the other firm realized

zero profits as well, or the other firm undercut).

In addition to their observations of own profits, the firms receive a noisy

signal on the demand realization after each period.2 The signals are iid over

time, and can be characterized as follows (see table below): If the actual state

of demand was low (D = 0), the signal will indicate low demand (S = 0) with

probability σl, and wrongly indicate high demand (S = 1) with probability

1 − σl. Conversely, if the actual state of demand was high (D = 1), the signal

will correctly indicate this with probability σh, and wrongly indicate low demand

with probability 1− σh. Probabilities σl and σh are known to the firms.

Signal indicates:
low (S = 0) high (S = 1)

State of demand: low (D = 0) σl 1− σl
high (D = 1) 1− σh σh

Assume that the signal is informative, i.e. σl >
1
2 and σh > 1

2 . Signal

precision may vary across demand states, i.e. it could be that σl 6= σh. The
2Firms do not incur any cost to receive this signal, nor do they disclose any information

themselves. Think of this signal as being exogenously provided, for instance by a trade
association or government agency.
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signal is public, so that its realization is common knowledge.

Under the information structure imposed above, play of the infinitely re-

peated game generates both a private and a public information history. For

each firm, the sequence of its prices and sales in each period constitutes its pri-

vate history. The public history is the sequence of information which both firms

observe. In our case, at each stage, it is common knowledge whether or not at

least one firm realized zero profits, and whether the signal indicated high or low

demand.

We will now study how the firms can collude given the signal extraction

problem introduced above. Following the approach of Abreu, Pearce, and Stac-

chetti (1986), the relevant collusive equilibrium can be characterized as follows:

along the collusive path, the two firms charge the collusive price until at least

one firm makes zero profit. Both this event and the realization of the demand

signal are now public history. If the demand signal indicates that demand was

low, the collusive phase optimally continues with probability 1. If instead the

signal indicates high demand, optimal punishment requires that firms coordi-

nate on a randomization device, and either jointly stay in the collusive phase or

revert to the Bertrand-Nash equilibrium forever.

We restrict attention to symmetric perfect public equilibria (SPPE) in pure

strategies. An SPPE is a symmetric strategy profile in which players condi-

tion their actions on the public history (not on their private information) at

each point in time. Along the lines of Abreu, Pearce, and Stacchetti (1986),

we transform the repeated game into an equivalent static game in which the

payoffs are decomposed into the sum of a stage game payoff and a continuation

value. After the realization of profits and the demand signal, in each period a

public random variable is first drawn and then observed by all players. This

public randomization device allows the two firms to coordinate on the punish-

ment. Denote by v = 0 the minmax of the repeated game, and by v (δ, α, σl, σh)

the ex-ante maximal payoff. Then the set of payoffs supported by SPPE is

ES (δ, α) = [v, v (δ, α, σl, σh)], which is compact, non-empty and convex. More-
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over, an SPPE that supports the ex-ante maximal payoff v (δ, α, σl, σh) always

exists. We focus on this optimal SPPE because it is Pareto-dominant from the

point of view of the firms.

This optimal equilibrium can be implemented by randomizing only between

the two extremal points of the set ES (δ, α). Firms start playing the monopoly

price and, depending on the public information, they will stick to that strategy

with a certain probability, and move to Nash reversion with the complementary

probability. Formally, one of four events, i = 1, . . . , 4, will occur at each stage

game, where πi denotes Event i’s probability:

Event i D S Probability πi
1 1 1 (1− α)σh
2 1 0 (1− α) (1− σh)
3 0 0 ασl
4 0 1 α (1− σl)

If both firms collude, then the public history observed by both firms allows

them to distinguish each of the four events. Denoting by βi the probability

of Nash reversion following Event i, the optimal collusive equilibrium can be

written as the solution to the following problem:

max{βi}4i=1
v = (1− α) Πm/2 + δ

4∑
i=1

πi [(1− βi) v + βiv]

subject to:
(1) v ≥ (1− α) Πm + δ {(π2 + π3) [(1− β3) v + β3v] + (π1 + π4) [(1− β4) v + β4v]}
(2) {βi}4i=1 ∈ [0, 1]

Constraint (1) represents the firms’ incentive compatibility constraint: col-

lusion is sustainable if the collusive payoff, v, is at least as high as the payoff

from cheating. If a firm cheats while the other continues to collude, it can ap-

propriate the full monopoly profit Πm, provided demand is high in the period

when cheating occurs. In any case, the firm that was cheated on will make

zero profits. With the unconditional probability that the signal indicates low

demand, Pr(S = 0) = π2 + π3, the other firm will believe that Event 3 has

occurred, so that Nash reversion will be triggered with probability β3. Analo-

gously, with probability Pr(S = 1) = π1 + π4, the public history is identical to
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the one that would arise after Event 4, and so Nash reversion will be triggered

with probability β4.

Proposition 1 If demand signals are available,

(i) The collusive equilibrium yielding maximal payoff v (δ, α, σl, σh) exists

for δ arbitrarily close to 1 iff α < σh

1+σh−σl
.

(ii) The equilibrium strategies are as follows: firms never punish if they

both make profits of Πm/2, or if they make zero profits and the demand signal

indicates that demand was low, i.e. they optimally set β∗1 = β∗2 = β∗3 = 0. If

they make zero profits and the demand signal indicates that demand was high,

they will switch to Nash reversion with probability

β∗4 =
1− δ

δ [(1− α)σh − α (1− σl)]
.

Proof: see appendix. �

It is quite intuitive that the firms will not punish if they both make positive

profits: if a firm makes profits of Πm/2, it can immediately infer that the other

firm colluded as well, i.e. there is no inference problem. More interestingly, I

show that whenever firms make zero profit, and the demand signal indicates

that demand was low, it is optimal not to punish. Given that the signal is

imperfect, it is not obvious that it is always optimal to set β3 = 0. One could

imagine a situation where firms punish with strictly positive (though possibly

different) probabilities both when S = 0 and when S = 1. However, in the

proof of Proposition 1, I show that firms can always increase their payoffs if

they trade off punishment when S = 0 against punishment when S = 1. More

precisely, v unambiguously increases whenever firms reduce β3 while increasing

β4 by just enough to keep the incentive constraint unchanged.

The benchmark case without signals Consider now the same situation,

but without any demand signals. Then, the only event that firms can condition

punishment on is the profit realization.
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maxγ1,γ2 v = (1− α) Πm/2 + δ {(1− α) [(1− γ1) v + γ1v] + α [(1− γ2) v + γ2v]}
subject to:
(1a) v ≥ (1− α) Πm + δ [(1− γ2) v + γ2v]
(2a) γ1, γ2 ∈ [0, 1]

As shown in Amelio and Biancini (2007), firms will never find it optimal to

punish when they make positive profits, while punishing with positive probabil-

ity whenever they realize zero profits. The solution to the optimization problem

without demand signals can be characterized as follows (see Amelio and Biancini

(2007) for the proof):

(i) The collusive equilibrium yielding maximal payoff v (δ, α) exists for δ

arbitrarily close to 1 iff α < 1
2 .

(ii) The equilibrium strategies are as follows: firms never punish if they both

make profits of Πm/2, i.e. they optimally set γ∗1 = 0. If they make zero profits,

they will switch to Nash reversion with probability

γ∗2 =
1− δ

δ (1− 2α)
.

I fist inspection of the two maximization problems shows that the introduc-

tion of signals has two distinct effects:

(i) The value of collusion increases when signals are available: If the signal

correctly indicates low demand, punishment will be avoided, which increases

the probability of continuing the collusive phase next period.

(ii) The value of defection changes as well (in fact, it increases) because a

defecting firm now has a higher probability of getting away with the defection:

If demand was high, but the signal wrongly indicates low demand, or instead

demand was low, and the signal correctly indicates low demand, punishment

will not be triggered.

The two effects therefore work in opposite directions: they make both com-

pliance and defection more attractive, and it is not obvious which of these effects

will dominate.
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4 Equilibria with and without signals

We will now study how the introduction of signals into the game affects the

existence of collusive SPPEs and their properties.

We argued above that if δ can be arbitrarily close to 1, the collusive equilib-

rium will exist

(i) with signals: iff α < σh

1+σh−σl
≡ αS

(ii) without signals: iff α < 1
2 ≡ αnoS

Comparing the two upper bounds on α, we find the following:

Proposition 2 For δ arbitrarily close to 1, the range of values of α compat-

ible with collusion is larger when demand signals are available, i.e. αS > αnoS.

If signals are sufficiently accurate, collusion can be sustained for any α ∈ [0, 1).

Proof: We claim that
σh

1 + σh − σl
>

1
2

This expression simplifies to

σh + σl > 1

which always holds by our assumption that the signals are informative, i.e.

σl >
1
2 and σh > 1

2 . Note that as σl → 1, we have that αS → 1, which

concludes the proof of Proposition2. �

Let us now turn to the minimum discount factors required to sustain collu-

sion with and without signals. Recall that we must have β∗4 ≤ 1. This condition

can be rearranged to read

δ ≥ 1
1 + (1− α)σh − α (1− σl)

≡ δS

where δS is the lower bound on δ for collusion to be sustainable when signals

are available.

The corresponding expression for the game without signals derives from γ∗2 ≤

1, and reads

δ ≥ 1
2 (1− α)

≡ δnoS
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Comparing the two lower bounds on δ, we find that signals have an ambigu-

ous impact on the minimum discount factor: For low levels of α, firms will have

to be more patient under signals than without signals:

Proposition 3 Signals will raise the minimum discount factor required to

sustain collusion whenever

α <
1− σh

1− σh + σl

and will reduce the minimum discount factor otherwise.

Proof: Rearranging the inequality

δS =
1

1 + (1− α)σh − α (1− σl)
>

1
2 (1− α)

= δnoS

we obtain the condition on α as stated in Proposition 3. �

We can now state the main result of our analysis:

Proposition 4

(i) If α ≥ σh

1+σh−σl
, collusive equilibria do not exist even if demand signals

are available.

(ii) If α ∈
[

1
2 ,

σh

1+σh−σl

)
, demand signals allow for collusion to be sustained

where this is not possible without signals.

(iii) If α ∈
[

1−σh

1−σh+σl
, 1

2

)
, collusion can be sustained with or without signals,

but signals facilitate collusion by reducing the minimum discount factor required

to sustain collusion.

(iv) If α < 1−σh

1−σh+σl
, collusion can be sustained with or without signals, but

signals raise the minimum discount factor required to sustain collusion.

Proof: follows from Propositions 2 and 3, where 1−σh

1−σh+σl
< 1

2 is implied by

our assumption that the signals are informative, i.e. σl > 1
2 and σh >

1
2 .�

The last part of Proposition 4 is the key result of this paper. Intuitively, the

availability of signals affects the minimum discount factor in two ways: First,

signals reduce δS by allowing firms to reduce the probability of Nash reversion

when a negative demand shock occurred in a collusive period. Second, signals
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increase δS because a firm which undercuts has a higher chance to get away

with it, and so the temptation to defect increases. Now, for low levels of α, this

second (negative) effect will dominate the first (positive) effect, leading to an

overall increase in δS .

Figure 1 illustrates Proposition 4 graphically for the case where σh = σl

(i.e. signal precision is the same for both demand states). This assumption

reduces the relevant parameter space to two dimensions and hence facilitates

graphical representation.3 Condition α < σh

1+σh−σl
then simplifies to α < σh,

while condition α < 1−σh

1−σh+σl
simplifies to α < 1− σh.

INSERT FIGURE 1 HERE

Finally, let us compare the expected discounted present value of collusion

with and without signals.

Proposition 5 The expected discounted present value of collusion is always

higher with signals than without signals.

Proof: Inserting the optimal probabilities β∗1 = β∗2 = β∗3 = 0 and β∗4 from

Proposition 1 into the objective function, we obtain the maximal payoff when

signals are available as

v (δ, α, σl, σh) =
Πm

2
(1− α)σh − α (1− σl)

σh (1− δ)

while the maximal payoff without signals is

v (δ, α) =
Πm

2
1− 2α
1− δ

The inequality v (δ, α, σl, σh) > v (δ, α) reduces to σl + σh > 1, which holds by

our assumption that the signals are informative, i.e. σl > 1
2 and σh >

1
2 .�

5 Discussion

A canonical example of a trade association helping in enforcing a collusive ar-

rangement is the Sugar Institute analyzed by Genesove and Mullin (2001). This
3For general values of σh and σl, these conditions are not linear in signal precision. Thus,

the four regions into which Proposition 4 divides the parameter space will not generally be of
equal size.
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trade association was formed by 14 firms comprising nearly all the cane sugar

refining capacity in the United States, and operated from December 1927 until

1936. Among other things, it collected information on its members’ business

conduct through its own investigators, and if it found indications of cheating,

provided a forum for accusation and rebuttal.

One interesting analogy to our model is that the reported information was

not fully reliable:

The accusation could be factually wrong: a concession on one

barrel of caked sugar was wrongly reported as a concession on a much

larger amount of powdered sugar by a Sugar Institute investigator.

Or a firm employee or direct broker may simply have made an error

in invoicing or shipping. (p. 389)

Most significantly, the punishment mechanism of the cartel differed markedly

from the predictions of collusion theory in that retaliation was not immediate;

instead, ”the Sugar Institute served as a court”, providing a mechanism ”by

which firms can first judge whether cheating has in fact occurred before taking

action.” (p. 389) In other words, punishment was conditioned on ”additional

evidence” that went well beyond a first suspicion: ”Market share is a noisy

indicator of cheating; and with direct evidence available, the refiners evidently

preferred to rely on that instead.” (p. 394)

The authors argue that this approach ”delayed, and perhaps restricted, re-

taliation against violations of the agreement” (p. 387). They quote several

instances where deviators got away with what was very likely an attempt to

cheat. ”...Firms accept some cheating so as not to punish inappropriately.” (p.

393) While it remains mysterious how cheating can actually occur along the

collusive path, the model we analyzed above stresses precisely this trade-off be-

tween Type I and Type II error, and how signals tilt the trade-off in favor of

less punishment, at the risk of letting deviators get away with it.

Finally, it is noteworthy that the Sugar Institute ceased to operate in 1936,

when the Supreme Court ruled its practices illegal. However, judging from the
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Figures provided on p. 382, the Lerner Index did not change significantly in

subsequent years (and it certainly did not return to the low levels preceding the

formation of the Sugar Institute). One interpretation could be that the collusive

equilibrium remained sustainable even though the industry was deprived of the

”services” provided by its trade association.

The most important implication of our analysis for antitrust policy is there-

fore that removing a monitoring device may not be sufficient to put an end to

collusion in an industry. Without any accompanying measures, collusion may

in fact continue even after such an intervention. Collusion will certainly be

less profitable than before (demand information unambiguously raises the net

present value of collusion), but ironically, collusion may actually become easier

(and not harder) to sustain. Thus, a harsh stance against information exchange

among firms is important, but must be complemented by further policies to

make sure that cartels cease to operate.

6 Conclusion

We analyzed a symmetric Bertrand duopoly model with uncertain demand,

where one firm’s prices are unobservable to its competitor, but firms receive

noisy public signals about the state of demand. First, I show that the optimal

collusive strategy is as follows: Firms never punish if they both make positive

profits, or if they make zero profits and the demand signal indicates that demand

was low; if they make zero profits and the demand signal indicates that demand

was high, they will switch to Nash reversion with strictly positive probability.

Next, I studied the existence of such collusive equilibria compared to the

benchmark case without demand signals. I found that for a discount factor

arbitrarily close to 1, these signals allow for tacit collusion to be sustainable if

the probability of low-demand states is high, i.e. in cases where collusion would

have been impossible absent signals.

On the other hand, if the probability of negative demand shocks is low,

there are actually cases where tacit collusion will be more difficult to sustain
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with signals (in the sense that firms will have to be more patient) than without

signals. The reason is that in order to take advantage of the information that

becomes available, firms need to soften the threat of punishment, which may

increase the temptation to undercut the rival, thus creating severe incentive

problems.

Nonetheless, the expected discounted present value of collusion is always

higher with signals than without signals.

Revisiting the Sugar Institute Case studied in Genesove and Mullin (2001),

we saw that the enforcement problems that this particular cartel seems to have

faced strikingly recall the ones studied in this paper. We concluded that a policy

which fights monitoring devices will always reduce the profitability of collusion,

but may not always be successful in breaking collusion; on the contrary, collusion

may actually be facilitated by the removal of demand information.
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7 Appendix

Proof of Proposition 1:

We start with part (ii) of Proposition 1. Observe that v = 0. Simplify and

rearrange the objective function,

v = (1− α) Πm/2 + δ

4∑
i=1

πi [(1− βi) v + βiv]

to read

vOF =
(1− α) Πm/2

1− δ
4∑
i=1

πi (1− βi)

(the subscript OF will help us to distinguish the objective function from the

incentive constraint, IC).
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The value of collusion, v, is strictly decreasing in β1 and β2:

∂vOF
∂βi

= − (1− α) Πm/2[
1− δ

4∑
i=1

πi (1− βi)
]2 δπi < 0 for βi ∈ {βi}4i=1

Likewise, rearrange the incentive constraint (1) to read

v ≥ (1− α) Πm

1− δ {(π2 + π3) (1− β3) + (π1 + π4) (1− β4)}

We see that β1 and β2 enter the incentive constraint only on the left-hand

side, through v, while they do not affect the value of defection, i.e. the right-

hand side of (1). Hence, reducing β1 and β2 both increases the objective function

and relaxes the incentive constraint. Therefore, it must be optimal to set β1

and β2 to their lowest possible value, i.e. β∗1 = β∗2 = 0.

We will now show that β∗3 = 0. Setting β∗1 = β∗2 = 0 and inserting for

{πi}4i=1, the objective function simplifies to

vOF =
(1− α) Πm/2

1− δ (1− α)− δασl (1− β3)− δα (1− σl) (1− β4)

Given that ∂vOF

∂βi
< 0 for β3 and β4, the incentive constraint will be bind-

ing under any solution of our maximization problem. Rewrite the incentive

constraint (1) as

vIC =
(1− α) Πm

1− δ {[(1− α) (1− σh) + ασl] (1− β3) + [(1− α)σh + α (1− σl)] (1− β4)}

Now, take the total differential of the incentive constraint:

dvIC =
∂vIC
∂β3

dβ3 +
∂vIC
∂β4

dβ4 = 0

to solve for the marginal rate of substitution between β3 and β4:

dβ3

dβ4
= −∂vIC/∂β4

∂vIC/∂β3

= − (1− α)σh + α (1− σl)
(1− α) (1− σh) + ασl

< 0

Next, evaluate the total change in the objective function when β3 and β4 are
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traded off against each other according to this marginal rate of substitution:

dvOF =
∂vOF
∂β3

dβ3 +
∂vOF
∂β4

dβ4

=
∂vOF
∂β3

(
− (1− α)σh + α (1− σl)

(1− α) (1− σh) + ασl
dβ4

)
+
∂vOF
∂β4

dβ4

=
(1− α) Πm/2

[D]2
δαdβ4

[
σl

(1− α)σh + α (1− σl)
(1− α) (1− σh) + ασl

− (1− σl)
]

where D denotes the denominator of vOF . Now, our assumptions on parameters

imply that
(1− α) Πm/2

[D]2
δα > 0

and that

σl
(1− α)σh + α (1− σl)
(1− α) (1− σh) + ασl

− (1− σl) > 0

(the latter reduces to (1− α) (σh + σl − 1) > 0, which is indeed satisfied by our

assumption that the signals are informative, σl > 1
2 and σh >

1
2 .)

Hence, we can conclude that

sign (dvOF ) = sign (dβ4)

i.e. a reduction in β3, matched by an increase in β4 just sufficient for the in-

centive constraint to remain binding, will unambiguously increase the objective

function. Therefore, it must be optimal to set β3 to its lowest possible value,

i.e. β∗3 = 0.

It remains to show the solution for β∗4 . Insert β∗3 = 0 into vOF and vIC , and

equate the two to solve for β∗4 as

β∗4 =
1− δ

δ [(1− α)σh − α (1− σl)]

Let us now turn to part (i) of Proposition 1. For the expression above to

be a valid solution, we must have β∗4 ∈ (0, 1]. Recall that δ ∈ (0, 1), so that

(1− δ) /δ > 0. Thus, for β∗4 > 0 to be satisfied, we must have that

(1− α)σh − α (1− σl) > 0

This expression can be rearranged to read

α <
σh

1 + σh − σl
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as stated in Proposition 1. Now, we must also have β∗4 ≤ 1. This condition can

be rearranged to read

δ ≥ 1
1 + (1− α)σh − α (1− σl)

Given that (1− α)σh − α (1− σl) > 0, the right-hand side of this expression is

strictly smaller than 1. Thus, if δ can be arbitrarily close to 1, the condition

β∗4 ≤ 1 will always be satisfied. This concludes the proof of Proposition 1.�
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